JP2014034005A - Salt water desalination apparatus and fresh water production method - Google Patents

Salt water desalination apparatus and fresh water production method Download PDF

Info

Publication number
JP2014034005A
JP2014034005A JP2012176763A JP2012176763A JP2014034005A JP 2014034005 A JP2014034005 A JP 2014034005A JP 2012176763 A JP2012176763 A JP 2012176763A JP 2012176763 A JP2012176763 A JP 2012176763A JP 2014034005 A JP2014034005 A JP 2014034005A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
membrane module
end coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012176763A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamada
一弘 山田
Wataru Sugiura
亘 杉浦
Reiji Kojima
令嗣 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012176763A priority Critical patent/JP2014034005A/en
Publication of JP2014034005A publication Critical patent/JP2014034005A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

PROBLEM TO BE SOLVED: To provide a salt water desalination apparatus in which fresh water is obtained from salt water such as sea water and brine by using a reverse osmosis membrane module and to provide a fresh water production method.SOLUTION: The salt water desalination apparatus includes: a supply pump 1 for pressurizing salt water; a first-stage reverse osmosis membrane module 2 for separating the pressurized salt water; a second-stage reverse osmosis membrane module 3 for separating first fresh water; a first salt water supply line 13; a second salt water supply line 14; a first fresh water discharge line 15 having a water quality meter 11 capable of measuring salinity or physical quantity, which can be converted to the salinity, of the first fresh water; a first concentrated water discharge line 16; a treated water discharge line 17; a second concentrated water discharge line 18 having a bypass line-branched part 19 and a bypass line changeover unit; a bypass line 20; and a bypass line control unit 12 for controlling the bypass line changeover unit on the basis of the water quality data obtained from the water quality meter 11.

Description

本発明は、逆浸透膜モジュールを用いて塩水から淡水を得る塩水淡水化装置および造水方法に関するものであって、詳しくは、処理水の水質に応じて最適な送水ラインに切り替えて塩水から淡水を得る塩水淡水化装置および造水方法に関するものである。   The present invention relates to a salt water desalination apparatus and a fresh water generation method for obtaining fresh water from salt water using a reverse osmosis membrane module. Specifically, the present invention relates to salt water from fresh water by switching to an optimal water supply line according to the quality of treated water. The present invention relates to a salt water desalination apparatus and a method for producing fresh water.

逆浸透膜法による海水淡水化及びかん水淡水化は、相変化無しに塩分や有害物質を分離除去でき、運転管理が容易でエネルギー的に有利であることから、飲料用或いは工業用の淡水を取得する分野で利用されている。逆浸透膜の透過性、分離性の低下を防ぐために、通常、海水やかん水を逆浸透膜に供給する前に、砂ろ過、凝集沈殿、加圧浮上、精密ろ過膜と限外ろ過膜のろ過などの方法を用いて前処理を行っている。   Seawater desalination and brine desalination using the reverse osmosis membrane method can separate and remove salinity and harmful substances without phase change, and are easy to manage and energy efficient. It is used in the field. To prevent reverse osmosis membrane permeability and separability from decreasing, sand filtration, coagulation sedimentation, pressurized flotation, microfiltration membrane and ultrafiltration membrane filtration are usually performed before supplying seawater or brine to the reverse osmosis membrane. Pre-processing is performed using a method such as

逆浸透膜の透過原理から、海水またはかん水など、ある程度の塩分を含んだ供給水が逆浸透膜を透過するには、高圧ポンプなどを用いて供給水の圧力を浸透圧以上にする必要がある。浸透圧は塩分濃度と関係するが、例えば海水を逆浸透膜で分離する場合、最低3MPa程度以上、実用性を考慮すると少なくとも5MPa程度以上の圧力が必要となる。かん水の場合でも最低1MPa程度以上の圧力が必要となる。   Based on the permeation principle of reverse osmosis membranes, it is necessary to make the supply water pressure higher than the osmotic pressure using a high-pressure pump or the like so that the supply water containing a certain amount of salt, such as seawater or brine, can permeate the reverse osmosis membrane. . The osmotic pressure is related to the salinity concentration. For example, when seawater is separated by a reverse osmosis membrane, a pressure of at least about 3 MPa or at least about 5 MPa is required in consideration of practicality. Even in the case of irrigation, a pressure of at least about 1 MPa is required.

また生産水の目標水質に対し、1段の逆浸透膜モジュールのみで必要な処理水水質が得られない場合、1段目逆浸透膜モジュールの処理水を2段目逆浸透膜モジュールに供給して処理を行う2段処理を行うことがある。2段処理を行うことにより、1段の逆浸透膜モジュールのみでは得られなかった良好な処理水水質を得ることができる。一方で、2段処理を行う上でのデメリットとして、トータル回収率の低下が挙げられる。回収率とは、処理水量/供給水量の比を示し、1に近いほど同量の供給水から得られる処理水量が多いことを示す。トータル回収率とは、2段の逆浸透膜モジュールを備えた塩水淡水化装置における、2段目処理水量/1段目供給水量の比を示す。一般的なTDS(総溶存塩濃度)が35,000mg/Lの海水を処理する場合、1段目逆浸透膜モジュールの回収率は30%〜60%程度であり、2段目逆浸透膜モジュールの回収率は70%〜90%程度とすることが多い。つまり、1段処理では30%〜60%程度の回収率で処理水を生産できるものが、2段処理することよってトータル回収率が21%〜54%に低下する。   If the required quality of treated water cannot be obtained with only the first-stage reverse osmosis membrane module for the target water quality of the production water, the treated water from the first-stage reverse osmosis membrane module is supplied to the second-stage reverse osmosis membrane module. In some cases, two-stage processing is performed. By performing the two-stage treatment, it is possible to obtain a good treated water quality that cannot be obtained only by the one-stage reverse osmosis membrane module. On the other hand, as a demerit in performing the two-stage process, there is a decrease in the total recovery rate. The recovery rate indicates the ratio of treated water amount / feed water amount, and the closer to 1, the greater the amount of treated water obtained from the same amount of feed water. The total recovery rate indicates a ratio of the second-stage treated water amount / first-stage supplied water amount in a salt water desalination apparatus equipped with a two-stage reverse osmosis membrane module. When processing seawater with a general TDS (total dissolved salt concentration) of 35,000 mg / L, the recovery rate of the first-stage reverse osmosis membrane module is about 30% to 60%, and the second-stage reverse osmosis membrane module The recovery rate is often about 70% to 90%. That is, in one-stage treatment, what can produce treated water at a recovery rate of about 30% to 60%, but the total recovery rate is reduced to 21% to 54% by performing two-stage treatment.

供給水が、あらかじめ塩分濃度が明確となっている水であれば、その供給水塩分濃度にあわせて装置を設計することによって、必要な処理水水質、水量を得ることができるが、災害対策用などの様々な原水を供給水として使用しなければならない装置においては、供給水塩分濃度が設計時から明らかになっておらず、1段処理で処理可能な低塩分濃度の水を2段処理してしまうと、無駄に処理水量を減らすことになってしまう。   If the supply water is a water whose salinity has been clarified in advance, the necessary quality and quantity of treated water can be obtained by designing the device according to the supply water salinity. In equipment that requires the use of various raw water as feed water, the supply water salinity is not clear from the time of design, and low-salt water that can be treated in one stage is treated in two stages. If this happens, the amount of treated water will be reduced.

この問題を解決するため、様々な提案がなされている。特許文献1では原水が海水の場合は2段処理を行い、かん水の場合は1段処理できるよう2段目逆浸透膜モジュールをバイパスするラインを用いた造水方法を提案している。   Various proposals have been made to solve this problem. Patent Document 1 proposes a fresh water generation method using a line that bypasses the second-stage reverse osmosis membrane module so that two-stage treatment is performed when raw water is seawater, and one-stage treatment is performed when brine is used.

特開2006−263542号公報JP 2006-263542 A

しかしながら、1段目逆浸透膜モジュールの処理水水質は原水が海水、かん水であるか、すなわち原水の塩分濃度以外にも様々な変動要因がある。例えば通常逆浸透膜は連続もしくは断続運転することにより経時劣化するため、その脱塩処理能力も徐々に低下する。その結果、1段処理時に生産水基準を逸脱した処理水を生産してしまう問題を抱えている。   However, the quality of the treated water of the first-stage reverse osmosis membrane module has various fluctuation factors other than whether the raw water is seawater or brine, that is, the salt concentration of the raw water. For example, a reverse osmosis membrane usually deteriorates with time due to continuous or intermittent operation, and thus its desalting capacity gradually decreases. As a result, there is a problem of producing treated water that deviates from the production water standard during the first stage treatment.

また逆浸透膜の処理能力は供給水の温度によっても大きく左右される。例えば海水などの高塩分濃度を供給水とする場合、温度が低ければ供給水の粘度が上昇することで1段目逆浸透膜モジュールの脱塩能力が向上し、1段処理で十分な水質にも関わらず、従来の造水方法では2段処理を行うことで無駄に生産水を減少させてしまう問題を抱えている。   The treatment capacity of the reverse osmosis membrane is greatly influenced by the temperature of the feed water. For example, when the supply water has a high salinity concentration such as seawater, the desalination ability of the first-stage reverse osmosis membrane module is improved by increasing the viscosity of the supply water if the temperature is low. Nevertheless, the conventional fresh water generation method has a problem that the production water is unnecessarily reduced by performing the two-stage treatment.

また従来の造水方法において、かん水を供給水とし2段目逆浸透膜モジュールをバイパスして造水運転する場合、2段目逆浸透膜モジュールの容器内に滞留した水、もしくは2段目逆浸透膜に付着した水には容易に微生物を起因としたバイオフィルム等が発生し、逆浸透膜表面の閉塞を引き起こし、早期に脱塩性能低下を招いてしまう問題を抱えている。   In addition, in the conventional fresh water generation method, when the fresh water operation is performed by using brine as supply water and bypassing the second-stage reverse osmosis membrane module, the water staying in the container of the second-stage reverse osmosis membrane module or the second-stage reverse osmosis membrane In the water adhering to the osmosis membrane, a biofilm or the like caused by microorganisms is easily generated, which causes the reverse osmosis membrane surface to be clogged, and has a problem that the desalination performance is deteriorated at an early stage.

本発明の目的は、逆浸透膜モジュールを用いて海水やかん水などの塩水から淡水を得る塩水淡水化装置において、原水の塩分濃度、原水温度、1段目逆浸透膜モジュールの脱塩性能等によらず一定の処理水量、処理水質を確保するとともに1段の逆浸透膜処理時でも2段目逆浸透膜の脱塩性能低下を抑制することである。   An object of the present invention is to provide a salt water desalination apparatus that obtains fresh water from salt water such as seawater and brine using a reverse osmosis membrane module, and provides salt concentration, raw water temperature, demineralization performance of the first-stage reverse osmosis membrane module, etc. Regardless of this, it is necessary to ensure a constant amount of treated water and treated water quality and to suppress a decrease in the desalting performance of the second-stage reverse osmosis membrane even during the first-stage reverse osmosis membrane treatment.

前記課題を解決するための本発明は、次の特徴を有するものである。   The present invention for solving the above-described problems has the following characteristics.

(1)塩水を昇圧する供給ポンプと、昇圧された前記塩水を逆浸透膜によって第1淡水と第1濃縮水とに分離する1段目逆浸透膜モジュールと、前記第1淡水を逆浸透膜によって第2淡水と第2濃縮水とに分離する2段目逆浸透膜モジュールと、一端が塩水供給ユニットに結合され、他端が前記供給ポンプに結合された第1塩水供給ラインと、一端が前記供給ポンプに結合され、他端が前記1段目逆浸透膜モジュールの供給口に結合された第2塩水供給ラインと、一端が前記1段目逆浸透膜モジュールの第1淡水排出口に結合され、他端が前記2段目逆浸透膜モジュールの供給口に結合され、前記第1淡水の塩分濃度または塩分濃度に換算可能な物理量を測定できる水質計を有する第1淡水排出ラインと、一端が前記1段目逆浸透膜モジュールの第1濃縮水排出口に結合され、他端が濃縮水回収ユニットに結合された第1濃縮水排出ラインと、一端が前記2段目逆浸透膜モジュールの第2淡水排出口に結合され、他端が処理水回収ユニットに結合された処理水排出ラインと、一端が前記2段目逆浸透膜モジュールの第2濃縮水排出口に結合され、他端が前記第1濃縮水排出ラインに結合され、バイパスライン分岐部およびバイパスライン切替ユニットを有する第2濃縮水排出ラインと、一端が前記バイパスライン分岐部に結合され、他端が前記処理水排出ラインに結合されたバイパスラインと、前記水質計より得られた水質データに基づいて、前記バイパスライン切替ユニットを制御するバイパスライン制御ユニットと、を備えた塩水淡水化装置。   (1) A supply pump that boosts salt water, a first-stage reverse osmosis membrane module that separates the boosted salt water into first fresh water and first concentrated water by a reverse osmosis membrane, and a reverse osmosis membrane for the first fresh water A second-stage reverse osmosis membrane module that separates into second fresh water and second concentrated water, a first salt water supply line having one end coupled to the salt water supply unit and the other end coupled to the supply pump, and one end A second salt water supply line coupled to the supply pump and having the other end coupled to the supply port of the first-stage reverse osmosis membrane module, and one end coupled to the first fresh water discharge port of the first-stage reverse osmosis membrane module A first fresh water discharge line having a water quality meter, the other end of which is coupled to the supply port of the second-stage reverse osmosis membrane module and capable of measuring the salt concentration of the first fresh water or a physical quantity that can be converted into the salt concentration; Is the first stage reverse osmosis membrane module A first concentrated water discharge line coupled to the first concentrated water discharge port and the other end coupled to the concentrated water recovery unit, and one end coupled to the second fresh water discharge port of the second-stage reverse osmosis membrane module, A treated water discharge line having the other end coupled to the treated water recovery unit, one end coupled to the second concentrated water discharge port of the second-stage reverse osmosis membrane module, and the other end coupled to the first concentrated water discharge line A second concentrated water discharge line having a bypass line branch part and a bypass line switching unit, a bypass line having one end coupled to the bypass line branch part and the other end coupled to the treated water discharge line, and the water quality A salt water desalination apparatus comprising: a bypass line control unit that controls the bypass line switching unit based on water quality data obtained from a meter.

(2)塩水を昇圧する供給ポンプと、昇圧された前記塩水を逆浸透膜によって第1淡水と第1濃縮水とに分離する1段目逆浸透膜モジュールと、前記第1淡水を逆浸透膜によって第2淡水と第2濃縮水とに分離する2段目逆浸透膜モジュールと、一端が塩水供給ユニットに結合され、他端が前記供給ポンプに結合された第1塩水供給ラインと、一端が前記供給ポンプに結合され、他端が前記1段目逆浸透膜モジュールの供給口に結合された第2塩水供給ラインと、一端が前記1段目逆浸透膜モジュールの第1淡水排出口に結合され、他端が前記2段目逆浸透膜モジュールの供給口に結合された第1淡水排出ラインと、一端が前記1段目逆浸透膜モジュールの第1濃縮水排出口に結合され、他端が濃縮水回収ユニットに結合された第1濃縮水排出ラインと、一端が前記2段目逆浸透膜モジュールの第2淡水排出口に結合され、他端が処理水回収ユニットに結合された処理水排出ラインと、一端が前記2段目逆浸透膜モジュールの第2濃縮水排出口に結合され、他端が前記第1濃縮水排出ラインに結合され、バイパスライン分岐部およびバイパスライン切替ユニットを有する第2濃縮水排出ラインと、一端が前記バイパスライン分岐部に結合され、他端が前記処理水排出ラインに結合されたバイパスラインと、を備えた塩水淡水化装置を用いて塩水を淡水化して処理水を得る造水方法であって、前記第1淡水の塩分濃度または塩分濃度に換算可能な物理量に基づいて、前記バイパスライン切替ユニットを制御することを特徴とする造水方法。   (2) A supply pump for boosting salt water, a first-stage reverse osmosis membrane module for separating the boosted salt water into first fresh water and first concentrated water by a reverse osmosis membrane, and the first fresh water by a reverse osmosis membrane A second-stage reverse osmosis membrane module that separates into second fresh water and second concentrated water, a first salt water supply line having one end coupled to the salt water supply unit and the other end coupled to the supply pump, and one end A second salt water supply line coupled to the supply pump and having the other end coupled to the supply port of the first-stage reverse osmosis membrane module, and one end coupled to the first fresh water discharge port of the first-stage reverse osmosis membrane module A first fresh water discharge line having the other end coupled to the supply port of the second-stage reverse osmosis membrane module, and one end coupled to the first concentrated water discharge port of the first-stage reverse osmosis membrane module. The first concentrated water discharge is coupled to the concentrated water recovery unit A treated water discharge line having one end coupled to the second fresh water discharge port of the second-stage reverse osmosis membrane module and the other end coupled to the treated water recovery unit, and one end coupled to the second-stage reverse osmosis membrane module The second concentrated water discharge line is connected to the second concentrated water discharge port, the other end is connected to the first concentrated water discharge line, and has a bypass line branching unit and a bypass line switching unit, and one end is the bypass line branch. A fresh water producing method for obtaining treated water by desalinating salt water using a salt water desalination apparatus comprising a bypass line coupled to the treated water discharge line and the other end coupled to the treated water discharge line. A fresh water production method comprising controlling the bypass line switching unit based on a salinity of fresh water or a physical quantity that can be converted into a salinity.

本発明によれば、逆浸透膜モジュールを用いて海水やかん水などの塩水から淡水を得る塩水淡水化装置において、原水の塩分濃度、原水温度、1段目逆浸透膜モジュールの脱塩性能等によらず、1段目逆浸透膜モジュールの処理水水質を水質基準値と比較し、2段目逆浸透膜モジュールの濃縮水バイパスラインを切り替えることで一定の処理水量、処理水質を確保するとともに1段の逆浸透膜処理時でも2段目逆浸透膜モジュールの脱塩性能低下を抑制することができる。   According to the present invention, in a salt water desalination apparatus that obtains fresh water from salt water such as seawater and brine using a reverse osmosis membrane module, the salt concentration of raw water, the raw water temperature, the desalination performance of the first-stage reverse osmosis membrane module, etc. Regardless, the treated water quality of the first-stage reverse osmosis membrane module is compared with the water quality reference value, and a certain amount of treated water and treated water quality are secured by switching the concentrated water bypass line of the second-stage reverse osmosis membrane module. Even during the reverse osmosis membrane treatment of the stage, it is possible to suppress a decrease in the desalting performance of the second-stage reverse osmosis membrane module.

本発明に係る、1段目逆浸透膜モジュールの処理水水質を計測可能とし、2段目逆浸透膜モジュール濃縮水のバイパスラインを有した塩水淡水化装置を示すフロー図である。It is a flowchart which shows the salt water desalination apparatus which can measure the quality of the treated water of the 1st-stage reverse osmosis membrane module based on this invention, and has the bypass line of the 2nd-stage reverse osmosis membrane module concentrated water. 1段目逆浸透膜モジュール、及び2段目逆浸透膜モジュールを有する従来の塩水淡水化装置を示すフロー図である。It is a flowchart which shows the conventional salt water desalination apparatus which has a 1st step | paragraph reverse osmosis membrane module and a 2nd step | paragraph reverse osmosis membrane module.

本発明の実施形態を説明するために、まず、1段目逆浸透膜モジュール、及び2段目逆浸透膜モジュールを有する従来の塩水淡水化装置を比較例として説明する。   In order to describe an embodiment of the present invention, first, a conventional salt water desalination apparatus having a first-stage reverse osmosis membrane module and a second-stage reverse osmosis membrane module will be described as a comparative example.

従来の塩水淡水化装置は、図2に示すように、主に、塩水を昇圧する供給ポンプ1、逆浸透膜(RO膜)からなる1段目逆浸透膜モジュール2、同じく逆浸透膜からなる2段目逆浸透膜モジュール3、1段目逆浸透膜モジュールで分離した第1淡水を2段目逆浸透膜モジュール3へ通水するか、もしくはバイパスするかを切り替えるための2段目逆浸透膜モジュール供給弁5、2段目逆浸透膜モジュールバイパス弁6、2段目逆浸透膜モジュール3への逆流を防止する逆止弁4、1段目逆浸透膜モジュール2にて分離した第1濃縮水の流量を調節する1段目濃縮水流量調節弁7、2段目逆浸透膜モジュール3にて分離した第2濃縮水の流量を調節する2段目濃縮水流量調節弁8からなる。   As shown in FIG. 2, the conventional salt water desalination apparatus mainly comprises a supply pump 1 for boosting salt water, a first-stage reverse osmosis membrane module 2 comprising a reverse osmosis membrane (RO membrane), and a reverse osmosis membrane. Second-stage reverse osmosis membrane module 3, second-stage reverse osmosis for switching whether the first fresh water separated by the first-stage reverse osmosis membrane module is passed through the second-stage reverse osmosis membrane module 3 or bypassed Membrane module supply valve 5, second-stage reverse osmosis membrane module bypass valve 6, check valve 4 for preventing backflow to the second-stage reverse osmosis membrane module 3, and first-stage separated by the first-stage reverse osmosis membrane module 2 The first-stage concentrated water flow rate adjustment valve 7 for adjusting the flow rate of the concentrated water, and the second-stage concentrated water flow rate adjustment valve 8 for adjusting the flow rate of the second concentrated water separated by the second-stage reverse osmosis membrane module 3.

従来の塩水淡水化装置の塩水淡水化のフローは、典型的には次に述べるとおりである。前処理装置から導入された塩水が供給ポンプ1によって昇圧され、1段目逆浸透膜モジュール2に供給される。前記1段目逆浸透膜モジュール2への供給水は、逆浸透膜法により第1淡水、及び第1濃縮水に分離され、前記第1淡水は2段目逆浸透膜モジュール3に供給される。前記2段目逆浸透膜モジュール3への供給水、すなわち第1淡水は、逆浸透膜法により2段目逆浸透膜モジュール3にて第2淡水、及び第2濃縮水に分離され、第2淡水は処理水として処理水回収ユニットに排出される。1段目逆浸透膜モジュール2から排出される第1濃縮水、及び2段目逆浸透膜モジュール3から排出される第2濃縮水は、それぞれ1段目濃縮水流量調節弁7、2段目濃縮水調節弁8にて流量調節され濃縮水回収ユニットに排出される。   The flow of salt water desalination of a conventional salt water desalination apparatus is typically as described below. The salt water introduced from the pretreatment device is pressurized by the supply pump 1 and supplied to the first-stage reverse osmosis membrane module 2. The water supplied to the first-stage reverse osmosis membrane module 2 is separated into first fresh water and first concentrated water by a reverse osmosis membrane method, and the first fresh water is supplied to the second-stage reverse osmosis membrane module 3. . The supply water to the second-stage reverse osmosis membrane module 3, that is, the first fresh water is separated into the second fresh water and the second concentrated water by the second-stage reverse osmosis membrane module 3 by the reverse osmosis membrane method. Fresh water is discharged to the treated water recovery unit as treated water. The first concentrated water discharged from the first-stage reverse osmosis membrane module 2 and the second concentrated water discharged from the second-stage reverse osmosis membrane module 3 are respectively the first-stage concentrated water flow rate control valve 7 and the second-stage concentrated water. The flow rate is adjusted by the concentrated water control valve 8 and discharged to the concentrated water recovery unit.

従来の塩水淡水化装置を用いた造水方法は、典型的には次に述べるとおりである。前処理装置に導入される塩水が海水の場合、1段目逆浸透膜モジュール2の第1淡水は2段目逆浸透膜モジュール3に供給され、第2淡水、第2濃縮水に分離され、第2淡水が処理水として処理水回収ユニットに排出される。即ち、2段目逆浸透膜モジュール供給弁5を開とし、且つ2段目逆浸透膜モジュールバイパス弁6を閉止し、1段目逆浸透膜モジュール2で得られた第1淡水の全量が2段目逆浸透膜モジュール3に供給・分離され、第2淡水が処理水として得られる。一方、前処理に供給される塩水がかん水の場合、1段目逆浸透膜モジュール2の第1淡水は2段目逆浸透膜モジュール3をバイパスし、その全量が処理水として処理水回収ユニットへ排出される。即ち2段目逆浸透膜モジュール供給弁5を閉止し、且つ2段目逆浸透膜モジュールバイパス弁6を開とすることで、1段目逆浸透膜モジュール2で得られた第1淡水はそのまま処理水として処理水回収ユニットに排出される。   A water production method using a conventional salt water desalination apparatus is typically as follows. When the salt water introduced into the pretreatment device is seawater, the first fresh water of the first-stage reverse osmosis membrane module 2 is supplied to the second-stage reverse osmosis membrane module 3 and separated into second fresh water and second concentrated water, The second fresh water is discharged as treated water to the treated water recovery unit. That is, the second-stage reverse osmosis membrane module supply valve 5 is opened, the second-stage reverse osmosis membrane module bypass valve 6 is closed, and the total amount of the first fresh water obtained by the first-stage reverse osmosis membrane module 2 is 2 It is supplied to and separated from the stage reverse osmosis membrane module 3 to obtain second fresh water as treated water. On the other hand, when the brine supplied to the pretreatment is brine, the first fresh water of the first-stage reverse osmosis membrane module 2 bypasses the second-stage reverse osmosis membrane module 3, and the entire amount is treated as treated water to the treated water recovery unit. Discharged. That is, by closing the second-stage reverse osmosis membrane module supply valve 5 and opening the second-stage reverse osmosis membrane module bypass valve 6, the first fresh water obtained by the first-stage reverse osmosis membrane module 2 remains as it is. It is discharged as treated water to a treated water recovery unit.

ここで、本発明に係る1段目逆浸透膜モジュール2および2段目逆浸透膜モジュール3に使用される逆浸透膜とは、供給液の一部の成分、例えば塩分を透過させ、他の成分を透過させない半透性膜である。その素材には酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材が使用できる。膜形態には中空糸膜、平膜などがある。本発明では、逆浸透膜の素材、膜形態によらず利用することができる。いずれの膜素材及び、膜形態を使用した場合でも断続、もしくは連続的に脱塩処理を行うことで、その脱塩能力は経時的に低下する。そのため、従来の塩水淡水化装置を用いた造水方法では、かん水を供給水とする1段処理において生産水水質も経時的に低下し、その結果、生産水基準を逸脱する問題を抱えている。   Here, the reverse osmosis membrane used in the first-stage reverse osmosis membrane module 2 and the second-stage reverse osmosis membrane module 3 according to the present invention allows some components of the supply liquid, such as salt, to pass through, It is a semipermeable membrane that does not allow components to permeate. The material can be a polymer material such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer. Examples of membrane forms include hollow fiber membranes and flat membranes. In this invention, it can utilize regardless of the raw material and membrane form of a reverse osmosis membrane. Regardless of which membrane material and membrane form are used, the desalting ability decreases with time by intermittent or continuous desalting. For this reason, in the conventional desalination method using the salt water desalination apparatus, the quality of the produced water deteriorates with time in the one-stage treatment using brine as the supply water, and as a result, there is a problem of deviating from the production water standard. .

ここで本発明に係る1段目逆浸透膜モジュール2及び、2段目逆浸透膜モジュール3に使用される逆浸透膜は原水である塩水の粘度によりその脱塩能力は大きく左右される。つまり粘度が高ければ脱塩能力が向上し、粘度が低くなれば脱塩能力は低下する。また災害対策用の塩水淡水化装置などでは、原水となる塩水には北極圏などの0℃に近い海水から、中東の40℃を超える海水も対象となる。一般的に温度が低くなるにつれ塩水の粘度は上昇し、温度が高くなるにつれ塩水の粘度は低下する。即ち温度の低い塩水を脱塩処理する場合、脱塩能力は向上し、温度の高い塩水を脱塩処理する場合、脱塩能力は低下する。例えば塩水塩分濃度(TDS)25,000mg/Lの場合、水温が30℃以上であれば1段目逆浸透膜モジュール処理後の処理水塩分濃度(TDS)は200mg/L以上となり、水温が30℃未満であれば1段目逆浸透膜モジュール処理後の処理水塩分濃度(TDS)は200mg/L未満となる。つまりは、従来の塩水淡水化装置の造水方法では海水であれば必ず2段処理を行っているため、例えば水温が低い時等は必要以上に脱塩することにより回収率の低下を招き、結果生産水量を無駄に低下させている問題がある。   Here, the desalting ability of the reverse osmosis membrane used in the first-stage reverse osmosis membrane module 2 and the second-stage reverse osmosis membrane module 3 according to the present invention greatly depends on the viscosity of the salt water which is the raw water. That is, when the viscosity is high, the desalting ability is improved, and when the viscosity is low, the desalting ability is lowered. In addition, in saltwater desalination equipment for disaster countermeasures, saltwater that is raw water includes seawater that is close to 0 ° C. in the Arctic Circle and seawater that exceeds 40 ° C. in the Middle East. In general, the viscosity of salt water increases as the temperature decreases, and the viscosity of salt water decreases as the temperature increases. That is, when salt water having a low temperature is desalted, the desalting ability is improved, and when salt water having a high temperature is desalted, the desalting ability is lowered. For example, when the salt water salt concentration (TDS) is 25,000 mg / L and the water temperature is 30 ° C. or higher, the treated water salinity concentration (TDS) after the first-stage reverse osmosis membrane module treatment is 200 mg / L or more, and the water temperature is 30 If it is less than ° C., the treated water salt concentration (TDS) after the first-stage reverse osmosis membrane module treatment is less than 200 mg / L. In other words, in the conventional salt water desalination apparatus fresh water generation method, seawater is always treated in two stages. For example, when the water temperature is low, undesired desalination causes a reduction in the recovery rate. As a result, there is a problem that the production water volume is reduced unnecessarily.

また災害対策用の塩水淡水化装置などで処理する塩水とは塩分を含む水の総称であり、塩化物イオン濃度が300から15,000mg/L程度の一般的にかん水と呼称する比較的低濃度の塩水や、塩化物イオン濃度が15,000から40,000mg/L程度の一般的に海水と呼称する比較的高濃度の塩水などを指すが、海水とかん水には明確な区分は無く、比較的低濃度の海水をかん水として扱っても良い。塩水の取水場所によって、例えば海に近い河川などは、潮の満ち引き等により経時的に塩分濃度は変化する。すなわち原水種類によって2段目逆浸透膜モジュール3のバイパス判断を行う従来の塩水淡水化装置においては、前記のように経時的に塩分濃度が変化する塩水に対して対応することができない。   Further, salt water treated by a salt water desalination apparatus for disaster countermeasures is a general term for water containing salt, and a relatively low concentration generally referred to as brine having a chloride ion concentration of about 300 to 15,000 mg / L. Salt water and relatively high concentration salt water generally called seawater with a chloride ion concentration of about 15,000 to 40,000 mg / L, but there is no clear distinction between seawater and brine. Low concentration seawater may be treated as brine. Depending on where salt water is taken, for example, in rivers close to the sea, the salinity concentration changes over time due to tides. That is, the conventional salt water desalination apparatus that performs bypass determination of the second-stage reverse osmosis membrane module 3 depending on the raw water type cannot cope with salt water whose salinity concentration changes with time as described above.

また災害対策用などの塩水淡水化装置において、取水場所は不確定であり2段目逆浸透膜モジュール3内には常に逆浸透膜を常備する必要がある。一方で従来の塩水淡水化装置を用いた造水方法において、かん水を取水して脱塩処理する場合、即ち2段目逆浸透膜モジュール3をバイパスして処理する場合には、2段目逆浸透膜モジュール容器内もしくは配管内に滞留水はバルブ等の切り替え手段により閉塞される。前記閉塞された環境では容器内もしくは配管内の滞留水は微生物などによりバイオフィルムを容易に発生させ、2段目逆浸透膜表面の膜閉塞を引き起こし生産水量の低下や生産水水質の低下など脱塩性能低下の問題を抱えている。   Further, in a saltwater desalination apparatus for disaster countermeasures, the water intake location is uncertain, and it is necessary to always provide a reverse osmosis membrane in the second-stage reverse osmosis membrane module 3. On the other hand, in the desalination method using the conventional salt water desalination apparatus, when the brine is taken and desalted, that is, when the second-stage reverse osmosis membrane module 3 is bypassed, the second-stage reverse is performed. The accumulated water in the osmotic membrane module container or the piping is blocked by a switching means such as a valve. In the blocked environment, the accumulated water in the container or the piping easily generates biofilms due to microorganisms, etc., causing the second-stage reverse osmosis membrane surface to be clogged, resulting in a decrease in the amount of produced water and the quality of the produced water. I have a problem of salt performance degradation.

前記のような様々な問題を解決するため、本発明では原水水質、温度、逆浸透膜の脱塩性能等によらず一定の処理水質、処理水量を得ることができるとともに、1段処理時においても2段目逆浸透膜モジュール3の脱塩性能低下を抑制することができる造水装置及び、造水方法を提案する。本発明に係る実施形態は図1に示す通りである。   In order to solve the various problems as described above, in the present invention, it is possible to obtain a constant treated water quality and treated water amount irrespective of the raw water quality, temperature, desalting performance of the reverse osmosis membrane, etc. Also proposes a fresh water generating apparatus and a fresh water generating method capable of suppressing a decrease in desalting performance of the second-stage reverse osmosis membrane module 3. An embodiment according to the present invention is as shown in FIG.

図1に示すように、主に、塩水を昇圧する供給ポンプ1と、昇圧された前記塩水を逆浸透膜によって第1淡水と第1濃縮水とに分離する1段目逆浸透膜モジュール2と、前記第1淡水を逆浸透膜によって第2淡水と第2濃縮水とに分離する2段目逆浸透膜モジュール3と、一端が塩水供給ユニットに結合され、他端が供給ポンプ1に結合された第1塩水供給ライン13と、一端が供給ポンプ1に結合され、他端が1段目逆浸透膜モジュール2の供給口に結合された第2塩水供給ライン14と、一端が1段目逆浸透膜モジュール2の第1淡水排出口に結合され、他端が2段目逆浸透膜モジュール3の供給口に結合され、前記第1淡水の塩分濃度または塩分濃度に換算可能な物理量を測定できる水質計11を有する第1淡水排出ライン15と、一端が1段目逆浸透膜モジュール2の第1濃縮水排出口に結合され、他端が濃縮水回収ユニットに結合された第1濃縮水排出ライン16と、一端が2段目逆浸透膜モジュール3の第2淡水排出口に結合され、他端が処理水回収ユニットに結合された処理水排出ライン17と、一端が2段目逆浸透膜モジュール3の第2濃縮水排出口に結合され、他端が第1濃縮水排出ライン16に結合され、バイパスライン分岐部19およびバイパスライン切替ユニットを有する第2濃縮水排出ライン18と、一端がバイパスライン分岐部19に結合され、他端が処理水排出ライン17に結合されたバイパスライン20と、水質計11より得られた水質データに基づいて、前記バイパスライン切替ユニットを制御するバイパスライン制御ユニット12と、を備える。   As shown in FIG. 1, a supply pump 1 that mainly boosts salt water, and a first-stage reverse osmosis membrane module 2 that separates the pressurized salt water into first fresh water and first concentrated water by a reverse osmosis membrane; , A second-stage reverse osmosis membrane module 3 that separates the first fresh water into a second fresh water and a second concentrated water by a reverse osmosis membrane, one end coupled to the salt water supply unit, and the other end coupled to the supply pump 1 The first salt water supply line 13, one end is coupled to the supply pump 1, the other end is coupled to the supply port of the first-stage reverse osmosis membrane module 2, and one end is reversed to the first stage. It is coupled to the first fresh water discharge port of the osmosis membrane module 2 and the other end is coupled to the supply port of the second-stage reverse osmosis membrane module 3 to measure the physical concentration that can be converted into the salt concentration or the salt concentration of the first fresh water. A first fresh water discharge line 15 having a water quality meter 11; Is connected to the first concentrated water discharge port of the first stage reverse osmosis membrane module 2 and the other end is connected to the concentrated water recovery unit, and one end is connected to the second stage reverse osmosis membrane module 3. The treated water discharge line 17 is connected to the second fresh water discharge port, the other end is connected to the treated water recovery unit, and the other end is connected to the second concentrated water discharge port of the second-stage reverse osmosis membrane module 3. One end is coupled to the first concentrated water discharge line 16, the second concentrated water discharge line 18 having a bypass line branch portion 19 and a bypass line switching unit, one end is coupled to the bypass line branch portion 19, and the other end is treated water. A bypass line 20 coupled to the discharge line 17; and a bypass line control unit 12 for controlling the bypass line switching unit based on water quality data obtained from the water quality meter 11. .

ここで1段目逆浸透膜モジュール2の処理水水質を計測する水質計11は塩分濃度を測定できるもの、若しくは塩分濃度に換算できる電気伝導度、塩化物イオン量、ナトリウムイオン量、総電解質量、屈折率、分光光度等の物理量を測定し、その相関性を用いて物理量を塩分濃度に変換する機能を持つものであれば制約は無く、例えば電気伝導度計や塩分濃度計、TDS計、屈折率計、分光式濃度計などを使用することができる。   Here, the water quality meter 11 for measuring the treated water quality of the first-stage reverse osmosis membrane module 2 can measure the salinity concentration, or the electric conductivity, chloride ion amount, sodium ion amount, total electrolytic mass that can be converted into the salinity concentration. There is no limitation as long as it has a function of measuring physical quantities such as refractive index and spectrophotometer and converting the physical quantities into salinity concentration using the correlation, for example, an electric conductivity meter, a salinity meter, a TDS meter, A refractometer, a spectroscopic densitometer, or the like can be used.

また2段目濃縮水バイパスラインへの切り替え手段である2段目濃縮水バイパス弁10、及び、2段目濃縮水開閉弁9は送水ラインを切り替えるものであれば特に制約は無く、その形態はボール弁、バタフライ弁、グローブ弁等を使用することができる。その駆動方式は制御装置などから自動切り替え可能な駆動方式が望ましく、電気モータ駆動による電動弁や圧縮空気駆動によるエアー駆動弁、電磁コイルを駆動源とした電磁弁などを使用することができる。またバイパスライン制御ユニット12は水質データを水質基準値と比較し、前記切り替え手段であるバルブへの切り替え指示を出力できるものであれば特に制約は無く、例えばプログラマブルロジックコントローラ(PLC)や分散型コントロールシステム(DCS)、ディジタル指示計、マイコンなどを使用することができる。   The second-stage concentrated water bypass valve 10 and the second-stage concentrated water on-off valve 9 that are switching means to the second-stage concentrated water bypass line are not particularly limited as long as they switch the water supply line, and the form thereof is Ball valves, butterfly valves, globe valves, etc. can be used. The drive system is preferably a drive system that can be automatically switched from a control device or the like, and an electric valve driven by an electric motor, an air driven valve driven by compressed air, an electromagnetic valve using an electromagnetic coil as a drive source, or the like can be used. The bypass line control unit 12 is not particularly limited as long as it can compare water quality data with a water quality reference value and output a switching instruction to the valve as the switching means. For example, a programmable logic controller (PLC) or a distributed control can be used. A system (DCS), a digital indicator, a microcomputer, etc. can be used.

また本発明の塩水淡水化装置は主に災害対策用等で使用されることを考慮し、取水場所への可搬性等から小スペースに設置可能なコンパクトな装置構成が必要である。そのため1段目逆浸透膜モジュール2と2段目逆浸透膜モジュール3は第1淡水排水ライン15を介して接続され、第1淡水を貯留する中間タンクや前記中間タンクから2段目逆浸透膜モジュール3へ供給するための供給ポンプは設置せず、1段目逆浸透膜モジュール2と2段目逆浸透膜モジュール3とが直列配置とされていることが好ましい。   Further, considering that the saltwater desalination apparatus of the present invention is mainly used for disaster countermeasures and the like, a compact apparatus configuration that can be installed in a small space is required from the viewpoint of portability to a water intake place. Therefore, the first-stage reverse osmosis membrane module 2 and the second-stage reverse osmosis membrane module 3 are connected via the first fresh water drainage line 15, and the second-stage reverse osmosis membrane from the intermediate tank for storing the first fresh water or the intermediate tank. A supply pump for supplying the module 3 is not installed, and the first-stage reverse osmosis membrane module 2 and the second-stage reverse osmosis membrane module 3 are preferably arranged in series.

本発明の造水方法は、具体的には次の通り実施される。   Specifically, the fresh water generation method of the present invention is carried out as follows.

原水が海水、かん水に関わらず、いかなる水質、温度であっても、また1段目逆浸透膜モジュールの性能劣化具合に関わらず、供給水である塩水を1段目逆浸透膜モジュール2へ供給し、第1淡水と第1濃縮水に分離する。同時に1段目逆浸透膜モジュール2より得られた第1淡水の塩分濃度を水質計11により計測し、計測した水質データをバイパスライン制御ユニット12にて水質基準値と比較演算を行う。この時、計測した水質データが水質基準値未満であれば、バイパスライン制御ユニット12からの切り替え指示により2段目濃縮水開閉弁9を閉止し、且つ2段目濃縮水バイパス弁10を開とする。即ち、1段目逆浸透膜モジュール2で得られた第1淡水は2段目逆浸透膜モジュール3で必要な浸透圧まで昇圧されることなく、全量が2段目逆浸透膜モジュール3内を通水し、第2濃縮水排出口より排出され、さらにバイパスライン20を経由して、そのまま処理水として処理水回収ユニットに排出される。   Regardless of whether the raw water is seawater or brine, regardless of water quality and temperature, and regardless of the performance deterioration of the first-stage reverse osmosis membrane module, supply salt water as supply water to the first-stage reverse osmosis membrane module 2 And separated into first fresh water and first concentrated water. At the same time, the salinity concentration of the first fresh water obtained from the first-stage reverse osmosis membrane module 2 is measured by the water quality meter 11, and the measured water quality data is compared with the water quality reference value by the bypass line control unit 12. At this time, if the measured water quality data is less than the water quality reference value, the second-stage concentrated water on-off valve 9 is closed and the second-stage concentrated water bypass valve 10 is opened by a switching instruction from the bypass line control unit 12. To do. That is, the first fresh water obtained by the first-stage reverse osmosis membrane module 2 is not boosted to the required osmotic pressure by the second-stage reverse osmosis membrane module 3, and the entire amount passes through the second-stage reverse osmosis membrane module 3. Water is passed, discharged from the second concentrated water discharge port, and further discharged directly to the treated water recovery unit via the bypass line 20 as treated water.

また計測した水質データが水質基準値以上であればバイパスライン制御ユニット12からの切り替え指示により、2段目濃縮水開閉弁9を開とし、且つ2段目濃縮水バイパス弁10を閉止する。即ち、1段目逆浸透膜モジュール2で得られた第1淡水は2段目逆浸透膜モジュール3に供給され、2段目濃縮水流量調節弁8にて第2濃縮水の流量を調節することで浸透圧まで昇圧され、第2淡水、第2濃縮水に分離され、前記第2淡水が処理水として処理水回収ユニットに排出される。   If the measured water quality data is equal to or higher than the water quality reference value, the second-stage concentrated water on-off valve 9 is opened and the second-stage concentrated water bypass valve 10 is closed by a switching instruction from the bypass line control unit 12. That is, the first fresh water obtained by the first-stage reverse osmosis membrane module 2 is supplied to the second-stage reverse osmosis membrane module 3, and the second-stage concentrated water flow rate control valve 8 adjusts the flow rate of the second concentrated water. Thus, the pressure is increased to the osmotic pressure and separated into the second fresh water and the second concentrated water, and the second fresh water is discharged to the treated water recovery unit as treated water.

ここでバイパスライン制御ユニット12にて比較する水質基準値は特に制約はなく、生産水の用途によって決定される閾値である。例えば、飲料水として使うので有れば世界保健機構(WHO)の水質基準値(TDS500mg/L)や日本水質基準で規定されている基準値(200mg/L)を使用することが望ましい。また半導体等の工業用水として使用する超純水であれば用途的に高純度の水質が求められ、飲料水基準よりはるかに低い基準値を使用し、例えばTDS値で0.05mg/L程度とすることが望ましい。   Here, the water quality reference value to be compared by the bypass line control unit 12 is not particularly limited, and is a threshold value determined by the use of the production water. For example, if used as drinking water, it is desirable to use the water quality standard value (TDS 500 mg / L) of the World Health Organization (WHO) or the standard value (200 mg / L) defined by the Japan Water Quality Standard. In addition, if it is ultrapure water used as industrial water such as semiconductors, high-purity water quality is required for use, and a reference value far lower than the drinking water standard is used. For example, the TDS value is about 0.05 mg / L. It is desirable to do.

具体的な実施例は下記のとおりである。   Specific examples are as follows.

前処理装置へ供給される塩水のTDS値が25,000mg/L、水温25℃、ポリアミドを膜素材とした逆浸透膜を使用した際の1段目逆浸透膜モジュール2の第1淡水の水質データはTDS値150mg/Lとなった。このとき、日本飲料水基準値200mg/Lを第1淡水水質基準値として設定した結果、バイパスライン制御ユニット12からの指示により、2段目濃縮水開閉弁9は閉止し、且つ2段目濃縮水バイパス弁10は開となり、バイパスラインへ切り替えられ、第1淡水は全量2段目逆浸透膜モジュール3内を通水し第2濃縮水排出口及びバイパスライン20を経由して処理水として処理水回収ユニットに排出された。   The first fresh water quality of the first-stage reverse osmosis membrane module 2 when using a reverse osmosis membrane with a TDS value of 25,000 mg / L of salt water supplied to the pretreatment device, a water temperature of 25 ° C., and a polyamide membrane material The data resulted in a TDS value of 150 mg / L. At this time, as a result of setting the Japanese drinking water reference value of 200 mg / L as the first fresh water quality reference value, the second-stage concentrated water on-off valve 9 is closed and the second-stage concentration is performed according to an instruction from the bypass line control unit 12. The water bypass valve 10 is opened and switched to the bypass line, and the entire amount of the first fresh water passes through the second-stage reverse osmosis membrane module 3 and is treated as treated water via the second concentrated water discharge port and the bypass line 20. It was discharged to the water recovery unit.

一方で前処理装置へ供給される塩水のTDS値が25,000mg/L、水温36℃、ポリアミドを膜素材とした逆浸透膜を使用した際の1段目逆浸透膜モジュールの第1淡水の処理水水質はTDS値350mg/Lとなった。このとき前記同様に日本飲料水基準値200mg/Lを第1淡水水質基準値として設定した結果、バイパスライン制御ユニット12からの指示により、2段目濃縮水開閉弁9は開となり、且つ2段目濃縮水バイパス弁10は閉止され、第1淡水は2段目濃縮水流量調節弁8により昇圧され、2段目逆浸透膜モジュールより排出される第2淡水が処理水として処理水回収ユニットに排出された。   On the other hand, the TDS value of the salt water supplied to the pretreatment device is 25,000 mg / L, the water temperature is 36 ° C., and the first fresh water of the first-stage reverse osmosis membrane module when using a reverse osmosis membrane made of polyamide as a membrane material. The treated water quality was TDS value 350 mg / L. At this time, as described above, the Japanese drinking water reference value 200 mg / L was set as the first freshwater quality reference value. As a result, the second-stage concentrated water on-off valve 9 was opened by the instruction from the bypass line control unit 12, and the second-stage concentrated water on-off valve 9 was opened. The first concentrated water bypass valve 10 is closed, the first fresh water is pressurized by the second-stage concentrated water flow rate control valve 8, and the second fresh water discharged from the second-stage reverse osmosis membrane module is treated as treated water to the treated water recovery unit. It was discharged.

このように、本発明の造水方法に基づき、いかなる原水の塩分濃度、原水温度、1段目逆浸透膜モジュール2の脱塩性能等によらず1段目逆浸透膜モジュール2の処理水水質データを水質基準値と比較し、2段目逆浸透膜モジュール3の第2濃縮水排出ライン18に設けられたバイパスライン20を切り替えることで一定の処理水量、処理水質を確保するとともに、2段目逆浸透膜モジュール3内を塩水もしくは淡水が流通することで脱塩性能低下を引き起こすバイオフィルム等の発生を抑制するこが可能である。   Thus, based on the fresh water generation method of the present invention, the quality of the treated water of the first-stage reverse osmosis membrane module 2 regardless of the salinity concentration of raw water, the raw water temperature, the desalting performance of the first-stage reverse osmosis membrane module 2, etc. By comparing the data with the water quality reference value and switching the bypass line 20 provided in the second concentrated water discharge line 18 of the second-stage reverse osmosis membrane module 3, a certain amount of treated water and treated water quality can be secured. It is possible to suppress the occurrence of a biofilm or the like that causes a decrease in desalting performance by circulating salt water or fresh water through the reverse osmosis membrane module 3.

1:供給ポンプ
2:1段目逆浸透膜モジュール
3:2段目逆浸透膜モジュール
4:2段目逆浸透膜モジュール淡水出口逆止弁
5:2段目逆浸透膜モジュール供給弁
6:2段目逆浸透膜モジュールバイパス弁
7:1段目濃縮水流量調節弁
8:2段目濃縮水流量調節弁
9:2段目濃縮水開閉弁
10:2段目濃縮水バイパス弁
11:水質計
12:バイパスライン制御ユニット
13:第1塩水供給ライン
14:第2塩水供給ライン
15:第1淡水排出ライン
16:第1濃縮水排出ライン
17:処理水排出ライン
18:第2濃縮水排出ライン
19:バイパスライン分岐部
20:バイパスライン
1: Supply pump 2: First stage reverse osmosis membrane module 3: Second stage reverse osmosis membrane module 4: Second stage reverse osmosis membrane module Fresh water outlet check valve 5: Second stage reverse osmosis membrane module supply valve 6: 2 Stage reverse osmosis membrane module bypass valve 7: Stage 1 concentrated water flow control valve 8: Stage 2 concentrated water flow control valve 9: Stage 2 concentrated water on-off valve 10: Stage 2 concentrated water bypass valve 11: Water quality meter 12: Bypass line control unit 13: First salt water supply line 14: Second salt water supply line 15: First fresh water discharge line 16: First concentrated water discharge line 17: Treated water discharge line 18: Second concentrated water discharge line 19 : Bypass line branch 20: Bypass line

Claims (2)

塩水を昇圧する供給ポンプと、
昇圧された前記塩水を逆浸透膜によって第1淡水と第1濃縮水とに分離する1段目逆浸透膜モジュールと、
前記第1淡水を逆浸透膜によって第2淡水と第2濃縮水とに分離する2段目逆浸透膜モジュールと、
一端が塩水供給ユニットに結合され、他端が前記供給ポンプに結合された第1塩水供給ラインと、
一端が前記供給ポンプに結合され、他端が前記1段目逆浸透膜モジュールの供給口に結合された第2塩水供給ラインと、
一端が前記1段目逆浸透膜モジュールの第1淡水排出口に結合され、他端が前記2段目逆浸透膜モジュールの供給口に結合され、前記第1淡水の塩分濃度または塩分濃度に換算可能な物理量を測定できる水質計を有する第1淡水排出ラインと、
一端が前記1段目逆浸透膜モジュールの第1濃縮水排出口に結合され、他端が濃縮水回収ユニットに結合された第1濃縮水排出ラインと、
一端が前記2段目逆浸透膜モジュールの第2淡水排出口に結合され、他端が処理水回収ユニットに結合された処理水排出ラインと、
一端が前記2段目逆浸透膜モジュールの第2濃縮水排出口に結合され、他端が前記第1濃縮水排出ラインに結合され、バイパスライン分岐部およびバイパスライン切替ユニットを有する第2濃縮水排出ラインと、
一端が前記バイパスライン分岐部に結合され、他端が前記処理水排出ラインに結合されたバイパスラインと、
前記水質計より得られた水質データに基づいて、前記バイパスライン切替ユニットを制御するバイパスライン制御ユニットと、
を備えた塩水淡水化装置。
A supply pump for boosting salt water;
A first-stage reverse osmosis membrane module that separates the pressurized salt water into first fresh water and first concentrated water by a reverse osmosis membrane;
A second-stage reverse osmosis membrane module that separates the first fresh water into a second fresh water and a second concentrated water by a reverse osmosis membrane;
A first salt water supply line having one end coupled to the salt water supply unit and the other end coupled to the supply pump;
A second salt water supply line having one end coupled to the supply pump and the other end coupled to the supply port of the first-stage reverse osmosis membrane module;
One end is coupled to the first freshwater discharge port of the first-stage reverse osmosis membrane module, and the other end is coupled to the supply port of the second-stage reverse osmosis membrane module, and converted to the salinity or salt concentration of the first freshwater A first fresh water discharge line having a water quality meter capable of measuring possible physical quantities;
A first concentrated water discharge line having one end coupled to the first concentrated water discharge port of the first-stage reverse osmosis membrane module and the other end coupled to the concentrated water recovery unit;
A treated water discharge line having one end coupled to the second fresh water discharge port of the second-stage reverse osmosis membrane module and the other end coupled to the treated water recovery unit;
The second concentrated water having one end coupled to the second concentrated water discharge port of the second-stage reverse osmosis membrane module and the other end coupled to the first concentrated water discharge line and having a bypass line branching unit and a bypass line switching unit A discharge line;
A bypass line having one end coupled to the bypass line branch and the other end coupled to the treated water discharge line;
Based on the water quality data obtained from the water quality meter, a bypass line control unit that controls the bypass line switching unit;
A saltwater desalination apparatus.
塩水を昇圧する供給ポンプと、
昇圧された前記塩水を逆浸透膜によって第1淡水と第1濃縮水とに分離する1段目逆浸透膜モジュールと、
前記第1淡水を逆浸透膜によって第2淡水と第2濃縮水とに分離する2段目逆浸透膜モジュールと、
一端が塩水供給ユニットに結合され、他端が前記供給ポンプに結合された第1塩水供給ラインと、
一端が前記供給ポンプに結合され、他端が前記1段目逆浸透膜モジュールの供給口に結合された第2塩水供給ラインと、
一端が前記1段目逆浸透膜モジュールの第1淡水排出口に結合され、他端が前記2段目逆浸透膜モジュールの供給口に結合された第1淡水排出ラインと、
一端が前記1段目逆浸透膜モジュールの第1濃縮水排出口に結合され、他端が濃縮水回収ユニットに結合された第1濃縮水排出ラインと、
一端が前記2段目逆浸透膜モジュールの第2淡水排出口に結合され、他端が処理水回収ユニットに結合された処理水排出ラインと、
一端が前記2段目逆浸透膜モジュールの第2濃縮水排出口に結合され、他端が前記第1濃縮水排出ラインに結合され、バイパスライン分岐部およびバイパスライン切替ユニットを有する第2濃縮水排出ラインと、
一端が前記バイパスライン分岐部に結合され、他端が前記処理水排出ラインに結合されたバイパスラインと、
を備えた塩水淡水化装置を用いて塩水を淡水化して処理水を得る造水方法であって、
前記第1淡水の塩分濃度または塩分濃度に換算可能な物理量に基づいて、前記バイパスライン切替ユニットを制御することを特徴とする造水方法。
A supply pump for boosting salt water;
A first-stage reverse osmosis membrane module that separates the pressurized salt water into first fresh water and first concentrated water by a reverse osmosis membrane;
A second-stage reverse osmosis membrane module that separates the first fresh water into a second fresh water and a second concentrated water by a reverse osmosis membrane;
A first salt water supply line having one end coupled to the salt water supply unit and the other end coupled to the supply pump;
A second salt water supply line having one end coupled to the supply pump and the other end coupled to the supply port of the first-stage reverse osmosis membrane module;
A first fresh water discharge line having one end coupled to the first fresh water discharge port of the first-stage reverse osmosis membrane module and the other end coupled to the supply port of the second-stage reverse osmosis membrane module;
A first concentrated water discharge line having one end coupled to the first concentrated water discharge port of the first-stage reverse osmosis membrane module and the other end coupled to the concentrated water recovery unit;
A treated water discharge line having one end coupled to the second fresh water discharge port of the second-stage reverse osmosis membrane module and the other end coupled to the treated water recovery unit;
The second concentrated water having one end coupled to the second concentrated water discharge port of the second-stage reverse osmosis membrane module and the other end coupled to the first concentrated water discharge line and having a bypass line branching unit and a bypass line switching unit A discharge line;
A bypass line having one end coupled to the bypass line branch and the other end coupled to the treated water discharge line;
A desalination method for obtaining treated water by desalinating salt water using a salt water desalination apparatus comprising:
The fresh water generation method characterized in that the bypass line switching unit is controlled based on a salinity concentration of the first fresh water or a physical quantity that can be converted into a salinity concentration.
JP2012176763A 2012-08-09 2012-08-09 Salt water desalination apparatus and fresh water production method Pending JP2014034005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012176763A JP2014034005A (en) 2012-08-09 2012-08-09 Salt water desalination apparatus and fresh water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176763A JP2014034005A (en) 2012-08-09 2012-08-09 Salt water desalination apparatus and fresh water production method

Publications (1)

Publication Number Publication Date
JP2014034005A true JP2014034005A (en) 2014-02-24

Family

ID=50283334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176763A Pending JP2014034005A (en) 2012-08-09 2012-08-09 Salt water desalination apparatus and fresh water production method

Country Status (1)

Country Link
JP (1) JP2014034005A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105303A (en) * 2017-12-12 2019-06-27 住友金属鉱山株式会社 Automatic shut-off device and automatic shut-off method capable of preventing water hammer
CN114206785A (en) * 2019-12-25 2022-03-18 奥加诺株式会社 Water treatment system and water treatment method
CN117147274A (en) * 2023-10-31 2023-12-01 成都博瑞科传科技有限公司 Multi-mode water sample concentration system and concentration method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105303A (en) * 2017-12-12 2019-06-27 住友金属鉱山株式会社 Automatic shut-off device and automatic shut-off method capable of preventing water hammer
CN114206785A (en) * 2019-12-25 2022-03-18 奥加诺株式会社 Water treatment system and water treatment method
CN114206785B (en) * 2019-12-25 2023-08-08 奥加诺株式会社 Water treatment system and water treatment method
CN117147274A (en) * 2023-10-31 2023-12-01 成都博瑞科传科技有限公司 Multi-mode water sample concentration system and concentration method thereof
CN117147274B (en) * 2023-10-31 2024-01-23 成都博瑞科传科技有限公司 Multi-mode water sample concentration system and concentration method thereof

Similar Documents

Publication Publication Date Title
JP4172394B2 (en) Fresh water generation method and fresh water generation apparatus
JP5929195B2 (en) Fresh water production apparatus and operation method thereof
JP4903113B2 (en) Water treatment system and operation method thereof
JP5549589B2 (en) Fresh water system
KR101011403B1 (en) Forward osmotic membrane module and forward osmotic desalination device for using forward osmotic membrane modul and the method thereof
JP5933926B2 (en) Seawater desalination system and seawater desalination method
US10308529B2 (en) Desalination apparatus and desalination method using same
Gao et al. Novel design and operational control of integrated ultrafiltration—Reverse osmosis system with RO concentrate backwash
JP2013126636A (en) Reverse osmosis treatment apparatus
JP2001239134A (en) Method for operating reverse osmosis treatment device, control device therefor and method for making water
JP2011120988A (en) Desalination apparatus and method
JP2008307487A (en) Desalting device
WO2013140848A1 (en) Seawater desalination apparatus
US20160002071A1 (en) Method of operating reverse osmosis membrane apparatus
JP2015104710A (en) Seawater desalination system
KR102094704B1 (en) Water supply management system
JP5966639B2 (en) Salt water desalination apparatus and fresh water generation method
JP2014034005A (en) Salt water desalination apparatus and fresh water production method
JP2018519158A (en) Method for controlling a desalination plant powered by a renewable energy source and associated plant
JP5377553B2 (en) Membrane filtration system and its operation method
JP2002085941A (en) Fresh water making process and fresh water maker
KR20170069614A (en) Saltwater desalination system
JP2013052349A (en) Water making method
JP3443806B2 (en) Fresh water production method
JP2005246281A (en) Seawater desalination method and seawater desalination apparatus