JP2005195499A - Sdi measuring method, sdi measuring instrument, and water production method using reverse osmosis membrane - Google Patents

Sdi measuring method, sdi measuring instrument, and water production method using reverse osmosis membrane Download PDF

Info

Publication number
JP2005195499A
JP2005195499A JP2004003170A JP2004003170A JP2005195499A JP 2005195499 A JP2005195499 A JP 2005195499A JP 2004003170 A JP2004003170 A JP 2004003170A JP 2004003170 A JP2004003170 A JP 2004003170A JP 2005195499 A JP2005195499 A JP 2005195499A
Authority
JP
Japan
Prior art keywords
sdi
membrane
reverse osmosis
water
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004003170A
Other languages
Japanese (ja)
Inventor
Satoru Ishihara
悟 石原
Hiroshi Iwabori
博 岩堀
Masaaki Ando
雅明 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004003170A priority Critical patent/JP2005195499A/en
Publication of JP2005195499A publication Critical patent/JP2005195499A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an SDI measuring method for calculating highly accurate SDI values at all times to estimate contamination risk of a separation membrane in advance in order to stably operate a membrane process thereafter, and to provide an SDI measuring instrument; to provide a water production method using a reverse osmosis membrane including a process for measuring the SDI value by using the same method. <P>SOLUTION: This SDI measuring method is characterized in that the SDI values of a separation membrane supplying liquid are measured by using a membrane filter with a contact angle θ equal to or less than 70°. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、膜プロセスにおける分離膜供給水の水質汚染指標に使用されるSDI測定方法に関し、詳しくは、常に高精度のSDI値を算出することのできるSDI測定方法に関する。また、前記方法に用いられるSDI測定装置、及び前記方法によりSDI値を測定する工程を含む逆浸透膜を用いた造水方法に関する。   The present invention relates to an SDI measurement method used for a water pollution index of separation membrane feedwater in a membrane process, and more particularly to an SDI measurement method that can always calculate a highly accurate SDI value. Further, the present invention relates to an SDI measuring device used in the method and a water production method using a reverse osmosis membrane including a step of measuring an SDI value by the method.

海水や下水などの原水中には、種々の懸濁物質、コロイド性の有機物と無機物、ウイルス、及び細菌などの汚染物質を含んでいる。このような汚染物質は分離膜を汚染し、性能の低下を引き起こす原因となる。   Raw water such as seawater and sewage contains various suspended substances, colloidal organic and inorganic substances, contaminants such as viruses and bacteria. Such contaminants contaminate the separation membrane and cause a decrease in performance.

従来、逆浸透膜などの分離膜を用いる海水淡水化処理や下水再生処理においては、分離膜の汚染を防止するために、予め凝集沈殿処理、加圧浮上処理、及び砂ろ過処理などのプロセスを組み合わせて原水中の微生物、コロイド、及びシルトなどの微粒子成分を除去する前処理工程が行われてきた。近年、精密ろ過膜(MF)や限外ろ過膜(UF)などの膜分離によって原水を前処理する技術が開発された。そして、微粒子成分を除去した後の水中の微量懸濁物質等による汚染の程度を測定する方法として、均一微細な孔径を持つメンブレンフィルターを用いて、その目詰まり率をもって汚染指数とする方法が採用されている。特に、逆浸透膜法海水淡水化装置への供給水の監視指標として膜汚染防止に非常に有効であることが確認され、現在、膜プロセスにおける分離膜供給水の水質汚染指標としてASTM(Standard Test Method for Silt Density Index of Water D4189−95(2002))によって規定されているSDI(Silt Density Index)測定方法が一般に使用されている。   Conventionally, in seawater desalination treatment and sewage regeneration treatment using a separation membrane such as a reverse osmosis membrane, in order to prevent contamination of the separation membrane, processes such as coagulation sedimentation treatment, pressurized flotation treatment, and sand filtration treatment are performed in advance. In combination, a pretreatment process has been performed to remove particulate components such as microorganisms, colloids, and silt in raw water. In recent years, techniques for pretreatment of raw water by membrane separation such as microfiltration membrane (MF) and ultrafiltration membrane (UF) have been developed. And, as a method of measuring the degree of contamination due to trace suspended substances in water after removing fine particle components, a method using a membrane filter with a uniform fine pore size and the clogging rate as the contamination index is adopted. Has been. In particular, it has been confirmed that it is very effective for prevention of membrane contamination as a monitoring index of water supplied to a reverse osmosis membrane seawater desalination apparatus. Currently, ASTM (Standard Test) is used as a water pollution index of separation membrane supply water in a membrane process. The SDI (Silt Density Index) measurement method prescribed | regulated by Method for Silt Density Index of Water D4189-95 (2002) is generally used.

前記SDI測定方法により算出されるSDI値(汚染指数)は、以下の計算式により算出される。   The SDI value (contamination index) calculated by the SDI measurement method is calculated by the following calculation formula.

SDI15=(1−T0 /T15)×100/15
0 :孔径0.45μm、直径47mmのメンブレンフィルターに圧力206kPaで試料をろ過し、初期の試料500mlをろ過するのに要する時間(秒)
15:更にろ過を開始後から15分継続し、その後試料500mlをろ過するのに要する時間(秒)
前記SDI15の値は、0〜6.66の値を示し、数値が大きいほど汚染度は大きくなる。一般に海水や下水などの原水を前処理した後の逆浸透膜への供給水のSDI値は4以下とされている。
SDI 15 = (1-T 0 / T 15 ) × 100/15
T 0 : Time (seconds) required to filter a sample at a pressure of 206 kPa through a membrane filter having a pore diameter of 0.45 μm and a diameter of 47 mm and filter an initial sample of 500 ml
T 15 : Continued for 15 minutes after the start of filtration, and then time (seconds) required to filter 500 ml of the sample
The value of SDI 15 is a value from 0 to 6.66, and the greater the value, the greater the degree of contamination. Generally, the SDI value of water supplied to the reverse osmosis membrane after pretreatment of raw water such as seawater and sewage is 4 or less.

なお、海水からの淡水の回収率を向上させて淡水の製造コストを低減せしめ、さらに設備コストを低減させた逆浸透分離を用いた造水方法の提供を目的として、供給する海水のSDI値を1以下に制御する造水方法が開示されている(特許文献1)。そして、供給する海水のSDI値を1以下に制御する方法としては、原海水を膜分離装置で膜処理する方法、原海水に予め前処理を施してから膜処理を施す方法が記載されている。   For the purpose of providing a fresh water generation method using reverse osmosis separation that improves the recovery rate of fresh water from seawater to reduce freshwater production costs and further reduces equipment costs, A fresh water generation method of controlling to 1 or less is disclosed (Patent Document 1). And as a method of controlling the SDI value of the seawater to be supplied to 1 or less, a method of membrane-treating raw seawater with a membrane separator, and a method of performing membrane treatment after pretreatment of the raw seawater in advance are described. .

しかし、近年上記SDI測定方法を用いて前処理後の膜ろ過水のSDI値を測定した場合に、必ずしもSDI値が正確な値を示すわけではなく、汚染指数の精度に問題があることが明らかになった。特にミクロ気泡が存在する場合には、通常のSDI値と著しく異なる数値を示すことが明らかになった。例えば、SDI測定に用いられる孔径0.45μmのメンブレンフィルターよりも小さな孔径の限外ろ過膜(公称分画分子量:20000Daltons、名目孔径:0.007μmのもの、又は公称分画分子量:500000Daltons、名目孔径:0.029μmのもの等)、又は孔径0.1μm程度の精密ろ過膜を用いて海水などを前処理した後の膜ろ過水のSDI値が3を超す異常に大きな値を示すことがしばしば認められた。そのため、分離膜の汚染リスクを事前に予測し、膜プロセスを安定運転するために、常に高精度のSDI値を算出することのできるSDI測定方法の開発が望まれていた。
特開2001−252661号公報
However, in recent years, when the SDI value of pre-treated membrane filtrate is measured using the above SDI measurement method, the SDI value does not necessarily indicate an accurate value, and it is clear that there is a problem in the accuracy of the contamination index. Became. In particular, when microbubbles were present, it became clear that the values were significantly different from normal SDI values. For example, an ultrafiltration membrane having a pore size smaller than a membrane filter having a pore size of 0.45 μm used for SDI measurement (nominal fractional molecular weight: 20000 Daltons, nominal pore size: 0.007 μm, or nominal fractional molecular weight: 500,000 Daltons, nominal pore size : It is often recognized that the SDI value of membrane filtration water after pretreatment of seawater etc. using a microfiltration membrane with a pore size of about 0.1 μm shows an abnormally large value exceeding 3. It was. Therefore, in order to predict the contamination risk of the separation membrane in advance and to stably operate the membrane process, it has been desired to develop an SDI measurement method that can always calculate a highly accurate SDI value.
JP 2001-252661 A

本発明は、上記課題を解決するものであって、分離膜の汚染リスクを事前に予測し、その後の膜プロセスを安定運転するために、常に高精度のSDI値を算出することができるSDI測定方法を提供することにある。また、前記方法に用いられるSDI測定装置、及び前記方法によりSDI値を測定する工程を含む逆浸透膜を用いた造水方法を提供することにある。   The present invention solves the above-mentioned problem, and predicts the contamination risk of the separation membrane in advance, and can stably calculate a highly accurate SDI value in order to stably operate the subsequent membrane process. It is to provide a method. Another object of the present invention is to provide an SDI measuring apparatus used in the above method and a water production method using a reverse osmosis membrane including a step of measuring an SDI value by the above method.

本発明者等は、上述のような現状に鑑み、鋭意研究を重ねた結果、下記方法により上記課題を解決できることを見出した。   The present inventors have found that the above-mentioned problems can be solved by the following method as a result of intensive studies in view of the above-described situation.

即ち、本発明は、接触角(θ)が70°以下のメンブレンフィルターを用いて分離膜供給液のSDI値を測定することを特徴とするSDI測定方法、に関する。   That is, the present invention relates to an SDI measurement method characterized by measuring an SDI value of a separation membrane supply liquid using a membrane filter having a contact angle (θ) of 70 ° or less.

本発明者等は、前記のようにSDI値が異常値を示す理由として、MFやUFによって前処理した膜ろ過水を用いてSDI測定した場合に、膜ろ過水を15分間通水する過程において、膜ろ過水中に存在し、孔径0.45μmのメンブレンフィルターよりもはるかに小さい微粒子やミクロ気泡が、フィルターを構成する高分子の微細流路構造部分の壁面に吸着して細孔の流路面積を狭めるか、又は細孔の流路を部分的に閉塞させることが原因であると推察した。特にミクロ気泡が大きく影響していると推察した。本発明では、接触角(θ)が70°以下のメンブレンフィルターを用いることによりミクロ気泡の影響を低減させることができ、常に高精度のSDI値を算出することができるSDI測定方法を見出したものである。さらに高精度のSDI値を算出するためには、接触角(θ)は65°以下であることが好ましい。   In the process of passing membrane filtrate for 15 minutes when the SDI measurement is performed using membrane filtrate pretreated with MF or UF as the reason why the SDI value indicates an abnormal value as described above. Fine particles and microbubbles that are present in the membrane filtration water and are much smaller than the membrane filter with a pore size of 0.45 μm are adsorbed on the wall surface of the polymer microchannel structure that constitutes the filter, and the pore channel area It was inferred that this was caused by narrowing the pores or partially blocking the pore flow paths. It was inferred that microbubbles were particularly influential. In the present invention, an SDI measurement method has been found in which the influence of microbubbles can be reduced by using a membrane filter having a contact angle (θ) of 70 ° or less, and a highly accurate SDI value can always be calculated. It is. Further, in order to calculate a highly accurate SDI value, the contact angle (θ) is preferably 65 ° or less.

ここで、接触角(θ)とは、固体表面と液滴との接触点において、これに引いた接線と固体表面とのなす角度をいう。本発明において、接触角は0.1μlの蒸留水(純水)1滴をメンブレンフィルターの平滑な面上にのせたときの液滴の形から角度を求める液適法により測定した。詳しい測定法は、実施例の記載による。   Here, the contact angle (θ) refers to an angle formed by a tangent line drawn at the contact point between the solid surface and the liquid droplet and the solid surface. In the present invention, the contact angle was measured by a liquid method in which one drop of 0.1 μl of distilled water (pure water) was obtained from the shape of the drop when placed on the smooth surface of the membrane filter. Detailed measurement methods are as described in the examples.

前記メンブレンフィルターはフッ素含有ポリマーを形成材料として含有することが好ましい。フッ素含有ポリマーを形成材料として用いることにより、長期安定性を有するメンブレンフィルターとすることができる。   The membrane filter preferably contains a fluorine-containing polymer as a forming material. By using a fluorine-containing polymer as a forming material, a membrane filter having long-term stability can be obtained.

また本発明は、接触角(θ)が70°以下のメンブレンフィルターを少なくとも備えたSDI測定装置、に関する。   The present invention also relates to an SDI measuring device including at least a membrane filter having a contact angle (θ) of 70 ° or less.

前記メンブレンフィルターはフッ素含有ポリマーを形成材料として含有することが好ましい。フッ素含有ポリマーを形成材料として用いることにより、長期安定性を有するメンブレンフィルターとすることができる。   The membrane filter preferably contains a fluorine-containing polymer as a forming material. By using a fluorine-containing polymer as a forming material, a membrane filter having long-term stability can be obtained.

さらに本発明は、分離膜供給液の一部に対して、前記方法によりSDI値を測定する工程を含む逆浸透膜を用いた造水方法に関する。   Furthermore, the present invention relates to a fresh water generation method using a reverse osmosis membrane including a step of measuring an SDI value by the above method for a part of a separation membrane feed solution.

本発明のSDI測定方法を用いることにより、常に高精度のSDI値を算出することができる。これにより逆浸透膜などの分離膜の汚染リスクを事前に、かつ的確に予測することができ、その後の膜プロセスを効率よく安定運転することが可能となる。   By using the SDI measurement method of the present invention, a highly accurate SDI value can always be calculated. Thereby, the contamination risk of the separation membrane such as the reverse osmosis membrane can be predicted in advance and accurately, and the subsequent membrane process can be efficiently and stably operated.

本発明のSDI測定方法は、接触角(θ)が70°以下のメンブレンフィルターを用い、ASTMに規定の方法で測定できれば、その測定装置、圧力の制御方法、分離膜供給水の種類、温度、及びpHなどは特に制限されない。   The SDI measurement method of the present invention uses a membrane filter with a contact angle (θ) of 70 ° or less, and can measure the measurement device, pressure control method, separation membrane feed water type, temperature, The pH and the like are not particularly limited.

以下、本発明のSDI測定方法の具体例を図1、2に基づいて説明する。図1は、本発明のSDI測定方法に用いられるSDI測定装置1の構成例を示したものである。図1において、SDI測定装置1は、膜分離手段であるフィルターホルダー2、ホルダー元弁3、圧力調節手段である圧力調節弁4、試料タンク5、タンク元弁6、減圧弁7、加圧手段であるガスボンベ8、及びろ液量を計測するメスシリンダー9などを備えている。フィルターホルダー2には、ASTMに規定されている孔径0.45μm、直径47mmのメンブレンフィルターが装着されている。   Hereinafter, a specific example of the SDI measuring method of the present invention will be described with reference to FIGS. FIG. 1 shows a configuration example of an SDI measuring apparatus 1 used in the SDI measuring method of the present invention. In FIG. 1, an SDI measuring apparatus 1 includes a filter holder 2 as a membrane separation means, a holder main valve 3, a pressure adjustment valve 4 as a pressure adjustment means, a sample tank 5, a tank original valve 6, a pressure reducing valve 7, and a pressurizing means. And a measuring cylinder 9 for measuring the amount of filtrate. The filter holder 2 is equipped with a membrane filter having a hole diameter of 0.45 μm and a diameter of 47 mm as defined in ASTM.

前記メンブレンフィルターは、接触角(θ)が70°以下のものであればその形成材料は特に制限されない。該形成材料としては、例えば、セルロース混合ポリエステル、ポリビニリデンフルオライド、ポリテトラフルオロエチレン、ポリカーボネート、ポリエーテルスルホンなどの高分子材料が挙げられる。特に、メンブレンフィルターの長期安定性の観点からポリビニリデンフルオライド、ポリテトラフルオロエチレンなどのフッ素含有ポリマーを用いることが好ましい。該メンブレンフィルターとしては、例えば、Millipore社製のDurapore Membrane Filter 型式HVLP04700(孔径0.45μm、フィルター径φ47mm)などが挙げられる。   The material for forming the membrane filter is not particularly limited as long as the contact angle (θ) is 70 ° or less. Examples of the forming material include polymer materials such as cellulose mixed polyester, polyvinylidene fluoride, polytetrafluoroethylene, polycarbonate, and polyethersulfone. In particular, from the viewpoint of long-term stability of the membrane filter, it is preferable to use a fluorine-containing polymer such as polyvinylidene fluoride or polytetrafluoroethylene. Examples of the membrane filter include Durapore Membrane Filter model HVLP04700 (pore diameter 0.45 μm, filter diameter φ47 mm) manufactured by Millipore.

メンブレンフィルターの接触角(θ)が70°を超える場合には、SDI値の精度が低下し、正確な値を示さなくなる。   When the contact angle (θ) of the membrane filter exceeds 70 °, the accuracy of the SDI value is lowered and the accurate value is not shown.

試料タンク5には、MF、UF、又はDMF(砂−アンスラサイトからなる2層ろ過器)などにより前処理された海水や下水などの砂ろ過又は膜ろ過水が貯留されている。MF、UFなどによる前処理の方法は特に制限されず、通常用いられる方法により行うことができる。   The sample tank 5 stores sand filtration or membrane filtration water such as seawater and sewage pretreated by MF, UF, or DMF (two-layer filter made of sand-anthracite). The pretreatment method using MF, UF or the like is not particularly limited, and can be performed by a commonly used method.

SDI測定方法としては、まずガスボンベ8に設けられた減圧弁7及びタンク元弁6を調節してASTMに規定の圧力以上になるように試料タンク5内を昇圧する。その後、砂ろ過又は膜ろ過水を圧力調節弁4に導入し、圧力調節弁4を調節してASTMに規定されている圧力(206kPa)まで減圧する。その後、フィルターホルダー2に当該砂ろ過又は膜ろ過水を導入し、ASTMに規定されている前記条件下でSDI測定を行う。ASTMには測定温度については規定されていないが、正確なSDI値を測定するためには、測定中には温度を一定に保つことが好ましい。通常、測定温度は5〜35℃程度である。測定温度が40℃以上であるとRO性能に異常をきたす傾向にあるため、前記温度以上の前処理水での測定は好ましくない。また、ASTMには測定に用いる試料のpHについても規定されていないが、逆浸透膜処理でのスケール発生防止のため、予めpH6.5〜7程度に調製して行うことが好ましい。   As an SDI measurement method, first, the pressure inside the sample tank 5 is increased so that the pressure becomes higher than the pressure prescribed by ASTM by adjusting the pressure reducing valve 7 and the tank main valve 6 provided in the gas cylinder 8. Then, sand filtration or membrane filtration water is introduced into the pressure control valve 4, and the pressure control valve 4 is adjusted to reduce the pressure to a pressure (206 kPa) defined in ASTM. Then, the said sand filtration or membrane filtration water is introduce | transduced into the filter holder 2, and SDI measurement is performed on the said conditions prescribed | regulated to ASTM. ASTM does not specify the measurement temperature, but in order to measure an accurate SDI value, it is preferable to keep the temperature constant during the measurement. Usually, measurement temperature is about 5-35 degreeC. If the measurement temperature is 40 ° C. or higher, the RO performance tends to be abnormal, so measurement with pretreated water at the temperature or higher is not preferable. Moreover, although the pH of the sample used for the measurement is not defined in ASTM, it is preferable to adjust the pH to about 6.5 to 7 in advance in order to prevent generation of scale in the reverse osmosis membrane treatment.

図2は、本発明のSDI測定方法に用いられるSDI測定装置1の他の例を示したものである。測定条件は前記と同様である。図2において、SDI測定装置1は、前記ガスボンベ8の代わりに高圧ポンプ10を備えている。該SDI測定装置1を用いたSDI測定方法では、まず高圧ポンプ吸入口から試料タンク中のろ過水を吸入させ、高圧ポンプ内でろ過水にASTMに規定の圧力以上になるように圧力かけて高圧ポンプ吐出口から吐出させる。そして、減圧弁7で減圧後、流量調節用に分岐した配管が設けられた圧力調節弁4に導き、圧力調節弁4を調節してASTMに規定されている圧力(206kPa)まで減圧する。その後、フィルターホルダー2にろ過水を導入し、ASTMに規定されている前記条件下でSDI測定を行う。なお、分岐した配管はメンブレンフィルターの透過流束の低下に伴う設定圧力の上昇を防ぐために、分岐配管からの放流量を調節するため設けられている。   FIG. 2 shows another example of the SDI measuring apparatus 1 used in the SDI measuring method of the present invention. The measurement conditions are the same as described above. In FIG. 2, the SDI measuring apparatus 1 includes a high-pressure pump 10 instead of the gas cylinder 8. In the SDI measurement method using the SDI measurement device 1, first, filtered water in the sample tank is sucked from the high-pressure pump inlet, and the high-pressure pump applies high pressure to the filtered water so that the pressure is higher than the pressure specified by ASTM. Discharge from the pump outlet. Then, after the pressure is reduced by the pressure reducing valve 7, the pressure is reduced to a pressure (206 kPa) regulated by ASTM by adjusting the pressure regulating valve 4 to the pressure regulating valve 4 provided with a pipe branched for regulating the flow rate. Thereafter, filtered water is introduced into the filter holder 2 and SDI measurement is performed under the conditions specified in ASTM. The branched pipe is provided for adjusting the discharge flow rate from the branch pipe in order to prevent the set pressure from increasing due to the decrease in the permeation flux of the membrane filter.

前記方法により測定されるSDI値は、ミクロ気泡が存在する前処理後の海水や下水などを測定した場合であっても異常値を示すことがなく常に正確な値を算出できる。そのため、逆浸透膜を用いた海水や下水など造水工程に前記方法によるSDI測定工程を取り入れると、逆浸透膜供給水の監視指標として非常に有効であり、逆浸透膜プロセスを安定運転することが可能となる。   The SDI value measured by the above method does not show an abnormal value even when seawater or sewage after pretreatment in which micro bubbles are present is measured, and can always be calculated accurately. Therefore, if the SDI measurement process according to the above method is incorporated in seawater and sewage production processes using reverse osmosis membranes, it is very effective as a monitoring index for reverse osmosis membrane supply water, and the reverse osmosis membrane process can be operated stably. Is possible.

逆浸透膜プロセスは、水分子を選択的に透過させる性質を有する逆浸透膜を用い、該逆浸透膜を隔てて浸透平衡にある溶液と水に対し、溶液の浸透圧より高い圧力を溶液側から加えることにより、溶液中の水分子を水側へ移行させる技術である。つまり、逆浸透膜プロセスは、蒸発法のような相変化を起こすことなく溶液中から水を取り出せることができるので、エネルギ的に有利である上に運転管理が容易である。   The reverse osmosis membrane process uses a reverse osmosis membrane having the property of selectively permeating water molecules, and applies a pressure higher than the osmotic pressure of the solution to the solution and water in osmotic equilibrium across the reverse osmosis membrane. This is a technique for transferring water molecules in the solution to the water side by adding from the above. In other words, the reverse osmosis membrane process can extract water from the solution without causing a phase change as in the evaporation method, and is therefore energy efficient and easy to manage.

そして、この逆浸透膜分離を実用規模で行う場合、以下のような逆浸透分離装置が通常用いられる。まず、逆浸透膜がスパイラル状、管状、平膜の積層体、又は中空糸膜状に加工され、適宜流路材を介装した状態でケースに収容されてエレメントと呼ばれる膜素子構成する。このエレメントは適宜直列に接続され、耐圧容器に収容されてモジュールとなり、さらに、このモジュールが並列に接続されて逆浸透分離モジュールユニットとなる。そして、逆浸透分離モジュールユニット全体に所定の圧力を負荷することにより逆浸透分離が行われる。   And when performing this reverse osmosis membrane separation on a practical scale, the following reverse osmosis separation devices are usually used. First, a reverse osmosis membrane is processed into a spiral, tubular, flat membrane laminate, or hollow fiber membrane shape, and is housed in a case with a flow channel material interposed therebetween to form a membrane element called an element. These elements are appropriately connected in series and housed in a pressure vessel to form a module. Further, the modules are connected in parallel to form a reverse osmosis separation module unit. Then, reverse osmosis separation is performed by applying a predetermined pressure to the entire reverse osmosis separation module unit.

以下、逆浸透膜を用いた造水方法の具体例を図3に基づいて説明する。図3において、逆浸透分離装置12は、逆浸透膜モジュールユニット16、高圧ポンプ10等を備えている。そして、原海水13は除濁装置14(MF、UF、又はDMFなどを備えた装置)で前処理されて逆浸透供給水15となり、この供給水15は、高圧ポンプ10により所定の操作圧力になるまで昇圧されて逆浸透膜モジュールユニット16に導入され、ここで逆浸透処理されて塩類などが除去された透過水17aと、塩類などが濃縮された濃縮水17bとに分離される。なお、この逆浸透分離装置12の場合、逆浸透分離は単一の操作圧力で1段で行われるが、多段の逆浸透分離を行ってもよい。このようにして得られた透過水17aは適宜タンク18に貯留され、脱塩水として使用に供される。   Hereinafter, the specific example of the fresh water generation method using a reverse osmosis membrane is demonstrated based on FIG. In FIG. 3, the reverse osmosis separation device 12 includes a reverse osmosis membrane module unit 16, a high-pressure pump 10, and the like. The raw seawater 13 is pretreated by a turbidity removal device 14 (device equipped with MF, UF, DMF, or the like) to become reverse osmosis supply water 15, and this supply water 15 is adjusted to a predetermined operating pressure by the high-pressure pump 10. The pressure is increased until it is introduced into the reverse osmosis membrane module unit 16, where it is separated into permeated water 17 a that has been subjected to reverse osmosis treatment to remove salts and the like and concentrated water 17 b that has been concentrated with salts and the like. In the case of this reverse osmosis separation device 12, reverse osmosis separation is performed in one stage at a single operating pressure, but multistage reverse osmosis separation may be performed. The permeated water 17a thus obtained is appropriately stored in the tank 18 and used as demineralized water.

本発明においては、逆浸透分離モジュールユニット16に逆浸透供給水を導入する前のいずれかの箇所で、サンプルとなる逆浸透供給水を抜き取り、前記記載の方法でSDI測定を行う。なお、海水淡水化用として一般的に高圧ポンプ10による操作圧力は3MPa以上であるため、測定に際してはASTMに規定されている圧力(206kPa)まで減圧してからSDI測定を行う。そして、算出されたSDI値から供給水の汚染度を確認し、それにより操作条件を適宜変更しつつその後の運転を行うことができる。   In the present invention, the reverse osmosis feed water as a sample is extracted at any location before the reverse osmosis separation module unit 16 is introduced into the reverse osmosis separation module unit 16, and the SDI measurement is performed by the method described above. Since the operation pressure by the high-pressure pump 10 is generally 3 MPa or more for seawater desalination, the SDI measurement is performed after the pressure is reduced to the pressure (206 kPa) defined in ASTM. Then, the degree of contamination of the supplied water can be confirmed from the calculated SDI value, and the subsequent operation can be performed while appropriately changing the operating conditions.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、SDI15値は、ASTMに規定の条件下で測定し、以下の計算式により算出した。 Examples and the like specifically showing the configuration and effects of the present invention will be described below. The SDI 15 value was measured under the conditions specified in ASTM and calculated by the following formula.

SDI15=(1−T0 /T15)×100/15
0 :孔径0.45μm、直径47mmのメンブレンフィルターに圧力206kPaで試料をろ過し、初期の試料500mlをろ過するのに要する時間(秒)
15:更にろ過を15分継続し、その後試料500mlをろ過するのに要する時間(秒)
(接触角の測定方法)
接触角(θ)は、接触角測定装置(協和界面科学株式会社製、CA−X型)を用い、0.1μlの蒸留水(純水)1滴をメンブレンフィルターの平滑な面上にのせたときの液滴の形から角度を求める液適法により測定した。なお、測定条件は、液滴温度15℃、フィルター表面温度17℃、水平状態にて重量の影響が無視できる条件である。
SDI 15 = (1-T 0 / T 15 ) × 100/15
T 0 : Time (seconds) required to filter a sample at a pressure of 206 kPa through a membrane filter having a pore diameter of 0.45 μm and a diameter of 47 mm and filter an initial sample of 500 ml
T 15 : The time (seconds) required for further filtering for 15 minutes and then filtering 500 ml of the sample
(Measurement method of contact angle)
The contact angle (θ) was measured by using a contact angle measuring device (Kyowa Interface Science Co., Ltd., CA-X type), and 1 drop of 0.1 μl distilled water (pure water) was placed on the smooth surface of the membrane filter. It was measured by a liquid suitability method for obtaining the angle from the shape of the droplet. The measurement conditions are such that the droplet temperature is 15 ° C., the filter surface temperature is 17 ° C., and the influence of weight is negligible in the horizontal state.

実施例1
図2に示す構成のSDI測定装置を用いてSDI測定を行った。使用したメンブレンフィルター(Millipore社製、Durapore Membrane Filter HVLP04700)はポリビニリデンフルオライドを原材料とするものであり、接触角は65°であった。測定サンプルとしては、アラビア湾バーレーン近海の海水を使用し、UF膜(日東電工社製、RS50−S8)を用いて前処理をしたろ過水を用いた。前処理したろ過水(pH:約8.2)を試料タンクに貯留し、高圧ポンプ(Hydra−cell製、F20−X)を用いて、ろ過水に圧力を掛けて吐出し、そして圧力調節弁を調節して206kPaまで減圧して、前記メンブレンフィルターを装着したフィルターホルダーにろ過水を導入し、ASTMに規定の条件下でSDI測定を行った。なお、測定温度は約17℃であった。SDI15値と処理時間との関係を図4に示す。図4から明らかなように、接触角が65°のメンブレンフィルターを用いることにより常に高精度のSDI値を算出することができ、SDI値のバラツキが極めて小さいことがわかる。
Example 1
SDI measurement was performed using the SDI measuring apparatus having the configuration shown in FIG. The membrane filter used (Millipore, Durapore Membrane Filter HVLP04700) was made of polyvinylidene fluoride as a raw material, and the contact angle was 65 °. As a measurement sample, seawater near the Gulf of Arabia and Bahrain was used, and filtered water pretreated with a UF membrane (manufactured by Nitto Denko Corporation, RS50-S8) was used. Pretreated filtered water (pH: about 8.2) is stored in a sample tank, discharged using a high pressure pump (manufactured by Hydra-cell, F20-X) with pressure applied to the filtered water, and a pressure control valve The pressure was reduced to 206 kPa, filtered water was introduced into a filter holder equipped with the membrane filter, and SDI measurement was performed under the conditions specified in ASTM. The measurement temperature was about 17 ° C. The relationship between the SDI 15 value and the processing time is shown in FIG. As can be seen from FIG. 4, the use of a membrane filter with a contact angle of 65 ° makes it possible to always calculate a highly accurate SDI value, and the SDI value variation is extremely small.

実施例2
実施例1記載のメンブレンフィルターの代わりにポリテトラフルオロエチレンを原材料とするメンブレンフィルター(Millipore社製、Fluoropore Membrane Filter JHWP04700、接触角56°)を用いた以外は実施例1と同様の方法でSDI測定を行った。SDI15値と処理時間との関係を図4に示す。図4から明らかなように、接触角が56°のメンブレンフィルターを用いることにより常に高精度のSDI値を算出することができ、SDI値のバラツキが小さいことがわかる。
Example 2
SDI measurement in the same manner as in Example 1 except that a membrane filter made of polytetrafluoroethylene (Millipore, Fluoropore Membrane Filter JHWP04700, contact angle 56 °) was used instead of the membrane filter described in Example 1. Went. The relationship between the SDI 15 value and the processing time is shown in FIG. As is apparent from FIG. 4, it can be seen that by using a membrane filter having a contact angle of 56 °, a highly accurate SDI value can always be calculated, and variation in the SDI value is small.

比較例1
実施例1記載のメンブレンフィルターの代わりにセルロース混合ポリエステルを原材料とするメンブレンフィルター(Millipore社製、MF−Millipore Membrane Filter HAWP04700、接触角88°)を用いた以外は実施例1と同様の方法でSDI測定を行った。SDI15値と処理時間との関係を図4に示す。図4から明らかなように、接触角が88°のメンブレンフィルターを用いた場合には、SDI値の精度が低く、SDI値のバラツキが極めて大きいことがわかる。
Comparative Example 1
Instead of the membrane filter described in Example 1, a membrane filter using cellulose mixed polyester as a raw material (manufactured by Millipore, MF-Millipore Membrane Filter HAWP04700, contact angle 88 °) was used in the same manner as in Example 1, but SDI was used. Measurements were made. The relationship between the SDI 15 value and the processing time is shown in FIG. As can be seen from FIG. 4, when a membrane filter having a contact angle of 88 ° is used, the accuracy of the SDI value is low and the variation in the SDI value is extremely large.

実施例3
図2に示す構成のSDI測定装置を用いてSDI測定を行った。使用したメンブレンフィルターは実施例1と同様のものである。測定サンプルとしては、アラビア湾バーレーン近海の海水を使用し、UF膜(日東電工社製、RS50−S8)を用いて前処理をしたろ過水を用いた。そして、該メンブレンフィルターのろ過水導入側の表面のみを前記ろ過水に一定時間浸漬した後に実施例1と同様の方法でSDI測定を行った。なお、ろ過水のpHは約8.2であり、測定温度は約31℃であった。SDI15値と浸漬時間との関係を図5に示す。図5から明らかなように、接触角が65°のメンブレンフィルターを用いることにより常に高精度のSDI値を算出することができ、SDI値のバラツキが小さいことがわかる。つまり、接触角が65°のメンブレンフィルターは、ろ過水中のミクロ気泡の影響を受けにくいと考えられる。
Example 3
SDI measurement was performed using the SDI measuring apparatus having the configuration shown in FIG. The membrane filter used is the same as in Example 1. As a measurement sample, seawater near the Gulf of Arabia Bahrain was used, and filtered water pretreated with a UF membrane (manufactured by Nitto Denko Corporation, RS50-S8) was used. Then, only the surface of the membrane filter on the filtered water introduction side was immersed in the filtered water for a certain time, and then SDI measurement was performed in the same manner as in Example 1. The pH of the filtered water was about 8.2, and the measurement temperature was about 31 ° C. The relationship between the SDI 15 value and the immersion time is shown in FIG. As is apparent from FIG. 5, it can be seen that by using a membrane filter with a contact angle of 65 °, a highly accurate SDI value can always be calculated, and variation in the SDI value is small. That is, it is considered that the membrane filter having a contact angle of 65 ° is hardly affected by microbubbles in the filtered water.

比較例2
実施例3記載のメンブレンフィルターの代わりに比較例1記載のメンブレンフィルターを用いた以外は実施例3と同様の方法でSDI測定を行った。SDI15値と浸漬時間との関係を図5に示す。図5から明らかなように、接触角が88°のメンブレンフィルターを用いた場合には、SDI値の精度が低く、SDI値のバラツキが大きいことがわかる。つまり、接触角が88°のメンブレンフィルターは、ろ過水中のミクロ気泡の影響を受けやすいと考えられる。
Comparative Example 2
SDI measurement was performed in the same manner as in Example 3 except that the membrane filter described in Comparative Example 1 was used instead of the membrane filter described in Example 3. The relationship between the SDI 15 value and the immersion time is shown in FIG. As can be seen from FIG. 5, when a membrane filter having a contact angle of 88 ° is used, the accuracy of the SDI value is low and the variation in the SDI value is large. That is, it is considered that the membrane filter having a contact angle of 88 ° is easily affected by microbubbles in the filtered water.

SDI測定装置の構成例を示す図である。It is a figure which shows the structural example of an SDI measuring apparatus. SDI測定装置の他の構成例を示す図である。It is a figure which shows the other structural example of an SDI measuring apparatus. 逆浸透膜を用いた造水方法のフローを示す図である。It is a figure which shows the flow of the fresh water generation method using a reverse osmosis membrane. SDI15値と処理時間との関係を示す図である。It is a diagram showing a relationship between SDI 15 value and processing time. SDI15値と浸漬時間との関係を示す図である。It is a diagram showing a relationship between SDI 15 value and the immersion time.

符号の説明Explanation of symbols

1:SDI測定装置
2:フィルターホルダー
3:ホルダー元弁
4:圧力調節弁
5:試料タンク
6:タンク元弁
7:減圧弁
8:ガスボンベ
9:メスシリンダー
10:高圧ポンプ
11:圧力計
12:逆浸透分離装置
13:原海水
14:除濁装置
15:逆浸透供給水
16:逆浸透膜モジュールユニット
17a:透過水
17b:濃縮水
18:タンク
1: SDI measuring device 2: Filter holder 3: Holder valve 4: Pressure control valve 5: Sample tank 6: Tank valve 7: Pressure reducing valve 8: Gas cylinder 9: Measuring cylinder 10: High pressure pump 11: Pressure gauge 12: Reverse Osmosis separation device 13: Raw seawater 14: Turbidity removal device 15: Reverse osmosis feed water 16: Reverse osmosis membrane module unit 17a: Permeate water 17b: Concentrated water 18: Tank

Claims (5)

接触角(θ)が70°以下のメンブレンフィルターを用いて分離膜供給液のSDI値を測定することを特徴とするSDI測定方法。 An SDI measurement method, wherein an SDI value of a separation membrane supply liquid is measured using a membrane filter having a contact angle (θ) of 70 ° or less. 前記メンブレンフィルターはフッ素含有ポリマーを形成材料として含有することを特徴とする請求項1記載のSDI測定方法。 The SDI measurement method according to claim 1, wherein the membrane filter contains a fluorine-containing polymer as a forming material. 接触角(θ)が70°以下のメンブレンフィルターを少なくとも備えたSDI測定装置。 An SDI measuring apparatus having at least a membrane filter having a contact angle (θ) of 70 ° or less. 前記メンブレンフィルターはフッ素含有ポリマーを形成材料として含有する請求項3記載のSDI測定装置。 The SDI measuring apparatus according to claim 3, wherein the membrane filter contains a fluorine-containing polymer as a forming material. 分離膜供給液の一部に対して、請求項1又は2記載の方法によりSDI値を測定する工程を含む逆浸透膜を用いた造水方法。 A fresh water generation method using a reverse osmosis membrane comprising a step of measuring an SDI value by a method according to claim 1 or 2 for a part of a separation membrane feed solution.
JP2004003170A 2004-01-08 2004-01-08 Sdi measuring method, sdi measuring instrument, and water production method using reverse osmosis membrane Pending JP2005195499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004003170A JP2005195499A (en) 2004-01-08 2004-01-08 Sdi measuring method, sdi measuring instrument, and water production method using reverse osmosis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004003170A JP2005195499A (en) 2004-01-08 2004-01-08 Sdi measuring method, sdi measuring instrument, and water production method using reverse osmosis membrane

Publications (1)

Publication Number Publication Date
JP2005195499A true JP2005195499A (en) 2005-07-21

Family

ID=34818155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004003170A Pending JP2005195499A (en) 2004-01-08 2004-01-08 Sdi measuring method, sdi measuring instrument, and water production method using reverse osmosis membrane

Country Status (1)

Country Link
JP (1) JP2005195499A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8596110B2 (en) 2011-03-14 2013-12-03 King Fahd University Of Petroleum And Minerals Device and method for testing reverse osmosis membranes
EP2803398A4 (en) * 2012-01-09 2015-09-16 Doosan Heavy Ind & Constr Device for measuring pollution index of filtration membrane
CN106124368A (en) * 2016-08-30 2016-11-16 合众高科(北京)环保技术股份有限公司 A kind of pollution index test device and method of testing thereof
CN109607685A (en) * 2019-01-21 2019-04-12 西安热工研究院有限公司 A kind of feed water by reverse osmosis feature pollution index measurement device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8596110B2 (en) 2011-03-14 2013-12-03 King Fahd University Of Petroleum And Minerals Device and method for testing reverse osmosis membranes
EP2803398A4 (en) * 2012-01-09 2015-09-16 Doosan Heavy Ind & Constr Device for measuring pollution index of filtration membrane
EP3338873A1 (en) * 2012-01-09 2018-06-27 Doosan Heavy Industries & Construction Co., Ltd. Device for measuring pollution index of filtration membrane
CN106124368A (en) * 2016-08-30 2016-11-16 合众高科(北京)环保技术股份有限公司 A kind of pollution index test device and method of testing thereof
CN106124368B (en) * 2016-08-30 2019-07-16 合众高科(北京)环保技术股份有限公司 A kind of pollution index test device
CN109607685A (en) * 2019-01-21 2019-04-12 西安热工研究院有限公司 A kind of feed water by reverse osmosis feature pollution index measurement device and method

Similar Documents

Publication Publication Date Title
Singh et al. Introduction to membrane processes for water treatment
JP5549589B2 (en) Fresh water system
JP6269241B2 (en) Forward osmosis processing system
US20140048483A1 (en) Method for cleaning membrane module
US20170274325A1 (en) Water treatment method
JP6699554B2 (en) Fresh water producing apparatus and method of operating fresh water producing apparatus
JP2011002397A (en) Sensor for water quality evaluation, water quality evaluation method of supply water using the same, and operation control method of water treatment plant
WO2020179594A1 (en) Zero liquid discharge system
JP2015134322A (en) water treatment system
Zhaoliang et al. Effect of cross-flow velocity on the critical flux of ceramic membrane filtration as a pre-treatment for seawater desalination
US20200191703A1 (en) Measuring apparatus and method of operating a measuring apparatus for membrane fouling index
JP2005195499A (en) Sdi measuring method, sdi measuring instrument, and water production method using reverse osmosis membrane
US20090120877A1 (en) Method for desalination
KR101522254B1 (en) Two stage membrane filtration system having flexible recovery ratio and operation method thereof
WO2020022218A1 (en) Forward osmosis treatment method and forward osmosis treatment device
JP6036808B2 (en) Fresh water generation method
JP2004108864A (en) Sdi measuring method and its device and fresh water generating method using reverse osmosis membrane
JP7103526B2 (en) Cleaning trouble judgment method and cleaning trouble judgment program of water production equipment
JP2008253888A (en) Membrane damage detecting method
JP2007268352A (en) Water treatment method and water treatment apparatus
Norafifah et al. A study of operational factors for reducing the fouling of hollow fiber membranes during wastewater filtration
Lin et al. A pilot study of ultrafiltration pretreatment for seawater reverse osmosis desalination in Bohai Bay
JP4517615B2 (en) Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
WO2019180788A1 (en) Salt concentration device and scale detection method for salt concentration device
JP2005270934A (en) Membrane filtration method and apparatus