JP2012170880A - Sea water desalination system, and sea water desalination method - Google Patents

Sea water desalination system, and sea water desalination method Download PDF

Info

Publication number
JP2012170880A
JP2012170880A JP2011035018A JP2011035018A JP2012170880A JP 2012170880 A JP2012170880 A JP 2012170880A JP 2011035018 A JP2011035018 A JP 2011035018A JP 2011035018 A JP2011035018 A JP 2011035018A JP 2012170880 A JP2012170880 A JP 2012170880A
Authority
JP
Japan
Prior art keywords
seawater
sewage
reverse osmosis
water
osmosis membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011035018A
Other languages
Japanese (ja)
Other versions
JP5933926B2 (en
Inventor
Yusuke Okawa
雄介 大川
Kotaro Kitamura
光太郎 北村
Kazuhiko Noto
一彦 能登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2011035018A priority Critical patent/JP5933926B2/en
Priority to PCT/JP2012/054160 priority patent/WO2012115114A1/en
Priority to SG2013063607A priority patent/SG192894A1/en
Priority to CN2012800095918A priority patent/CN103443031A/en
Publication of JP2012170880A publication Critical patent/JP2012170880A/en
Application granted granted Critical
Publication of JP5933926B2 publication Critical patent/JP5933926B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/043Treatment of partial or bypass streams
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Abstract

PROBLEM TO BE SOLVED: To provide a sea water desalination system which can reduce energy for producing plain water and which can secure the quality of water in plain water to be produced.SOLUTION: The sea water desalination system 1 includes a sewage type reverse osmosis membrane treatment means 10 to produce sewage type permeated water W11 and sewage type concentrated water W12 by conducting the membrane separation treatment of sewage W10, and a sea water type reverse osmosis membrane treatment means 20 which produces sea water type permeated water W21 and sea water type concentrated water W22 by conducting the membrane separation treatment of a mixture of the sewage type concentrated water W12 and intake sea water W20 and which has an EC meter 230 for sea water type permeated water W21 to measure the salinity of the sea water type permeated water W21. The system supplies the sea water type permeated water W21 to the sewage type reverse osmosis membrane treatment means 10 in accordance with the salinity of the sea water type permeated water W21.

Description

本発明は、海水淡水化システム及び海水淡水化方法に関する。   The present invention relates to a seawater desalination system and a seawater desalination method.

従来より、海水を膜分離処理することで、淡水を生成する海水淡水化装置が知られている。この海水淡水化装置は、膜分離処理するのに海水を加圧してポンプ等で逆浸透膜ユニットに圧送するため、海水の塩分濃度が高いほど多大なエネルギーが必要となる。   2. Description of the Related Art Conventionally, seawater desalination apparatuses that generate fresh water by membrane separation treatment of seawater are known. Since this seawater desalination apparatus pressurizes seawater for membrane separation and pumps it to the reverse osmosis membrane unit with a pump or the like, the higher the salt concentration of seawater, the more energy is required.

そこで、海水よりも塩分濃度が低い下水を膜分離処理し透過水と濃縮水とに分離する第1処理部と、第1処理部にて生成した濃縮水を希釈用として海水に混合して混合水とし、該混合水を膜分離処理し透過水と濃縮水とに分離する第2処理部とを備え、下水の流入量に基づき第1処理部及び第2処理部を制御する海水淡水化システムが提案されている(特許文献1参照)。
特許文献1の海水淡水化システムによれば、下水の濃縮水を海水に混合した混合水を膜分離処理することで、下水の流入量が増えれば混合水の塩分濃度を低下させることができるので、海水を膜分離処理する場合に比べて、淡水を生成するためのエネルギーを低減できる。
Therefore, a first treatment unit that separates sewage having a lower salinity than seawater into a membrane and separates it into permeate and concentrated water, and the concentrated water generated in the first treatment unit is mixed with seawater for dilution. A seawater desalination system comprising: a second processing unit that separates the mixed water into a permeated water and a concentrated water, and controls the first processing unit and the second processing unit based on an inflow amount of sewage Has been proposed (see Patent Document 1).
According to the seawater desalination system of Patent Document 1, by performing membrane separation on mixed water obtained by mixing sewage concentrated water with seawater, the salinity of the mixed water can be reduced if the amount of inflow of sewage increases. Compared with the case where seawater is subjected to membrane separation treatment, energy for generating fresh water can be reduced.

特許第4499835号公報Japanese Patent No. 4499835

しかしながら、特許文献1に記載の海水淡水化システムは、下水の流入量に基づき第1処理部及び第2処理部を制御するので、生成される淡水の水質が下水の流入量に依存することとなる。ここで、下水は、有機物を含有する有機性廃水や製造工場等の無機性廃水等が濾過処理等された後に排水されたものであるので、その水質や水量が安定して供給されるものではない。このため、特許文献1に記載の海水淡水化システムは、生成する淡水において水質を確保するのが困難である。   However, since the seawater desalination system described in Patent Document 1 controls the first processing unit and the second processing unit based on the inflow amount of sewage, the quality of the generated fresh water depends on the inflow amount of sewage. Become. Here, since the sewage is drained after the organic wastewater containing organic matter or the inorganic wastewater from the manufacturing plant is filtered, etc., its water quality and quantity are not stably supplied. Absent. For this reason, it is difficult for the seawater desalination system described in Patent Document 1 to ensure water quality in the fresh water to be generated.

本発明は、淡水を生成するためのエネルギーを低減できるとともに、生成する淡水において水質を確保できる海水淡水化システムを提供することを目的とする。   An object of this invention is to provide the seawater desalination system which can reduce the energy for producing | generating fresh water and can ensure water quality in the produced fresh water.

(1) 下水を膜分離処理することで下水系透過水と下水系濃縮水とを生成する下水系逆浸透膜処理手段と、前記下水系濃縮水と取水した海水との混合水を膜分離処理することで海水系透過水と海水系濃縮水とを生成し、前記海水系透過水の塩分濃度を測定する塩分濃度測定手段を有する海水系逆浸透膜処理手段と、を備え、前記海水系透過水の塩分濃度に応じて前記海水系透過水を前記下水系逆浸透膜処理手段に供給することを特徴とする海水淡水化システム。   (1) Membrane separation treatment of mixed water of sewage reverse osmosis membrane treatment means for producing sewage permeate and sewage concentrate by subjecting sewage to membrane separation, and seawater taken from the sewage concentrate A seawater system reverse osmosis membrane treatment means having a salinity concentration measuring means for generating a seawater system permeate and a seawater system concentrated water and measuring a salt concentration of the seawater system permeate. A seawater desalination system, characterized in that the seawater permeate is supplied to the sewage reverse osmosis membrane treatment means in accordance with the salinity concentration of water.

(1)の発明によれば、下水系逆浸透膜処理手段は、下水を膜分離処理することで下水系透過水と下水系濃縮水とを生成する。海水系逆浸透膜処理手段は、下水系濃縮水と取水した海水との混合水を膜分離処理することで海水系透過水と海水系濃縮水とを生成し、海水系透過水の塩分濃度を測定する塩分濃度測定手段を有する。海水系透過水の塩分濃度に応じて海水系透過水を下水系逆浸透膜処理手段に供給する。   According to the invention of (1), the sewage reverse osmosis membrane treatment means generates sewage permeate and sewage concentrate by subjecting the sewage to membrane separation treatment. Seawater-based reverse osmosis membrane treatment means generates seawater-based permeated water and seawater-based concentrated water by membrane separation treatment of mixed water of sewage-type concentrated water and taken seawater. It has a salinity concentration measuring means for measuring. The seawater permeate is supplied to the sewage reverse osmosis membrane treatment means according to the salinity concentration of the seawater permeate.

これにより、海水系逆浸透膜処理手段において、海水より塩分濃度が低い下水系濃縮水と海水の混合水を膜分離処理し淡水である海水系透過水を生成するので、混合水より塩分濃度が高い海水を膜分離処理して淡水を生成する場合に比べて、淡水を生成するためのエネルギーを低減できる。
また、例えば、下水の水量が低下し下水系逆浸透膜処理手段で生成された下水系透過水と下水系濃縮水の水量が低下し、海水系透過水の塩分濃度が上昇した場合であっても、稼働率が低下した下水系逆浸透膜処理手段を利用して、当該塩分濃度が上昇した海水系透過水を膜分離処理することで、塩分濃度が所定の基準値である海水系透過水を確保できる。
したがって、淡水を生成するためのエネルギーを低減できるとともに、生成する淡水において水質を確保できる海水淡水化システムを提供できる。
As a result, in the seawater system reverse osmosis membrane treatment means, the mixed water of sewage concentrated water and seawater whose salinity is lower than that of seawater is subjected to membrane separation treatment to produce seawater system permeate which is fresh water. Compared with the case where high seawater is subjected to membrane separation treatment to produce fresh water, energy for producing fresh water can be reduced.
Also, for example, when the amount of sewage decreases, the amount of sewage permeated water and sewage concentrated water generated by the sewage reverse osmosis membrane treatment means decreases, and the salinity of seawater permeated water increases. However, seawater-based permeated water whose salinity is a predetermined reference value is obtained by subjecting seawater-based permeated water having increased salinity to membrane separation using a sewage reverse osmosis membrane processing means whose operating rate has decreased. Can be secured.
Therefore, it is possible to provide a seawater desalination system capable of reducing energy for generating fresh water and ensuring water quality in the generated fresh water.

(2) 下水を膜分離処理することで下水系透過水と下水系濃縮水とを生成する下水系逆浸透膜処理手段を有する海水淡水化システムであって、前記下水系濃縮水と取水した海水との混合水を膜分離処理することで海水系透過水と海水系濃縮水とを生成し、前記海水系透過水の塩分濃度を測定する塩分濃度測定手段を有する海水系逆浸透膜処理手段と、前記海水系透過水の塩分濃度に応じて、前記下水系逆浸透膜処理手段及び前記海水系逆浸透膜処理手段の駆動を制御する制御手段と、を備える海水淡水化システム。   (2) A seawater desalination system having sewage reverse osmosis membrane treatment means for producing sewage permeate and sewage concentrate by subjecting sewage to membrane separation, wherein the sewage concentrate and seawater taken Seawater-based reverse osmosis membrane treatment means having salt concentration measuring means for producing seawater-based permeated water and seawater-based concentrated water by subjecting the mixed water to membrane separation treatment, and measuring the salt concentration of the seawater-based permeated water; A seawater desalination system comprising: control means for controlling the driving of the sewage reverse osmosis membrane treatment means and the seawater reverse osmosis membrane treatment means according to the salinity concentration of the seawater permeate.

(2)の発明によれば、下水系逆浸透膜処理手段は、下水を膜分離処理することで下水系透過水と下水系濃縮水とを生成する。海水系逆浸透膜処理手段は、下水系濃縮水と海水との混合水を膜分離処理することで海水系透過水と海水系濃縮水とを生成し、この海水系透過水の塩分濃度を測定する塩分濃度測定手段を有する。制御手段は、海水系透過水の塩分濃度に応じて、下水系逆浸透膜処理手段及び海水系逆浸透膜処理手段を制御する。   According to the invention of (2), the sewage reverse osmosis membrane treatment means generates sewage permeate and sewage concentrate by subjecting the sewage to membrane separation treatment. Seawater-based reverse osmosis membrane treatment means generates seawater-based permeated water and seawater-based concentrated water by membrane separation treatment of mixed water of sewage-based concentrated water and seawater, and measures the salinity concentration of this seawater-based permeated water A salinity concentration measuring means. The control means controls the sewage reverse osmosis membrane treatment means and the seawater reverse osmosis membrane treatment means in accordance with the salinity concentration of the seawater permeate.

これにより、海水系逆浸透膜処理手段において、海水より塩分濃度が低い下水系濃縮水と海水の混合水を膜分離処理し淡水である海水系透過水を生成するので、混合水より塩分濃度が高い海水を膜分離処理して淡水を生成する場合に比べて、淡水を生成するためのエネルギーを低減できる。
また、生成した淡水である海水系透過水の塩分濃度に応じて、下水系逆浸透膜処理手段及び海水系逆浸透膜処理手段を制御するので、例えば、海水系透過水の塩分濃度が所定の基準値より高ければ、海水系逆浸透膜処理手段の駆動を抑制し海水系透過水の塩分濃度を所定の基準値に戻すことができる。
したがって、淡水を生成するためのエネルギーを低減できるとともに、生成する淡水において水質を確保できる海水淡水化システムを提供できる。
As a result, in the seawater system reverse osmosis membrane treatment means, the mixed water of sewage concentrated water and seawater whose salinity is lower than that of seawater is subjected to membrane separation treatment to produce seawater system permeate which is fresh water. Compared with the case where high seawater is subjected to membrane separation treatment to produce fresh water, energy for producing fresh water can be reduced.
In addition, since the sewage reverse osmosis membrane treatment means and the seawater reverse osmosis membrane treatment means are controlled according to the salinity of the seawater permeated water that is the generated fresh water, for example, the salinity of the seawater permeated water is a predetermined concentration. If it is higher than the reference value, the driving of the seawater-based reverse osmosis membrane treatment means can be suppressed and the salinity concentration of the seawater-based permeated water can be returned to a predetermined reference value.
Therefore, it is possible to provide a seawater desalination system capable of reducing energy for generating fresh water and ensuring water quality in the generated fresh water.

(3) 前記海水系透過水を膜分離処理する第2の海水系逆浸透膜処理手段を更に備え、前記制御手段は、前記塩分濃度測定手段で測定した前記海水系透過水の塩分濃度に応じて前記海水系透過水を前記第2の海水系逆浸透膜処理手段に供給することを特徴とする(2)に記載の海水淡水化システム。   (3) Second seawater system reverse osmosis membrane treatment means for membrane separation treatment of the seawater system permeate, wherein the control means is responsive to the salt concentration of the seawater permeate measured by the salt concentration measurement means. And supplying the seawater-based permeated water to the second seawater-based reverse osmosis membrane treatment means.

(3)の発明によれば、海水系透過水を膜分離処理する第2の海水系逆浸透膜処理手段を更に備えた。
これにより、例えば、下水の水量が低下し下水系逆浸透膜処理手段で生成された下水系透過水と下水系濃縮水の水量が低下し、海水系透過水の塩分濃度が上昇した場合であっても、第2の海水系逆浸透膜処理手段で当該塩分濃度が上昇した海水系透過水を膜分離処理することで、塩分濃度が所定の基準値である海水系透過水を供給できる。
According to the invention of (3), the seawater-based permeated water is further provided with a second seawater-based reverse osmosis membrane processing means.
As a result, for example, when the amount of sewage decreases, the amount of sewage permeated water and sewage concentrated water generated by the sewage reverse osmosis membrane treatment means decreases, and the salt concentration of seawater permeated water increases. However, the seawater-based permeated water whose salinity concentration is a predetermined reference value can be supplied by subjecting the seawater-based permeated water whose salinity concentration has increased to the membrane separation treatment by the second seawater-based reverse osmosis membrane processing means.

(4) 前記制御手段は、前記塩分濃度測定手段で測定した海水系透過水の塩分濃度に応じて、前記海水系透過水を前記下水系逆浸透膜処理手段に供給し、前記下水系逆浸透膜処理手段は、前記海水系逆浸透膜処理手段から供給された前記海水系透過水と下水との混合水を膜分離処理する(2)に記載の海水淡水化システム。   (4) The control means supplies the seawater-based permeated water to the sewage system reverse osmosis membrane treatment means according to the salinity concentration of the seawater-based permeated water measured by the salinity concentration measuring means, and the sewage system reverse osmosis means The seawater desalination system according to (2), wherein the membrane treatment means performs membrane separation treatment on the mixed water of the seawater permeate and sewage supplied from the seawater reverse osmosis membrane treatment means.

(4)の発明によれば、海水系透過水の塩分濃度に応じて、当該海水系透過水を下水系逆浸透膜処理手段で膜分離処理する。
これにより、例えば、下水の水量が低下し下水系逆浸透膜処理手段で生成された下水系透過水と下水系濃縮水の水量が低下し、海水系透過水の塩分濃度が上昇した場合であっても、稼働率が低下した下水系逆浸透膜処理手段を利用して、当該塩分濃度が上昇した海水系透過水を膜分離処理することで、塩分濃度が所定の基準値である海水系透過水を供給できる。
According to the invention of (4), the seawater-based permeated water is subjected to membrane separation treatment by the sewage system reverse osmosis membrane treatment means according to the salinity concentration of the seawater-based permeated water.
As a result, for example, when the amount of sewage decreases, the amount of sewage permeated water and sewage concentrated water generated by the sewage reverse osmosis membrane treatment means decreases, and the salt concentration of seawater permeated water increases. However, by using a sewage reverse osmosis membrane treatment means whose operating rate has been reduced, the seawater permeate whose salinity is increased is subjected to membrane separation treatment, so that the seawater permeation with a predetermined salinity is performed. Can supply water.

(5) 前記海水系逆浸透膜処理手段が備える逆浸透膜は、前記下水系逆浸透膜処理手段に流入する下水の流入量及び塩分濃度、前記海水系逆浸透膜処理手段に流入する海水の流入量及び塩分濃度、予め設定される前記海水系逆浸透膜処理手段が生成する海水系透過水の水量及び塩分濃度に基づき選択された、好適な脱塩率の逆浸透膜である(2)から(4)のいずれかに記載の海水淡水化システム。   (5) The reverse osmosis membrane included in the seawater-based reverse osmosis membrane treatment means includes an inflow amount and a salinity concentration of sewage flowing into the sewage system reverse osmosis membrane treatment means, and an amount of seawater flowing into the seawater-based reverse osmosis membrane treatment means. A reverse osmosis membrane having a suitable desalination rate selected based on the inflow amount and the salinity concentration, and the water amount and the salinity concentration of seawater-based permeated water generated by the seawater-based reverse osmosis membrane treatment means set in advance (2) To the seawater desalination system according to any one of (4).

ここで、逆浸透膜は、脱塩率が略55%から略99%と様々な膜がある。逆浸透膜処理手段では、一般的に逆浸透膜の脱塩率が高いほど、揚程の能力がより高くより多くのエネルギーを必要とするポンプが必要になる。
(5)の発明によれば、下水系及び海水系の逆浸透膜処理手段の流入量及び塩分濃度、予め設定される海水系逆浸透膜処理手段が生成する海水系透過水の水量及び塩分濃度から、好適な脱塩率の逆浸透膜を選択することで、エネルギー効率が好適なポンプを用いることが可能となり、淡水を生成するためのエネルギーをより低減できる。
Here, the reverse osmosis membrane includes various membranes having a desalination rate of about 55% to about 99%. In the reverse osmosis membrane treatment means, in general, the higher the desalination rate of the reverse osmosis membrane, the higher the capacity of the lift and the need for more energy.
According to the invention of (5), the inflow amount and the salinity concentration of the sewage system and the seawater system reverse osmosis membrane treatment means, the water amount and the salinity concentration of the seawater system permeated water generated by the preset seawater system reverse osmosis membrane treatment means Therefore, by selecting a reverse osmosis membrane having a suitable desalination rate, it becomes possible to use a pump with suitable energy efficiency, and energy for generating fresh water can be further reduced.

(6) 下水を膜分離処理することで下水系透過水と下水系濃縮水とを生成する下水系逆浸透膜処理手段と、海水を膜分離処理することで海水系透過水と海水系濃縮水とを生成する海水系逆浸透膜処理手段と、前記下水系透過水と前記海水系透過水とが混合された混合透過水を貯留する貯留槽及び当該貯留槽に貯留された混合透過水の水位を計測する水位計を有する貯留システムと、を備え、前記貯留システムは、前記水位計で計測した水位に応じて前記海水系逆浸透膜処理手段を、起動又は停止する海水淡水化システム。   (6) Sewage reverse osmosis membrane treatment means for producing sewage permeate and sewage concentrate by subjecting sewage to membrane separation; seawater permeate and seawater concentrate by subjecting seawater to membrane separation Seawater-based reverse osmosis membrane treatment means for generating the above, a storage tank for storing the mixed permeated water in which the sewage-based permeated water and the seawater-based permeated water are mixed, and the level of the mixed permeated water stored in the storage tank And a storage system having a water level meter for measuring the seawater desalination system for starting or stopping the seawater system reverse osmosis membrane processing means according to the water level measured by the water level meter.

(6)の発明によれば、下水系逆浸透膜処理手段は、下水を膜分離処理することで下水系透過水と下水系濃縮水とを生成する。海水系逆浸透膜処理手段は、海水を膜分離処理することで海水系透過水と海水系濃縮水とを生成する。貯留システムは、下水系透過水と海水系透過水とが混合された混合透過水を貯留する貯留槽及び当該貯留槽に貯留された混合透過水の水位を計測する水位計を有する。そして、貯留システムは、水位計で計測した混合透過水の水位に応じて海水系逆浸透膜処理手段を、起動又は停止する。   According to the invention of (6), the sewage reverse osmosis membrane treatment means generates sewage permeate and sewage concentrate by subjecting the sewage to membrane separation treatment. The seawater-based reverse osmosis membrane processing means generates seawater-based permeated water and seawater-based concentrated water by subjecting seawater to membrane separation. The storage system includes a storage tank that stores mixed permeated water in which sewage permeated water and seawater-based permeated water are mixed, and a water level meter that measures the water level of the mixed permeated water stored in the storage tank. And a storage system starts or stops a seawater system reverse osmosis membrane process means according to the water level of the mixed permeated water measured with the water level meter.

これにより、海水系逆浸透膜処理手段において、海水より塩分濃度が低い下水系濃縮水と海水の混合水を膜分離処理し淡水である海水系透過水を生成するので、混合水より塩分濃度が高い海水を膜分離処理して淡水を生成する場合に比べて、淡水を生成するためのエネルギーを低減できる。
また、生成した淡水である下水系透過水と海水系透過水とが混合された混合透過水の貯留槽における水位に応じて海水系逆浸透膜処理手段を、起動又は停止するので、例えば、下水系透過水が十分に生成され、所望の水量が確保できている場合に、下水系逆浸透膜処理手段に比べ多くのエネルギーを必要とする海水系逆浸透膜処理手段を停止できる。
したがって、淡水を生成するためのエネルギーを低減できるとともに、生成する淡水において所望の水量を確保できる海水淡水化システムを提供できる。
As a result, in the seawater system reverse osmosis membrane treatment means, the mixed water of sewage concentrated water and seawater whose salinity is lower than that of seawater is subjected to membrane separation treatment to produce seawater system permeate which is fresh water. Compared with the case where high seawater is subjected to membrane separation treatment to produce fresh water, energy for producing fresh water can be reduced.
Further, since the seawater system reverse osmosis membrane treatment means is started or stopped according to the water level in the mixed permeated water storage tank in which the sewage system permeated water and the seawater system permeated water, which are generated fresh water, are mixed, When the water-based permeated water is sufficiently generated and a desired amount of water can be secured, the seawater-based reverse osmosis membrane treatment means that requires more energy than the sewage-type reverse osmosis membrane treatment means can be stopped.
Therefore, it is possible to provide a seawater desalination system that can reduce energy for generating fresh water and can secure a desired amount of water in the generated fresh water.

(7) 前記貯留システムは、前記貯留槽に貯留された混合透過水の塩分濃度を測定する第1の塩分濃度測定手段を有し、前記下水系逆浸透膜処理手段は、生成した下水系透過水の塩分濃度を測定する第2の塩分濃度測定手段を有し、前記海水系逆浸透膜処理手段は、生成した海水系透過水の塩分濃度を測定する第3の塩分濃度測定手段を有し、前記海水系透過水の塩分濃度、前記下水系透過水の塩分濃度及び前記混合透過水の塩分濃度に応じて、起動又は停止する(6)に記載の海水淡水化システム。   (7) The storage system includes a first salinity concentration measuring unit that measures a salt concentration of the mixed permeated water stored in the storage tank, and the sewage system reverse osmosis membrane processing unit generates the generated sewage system permeation. The seawater-based reverse osmosis membrane treatment means has a third salinity-measuring means for measuring the salt concentration of the generated seawater-based permeated water. The seawater desalination system according to (6), which starts or stops according to the salinity concentration of the seawater-based permeated water, the salinity concentration of the sewage-based permeated water, and the salt concentration of the mixed permeated water.

(7)の発明によれば、海水系逆浸透膜処理手段は、海水系透過水の塩分濃度、下水系透過水の塩分濃度及び混合透過水の塩分濃度に応じて、起動又は停止するので、例えば、下水系透過水の塩分濃度及び混合透過水の塩分濃度のいずれかが所定の基準値より高ければ、海水系逆浸透膜処理手段を停止することで、生成した淡水である混合透過水の塩分濃度を所定の基準値以内に戻すことができる。
したがって、淡水を生成するためのエネルギーを低減できるとともに、生成する淡水において水質を確保できる海水淡水化システムを提供できる。
According to the invention of (7), the seawater-based reverse osmosis membrane treatment means starts or stops according to the salinity concentration of the seawater-based permeated water, the salinity concentration of the sewage-based permeated water, and the salinity concentration of the mixed permeated water. For example, if either the salinity of the sewage permeated water or the salinity of the mixed permeated water is higher than a predetermined reference value, the mixed permeated water that is the generated fresh water is stopped by stopping the seawater-based reverse osmosis membrane treatment means. The salinity can be returned to within a predetermined reference value.
Therefore, it is possible to provide a seawater desalination system capable of reducing energy for generating fresh water and ensuring water quality in the generated fresh water.

(8) 下水を膜分離処理することで下水系透過水と下水系濃縮水とを生成する下水系逆浸透膜処理工程と、前記下水系濃縮水と取水した海水との混合水を膜分離処理することで海水系透過水と海水系濃縮水とを生成する海水系逆浸透膜処理工程と、前記海水系透過水の塩分濃度を測定する塩分濃度測定工程と、前記海水系透過水の塩分濃度に応じて前記海水系透過水を前記下水系逆浸透膜処理工程に戻す海水系透過水循環工程と、を備えることを特徴とする海水淡水化方法。
(8)の発明によれば、(1)の発明と同様の作用効果を奏する。
(8) Membrane separation treatment of a mixed water of a sewage system reverse osmosis membrane treatment step for producing sewage system permeate and sewage system concentrated water by subjecting the sewage to membrane separation treatment, and the seawater taken from the sewage system concentrated water A seawater-based reverse osmosis membrane treatment step for generating seawater-based permeated water and seawater-based concentrated water, a salinity concentration measuring step for measuring the salinity concentration of the seawater-based permeated water, and the salinity concentration of the seawater-based permeated water And a seawater permeate circulating step for returning the seawater permeate to the sewage reverse osmosis membrane treatment step in accordance with the seawater desalination method.
According to invention of (8), there exists an effect similar to invention of (1).

(9) 下水を膜分離処理することで下水系透過水と下水系濃縮水とを生成する下水系逆浸透膜処理工程を有する海水淡水化方法であって、前記下水系濃縮水と取水した海水との混合水を膜分離処理することで海水系透過水と海水系濃縮水とを生成する海水系逆浸透膜処理工程と、前記海水系透過水の塩分濃度を測定する塩分濃度測定工程と、前記海水系透過水の塩分濃度に応じて、前記下水系逆浸透膜処理工程及び前記海水系逆浸透膜処理工程の継続を決定する継続決定工程と、を備えることを特徴とする海水淡水化方法。
(9)の発明によれば、(2)の発明と同様の作用効果を奏する。
(9) A seawater desalination method having a sewage reverse osmosis membrane treatment step for producing sewage permeate and sewage concentrate by subjecting sewage to membrane separation, and the seawater taken from the sewage concentrate A seawater-based reverse osmosis membrane treatment step for producing seawater-based permeated water and seawater-based concentrated water by subjecting the mixed water to membrane separation treatment, and a salinity concentration measuring step for measuring the salt concentration of the seawater-based permeated water, A seawater desalination method comprising: a sewage reverse osmosis membrane treatment step and a continuation determination step that decides continuation of the seawater reverse osmosis membrane treatment step according to the salinity of the seawater permeate. .
According to invention of (9), there exists an effect similar to invention of (2).

(10) 前記海水系透過水を膜分離処理する第2の海水系逆浸透膜処理工程を更に備え、前記塩分濃度測定工程で測定した前記海水系透過水の塩分濃度に応じて前記海水系透過水を前記第2の海水系逆浸透膜処理工程で処理することを特徴とする(9)に記載の海水淡水化方法。
(10)の発明によれば、(3)の発明と同様の作用効果を奏する。
(10) The seawater system permeated water is further provided with a second seawater system reverse osmosis membrane treatment step for membrane separation treatment, and the seawater system permeation is performed according to the salt concentration of the seawater system permeated water measured in the salt concentration measurement step. The seawater desalination method according to (9), wherein water is treated in the second seawater-based reverse osmosis membrane treatment step.
According to invention of (10), there exists an effect similar to invention of (3).

(11) 前記塩分濃度測定工程で測定した海水系透過水の塩分濃度に応じて、前記海水系透過水を前記下水系逆浸透膜処理工程に戻す海水系透過水循環工程と、を備え、前記下水系逆浸透膜処理工程は、前記海水系透過水循環工程において戻された前記海水系透過水と下水との混合水を膜分離処理する(9)に記載の海水淡水化方法。
(11)の発明によれば、(4)の発明と同様の作用効果を奏する。
(11) A seawater-based permeate circulation step for returning the seawater-based permeate to the sewage reverse osmosis membrane treatment step according to the salt concentration of the seawater-based permeate measured in the salt concentration measurement step, The aqueous reverse osmosis membrane treatment step is a seawater desalination method according to (9), wherein the mixed water of the seawater permeate and sewage returned in the seawater permeate circulation step is subjected to membrane separation treatment.
According to invention of (11), there exists an effect similar to invention of (4).

(12) 下水を膜分離処理することで下水系透過水と下水系濃縮水とを生成する下水系逆浸透膜処理工程と、海水を膜分離処理することで海水系透過水と海水系濃縮水とを生成する海水系逆浸透膜処理工程と、前記下水系透過水と前記海水系透過水とが混合された混合透過水を貯留槽に貯留する貯留工程と、当該貯留槽に貯留された混合透過水の水位を計測する水位計測工程と、前記水位計測工程で計測した水位に応じて前記海水系逆浸透膜処理工程を、行うか否かを決定する決定工程と、を備える海水淡水化方法。
(12)の発明によれば、(6)の発明と同様の作用効果を奏する。
(12) A sewage reverse osmosis membrane treatment step for producing sewage permeate and sewage concentrate by subjecting sewage to membrane separation; and seawater permeate and seawater concentrate by subjecting seawater to membrane separation. A seawater-based reverse osmosis membrane treatment step for generating a sewage-based permeated water and a mixed permeated water in which the seawater-based permeated water is mixed and stored in a storage tank, and the mixture stored in the storage tank A seawater desalination method comprising: a water level measurement step for measuring the level of permeate water; and a determination step for determining whether or not to perform the seawater system reverse osmosis membrane treatment step according to the water level measured in the water level measurement step. .
According to invention of (12), there exists an effect similar to invention of (6).

(13) 前記貯留槽に貯留された混合透過水の塩分濃度を測定する第1の塩分濃度測定工程と、前記下水系逆浸透膜処理工程において生成した下水系透過水の塩分濃度を測定する第2の塩分濃度測定工程と、前記海水系逆浸透膜処理工程において生成した海水系透過水の塩分濃度を測定する第3の塩分濃度測定工程と、を更に備え、前記決定工程は、前記海水系透過水の塩分濃度、前記下水系透過水の塩分濃度及び前記混合透過水の塩分濃度に応じて前記海水系逆浸透膜処理工程を、行うか否かを決定する(12)に記載の海水淡水化方法。
(13)の発明によれば、(7)の発明と同様の作用効果を奏する。
(13) A first salinity concentration measuring step for measuring a salinity concentration of the mixed permeated water stored in the storage tank, and a first salinity concentration of the sewage permeated water generated in the sewage reverse osmosis membrane treatment step. 2 and a third salinity measurement step for measuring the salinity of the seawater-based permeated water generated in the seawater-based reverse osmosis membrane treatment step. The seawater fresh water according to (12), wherein whether or not to perform the seawater-based reverse osmosis membrane treatment step is determined according to the salinity of permeated water, the salinity of the sewage permeated water, and the salinity of the mixed permeated water. Method.
According to the invention of (13), the same effect as that of the invention of (7) is achieved.

本発明によれば、淡水を生成するためのエネルギーを低減できるとともに、生成する淡水において水質を確保できる海水淡水化システムを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, while reducing the energy for producing | generating fresh water, the seawater desalination system which can ensure water quality in the produced fresh water can be provided.

本発明の第1実施形態の海水淡水化システムを示す概略構成図である。It is a schematic structure figure showing the seawater desalination system of a 1st embodiment of the present invention. 本発明の第1実施形態の変形例の海水淡水化システムを示す概略構成図である。It is a schematic block diagram which shows the seawater desalination system of the modification of 1st Embodiment of this invention. 本発明の第2実施形態の海水淡水化システムを示す概略構成図である。It is a schematic block diagram which shows the seawater desalination system of 2nd Embodiment of this invention.

<第1実施形態>
図1を参照して、本発明の第1実施形態の海水淡水化システム1について説明する。図1は、本発明の第1実施形態の海水淡水化システム1を示す概略構成図である。
<First Embodiment>
With reference to FIG. 1, the seawater desalination system 1 of 1st Embodiment of this invention is demonstrated. FIG. 1 is a schematic configuration diagram showing a seawater desalination system 1 according to a first embodiment of the present invention.

図1に示すように、第1実施形態の海水淡水化システム1は、下水系逆浸透膜処理手段10と、海水系逆浸透膜処理手段20と、制御手段100と、を備えており、下水W10及び海水W20を膜分離処理し、淡水である下水系透過水W11及び海水系透過水W21を生成する装置である。
本明細書における海水W20は、海、湖、沼、池等に存在する水であって、塩分濃度が略1.0質量%以上略4.0質量%以下の水である。また、本明細書における下水W10は、有機物を含有する有機性廃水や製造工場等の無機性廃水等が濾過処理等された後に排水されたものであって、塩分濃度が海水W20よりも低い水である。また、本明細書における淡水とは、塩分濃度が低い水である。
As shown in FIG. 1, the seawater desalination system 1 according to the first embodiment includes a sewage reverse osmosis membrane treatment means 10, a seawater reverse osmosis membrane treatment means 20, and a control means 100. This is a device that generates a sewage permeate W11 and a seawater permeate W21 that are fresh water by subjecting W10 and seawater W20 to membrane separation.
Seawater W20 in this specification is water that exists in the sea, lake, swamp, pond, etc., and has a salinity of about 1.0 mass% or more and about 4.0 mass% or less. Moreover, the sewage W10 in this specification is drained after organic wastewater containing organic matter, inorganic wastewater from a manufacturing plant, etc. is filtered, etc., and has a lower salinity than seawater W20. It is. Moreover, the fresh water in this specification is water with low salt concentration.

海水淡水化システム1は、下水W10を膜分離処理することで下水系透過水W11と下水系濃縮水W12とを生成する下水系逆浸透膜処理手段10と、下水系濃縮水W12と取水した海水W20との混合水を膜分離処理することで海水系透過水W21と海水系濃縮水W22とを生成し、この海水系透過水W21の塩分濃度を測定する導電率計(以下、EC計と称する)230を有する海水系逆浸透膜処理手段20と、
海水系透過水W21の塩分濃度に応じて、下水系逆浸透膜処理手段10及び海水系逆浸透膜処理手段20の駆動を制御する制御手段100と、を備える。
The seawater desalination system 1 is a sewage reverse osmosis membrane treatment means 10 that generates sewage permeate W11 and sewage concentrate W12 by membrane separation of the sewage W10, and seawater taken by the sewage concentrate W12. A seawater-based permeated water W21 and seawater-based concentrated water W22 are generated by subjecting the mixed water with W20 to membrane separation, and a conductivity meter (hereinafter referred to as an EC meter) that measures the salinity concentration of the seawater-based permeated water W21. Seawater-based reverse osmosis membrane treatment means 20 having 230),
And control means 100 for controlling the driving of the sewage reverse osmosis membrane treatment means 10 and the seawater reverse osmosis membrane treatment means 20 according to the salinity concentration of the seawater permeate W21.

海水淡水化システム1は、海水系透過水W21の塩分濃度が、透過水を使用する供給系(図示無し)へ流出できる基準を満たしていれば海水系透過水W21を供給系へ流出し、供給系へ流出できる基準を満たしていない場合には海水系透過水W21を下水系逆浸透膜処理手段10に循環させる。
以下、海水淡水化システム1の各構成について詳細に説明する。
The seawater desalination system 1 supplies the seawater permeate W21 to the supply system and supplies it if the salinity concentration of the seawater permeate W21 satisfies a standard that can flow out to a supply system (not shown) that uses the permeate. When the standard that can flow into the system is not satisfied, the seawater-based permeated water W21 is circulated to the sewage system reverse osmosis membrane treatment means 10.
Hereinafter, each structure of the seawater desalination system 1 is demonstrated in detail.

下水系逆浸透膜処理手段10は、系外から下水W10を供給する下水ラインL10と、下水ラインL10に設けられ、下水W10に含まれる汚泥を濾過する下水系前処理モジュール11と、下水ラインL10に接続され、下水W10を膜分離処理し、下水系透過水W11及び下水系濃縮水W12を生成する下水系逆浸透膜モジュール12と、下水ラインL10において、下水系逆浸透膜モジュール12より上流側に設けられた加圧ポンプ13と、下水系逆浸透膜モジュール12に接続された下水系透過水ラインL11と、下水系逆浸透膜モジュール12に接続された下水系濃縮水ラインL12と、を最低限備える。
なお、本明細書でいう「ライン」とは、流体の流通が可能なラインであり、流路、経路、管路等が含まれる。
The sewage reverse osmosis membrane treatment means 10 includes a sewage line L10 that supplies sewage W10 from outside the system, a sewage pretreatment module 11 that is provided in the sewage line L10 and filters sludge contained in the sewage W10, and a sewage line L10. And a sewage reverse osmosis membrane module 12 for producing a sewage permeate W11 and a sewage concentrate W12, and upstream of the sewage reverse osmosis membrane module 12 in the sewage line L10. And a sewage system permeate line L11 connected to the sewage system reverse osmosis membrane module 12, and a sewage system concentrated water line L12 connected to the sewage system reverse osmosis membrane module 12. Prepare.
The “line” in the present specification is a line through which fluid can flow, and includes a flow path, a path, a pipe line, and the like.

下水ラインL10は、海水淡水化システム1の系外から延びて下水系前処理モジュール11を介して下水系逆浸透膜モジュール12に接続されており、下水系前処理モジュール11により汚泥が除去された下水W10を下水系逆浸透膜モジュール12に導入する。   The sewage line L10 extends from outside the seawater desalination system 1 and is connected to the sewage system reverse osmosis membrane module 12 via the sewage system pretreatment module 11, and sludge is removed by the sewage system pretreatment module 11. The sewage W10 is introduced into the sewage reverse osmosis membrane module 12.

下水系前処理モジュール11は、下水ラインL10において下水系逆浸透膜モジュール12の上流側に設けられ、膜分離活性汚泥法により下水W10に含まれる汚泥を濾過し除去する。本実施形態において下水系前処理モジュール11は、濾過媒体としての精密濾過膜あるいは限外濾過膜(図示せず)を備える。なお、下水系前処理モジュール11は、本実施形態において、精密濾過膜あるいは限外濾過膜を用いているが、これに限らず、下水W10に含まれる汚泥を除去する他の濾過装置を用いることもできる。   The sewage pretreatment module 11 is provided on the upstream side of the sewage reverse osmosis membrane module 12 in the sewage line L10, and filters and removes sludge contained in the sewage W10 by a membrane separation activated sludge method. In the present embodiment, the sewage pretreatment module 11 includes a microfiltration membrane or an ultrafiltration membrane (not shown) as a filtration medium. In this embodiment, the sewage system pretreatment module 11 uses a microfiltration membrane or an ultrafiltration membrane. However, the present invention is not limited to this, and other filtration devices that remove sludge contained in the sewage W10 are used. You can also.

下水系逆浸透膜モジュール12は、下水ラインL10の下流側の端部に接続されている。下水系逆浸透膜モジュール12は、下水系前処理モジュール11により汚泥が除去された下水W10を逆浸透膜(以下、「RO膜」ともいう)により膜分離処理し、下水系透過水W11及び下水系濃縮水W12を生成する。下水系逆浸透膜モジュール12は、単一又は複数のRO膜エレメント(図示せず)を備えており、これらのRO膜エレメントにより水中の溶存塩類を除去する。RO膜エレメントは、下水系逆浸透膜処理手段10に流入する下水W10の流入量及び塩分濃度に基づき好適な脱塩率の膜が選択される。
加圧ポンプ13は、下水ラインL10に設けられており、下水W10を加圧し、下水系逆浸透膜モジュール12に送出する。
The sewage reverse osmosis membrane module 12 is connected to the downstream end of the sewage line L10. The sewage system reverse osmosis membrane module 12 performs membrane separation treatment of the sewage W10 from which sludge has been removed by the sewage system pretreatment module 11 with a reverse osmosis membrane (hereinafter also referred to as “RO membrane”), and the sewage system permeate water W11 and Aqueous concentrated water W12 is produced. The sewage system reverse osmosis membrane module 12 includes one or a plurality of RO membrane elements (not shown), and these RO membrane elements remove dissolved salts in water. As the RO membrane element, a membrane having a suitable desalination rate is selected based on the inflow amount of the sewage W10 flowing into the sewage reverse osmosis membrane treatment means 10 and the salinity concentration.
The pressurization pump 13 is provided in the sewage line L10, pressurizes the sewage W10, and sends it to the sewage system reverse osmosis membrane module 12.

下水系透過水ラインL11及び下水系濃縮水ラインL12は、下水系逆浸透膜モジュール12の下流側に接続されている。下水系透過水ラインL11は、RO膜を透過した下水系透過水W11が流通し、下水系透過水W11を系外へ排水するラインである。下水系濃縮水ラインL12は、RO膜を透過しなかった下水系濃縮水W12が流通するラインである。下水系濃縮水ラインL12は、海水系逆浸透膜処理手段20に接続され、海水系逆浸透膜処理手段20に下水系濃縮水W12を供給する。   The sewage system permeate water line L <b> 11 and the sewage system concentrate water line L <b> 12 are connected to the downstream side of the sewage system reverse osmosis membrane module 12. The sewage system permeate line L11 is a line through which the sewage system permeate water W11 that has permeated the RO membrane flows and drains the sewage system permeate water W11 out of the system. The sewage system concentrated water line L12 is a line through which the sewage system concentrated water W12 that has not passed through the RO membrane flows. The sewage system concentrated water line L <b> 12 is connected to the seawater system reverse osmosis membrane processing means 20 and supplies the sewage system concentrated water W <b> 12 to the seawater system reverse osmosis membrane processing means 20.

海水系逆浸透膜処理手段20は、系外から海水W20を供給する海水ラインL20と、海水ラインL20に設けられ、海水W20に含まれる浮遊細菌(以下、「細菌、SS」ともいう)等を濾過する砂濾過やVF等の海水系前処理モジュール21と、海水ラインL20に接続され、海水W20を膜分離処理し、海水系透過水W21及び海水系濃縮水W22を生成する海水系逆浸透膜モジュール22と、海水ラインL20において、海水系逆浸透膜モジュール22より上流側に設けられた加圧ポンプ23と、海水系逆浸透膜モジュール22に接続された海水系透過水ラインL21と、海水系逆浸透膜モジュール22に接続された海水系濃縮水ラインL22と、海水系透過水ラインL21から分岐する海水系塩分濃度測定ラインL23と、海水系塩分濃度測定ラインL23を介して、海水系透過水ラインL21に送出された海水系透過水W21の塩分濃度を測定するEC計230と、海水系透過水ラインL21から分岐する海水系透過水排水ラインL24と、海水系透過水ラインL21から分岐する海水系透過水循環ラインL25と、を備える。   The seawater-based reverse osmosis membrane treatment means 20 is provided with a seawater line L20 for supplying seawater W20 from outside the system, and floating bacteria (hereinafter also referred to as “bacteria, SS”) and the like included in the seawater W20. A seawater system reverse osmosis membrane that is connected to a seawater system pretreatment module 21 such as sand filtration or VF to be filtered and a seawater line L20, and membranes the seawater W20 to generate a seawater permeate W21 and a seawater concentrated water W22. In the module 22 and the seawater line L20, a pressurizing pump 23 provided on the upstream side of the seawater system reverse osmosis membrane module 22, a seawater system permeate line L21 connected to the seawater system reverse osmosis membrane module 22, and a seawater system Seawater system concentrated water line L22 connected to reverse osmosis membrane module 22, seawater system salinity measurement line L23 branched from seawater system permeated water line L21, seawater system An EC meter 230 for measuring the salinity concentration of the seawater permeated water W21 sent to the seawater permeated water line L21 via the partial concentration measuring line L23, and a seawater permeated water drainage line branched from the seawater permeated water line L21 L24 and the seawater system permeate circulation line L25 branched from the seawater system permeate line L21.

海水ラインL20は、海水淡水化システム1の系外から延びて海水系前処理モジュール21を介して海水系逆浸透膜モジュール22に接続されている。また、海水ラインL20は、海水系前処理モジュール21と海水系逆浸透膜モジュール22との間の下水系濃縮水ライン接続点J12で下水系濃縮水ラインL12が接続されている。加圧ポンプ23は、海水ラインL20に設けられており、海水系前処理モジュール21により細菌、SS等が除去された海水W20と下水系逆浸透膜処理手段10から供給された下水系濃縮水W12との混合水を加圧し、海水系逆浸透膜モジュール22に送出する。   The seawater line L20 extends from outside the seawater desalination system 1 and is connected to the seawater reverse osmosis membrane module 22 via the seawater pretreatment module 21. The seawater line L20 is connected to the sewage system concentrated water line L12 at a sewage system concentrated water line connection point J12 between the seawater system pretreatment module 21 and the seawater system reverse osmosis membrane module 22. The pressurizing pump 23 is provided in the seawater line L20, and the seawater W20 from which bacteria, SS, and the like have been removed by the seawater system pretreatment module 21, and the sewage system concentrated water W12 supplied from the sewage system reverse osmosis membrane treatment means 10. The mixed water is pressurized and sent to the seawater-based reverse osmosis membrane module 22.

海水系前処理モジュール21は、海水ラインL20において海水系逆浸透膜モジュール22の上流側に設けられ、膜分離処理により海水W20に含まれる細菌、SSやウィルスSSを濾過し除去する。本実施形態において海水系前処理モジュール21は、海水W20を砂濾過した後、限外濾過膜(図示せず)により膜分離処理する。なお、海水系前処理モジュール21は、本実施形態において、限外濾過膜を用いているが、これに限らず、海水W20に含まれる細菌、SSやウィルスSSを除去する精密濾過膜等の他の濾過膜を用いることもできる。   The seawater system pretreatment module 21 is provided on the upstream side of the seawater system reverse osmosis membrane module 22 in the seawater line L20, and filters and removes bacteria, SS, and viruses SS contained in the seawater W20 by membrane separation processing. In the present embodiment, the seawater system pretreatment module 21 sand-filters the seawater W20 and then performs membrane separation treatment with an ultrafiltration membrane (not shown). The seawater system pretreatment module 21 uses an ultrafiltration membrane in this embodiment. However, the present invention is not limited to this. Other than a microfiltration membrane that removes bacteria, SS, and viruses SS contained in the seawater W20, etc. It is also possible to use a filtration membrane.

海水系逆浸透膜モジュール22は、海水ラインL20の下流側に接続されている。海水系逆浸透膜モジュール22は、海水系前処理モジュール21により細菌、SS等が除去された海水W20と下水系逆浸透膜処理手段10から供給された下水系濃縮水W12との混合水を逆浸透膜により膜分離処理し、海水系透過水W21及び海水系濃縮水W22を生成する。海水系逆浸透膜モジュール22は、単一又は複数のRO膜エレメント(図示せず)を備えており、これらのRO膜エレメントにより水中の溶存塩類を除去する。RO膜エレメントは、海水系逆浸透膜処理手段20に流入する海水W20の流入量及び塩分濃度、予め設定されている海水系逆浸透膜処理手段20が生成する海水系透過水W21の水量及び塩分濃度に基づき好適な脱塩率の膜が選択される。   The seawater system reverse osmosis membrane module 22 is connected to the downstream side of the seawater line L20. The seawater system reverse osmosis membrane module 22 reverses the mixed water of the seawater W20 from which bacteria, SS and the like have been removed by the seawater system pretreatment module 21 and the sewage system concentrated water W12 supplied from the sewage system reverse osmosis membrane treatment means 10. Membrane separation processing is performed by the osmosis membrane to generate seawater-based permeate W21 and seawater-based concentrated water W22. The seawater-based reverse osmosis membrane module 22 includes a single or a plurality of RO membrane elements (not shown), and these RO membrane elements remove dissolved salts in water. The RO membrane element includes the inflow amount and salinity concentration of seawater W20 flowing into the seawater system reverse osmosis membrane treatment means 20, the water amount and salinity of seawater system permeated water W21 generated by the seawater system reverse osmosis membrane treatment means 20 set in advance. A membrane with a suitable desalination rate is selected based on the concentration.

海水系透過水ラインL21及び海水系濃縮水ラインL22は、海水系逆浸透膜モジュール22の下流側に接続されている。
海水系透過水ラインL21は、RO膜を透過した海水系透過水W21が流通するラインである。海水系透過水ラインL21には、海水系塩分濃度測定ラインL23、海水系透過水排水ラインL24が上流側から順に接続されている。また、海水系透過水ラインL21には、下流側端部に海水系透過水循環バルブ250が設けられている。海水系透過水ラインL21は、海水系透過水循環バルブ250を介して、海水系透過水循環ラインL25に接続され、下水系逆浸透膜処理手段10に海水系透過水W21を循環させる。
The seawater system permeate line L21 and the seawater system concentrate line L22 are connected to the downstream side of the seawater system reverse osmosis membrane module 22.
The seawater-based permeated water line L21 is a line through which the seawater-based permeated water W21 that has passed through the RO membrane flows. A seawater salt concentration measurement line L23 and a seawater permeate drainage line L24 are sequentially connected from the upstream side to the seawater permeate line L21. The seawater permeate line L21 is provided with a seawater permeate circulation valve 250 at the downstream end. The seawater system permeate line L21 is connected to the seawater system permeate circulation line L25 via the seawater system permeate circulation valve 250, and the seawater system permeate W21 is circulated through the sewage system reverse osmosis membrane treatment means 10.

海水系濃縮水ラインL22は、RO膜を透過しなかった海水系濃縮水W22が流通し、海水系濃縮水W22を系外へ排水するラインである。
海水系塩分濃度測定ラインL23は、海水系透過水ラインL21から塩分濃度測定ライン分岐点J23において分岐し、海水系透過水W21が流通し、塩分濃度測定手段としての海水系透過水EC計230に接続されている。
海水系透過水EC計230は、塩分濃度測定工程として、海水系塩分濃度測定ラインL23を流通する海水系透過水W21の導電率を測定し、塩分濃度に換算する。海水系透過水EC計230は、制御手段100に接続され、測定した海水系透過水W21の導電率又は換算した塩分濃度を制御手段100に送信する。
The seawater-based concentrated water line L22 is a line through which the seawater-based concentrated water W22 that has not permeated the RO membrane flows and drains the seawater-based concentrated water W22 out of the system.
The seawater system salinity measurement line L23 branches from the seawater system permeate line L21 at the salinity measurement line branch point J23, and the seawater system permeate W21 circulates to the seawater system permeate EC meter 230 as the salinity concentration measurement means. It is connected.
The seawater-based permeated water EC meter 230 measures the conductivity of the seawater-based permeated water W21 flowing through the seawater-based salinity concentration measurement line L23 as a salinity concentration measuring step, and converts it into a salinity concentration. The seawater-based permeated water EC meter 230 is connected to the control means 100 and transmits the measured conductivity of the seawater-based permeated water W21 or the converted salinity concentration to the control means 100.

海水系透過水排水ラインL24は、海水系透過水ラインL21から海水系透過水排水ライン分岐点J24において分岐し、海水系透過水排水バルブ240を介して、海水系透過水W21を供給系(図示無し)へ流出するラインである。
海水系透過水排水バルブ240は、電磁弁又は電動弁からなり、制御手段100の制御により、海水系透過水W21の塩分濃度が供給系へ流出できる基準を満たしていれば、海水系透過水W21を供給系へ流出するように構成され、海水系透過水W21の塩分濃度が供給系へ流出できる基準を満たしていない場合に、海水系透過水W21を供給系へ流出するのを止めるように構成されている。
The seawater permeate drainage line L24 branches from the seawater permeate drainage line L21 at the seawater system permeate drainage line branch point J24, and supplies the seawater permeate permeate W21 via the seawater permeate drainage valve 240 (illustrated). No line).
The seawater-based permeate drainage valve 240 is composed of an electromagnetic valve or a motor-operated valve. If the salt concentration of the seawater-based permeate W21 satisfies the standard that can flow out to the supply system under the control of the control means 100, the seawater-based permeate W21. Is configured to flow out to the supply system, and is configured to stop the seawater system permeate water W21 from flowing out to the supply system when the salinity concentration of the seawater system permeate water W21 does not satisfy the standard capable of flowing into the supply system. Has been.

海水系透過水循環ラインL25は、海水系透過水循環バルブ250から延びて、下水ラインL10の海水系透過水循環ライン接続点J26に接続されている。海水系透過水循環ラインL25は、海水系透過水W21を下水系逆浸透膜処理手段10に循環させるラインである。
海水系透過水循環バルブ250は、電磁弁又は電動弁からなり、制御手段100の制御により、海水系透過水W21の塩分濃度が供給系(図示無し)へ流出できる基準を満たしていれば海水系透過水W21を下水系逆浸透膜処理手段10に循環させないように構成され、海水系透過水W21の塩分濃度が供給系へ流出できる基準を満たしていない場合には海水系透過水W21を下水系逆浸透膜処理手段10に循環させるように構成されている。
The seawater permeate circulation line L25 extends from the seawater permeate circulation valve 250 and is connected to a seawater permeate circulation line connection point J26 of the sewage line L10. The seawater-based permeated water circulation line L25 is a line for circulating the seawater-based permeated water W21 to the sewage system reverse osmosis membrane treatment means 10.
The seawater-based permeate circulation valve 250 is composed of an electromagnetic valve or a motor-operated valve. If the salt concentration of the seawater-based permeate W21 satisfies a standard that can flow out to a supply system (not shown) under the control of the control means 100, the seawater-system permeate The water W21 is configured not to be circulated to the sewage system reverse osmosis membrane treatment means 10, and when the salinity concentration of the seawater system permeate W21 does not satisfy the standard capable of flowing out to the supply system, the seawater system permeate water W21 is sewage system reverse. The osmosis membrane treatment means 10 is configured to circulate.

制御手段100は、海水淡水化システム1を構成する各要素のうち、制御が行われる要素に電気的に接続される。詳細には、制御手段100は、海水系透過水EC計230で測定された海水系透過水W21の塩分濃度に応じて、加圧ポンプ13、加圧ポンプ23、海水系透過水排水バルブ240、海水系透過水循環バルブ250を制御する。   The control means 100 is electrically connected to the element in which control is performed among each element which comprises the seawater desalination system 1. FIG. Specifically, the control means 100 determines whether the pressure pump 13, the pressure pump 23, the seawater permeate drainage valve 240, according to the salt concentration of the seawater permeate W21 measured by the seawater permeate EC meter 230. The seawater permeate circulation valve 250 is controlled.

次に、海水淡水化システム1の動作について説明する。
まず、制御手段100は、加圧ポンプ13及び加圧ポンプ23を駆動させる制御を行う。
これにより、下水系逆浸透膜処理手段10が駆動し、系外から供給され下水系前処理モジュール11により汚泥が除去された下水W10は、下水系逆浸透膜モジュール12に導入される。下水系逆浸透膜モジュール12に導入された下水W10は膜分離処理され、下水系透過水W11及び下水系濃縮水W12が生成される。下水系透過水W11は系外に排水され、下水系濃縮水W12は海水系逆浸透膜処理手段20に供給される。
また、海水系逆浸透膜処理手段20が駆動し、系外から供給され海水系前処理モジュール21により細菌、SS等が除去された海水W20は、下水系逆浸透膜処理手段10から供給された下水系濃縮水W12と混合され、海水系逆浸透膜モジュール22に導入される。海水系逆浸透膜モジュール22に導入された海水W20と下水系濃縮水W12との混合水は膜分離処理され、海水系透過水W21及び海水系濃縮水W22が生成される。海水系透過水W21は海水系透過水ラインL21に流出され、海水系濃縮水W22は系外に排水される。
Next, the operation of the seawater desalination system 1 will be described.
First, the control means 100 performs control to drive the pressure pump 13 and the pressure pump 23.
As a result, the sewage reverse osmosis membrane treatment means 10 is driven, and the sewage W10 supplied from outside the system and from which sludge has been removed by the sewage pretreatment module 11 is introduced into the sewage reverse osmosis membrane module 12. The sewage W10 introduced into the sewage system reverse osmosis membrane module 12 is subjected to a membrane separation process to generate a sewage system permeated water W11 and a sewage system concentrated water W12. The sewage system permeated water W11 is drained outside the system, and the sewage system concentrated water W12 is supplied to the seawater system reverse osmosis membrane treatment means 20.
The seawater-based reverse osmosis membrane treatment means 20 is driven, and the seawater W20 supplied from outside the system and from which bacteria, SS, etc. are removed by the seawater-system pretreatment module 21 is supplied from the sewage-system reverse osmosis membrane treatment means 10. It is mixed with the sewage system concentrated water W12 and introduced into the seawater system reverse osmosis membrane module 22. The mixed water of the seawater W20 and the sewage system concentrated water W12 introduced into the seawater system reverse osmosis membrane module 22 is subjected to a membrane separation process to generate a seawater system permeated water W21 and a seawater system concentrated water W22. The seawater-based permeated water W21 flows out to the seawater-based permeated water line L21, and the seawater-based concentrated water W22 is drained out of the system.

そして、海水系透過水EC計230は、海水系透過水ラインL21に流出された海水系透過水W21の塩分濃度を測定し制御手段100に送信する。
制御手段100は、継続決定工程として以下の処理を行う。
制御手段100は、海水系透過水EC計230から送信された海水系透過水W21の塩分濃度が供給系(図示無し)へ流出できる基準を満たしている場合には、海水系透過水排水バルブ240を開栓し、海水系透過水循環バルブ250を閉栓する制御を行う。
これにより、海水系透過水W21は、供給系へ流出される。
Then, the seawater-based permeated water EC meter 230 measures the salt concentration of the seawater-based permeated water W21 that has flowed out to the seawater-based permeated water line L21 and transmits it to the control means 100.
The control means 100 performs the following processing as the continuation determination step.
When the salinity concentration of the seawater-based permeated water W21 transmitted from the seawater-based permeated water EC meter 230 satisfies the standard that can flow out to the supply system (not shown), the control means 100 is configured to supply the seawater-based permeated water drain valve 240. And the seawater-based permeate circulation valve 250 is controlled to be closed.
Thereby, seawater system permeated water W21 flows out into a supply system.

また、制御手段100は、海水系透過水EC計230から送信された海水系透過水W21の塩分濃度が供給系へ流出できる基準を満たしていない場合には、海水系透過水循環工程として、海水系透過水循環バルブ250を開栓し、海水系透過水排水バルブ240を閉栓するとともに、加圧ポンプ23の出力を下げることにより流量を下げる制御を行う。
これにより、海水系透過水W21は、海水系透過水循環ラインL25を介して、下水系逆浸透膜処理手段10に循環され、再度、下水系逆浸透膜処理手段10及び海水系逆浸透膜処理手段20により膜分離処理される。また、海水系逆浸透膜処理手段20における海水W20の取水する量が減少する。
Further, when the salinity concentration of the seawater permeate W21 transmitted from the seawater permeate EC meter 230 does not satisfy the standard that allows the control unit 100 to flow out to the supply system, The permeated water circulation valve 250 is opened, the seawater-based permeated water drain valve 240 is closed, and the flow rate is reduced by lowering the output of the pressurizing pump 23.
Accordingly, the seawater-based permeated water W21 is circulated to the sewage system reverse osmosis membrane treatment means 10 via the seawater-based permeate circulation line L25, and again, the sewage system reverse osmosis membrane treatment means 10 and the seawater system reverse osmosis membrane treatment means. 20 is used for membrane separation treatment. Moreover, the amount of seawater W20 in the seawater-based reverse osmosis membrane treatment means 20 is reduced.

第1実施形態の海水淡水化システム1によれば、以下の効果を奏する。
海水系逆浸透膜処理手段20において、海水より塩分濃度が低い下水系濃縮水W12と海水W20の混合水を膜分離処理し淡水である海水系透過水W21を生成するので、混合水より塩分濃度が高い海水W20を膜分離処理して淡水を生成する場合に比べて、淡水を生成するためのエネルギーを低減できる。
また、例えば、下水W10の水量が低下し下水系逆浸透膜処理手段10で生成された下水系透過水W11と下水系濃縮水W12の水量が低下し、海水系透過水W21の塩分濃度が上昇した場合であっても、稼働率が低下した下水系逆浸透膜処理手段10を利用して、当該塩分濃度が上昇した海水系透過水W21を膜分離処理することで、塩分濃度が所定の濃度の海水系透過水を供給できる。
したがって、淡水を生成するためのエネルギーを低減できるとともに、生成する淡水において水質を確保できる海水淡水化システムを提供できる。
According to the seawater desalination system 1 of 1st Embodiment, there exist the following effects.
In the seawater system reverse osmosis membrane treatment means 20, the mixed water of the sewage system concentrated water W12 and the seawater W20 having a salinity lower than that of the seawater is subjected to a membrane separation treatment to generate a seawater system permeate W21 which is a fresh water. Compared to the case where fresh seawater W20 is produced by membrane separation treatment of high seawater W20, energy for producing fresh water can be reduced.
Further, for example, the amount of sewage W10 decreases, the amount of sewage permeated water W11 and sewage concentrated water W12 generated by the sewage system reverse osmosis membrane treatment means 10 decreases, and the salinity of seawater permeable water W21 increases. Even in this case, by using the sewage reverse osmosis membrane treatment means 10 having a reduced operating rate, the salinity permeated water W21 having increased salinity is subjected to membrane separation treatment, so that the salinity is a predetermined concentration. Seawater permeated water can be supplied.
Therefore, it is possible to provide a seawater desalination system capable of reducing energy for generating fresh water and ensuring water quality in the generated fresh water.

また、生成した淡水である海水系透過水W21の塩分濃度に応じて、下水系逆浸透膜処理手段10及び海水系逆浸透膜処理手段20を制御するので、例えば、海水系透過水W21の塩分濃度が供給系へ流出できる基準を満たしていない場合には、海水系逆浸透膜処理手段20の駆動を抑制し海水系透過水の塩分濃度を所定の濃度に戻すことができる。   Moreover, since the sewage system reverse osmosis membrane processing means 10 and the seawater system reverse osmosis membrane processing means 20 are controlled according to the salinity concentration of the seawater system permeated water W21 which is the generated fresh water, for example, the salinity of the seawater system permeate water W21 When the concentration does not satisfy the standard that can flow out to the supply system, the driving of the seawater-based reverse osmosis membrane treatment means 20 can be suppressed and the salt concentration of the seawater-based permeated water can be returned to a predetermined concentration.

また、下水系逆浸透膜処理手段10及び海水系逆浸透膜処理手段20の流入量及び塩分濃度、予め設定される海水系逆浸透膜処理手段20が生成する海水系透過水W21の水量及び塩分濃度から、好適な脱塩率の逆浸透膜を選択することで、エネルギー効率が好適なポンプを用いることが可能となり、淡水を生成するためのエネルギーをより低減できる。   Further, the inflow amount and salinity concentration of the sewage system reverse osmosis membrane treatment means 10 and the seawater system reverse osmosis membrane treatment means 20, the water amount and salinity of the seawater system permeate W21 generated by the seawater system reverse osmosis membrane treatment means 20 set in advance. By selecting a reverse osmosis membrane having a suitable desalination rate from the concentration, it becomes possible to use a pump with suitable energy efficiency, and the energy for generating fresh water can be further reduced.

次に、本発明の第1実施形態の変形例について説明する。第1実施形態の変形例については、主として、第1実施形態とは異なる点を中心に説明し、第1実施形態と同様の構成については、同じ符号を付し、詳細な説明を省略する。第1実施形態の変形例において特に説明しない点は、第1実施形態についての説明が適宜適用される。   Next, a modification of the first embodiment of the present invention will be described. About the modification of 1st Embodiment, it demonstrates centering around a different point from 1st Embodiment mainly, the same code | symbol is attached | subjected about the structure similar to 1st Embodiment, and detailed description is abbreviate | omitted. The description about the first embodiment is appropriately applied to points that are not particularly described in the modification of the first embodiment.

<第1実施形態の変形例>
図2を参照して、第1実施形態の変形例である海水淡水化システム1’について説明する。図2は、本発明の第1実施形態の変形例の海水淡水化システム1’を示す概略構成図である。
第1実施形態の変形例である海水淡水化システム1’は、第1実施形態の海水淡水化システム1とは、海水系逆浸透膜処理手段の海水ライン、海水系透過水ライン及び制御手段の構成が異なる。また、第1実施形態の変形例である海水淡水化システム1’は、第1実施形態の海水淡水化システム1が備えない第2海水系逆浸透膜処理手段30を備える。
海水淡水化システム1’は、海水系透過水W21の塩分濃度が、供給系(図示無し)へ流出できる基準を満たしている場合には海水系透過水W21を供給系へ流出し、供給系へ流出できる基準を満たしていない場合は海水系透過水W21を更に第2海水系逆浸透膜処理手段30において膜分離処理する。
<Modification of First Embodiment>
With reference to FIG. 2, seawater desalination system 1 'which is a modification of 1st Embodiment is demonstrated. FIG. 2 is a schematic configuration diagram showing a seawater desalination system 1 ′ according to a modification of the first embodiment of the present invention.
The seawater desalination system 1 ′, which is a modification of the first embodiment, differs from the seawater desalination system 1 of the first embodiment in the seawater line of the seawater system reverse osmosis membrane treatment means, the seawater system permeate line, and the control means. The configuration is different. Moreover, seawater desalination system 1 'which is a modification of 1st Embodiment is provided with the 2nd seawater system reverse osmosis membrane processing means 30 which the seawater desalination system 1 of 1st Embodiment does not have.
The seawater desalination system 1 ′ causes the seawater permeate W21 to flow out to the supply system when the salinity concentration of the seawater permeate W21 satisfies a standard that can flow out to the supply system (not shown). When the standard which can flow out is not satisfied, the seawater-based permeated water W21 is further subjected to membrane separation processing in the second seawater-based reverse osmosis membrane processing means 30.

海水系逆浸透膜処理手段20’の海水ラインL20’は、海水淡水化システム1’の系外から延びて海水系前処理モジュール21を介して海水系逆浸透膜モジュール22に接続されている。また、海水ラインL20’には、海水系前処理モジュール21と海水系逆浸透膜モジュール22との間の下水系濃縮水ライン接続点J12で下水系濃縮水ラインL12が接続され、下水系濃縮水ライン接続点J12と海水系逆浸透膜モジュール22との間の海水系再濃縮水ライン接続点J32で海水系再濃縮水ラインL32が接続されている。   The seawater line L20 'of the seawater system reverse osmosis membrane treatment means 20' extends from outside the seawater desalination system 1 'and is connected to the seawater system reverse osmosis membrane module 22 via the seawater system pretreatment module 21. In addition, a sewage system concentrated water line L12 is connected to the seawater line L20 ′ at a sewage system concentrated water line connection point J12 between the seawater system pretreatment module 21 and the seawater system reverse osmosis membrane module 22. The seawater-based reconcentrated water line L32 is connected at a seawater-based reconcentrated water line connecting point J32 between the line connecting point J12 and the seawater-based reverse osmosis membrane module 22.

海水系逆浸透膜処理手段20’の海水系透過水ラインL21’は、海水系逆浸透膜モジュール22の下流側に接続されている。
海水系透過水ラインL21’は、RO膜を透過した海水系透過水W21が流通するラインである。海水系透過水ラインL21’には、海水系塩分濃度測定ラインL23、海水系透過水排水ラインL24が上流側から順に接続されている。また、海水系透過水ラインL21’には、下流側端部に海水系バルブ210が設けられている。海水系透過水ラインL21’は、海水系バルブ210を介して、第2海水系逆浸透膜処理手段30に接続され、第2海水系逆浸透膜処理手段30に海水系透過水W21を供給する。
The seawater permeate line L 21 ′ of the seawater system reverse osmosis membrane treatment means 20 ′ is connected to the downstream side of the seawater system reverse osmosis membrane module 22.
The seawater-based permeated water line L21 ′ is a line through which the seawater-based permeated water W21 that has passed through the RO membrane flows. A seawater-based salinity concentration measurement line L23 and a seawater-based permeate drainage line L24 are sequentially connected to the seawater-based permeated water line L21 ′ from the upstream side. The seawater system permeate line L21 ′ is provided with a seawater system valve 210 at the downstream end. The seawater system permeate line L21 ′ is connected to the second seawater system reverse osmosis membrane treatment means 30 via the seawater system valve 210, and supplies the seawater system permeate water W21 to the second seawater system reverse osmosis membrane treatment means 30. .

海水系バルブ210は、電磁弁又は電動弁からなり、制御手段100の制御により、海水系透過水W21の塩分濃度が供給系へ流出できる基準を満たしていない場合には、海水系透過水W21を第2海水系逆浸透膜処理手段30に供給するように構成され、海水系透過水W21の塩分濃度が供給系へ流出できる基準を満たしている場合には、海水系透過水W21を供給系へ流出するように構成されている。   The seawater system valve 210 is composed of an electromagnetic valve or an electric valve. When the salt concentration of the seawater system permeate W21 does not satisfy the standard that can flow out to the supply system under the control of the control unit 100, the seawater system permeate water W21 is supplied. When configured to supply the second seawater-based reverse osmosis membrane treatment means 30 and the salt concentration of the seawater-based permeated water W21 satisfies a standard capable of flowing out to the supply system, the seawater-based permeated water W21 is supplied to the supply system. It is configured to flow out.

第2海水系逆浸透膜処理手段30は、海水系逆浸透膜処理手段20’から海水系透過水W21を供給する海水系透過水供給ラインL30と、海水系透過水供給ラインL30に接続され、海水系透過水W21を更に膜分離処理し、海水系再透過水W31及び海水系再濃縮水W32を生成する第2海水系逆浸透膜モジュール32と、海水系透過水供給ラインL30において、第2海水系逆浸透膜モジュール32より上流側に設けられた加圧ポンプ33と、第2海水系逆浸透膜モジュール32に接続された海水系再透過水ラインL31と、第2海水系逆浸透膜モジュール32に接続された海水系再濃縮水ラインL32と、を備える。   The second seawater system reverse osmosis membrane treatment means 30 is connected to a seawater system permeate supply line L30 for supplying seawater system permeate W21 from the seawater system reverse osmosis membrane treatment means 20 ′, and a seawater system permeate supply line L30. In the seawater system permeated water supply line L30, the second seawater system reverse osmosis membrane module 32 that further performs membrane separation treatment of the seawater system permeated water W21 to generate the seawater system repermeated water W31 and the seawater system reconcentrated water W32. A pressurizing pump 33 provided upstream from the seawater-based reverse osmosis membrane module 32, a seawater-based repermeate water line L31 connected to the second seawater-based reverse osmosis membrane module 32, and a second seawater-based reverse osmosis membrane module And a seawater-based reconcentrated water line L32 connected to 32.

海水系透過水供給ラインL30は、海水系逆浸透膜処理手段20’の海水系バルブ210から延び第2海水系逆浸透膜モジュール32に接続されており、海水系透過水W21を第2海水系逆浸透膜モジュール32に導入する。   The seawater-based permeate supply line L30 extends from the seawater-system valve 210 of the seawater-system reverse osmosis membrane processing means 20 ′ and is connected to the second seawater-system reverse osmosis membrane module 32. It is introduced into the reverse osmosis membrane module 32.

第2海水系逆浸透膜モジュール32は、海水系透過水供給ラインL30の下流側に接続されている。第2海水系逆浸透膜モジュール32は、塩分濃度が所定の基準値を超えている海水系透過水W21を逆浸透膜により膜分離処理し、海水系再透過水W31及び海水系再濃縮水W32を生成する。第2海水系逆浸透膜モジュール32は、単一又は複数のRO膜エレメント(図示せず)を備えており、これらのRO膜エレメントにより水中の溶存塩類を除去する。RO膜エレメントは、第2海水系逆浸透膜処理手段30に流入する海水系透過水W21の流入量及び塩分濃度、予め設定されている第2海水系逆浸透膜処理手段30が生成する海水系再透過水W31の水量及び塩分濃度に基づき好適な脱塩率の膜が選択される。
加圧ポンプ33は、海水系透過水供給ラインL30に設けられており、海水系透過水W21を加圧し、第2海水系逆浸透膜モジュール32に送出する。
The second seawater system reverse osmosis membrane module 32 is connected to the downstream side of the seawater system permeate supply line L30. The second seawater-based reverse osmosis membrane module 32 performs membrane separation processing on the seawater-based permeated water W21 having a salinity concentration exceeding a predetermined reference value by the reverse osmosis membrane, and the seawater-based repermeated water W31 and the seawater-based reconcentrated water W32 Is generated. The 2nd seawater system reverse osmosis membrane module 32 is provided with the single or some RO membrane element (not shown), and removes dissolved salt in water by these RO membrane elements. The RO membrane element includes the inflow amount and salinity of the seawater permeate W21 flowing into the second seawater system reverse osmosis membrane treatment means 30, and the seawater system generated by the preset second seawater system reverse osmosis membrane treatment means 30. A membrane having a suitable desalination rate is selected based on the amount of water and the salinity concentration of the repermeated water W31.
The pressurizing pump 33 is provided in the seawater-based permeated water supply line L30, pressurizes the seawater-based permeated water W21, and sends it to the second seawater-based reverse osmosis membrane module 32.

海水系再透過水ラインL31及び海水系再濃縮水ラインL32は、第2海水系逆浸透膜モジュール32の下流側に接続されている。海水系再透過水ラインL31は、RO膜を透過した海水系再透過水W31が流通し、海水系再透過水W31を供給系(図示無し)へ流出するラインである。海水系再濃縮水ラインL32は、RO膜を透過しなかった海水系再濃縮水W32が流通するラインである。海水系再濃縮水ラインL32は、海水系逆浸透膜処理手段20’に接続され、海水系逆浸透膜処理手段20’に海水系再濃縮水W32を供給する。   The seawater repermeable water line L31 and the seawater reconcentrated water line L32 are connected to the downstream side of the second seawater reverse osmosis membrane module 32. The seawater repermeate water line L31 is a line through which the seawater repermeate water W31 that has permeated the RO membrane flows and flows out to the supply system (not shown). The seawater reconcentrated water line L32 is a line through which the seawater reconcentrated water W32 that has not permeated the RO membrane flows. The seawater-based reconcentrated water line L32 is connected to the seawater-based reverse osmosis membrane processing means 20 'and supplies seawater-based reconcentrated water W32 to the seawater-based reverse osmosis membrane processing means 20'.

制御手段100’は、海水淡水化システム1’を構成する各要素のうち、制御が行われる要素に電気的に接続される。詳細には、制御手段100’は、海水系透過水EC計230で測定された海水系透過水W21の塩分濃度に応じて、加圧ポンプ13、加圧ポンプ23、加圧ポンプ33、海水系バルブ210、海水系透過水排水バルブ240を制御する。   The control means 100 ′ is electrically connected to an element to be controlled among the elements constituting the seawater desalination system 1 ′. Specifically, the control means 100 ′ determines the pressurizing pump 13, the pressurizing pump 23, the pressurizing pump 33, the seawater system according to the salinity concentration of the seawater permeated water W21 measured by the seawater system permeated water EC meter 230. The valve 210 and the seawater-based permeate drainage valve 240 are controlled.

次に、海水淡水化システム1’の動作について説明する。
海水淡水化システム1’における下水系透過水W11及び海水系透過水W21が生成されるまでの動作は、第1実施形態の海水淡水化システム1と同様であるので説明を省略する。
Next, operation | movement of seawater desalination system 1 'is demonstrated.
The operations until the sewage permeated water W11 and the seawater permeated water W21 are generated in the seawater desalination system 1 ′ are the same as those in the seawater desalination system 1 of the first embodiment, and thus the description thereof is omitted.

海水系透過水EC計230は、海水系透過水ラインL21’に流出された海水系透過水W21の塩分濃度を測定し制御手段100’に送信する。
制御手段100’は、継続決定工程として以下の処理を行う。
制御手段100’は、海水系透過水EC計230から送信された海水系透過水W21の塩分濃度が供給系へ流出できる基準を満たしている場合には、海水系透過水排水バルブ240を開栓し、海水系バルブ210を閉栓する制御を行う。
これにより、海水系透過水W21は、供給系へ流出される。
The seawater-based permeated water EC meter 230 measures the salinity concentration of the seawater-based permeated water W21 that has flowed out to the seawater-based permeated water line L21 ′ and transmits it to the control means 100 ′.
The control means 100 ′ performs the following processing as the continuation determination step.
The control means 100 ′ opens the seawater permeate drainage valve 240 when the salt concentration of the seawater permeate W21 transmitted from the seawater permeate EC meter 230 satisfies the standard capable of flowing into the supply system. Then, control for closing the seawater system valve 210 is performed.
Thereby, seawater system permeated water W21 flows out into a supply system.

また、制御手段100’は、海水系透過水EC計230から送信された海水系透過水W21の塩分濃度が供給系へ流出できる基準を満たしていない場合には、第2の海水系逆浸透膜処理工程として、海水系バルブ210を開栓するとともに、加圧ポンプ33を駆動させ第2海水系逆浸透膜処理手段30を駆動する制御を行う。
これにより、海水系透過水W21は、第2海水系逆浸透膜処理手段30に供給される。供給された海水系透過水W21は第2海水系逆浸透膜モジュール32に導入され膜分離処理され、海水系再透過水W31及び海水系再濃縮水W32が生成される。海水系再透過水W31は、供給系へ流出される。海水系再濃縮水W32は、海水系濃縮水W22と比べて塩分濃度が低いので、系外へ排水されず、海水系逆浸透膜処理手段20’に戻される。
Further, when the salinity concentration of the seawater-based permeated water W21 transmitted from the seawater-based permeated water EC meter 230 does not satisfy the standard that allows the control means 100 ′ to flow out to the supply system, the control means 100 ′ As a processing step, the seawater system valve 210 is opened and the pressure pump 33 is driven to control the second seawater system reverse osmosis membrane processing means 30.
As a result, the seawater-based permeated water W21 is supplied to the second seawater-based reverse osmosis membrane treatment means 30. The supplied seawater-based permeated water W21 is introduced into the second seawater-based reverse osmosis membrane module 32 and subjected to membrane separation treatment to generate seawater-based repermeated water W31 and seawater-based reconcentrated water W32. The seawater repermeated water W31 is discharged to the supply system. Since the seawater-based reconcentrated water W32 has a lower salinity than the seawater-based concentrated water W22, it is not drained out of the system and returned to the seawater-based reverse osmosis membrane treatment means 20 ′.

第1実施形態の変形例である海水淡水化システム1’によれば、以下の効果を奏する。
例えば、下水W10の水量が低下し下水系逆浸透膜処理手段10で生成された下水系透過水W11と下水系濃縮水W12の水量が低下し、海水系透過水W21の塩分濃度が上昇した場合であっても、第2海水系逆浸透膜処理手段30で当該塩分濃度が上昇した海水系透過水W21を膜分離処理することで、塩分濃度が基準を満たす海水系透過水を供給できる。
According to the seawater desalination system 1 ′, which is a modification of the first embodiment, the following effects can be obtained.
For example, when the amount of sewage W10 decreases and the amount of sewage permeated water W11 and sewage concentrated water W12 generated by the sewage reverse osmosis membrane treatment means 10 decreases, and the salinity of seawater permeable water W21 increases. Even so, the seawater-based permeated water W21 whose salinity concentration has been increased by the second seawater-based reverse osmosis membrane treatment means 30 can be supplied with seawater-based permeated water that satisfies the standard for the salinity concentration.

次に、本発明の第2実施形態について説明する。第2実施形態については、主として、第1実施形態とは異なる点を中心に説明し、第1実施形態と同様の構成については、同じ符号を付し、詳細な説明を省略する。第2実施形態において特に説明しない点は、第1実施形態についての説明が適宜適用される。   Next, a second embodiment of the present invention will be described. The second embodiment will be described mainly with respect to differences from the first embodiment. The same components as those in the first embodiment will be denoted by the same reference numerals and detailed description thereof will be omitted. For the points not particularly described in the second embodiment, the description of the first embodiment is applied as appropriate.

<第2実施形態>
図3を参照して、第2実施形態の海水淡水化システム1Aについて説明する。図3は、本発明の第2実施形態の海水淡水化システム1Aを示す概略構成図である。
第2実施形態の海水淡水化システム1Aは、第1実施形態の海水淡水化システム1とは、下水系逆浸透膜処理手段の下水系透過水ライン、海水系逆浸透膜処理手段の海水系透過水ライン及び制御手段の構成が異なる。また、第2実施形態の海水淡水化システム1Aは、第1実施形態の海水淡水化システム1が備えない貯留システム40を備える。
Second Embodiment
With reference to FIG. 3, the seawater desalination system 1A of 2nd Embodiment is demonstrated. FIG. 3 is a schematic configuration diagram showing a seawater desalination system 1A according to a second embodiment of the present invention.
The seawater desalination system 1A according to the second embodiment is different from the seawater desalination system 1 according to the first embodiment in that the sewage system reverse osmosis membrane treatment means uses a sewage system permeate line and seawater system reverse osmosis membrane treatment means. The configuration of the water line and the control means is different. Moreover, 1 A of seawater desalination systems of 2nd Embodiment are provided with the storage system 40 which the seawater desalination system 1 of 1st Embodiment does not have.

下水系逆浸透膜処理手段10Aの下水系透過水ラインL11Aは、下水系逆浸透膜モジュール12の下流側に接続されている。下水系透過水ラインL11Aは、RO膜を透過した下水系透過水W11が流通するラインである。下水系透過水ラインL11Aには、下水系塩分濃度測定ラインL13及び貯留システム40が上流側から順に接続され、貯留システム40に下水系透過水W11を供給する。
下水系塩分濃度測定ラインL13は、下水系透過水ラインL11Aから塩分濃度測定ライン分岐点J13において分岐し、下水系透過水W11が流通し、第2の塩分濃度測定手段としての下水系透過水EC計130に接続されている。
下水系透過水EC計130は、第2の塩分濃度測定工程として、下水系塩分濃度測定ラインL13を流通する下水系透過水W11の導電率を測定し、塩分濃度に換算する。下水系透過水EC計130は、制御手段100Aに接続され、測定した下水系透過水W11の導電率又は換算した塩分濃度を制御手段100Aに送信する。
The sewage system reverse osmosis membrane treatment means 10 </ b> A is connected to the downstream side of the sewage system reverse osmosis membrane module 12. The sewage system permeate line L11A is a line through which the sewage system permeate water W11 that has passed through the RO membrane flows. A sewage system salinity measurement line L13 and a storage system 40 are sequentially connected from the upstream side to the sewage system permeate line L11A, and the sewage system permeate water W11 is supplied to the storage system 40.
The sewage system salinity measurement line L13 branches from the sewage system permeate line L11A at the salinity system measurement line branch point J13, and the sewage system permeate W11 circulates, and the sewage system permeate EC as the second salinity concentration measurement means. A total of 130 is connected.
The sewage system permeated water EC meter 130 measures the conductivity of the sewage system permeated water W11 flowing through the sewage system salt concentration measurement line L13 as a second salinity concentration measurement step, and converts it into a salt concentration. The sewage system permeated water EC meter 130 is connected to the control unit 100A, and transmits the measured conductivity of the sewage system permeated water W11 or the converted salinity concentration to the control unit 100A.

海水系逆浸透膜処理手段20Aの海水系透過水ラインL21Aは、海水系逆浸透膜モジュール22の下流側に接続されている。海水系透過水ラインL21Aは、RO膜を透過した海水系透過水W21が流通するラインである。海水系透過水ラインL21Aには、海水系塩分濃度測定ラインL23、貯留システム40が上流側から順に接続され、貯留システム40に海水系透過水W21を供給する。
海水系塩分濃度測定ラインL23は、海水系透過水ラインL21Aから塩分濃度測定ライン分岐点J13において分岐し、海水系透過水W21が流通し、第3の塩分濃度測定手段としての海水系透過水EC計230に接続されている。
海水系透過水EC計230は、第3の塩分濃度測定工程として、海水系塩分濃度測定ラインL23を流通する海水系透過水W21の導電率を測定し、塩分濃度に換算する。海水系透過水EC計230は、制御手段100Aに接続され、測定した海水系透過水W21の導電率又は換算した塩分濃度を制御手段100Aに送信する。
The seawater system permeate line L21A of the seawater system reverse osmosis membrane treatment means 20A is connected to the downstream side of the seawater system reverse osmosis membrane module 22. The seawater-based permeated water line L21A is a line through which the seawater-based permeated water W21 that has passed through the RO membrane flows. A seawater-based salinity measurement line L23 and a storage system 40 are sequentially connected to the seawater-based permeated water line L21A from the upstream side, and the seawater-based permeated water W21 is supplied to the storage system 40.
The seawater-based salinity measurement line L23 branches from the seawater-based permeate line L21A at the salinity-concentration measurement line branch point J13, and the seawater-based permeate W21 circulates, and the seawater-based permeate EC as the third salinity concentration measurement means. A total of 230 is connected.
The seawater-based permeated water EC meter 230 measures the electrical conductivity of the seawater-based permeated water W21 flowing through the seawater-based salinity concentration measurement line L23 as a third salinity concentration measuring step, and converts it to a salinity concentration. The seawater-based permeated water EC meter 230 is connected to the control means 100A, and transmits the measured conductivity of the seawater-based permeated water W21 or the converted salinity concentration to the control means 100A.

貯留システム40は、下水系逆浸透膜処理手段10Aの下水系透過水ラインL11A及び海水系逆浸透膜処理手段20Aの海水系透過水ラインL21Aに接続された貯留槽41と、貯留槽41に接続された貯留槽排水ラインL41と、貯留槽41の水位を計測する水位計42と、貯留槽41に接続された貯留槽塩分濃度測定ラインL43と、貯留槽塩分濃度測定ラインL43に接続された第1の塩分濃度測定手段としての貯留槽EC計430と、を備える。   The storage system 40 is connected to the storage tank 41 connected to the sewage system permeate line L11A of the sewage system reverse osmosis membrane treatment means 10A and the seawater system permeate line L21A of the seawater system reverse osmosis membrane treatment means 20A, and to the storage tank 41. The storage tank drain line L41, the water level meter 42 for measuring the water level of the storage tank 41, the storage tank salinity concentration measurement line L43 connected to the storage tank 41, and the first tank connected to the storage tank salinity measurement line L43. Storage tank EC meter 430 as one salinity concentration measuring means.

貯留槽41は、下水系逆浸透膜処理手段10Aから供給された下水系透過水W11と海水系逆浸透膜処理手段20Aから供給された海水系透過水W21とが混合された混合透過水W40を貯留する。
貯留槽排水ラインL41は、貯留槽41の底部に接続され、混合透過水W40を供給系(図示無し)へ流出するラインである。
水位計42は、貯留槽41に貯留された混合透過水W40の水位を計測する。水位計42は、制御手段100Aに接続され、計測した混合透過水W40の水位を制御手段100Aに送信する。水位計42は、貯留槽41の底部に配置され水圧を検出する圧力センサを備え、水圧の変化から水位を測定する圧力式水位計であるが、これに限らず、光学式水位計や超音波式水位計を用いることができる。
The storage tank 41 receives mixed permeated water W40 in which the sewage system permeated water W11 supplied from the sewage system reverse osmosis membrane processing means 10A and the seawater system permeated water W21 supplied from the seawater system reverse osmosis membrane processing means 20A are mixed. Store.
The storage tank drain line L41 is a line connected to the bottom of the storage tank 41 and flowing out the mixed permeated water W40 to a supply system (not shown).
The water level meter 42 measures the water level of the mixed permeated water W40 stored in the storage tank 41. The water level meter 42 is connected to the control means 100A, and transmits the measured water level of the mixed permeated water W40 to the control means 100A. The water level gauge 42 is a pressure type water level gauge that is disposed at the bottom of the storage tank 41 and that detects a water pressure and measures the water level from a change in water pressure. A water level gauge can be used.

貯留槽塩分濃度測定ラインL43は、貯留槽41の底部の近傍まで延び、混合透過水W40が流通し、貯留槽EC計430に接続されている。
貯留槽EC計430は、第1の塩分濃度測定工程として、貯留槽塩分濃度測定ラインL43を流通する混合透過水W40の導電率を測定し、塩分濃度に換算する。貯留槽EC計430は、制御手段100Aに接続され、測定した混合透過水W40の導電率又は換算した塩分濃度を制御手段100Aに送信する。
The storage tank salinity measurement line L43 extends to the vicinity of the bottom of the storage tank 41, the mixed permeated water W40 circulates, and is connected to the storage tank EC meter 430.
The storage tank EC meter 430 measures the conductivity of the mixed permeated water W40 flowing through the storage tank salinity concentration measurement line L43 as the first salinity concentration measurement step, and converts it into a salinity concentration. The storage tank EC meter 430 is connected to the control unit 100A, and transmits the measured conductivity of the mixed permeated water W40 or the converted salt concentration to the control unit 100A.

制御手段100Aは、海水淡水化システム1Aを構成する各要素のうち、制御が行われる要素に電気的に接続される。詳細には、制御手段100Aは、水位計42で計測された混合透過水W40の水位、下水系透過水EC計130で測定された下水系透過水W11の塩分濃度、海水系透過水EC計230で測定された海水系透過水W21の塩分濃度又は貯留槽EC計430で測定された混合透過水W40の塩分濃度に応じて、加圧ポンプ13又は加圧ポンプ23を制御する。   100 A of control means are electrically connected to the element in which control is performed among each element which comprises seawater desalination system 1A. Specifically, the control unit 100A controls the water level of the mixed permeated water W40 measured by the water level gauge 42, the salinity concentration of the sewage permeated water W11 measured by the sewage permeated water EC meter 130, and the seawater permeated water EC meter 230. The pressurization pump 13 or the pressurization pump 23 is controlled according to the salinity concentration of the seawater-based permeated water W21 measured in step 1 or the salinity concentration of the mixed permeated water W40 measured by the storage tank EC meter 430.

次に、海水淡水化システム1Aの動作について説明する。
海水淡水化システム1Aにおける下水系透過水W11及び海水系透過水W21が生成されるまでの動作は、第1実施形態の海水淡水化システム1と同様であるので説明を省略する。
下水系逆浸透膜処理手段10Aで生成された下水系透過水W11及び海水系逆浸透膜処理手段20Aで生成された海水系透過水W21は、混合され混合透過水W40となって貯留システム40の貯留槽41に貯留される。貯留槽41に貯留された混合透過水W40は貯留槽排水ラインL41より供給系へ流出されるが、下水系透過水W11及び海水系透過水W21の生成量(混合透過水W40の生成量)が混合透過水W40の排水量より大きい場合、貯留槽41に混合透過水W40が貯留される。
そして、水位計42は、貯留槽41に貯留された混合透過水W40の水位を測定し制御手段100Aに送信する。
Next, the operation of the seawater desalination system 1A will be described.
The operations until the sewage permeated water W11 and the seawater permeated water W21 are generated in the seawater desalination system 1A are the same as those in the seawater desalination system 1 of the first embodiment, and thus description thereof is omitted.
The sewage system permeated water W11 generated by the sewage system reverse osmosis membrane treatment means 10A and the seawater system permeable water W21 generated by the seawater system reverse osmosis membrane treatment means 20A are mixed to form a mixed permeable water W40. It is stored in the storage tank 41. The mixed permeated water W40 stored in the storage tank 41 flows out from the storage tank drain line L41 to the supply system, but the generation amount of the sewage system permeate water W11 and the seawater system permeate water W21 (the generation amount of the mixed permeate water W40) is. When it is larger than the drainage amount of the mixed permeated water W40, the mixed permeated water W40 is stored in the storage tank 41.
The water level meter 42 measures the water level of the mixed permeated water W40 stored in the storage tank 41 and transmits it to the control means 100A.

制御手段100Aは、決定工程として、以下の処理を行う。
制御手段100Aは、水位計42から送信された混合透過水W40の水位が所定の海水系逆浸透膜処理手段停止水位に達した場合には、加圧ポンプ23を停止し海水系逆浸透膜処理手段20Aの駆動を停止する。
これにより、海水淡水化システム1Aは、下水系逆浸透膜処理手段10Aのみが駆動している状態となり、貯留槽41には下水系透過水W11のみが供給されることとなる。
The control unit 100A performs the following processing as the determination step.
When the water level of the mixed permeated water W40 transmitted from the water level gauge 42 reaches a predetermined seawater system reverse osmosis membrane treatment means stop water level, the control unit 100A stops the pressurizing pump 23 and performs seawater system reverse osmosis membrane treatment. The driving of the means 20A is stopped.
Accordingly, the seawater desalination system 1A is in a state where only the sewage system reverse osmosis membrane treatment means 10A is driven, and only the sewage system permeated water W11 is supplied to the storage tank 41.

そして、例えば、下水系透過水W11の生成量(混合透過水W40の生成量)が混合透過水W40の排水量より小さくなった場合、貯留槽41における混合透過水W40の水位は降下する。
制御手段100Aは、水位計42から送信された混合透過水W40の水位が所定の海水系逆浸透膜処理手段開始水位に達した場合には、加圧ポンプ23を駆動し海水系逆浸透膜処理手段20Aを起動する。なお、所定の海水系逆浸透膜処理手段開始水位は、所定の海水系逆浸透膜処理手段停止水位より低い位置に設定されている。
これにより、海水淡水化システム1Aは、再び下水系逆浸透膜処理手段10A及び海水系逆浸透膜処理手段20Aが駆動している状態となり、貯留槽41には下水系透過水W11及び海水系透過水W21が供給されることとなる。
For example, when the production amount of the sewage system permeate water W11 (production amount of the mixed permeate water W40) becomes smaller than the drainage amount of the mixed permeate water W40, the water level of the mixed permeate water W40 in the storage tank 41 drops.
When the water level of the mixed permeated water W40 transmitted from the water level gauge 42 reaches a predetermined seawater system reverse osmosis membrane treatment means start water level, the control unit 100A drives the pressurizing pump 23 to perform seawater system reverse osmosis membrane treatment. The means 20A is activated. The predetermined seawater-based reverse osmosis membrane treatment means start water level is set at a position lower than the predetermined seawater-based reverse osmosis membrane treatment means stop water level.
As a result, the seawater desalination system 1A is in a state where the sewage reverse osmosis membrane treatment means 10A and the seawater reverse osmosis membrane treatment means 20A are driven again, and the sewage permeate W11 and the seawater permeation are stored in the storage tank 41. Water W21 will be supplied.

一方、例えば、下水系透過水W11の生成量(混合透過水W40の生成量)が混合透過水W40の排水量より大きい場合、貯留槽41における混合透過水W40の水位は更に上昇する。
制御手段100Aは、水位計42から送信された混合透過水W40の水位が所定の全逆浸透膜処理手段停止水位に達した場合には、加圧ポンプ13及び加圧ポンプ23を停止し下水系逆浸透膜処理手段10A及び海水系逆浸透膜処理手段20Aの駆動を停止する。なお、全逆浸透膜処理手段停止水位は、所定の海水系逆浸透膜処理手段停止水位より高い位置に設定されている。
これにより、海水淡水化システム1Aは、下水系逆浸透膜処理手段10A及び海水系逆浸透膜処理手段20Aの双方が停止した全停止状態となり、貯留槽41がオーバーフローするのを防止できる。そして、この全停止状態において、制御手段100Aは、水位計42から送信された混合透過水W40の水位が降下し所定の海水系逆浸透膜処理手段停止水位に達した場合には、加圧ポンプ13の駆動を再開し下水系逆浸透膜処理手段10Aを起動する。
On the other hand, for example, when the generation amount of the sewage system permeate water W11 (the generation amount of the mixed permeate water W40) is larger than the drainage amount of the mixed permeate water W40, the water level of the mixed permeate water W40 in the storage tank 41 further increases.
When the water level of the mixed permeated water W40 transmitted from the water level gauge 42 reaches a predetermined total reverse osmosis membrane treatment means stop water level, the control means 100A stops the pressurization pump 13 and the pressurization pump 23 to stop the sewage system. The driving of the reverse osmosis membrane processing means 10A and the seawater-based reverse osmosis membrane processing means 20A is stopped. The total reverse osmosis membrane treatment means stop water level is set to a position higher than the predetermined seawater system reverse osmosis membrane treatment means stop water level.
Thereby, the seawater desalination system 1A is in a fully stopped state in which both the sewage reverse osmosis membrane treatment means 10A and the seawater reverse osmosis membrane treatment means 20A are stopped, and can prevent the storage tank 41 from overflowing. In this all-stopped state, the control means 100A determines that when the water level of the mixed permeated water W40 transmitted from the water level gauge 42 falls and reaches a predetermined seawater system reverse osmosis membrane treatment means stop water level, 13 is restarted and the sewage reverse osmosis membrane treatment means 10A is activated.

また、制御手段100Aは、下水系透過水EC計130で測定された下水系透過水W11の塩分濃度、海水系透過水EC計230で測定された海水系透過水W21の塩分濃度又は貯留槽EC計430で測定された混合透過水W40の塩分濃度のいずれかが供給系へ流出できる基準を満たしていない場合には、加圧ポンプ23を停止させ海水系逆浸透膜処理手段20Aを停止する制御を行う。
これにより、海水淡水化システム1Aは、下水系逆浸透膜処理手段10Aのみが駆動している状態となり、貯留槽41には下水系透過水W11のみが供給されることとなる。
Further, the control means 100A is configured such that the salinity of the sewage permeate W11 measured by the sewage permeate EC meter 130, the salinity of the seawater permeate W21 measured by the seawater permeate EC meter 230, or the storage tank EC. Control in which the pressurizing pump 23 is stopped and the seawater system reverse osmosis membrane treatment means 20A is stopped when any of the salinity concentrations of the mixed permeated water W40 measured by the total 430 does not satisfy the standard capable of flowing into the supply system. I do.
Accordingly, the seawater desalination system 1A is in a state where only the sewage system reverse osmosis membrane treatment means 10A is driven, and only the sewage system permeated water W11 is supplied to the storage tank 41.

第2実施形態の海水淡水化システム1Aによれば、以下の効果を奏する。
海水系逆浸透膜処理手段20Aにおいて、海水W20より塩分濃度が低い下水系濃縮水W12と海水W20の混合水を膜分離処理し淡水である海水系透過水W21を生成するので、混合水より塩分濃度が高い海水W20を膜分離処理して淡水を生成する場合に比べて、淡水を生成するためのエネルギーを低減できる。
また、生成した淡水である下水系透過水W11と海水系透過水W21とが混合された混合透過水W40の貯留槽41における水位に応じて海水系逆浸透膜処理手段20Aを、起動又は停止するので、例えば、下水系透過水W11が十分に生成され、所望の水量が確保できている場合に、下水系逆浸透膜処理手段10に比べ多くのエネルギーを必要とする海水系逆浸透膜処理手段20Aを停止できる。
したがって、淡水を生成するためのエネルギーを低減できるとともに、生成する淡水において所望の水量を確保できる海水淡水化システムを提供できる。
The seawater desalination system 1A of the second embodiment has the following effects.
In the seawater system reverse osmosis membrane treatment means 20A, the mixed water of the sewage system concentrated water W12 and the seawater W20 having a salinity lower than that of the seawater W20 is subjected to membrane separation treatment to generate seawater system permeate W21 that is fresh water. Compared to the case where seawater W20 having a high concentration is subjected to membrane separation treatment to produce fresh water, energy for producing fresh water can be reduced.
Further, the seawater system reverse osmosis membrane treatment means 20A is activated or stopped according to the water level in the storage tank 41 of the mixed permeated water W40 in which the sewage system permeate water W11 and the seawater system permeate water W21, which are fresh water, are mixed. Therefore, for example, when the sewage system permeate W11 is sufficiently generated and a desired amount of water can be secured, the seawater system reverse osmosis membrane treatment means that requires more energy than the sewage system reverse osmosis membrane treatment means 10. 20A can be stopped.
Therefore, it is possible to provide a seawater desalination system that can reduce energy for generating fresh water and can secure a desired amount of water in the generated fresh water.

また、海水系逆浸透膜処理手段20Aは、海水系透過水W21の塩分濃度、下水系透過水W11の塩分濃度及び混合透過水W40の塩分濃度に応じて、起動又は停止するので、例えば、下水系透過水W11の塩分濃度及び混合透過水W40の塩分濃度のいずれかが所定の基準値より高ければ、海水系逆浸透膜処理手段20Aを停止することで、生成した淡水である混合透過水W40の塩分濃度を基準に戻すことができる。
したがって、淡水を生成するためのエネルギーを低減できるとともに、生成する淡水において水質を確保できる海水淡水化システムを提供できる。
Further, the seawater system reverse osmosis membrane treatment means 20A starts or stops according to the salinity concentration of the seawater permeate water W21, the salinity concentration of the sewage system permeate water W11, and the salt concentration of the mixed permeate water W40. If any of the salinity concentration of the water-based permeated water W11 and the salt concentration of the mixed permeated water W40 is higher than a predetermined reference value, the seawater-based reverse osmosis membrane treatment means 20A is stopped to produce the mixed permeated water W40 that is the fresh water generated. The salinity of can be returned to the standard.
Therefore, it is possible to provide a seawater desalination system capable of reducing energy for generating fresh water and ensuring water quality in the generated fresh water.

本発明は、上述した実施の形態に限らず、本発明の要旨を逸脱しない範囲で種々変形可能である。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.

1 海水淡水化システム
10 下水系逆浸透膜処理手段
20 海水系逆浸透膜処理手段
100 制御手段
230 海水系透過水EC計
W10 下水
W11 下水系透過水
W12 下水系濃縮水
W20 海水
W21 海水系透過水
W22 海水系濃縮水
DESCRIPTION OF SYMBOLS 1 Seawater desalination system 10 Sewage system reverse osmosis membrane treatment means 20 Seawater system reverse osmosis membrane treatment means 100 Control means 230 Seawater system permeate EC meter W10 Sewage W11 Sewage system permeate water W12 Sewage system concentrated water W20 Seawater W21 Seawater system permeate W22 Seawater concentrated water

Claims (13)

下水を膜分離処理することで下水系透過水と下水系濃縮水とを生成する下水系逆浸透膜処理手段と、
前記下水系濃縮水と取水した海水との混合水を膜分離処理することで海水系透過水と海水系濃縮水とを生成し、前記海水系透過水の塩分濃度を測定する塩分濃度測定手段を有する海水系逆浸透膜処理手段と、を備え、
前記海水系透過水の塩分濃度に応じて前記海水系透過水を前記下水系逆浸透膜処理手段に供給することを特徴とする海水淡水化システム。
Sewage reverse osmosis membrane treatment means for producing sewage permeate and sewage concentrated water by subjecting sewage to membrane separation,
A salinity concentration measuring means for measuring a salinity concentration of the seawater permeate by generating a seawater permeate and a seawater concentrate by subjecting a mixed water of the sewage concentrate and the taken seawater to membrane separation treatment; Seawater-based reverse osmosis membrane treatment means having,
A seawater desalination system, wherein the seawater permeate is supplied to the sewage reverse osmosis membrane treatment means according to the salinity concentration of the seawater permeate.
下水を膜分離処理することで下水系透過水と下水系濃縮水とを生成する下水系逆浸透膜処理手段を有する海水淡水化システムであって、
前記下水系濃縮水と取水した海水との混合水を膜分離処理することで海水系透過水と海水系濃縮水とを生成し、前記海水系透過水の塩分濃度を測定する塩分濃度測定手段を有する海水系逆浸透膜処理手段と、
前記海水系透過水の塩分濃度に応じて、前記下水系逆浸透膜処理手段及び前記海水系逆浸透膜処理手段の駆動を制御する制御手段と、
を備える海水淡水化システム。
A seawater desalination system having a sewage reverse osmosis membrane treatment means for producing sewage permeate and sewage concentrate by subjecting sewage to membrane separation,
A salinity concentration measuring means for measuring a salinity concentration of the seawater permeate by generating a seawater permeate and a seawater concentrate by subjecting a mixed water of the sewage concentrate and the taken seawater to membrane separation treatment; A seawater-based reverse osmosis membrane treatment means,
Control means for controlling the driving of the sewage reverse osmosis membrane treatment means and the seawater reverse osmosis membrane treatment means according to the salinity concentration of the seawater permeable water,
A seawater desalination system.
前記海水系透過水を膜分離処理する第2の海水系逆浸透膜処理手段を更に備え、
前記制御手段は、前記塩分濃度測定手段で測定した前記海水系透過水の塩分濃度に応じて前記海水系透過水を前記第2の海水系逆浸透膜処理手段に供給することを特徴とする請求項2に記載の海水淡水化システム。
Further comprising second seawater-based reverse osmosis membrane treatment means for membrane separation treatment of the seawater-based permeated water,
The control means supplies the seawater-based permeated water to the second seawater-based reverse osmosis membrane processing means according to the salinity concentration of the seawater-based permeated water measured by the salinity concentration measuring means. Item 3. A seawater desalination system according to item 2.
前記制御手段は、前記塩分濃度測定手段で測定した海水系透過水の塩分濃度に応じて、前記海水系透過水を前記下水系逆浸透膜処理手段に供給し、
前記下水系逆浸透膜処理手段は、前記海水系逆浸透膜処理手段から供給された前記海水系透過水と下水との混合水を膜分離処理する請求項2に記載の海水淡水化システム。
The control means supplies the seawater permeate to the sewage reverse osmosis membrane treatment means according to the salt concentration of the seawater permeate measured by the salinity measurement means,
The seawater desalination system according to claim 2, wherein the sewage reverse osmosis membrane treatment means performs membrane separation treatment on the mixed water of the seawater permeate and sewage supplied from the seawater reverse osmosis membrane treatment means.
前記海水系逆浸透膜処理手段が備える逆浸透膜は、前記下水系逆浸透膜処理手段に流入する下水の流入量及び塩分濃度、前記海水系逆浸透膜処理手段に流入する海水の流入量及び塩分濃度、予め設定される前記海水系逆浸透膜処理手段が生成する海水系透過水の水量及び塩分濃度に基づき選択された、好適な脱塩率の逆浸透膜である請求項2から4のいずれかに記載の海水淡水化システム。   The reverse osmosis membrane provided in the seawater-based reverse osmosis membrane treatment means includes an inflow amount and salinity of sewage flowing into the sewage system reverse osmosis membrane treatment means, an inflow amount of seawater flowing into the seawater-type reverse osmosis membrane treatment means, and The reverse osmosis membrane having a suitable desalination rate, selected based on the salinity concentration, the amount of seawater-based permeated water generated by the seawater-based reverse osmosis membrane treatment means set in advance, and the salinity concentration. The seawater desalination system according to any one of the above. 下水を膜分離処理することで下水系透過水と下水系濃縮水とを生成する下水系逆浸透膜処理手段と、
海水を膜分離処理することで海水系透過水と海水系濃縮水とを生成する海水系逆浸透膜処理手段と、
前記下水系透過水と前記海水系透過水とが混合された混合透過水を貯留する貯留槽及び当該貯留槽に貯留された混合透過水の水位を計測する水位計を有する貯留システムと、を備え、
前記貯留システムは、前記水位計で計測した水位に応じて前記海水系逆浸透膜処理手段を、起動又は停止する海水淡水化システム。
Sewage reverse osmosis membrane treatment means for producing sewage permeate and sewage concentrated water by subjecting sewage to membrane separation,
Seawater-based reverse osmosis membrane treatment means for producing seawater-based permeated water and seawater-based concentrated water by subjecting seawater to membrane separation treatment;
A storage system having a storage tank for storing mixed permeated water in which the sewage system permeated water and the seawater system permeated water are mixed, and a water level meter for measuring the water level of the mixed permeated water stored in the storage tank. ,
The said storage system is a seawater desalination system which starts or stops the said seawater system reverse osmosis membrane process means according to the water level measured with the said water level gauge.
前記貯留システムは、前記貯留槽に貯留された混合透過水の塩分濃度を測定する第1の塩分濃度測定手段を有し、
前記下水系逆浸透膜処理手段は、生成した下水系透過水の塩分濃度を測定する第2の塩分濃度測定手段を有し、
前記海水系逆浸透膜処理手段は、生成した海水系透過水の塩分濃度を測定する第3の塩分濃度測定手段を有し、前記海水系透過水の塩分濃度、前記下水系透過水の塩分濃度及び前記混合透過水の塩分濃度に応じて、起動又は停止する請求項6に記載の海水淡水化システム。
The storage system includes first salinity concentration measuring means for measuring the salinity concentration of the mixed permeated water stored in the storage tank,
The sewage reverse osmosis membrane treatment means has a second salinity concentration measuring means for measuring the salinity of the generated sewage permeated water,
The seawater-based reverse osmosis membrane treatment means has a third salinity concentration measuring means for measuring the salinity concentration of the generated seawater-based permeated water, and the salt concentration of the seawater-based permeated water and the salinity concentration of the sewage-based permeated water. And the seawater desalination system of Claim 6 which starts or stops according to the salinity density | concentration of the said mixed permeated water.
下水を膜分離処理することで下水系透過水と下水系濃縮水とを生成する下水系逆浸透膜処理工程と、
前記下水系濃縮水と取水した海水との混合水を膜分離処理することで海水系透過水と海水系濃縮水とを生成する海水系逆浸透膜処理工程と、
前記海水系透過水の塩分濃度を測定する塩分濃度測定工程と、
前記海水系透過水の塩分濃度に応じて前記海水系透過水を前記下水系逆浸透膜処理工程に戻す海水系透過水循環工程と、を備えることを特徴とする海水淡水化方法。
A sewage reverse osmosis membrane treatment step for producing sewage permeate and sewage concentrate by subjecting sewage to membrane separation;
A seawater-based reverse osmosis membrane treatment step for producing a seawater-based permeated water and a seawater-based concentrated water by subjecting a mixed water of the sewage-based concentrated water and the taken seawater to membrane separation;
A salinity measuring step for measuring the salinity of the seawater permeate;
A seawater desalination method comprising: a seawater permeate circulating step for returning the seawater permeate to the sewage reverse osmosis membrane treatment step according to the salinity concentration of the seawater permeate.
下水を膜分離処理することで下水系透過水と下水系濃縮水とを生成する下水系逆浸透膜処理工程を有する海水淡水化方法であって、
前記下水系濃縮水と取水した海水との混合水を膜分離処理することで海水系透過水と海水系濃縮水とを生成する海水系逆浸透膜処理工程と、
前記海水系透過水の塩分濃度を測定する塩分濃度測定工程と、
前記海水系透過水の塩分濃度に応じて、前記下水系逆浸透膜処理工程及び前記海水系逆浸透膜処理工程の継続を決定する継続決定工程と、を備えることを特徴とする海水淡水化方法。
A seawater desalination method comprising a sewage reverse osmosis membrane treatment step for producing sewage permeate and sewage concentrate by subjecting sewage to membrane separation,
A seawater-based reverse osmosis membrane treatment step for producing a seawater-based permeated water and a seawater-based concentrated water by subjecting a mixed water of the sewage-based concentrated water and the taken seawater to membrane separation;
A salinity measuring step for measuring the salinity of the seawater permeate;
A seawater desalination method comprising: a sewage reverse osmosis membrane treatment step and a continuation determination step that decides continuation of the seawater reverse osmosis membrane treatment step according to the salinity of the seawater permeate. .
前記海水系透過水を膜分離処理する第2の海水系逆浸透膜処理工程を更に備え、
前記塩分濃度測定工程で測定した前記海水系透過水の塩分濃度に応じて前記海水系透過水を前記第2の海水系逆浸透膜処理工程で処理することを特徴とする請求項9に記載の海水淡水化方法。
Further comprising a second seawater-based reverse osmosis membrane treatment step for membrane separation treatment of the seawater-based permeated water,
The seawater-based permeated water is treated in the second seawater-based reverse osmosis membrane treatment step according to the salt concentration of the seawater-based permeated water measured in the salt concentration measuring step. Seawater desalination method.
前記塩分濃度測定工程で測定した海水系透過水の塩分濃度に応じて、前記海水系透過水を前記下水系逆浸透膜処理工程に戻す海水系透過水循環工程と、を備え、
前記下水系逆浸透膜処理工程は、前記海水系透過水循環工程において戻された前記海水系透過水と下水との混合水を膜分離処理する請求項9に記載の海水淡水化方法。
A seawater-based permeated water circulation step for returning the seawater-based permeated water to the sewage system reverse osmosis membrane treatment step according to the salt concentration of the seawater-based permeated water measured in the salt concentration measuring step,
The seawater desalination method according to claim 9, wherein the sewage reverse osmosis membrane treatment step performs a membrane separation treatment on the mixed water of the seawater permeate and sewage returned in the seawater permeate circulation step.
下水を膜分離処理することで下水系透過水と下水系濃縮水とを生成する下水系逆浸透膜処理工程と、
海水を膜分離処理することで海水系透過水と海水系濃縮水とを生成する海水系逆浸透膜処理工程と、
前記下水系透過水と前記海水系透過水とが混合された混合透過水を貯留槽に貯留する貯留工程と、
当該貯留槽に貯留された混合透過水の水位を計測する水位計測工程と、
前記水位計測工程で計測した水位に応じて前記海水系逆浸透膜処理工程を、行うか否かを決定する決定工程と、を備える海水淡水化方法。
A sewage reverse osmosis membrane treatment step for producing sewage permeate and sewage concentrate by subjecting sewage to membrane separation;
Seawater-based reverse osmosis membrane treatment step for producing seawater-based permeated water and seawater-based concentrated water by subjecting seawater to membrane separation;
A storage step of storing a mixed permeated water in which the sewage permeated water and the seawater-based permeated water are mixed in a storage tank;
A water level measuring step for measuring the level of mixed permeated water stored in the storage tank;
A seawater desalination method comprising: a determination step for determining whether or not to perform the seawater-based reverse osmosis membrane treatment step according to the water level measured in the water level measurement step.
前記貯留槽に貯留された混合透過水の塩分濃度を測定する第1の塩分濃度測定工程と、
前記下水系逆浸透膜処理工程において生成した下水系透過水の塩分濃度を測定する第2の塩分濃度測定工程と、
前記海水系逆浸透膜処理工程において生成した海水系透過水の塩分濃度を測定する第3の塩分濃度測定工程と、を更に備え、
前記決定工程は、前記海水系透過水の塩分濃度、前記下水系透過水の塩分濃度及び前記混合透過水の塩分濃度に応じて前記海水系逆浸透膜処理工程を、行うか否かを決定する請求項12に記載の海水淡水化方法。
A first salinity measurement step for measuring the salinity of the mixed permeated water stored in the storage tank;
A second salinity measurement step for measuring the salinity of the sewage permeated water generated in the sewage reverse osmosis membrane treatment step;
A third salinity concentration measurement step for measuring the salinity concentration of the seawater-based permeated water generated in the seawater-based reverse osmosis membrane treatment step,
The determining step determines whether or not to perform the seawater-based reverse osmosis membrane treatment step according to the salt concentration of the seawater-based permeated water, the salt concentration of the sewage-based permeated water, and the salt concentration of the mixed permeated water. The seawater desalination method according to claim 12.
JP2011035018A 2011-02-21 2011-02-21 Seawater desalination system and seawater desalination method Expired - Fee Related JP5933926B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011035018A JP5933926B2 (en) 2011-02-21 2011-02-21 Seawater desalination system and seawater desalination method
PCT/JP2012/054160 WO2012115114A1 (en) 2011-02-21 2012-02-21 Seawater desalination system and seawater desalination method
SG2013063607A SG192894A1 (en) 2011-02-21 2012-02-21 Seawater desalination system and seawater desalination method
CN2012800095918A CN103443031A (en) 2011-02-21 2012-02-21 Seawater desalination system and seawater desalination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011035018A JP5933926B2 (en) 2011-02-21 2011-02-21 Seawater desalination system and seawater desalination method

Publications (2)

Publication Number Publication Date
JP2012170880A true JP2012170880A (en) 2012-09-10
JP5933926B2 JP5933926B2 (en) 2016-06-15

Family

ID=46720891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011035018A Expired - Fee Related JP5933926B2 (en) 2011-02-21 2011-02-21 Seawater desalination system and seawater desalination method

Country Status (4)

Country Link
JP (1) JP5933926B2 (en)
CN (1) CN103443031A (en)
SG (1) SG192894A1 (en)
WO (1) WO2012115114A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104102198A (en) * 2014-07-04 2014-10-15 中广核工程有限公司 PX energy recovery device fault monitoring system and method
WO2014192619A1 (en) * 2013-05-27 2014-12-04 東レ株式会社 Operation method for water treatment device
JP2017176929A (en) * 2016-03-28 2017-10-05 東洋紡株式会社 Water production system
WO2019180788A1 (en) * 2018-03-19 2019-09-26 三菱重工エンジニアリング株式会社 Salt concentration device and scale detection method for salt concentration device
KR102370466B1 (en) * 2020-09-02 2022-03-04 국민대학교 산학협력단 Automatic operation method of seawater desalination device for seawater desalination vessel
KR102505557B1 (en) * 2022-09-28 2023-03-06 지엔원에너지(주) Water Treatment System with Thermal Energy Utilization Method Of Treated Water Treated By Sequencing Batch Reactor
KR20230099139A (en) * 2021-12-27 2023-07-04 국민대학교산학협력단 Automatic operation method of ship-mounted seawater desalination device
KR102565078B1 (en) * 2022-09-28 2023-08-10 지오릿에너지(주) Water Treatment System with Thermal Energy Utilization Method of Purified Water Purified by Reverse Osmosis
KR102565087B1 (en) * 2022-09-28 2023-08-10 지오릿에너지(주) Reverse Osmosis Purification Water Treatment System Using Purified Water Bypass Piping
KR102565081B1 (en) * 2022-09-28 2023-08-10 지오릿에너지(주) Reverse Osmosis Purification Water Treatment System Using Raw Water Bypass Piping

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6169009B2 (en) * 2014-01-29 2017-07-26 株式会社ウェルシィ Reverse osmosis membrane device and operating method thereof
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228988A (en) * 1983-06-10 1984-12-22 Jgc Corp Method for obtaining pure water from high-conductivity water by reverse osmosis method
JPS60235605A (en) * 1984-05-08 1985-11-22 Kurita Water Ind Ltd Reverse osmotic membrane separation apparatus
JPS63197596A (en) * 1987-02-12 1988-08-16 Mitsubishi Heavy Ind Ltd Method for controlling quality of made water of water making plant
JPH10296060A (en) * 1997-04-25 1998-11-10 Japan Organo Co Ltd Prevention method for contamination of separation membrane
JP2005144301A (en) * 2003-11-13 2005-06-09 Mitsubishi Heavy Ind Ltd Desalting apparatus and desalting method
JP2008307487A (en) * 2007-06-15 2008-12-25 Mitsubishi Heavy Ind Ltd Desalting device
JP2009106832A (en) * 2007-10-29 2009-05-21 Kobelco Eco-Solutions Co Ltd Water treatment method and water treatment apparatus
JP4499835B1 (en) * 2009-02-14 2010-07-07 株式会社神鋼環境ソリューション Fresh water generating apparatus and fresh water generating method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1240938B9 (en) * 2001-03-14 2009-09-16 Ludwig Michelbach Reverse osmosis plant
KR100963536B1 (en) * 2002-01-22 2010-06-15 도레이 카부시키가이샤 Method of generating fresh water and fresh-water generator
WO2009057501A1 (en) * 2007-10-29 2009-05-07 Kobelco Eco-Solutions Co., Ltd. Water treatment method, water treatment apparatus, method for recovering purified water, and purified water recovering apparatus
JP5207115B2 (en) * 2007-12-19 2013-06-12 三浦工業株式会社 Water treatment system
JP5050996B2 (en) * 2008-05-19 2012-10-17 三浦工業株式会社 Reverse osmosis membrane device
WO2010052651A1 (en) * 2008-11-04 2010-05-14 Swiss Fresh Water Sa System for saving energy by recycling concentrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228988A (en) * 1983-06-10 1984-12-22 Jgc Corp Method for obtaining pure water from high-conductivity water by reverse osmosis method
JPS60235605A (en) * 1984-05-08 1985-11-22 Kurita Water Ind Ltd Reverse osmotic membrane separation apparatus
JPS63197596A (en) * 1987-02-12 1988-08-16 Mitsubishi Heavy Ind Ltd Method for controlling quality of made water of water making plant
JPH10296060A (en) * 1997-04-25 1998-11-10 Japan Organo Co Ltd Prevention method for contamination of separation membrane
JP2005144301A (en) * 2003-11-13 2005-06-09 Mitsubishi Heavy Ind Ltd Desalting apparatus and desalting method
JP2008307487A (en) * 2007-06-15 2008-12-25 Mitsubishi Heavy Ind Ltd Desalting device
JP2009106832A (en) * 2007-10-29 2009-05-21 Kobelco Eco-Solutions Co Ltd Water treatment method and water treatment apparatus
JP4499835B1 (en) * 2009-02-14 2010-07-07 株式会社神鋼環境ソリューション Fresh water generating apparatus and fresh water generating method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192619A1 (en) * 2013-05-27 2014-12-04 東レ株式会社 Operation method for water treatment device
JPWO2014192619A1 (en) * 2013-05-27 2017-02-23 東レ株式会社 Operation method of water treatment equipment
CN104102198A (en) * 2014-07-04 2014-10-15 中广核工程有限公司 PX energy recovery device fault monitoring system and method
JP2017176929A (en) * 2016-03-28 2017-10-05 東洋紡株式会社 Water production system
WO2017170014A1 (en) * 2016-03-28 2017-10-05 東洋紡株式会社 Desalination system
WO2019180788A1 (en) * 2018-03-19 2019-09-26 三菱重工エンジニアリング株式会社 Salt concentration device and scale detection method for salt concentration device
KR102370466B1 (en) * 2020-09-02 2022-03-04 국민대학교 산학협력단 Automatic operation method of seawater desalination device for seawater desalination vessel
KR20230099139A (en) * 2021-12-27 2023-07-04 국민대학교산학협력단 Automatic operation method of ship-mounted seawater desalination device
KR102655426B1 (en) * 2021-12-27 2024-04-09 국민대학교 산학협력단 Automatic operation method of ship-mounted seawater desalination device
KR102505557B1 (en) * 2022-09-28 2023-03-06 지엔원에너지(주) Water Treatment System with Thermal Energy Utilization Method Of Treated Water Treated By Sequencing Batch Reactor
KR102565078B1 (en) * 2022-09-28 2023-08-10 지오릿에너지(주) Water Treatment System with Thermal Energy Utilization Method of Purified Water Purified by Reverse Osmosis
KR102565087B1 (en) * 2022-09-28 2023-08-10 지오릿에너지(주) Reverse Osmosis Purification Water Treatment System Using Purified Water Bypass Piping
KR102565081B1 (en) * 2022-09-28 2023-08-10 지오릿에너지(주) Reverse Osmosis Purification Water Treatment System Using Raw Water Bypass Piping

Also Published As

Publication number Publication date
SG192894A1 (en) 2013-09-30
WO2012115114A1 (en) 2012-08-30
CN103443031A (en) 2013-12-11
JP5933926B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5933926B2 (en) Seawater desalination system and seawater desalination method
JP5991200B2 (en) Concentration difference power generator and its operation method
KR100963536B1 (en) Method of generating fresh water and fresh-water generator
JP5549589B2 (en) Fresh water system
JP5549591B2 (en) Fresh water production method and fresh water production apparatus
CN102985373B (en) Fresh water producing apparatus and method for operating same
JP5941629B2 (en) Water purification system and water purification method
JP6070345B2 (en) Reverse osmosis membrane separator
KR20140073312A (en) Apparatus for producing fresh water and electric power through forward osmosis, reverse osmosis and pressure retarded osmosis using treated sewage and seawater, and method for the same
JP2008307522A (en) Desalting method, desalting apparatus, and bubble generator
JP2012206073A (en) Deionized water production system
WO2019087867A1 (en) Seawater desalination method and seawater desalination system
Arnal et al. Ultrafiltration as a pre-treatment of other membrane technologies in the reuse of textile wastewaters
US20180104652A1 (en) Reverse osmosis membrane cleaning method and reverse osmosis membrane cleaning apparatus
Abbasi-Garravand et al. Investigation of the fouling effect on a commercial semi-permeable membrane in the pressure retarded osmosis (PRO) process
JP2015104710A (en) Seawater desalination system
JP2018519158A (en) Method for controlling a desalination plant powered by a renewable energy source and associated plant
WO2019004281A1 (en) Water treatment device and water treatment method
JP2019141812A (en) Water treatment equipment and water treatment method
JP5966639B2 (en) Salt water desalination apparatus and fresh water generation method
JP6051867B2 (en) Fresh water generation method
JP2014034005A (en) Salt water desalination apparatus and fresh water production method
JP6040830B2 (en) Membrane separator
CN101665292B (en) Purification treatment technique of drinking water and treatment system thereof
JP2018012069A (en) Water treatment system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141024

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160311

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160506

R150 Certificate of patent or registration of utility model

Ref document number: 5933926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees