JP2013052349A - Water making method - Google Patents

Water making method Download PDF

Info

Publication number
JP2013052349A
JP2013052349A JP2011192419A JP2011192419A JP2013052349A JP 2013052349 A JP2013052349 A JP 2013052349A JP 2011192419 A JP2011192419 A JP 2011192419A JP 2011192419 A JP2011192419 A JP 2011192419A JP 2013052349 A JP2013052349 A JP 2013052349A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
membrane module
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011192419A
Other languages
Japanese (ja)
Inventor
Wataru Sugiura
亘 杉浦
Norio Ogata
則雄 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2011192419A priority Critical patent/JP2013052349A/en
Publication of JP2013052349A publication Critical patent/JP2013052349A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a water making method, which assures a certain quantity of water to be treated without depending on the temperature and salt concentration of raw water in a desalinizing apparatus for salt water which obtains freshwater from salt water such as sea water and brine using a reverse osmosis membrane module.SOLUTION: The water making method is carried out by using the desalinizing apparatus for salt water which comprises a supply pump 1 pressurizing salt water, a first stage reverse osmosis membrane module 2 separating fresh water and concentrated water from the pressurized water by a reverse osmosis membrane, a second stage reverse osmosis membrane module 3 separating fresh water, which is treated water, and concentrated water by a reverse osmosis membrane from the fresh water obtained by the first stage reverse osmosis membrane module 2, and a bypass line to take out the fresh water obtained by the first stage reverse osmosis membrane module 2 bypassing the second stage reverse osmosis membrane module 3, as treated water directly. In the water making method, the appropriateness decision about the use of the bypass line is carried out depending on the temperature of the salt water and the salt concentration.

Description

本発明は、逆浸透膜モジュールを用いて塩水から淡水を得る塩水淡水化装置を用いた造水方法に関するものであって、詳しくは、塩水の温度と塩濃度に応じて最適な運転方法を決定する塩水淡水化装置を用いた造水方法に関するものである。   The present invention relates to a fresh water generation method using a salt water desalination apparatus that obtains fresh water from salt water using a reverse osmosis membrane module, and more specifically, an optimum operation method is determined according to the temperature and salt concentration of salt water. The present invention relates to a fresh water generation method using a salt water desalination apparatus.

逆浸透膜法による海水淡水化及びかん水淡水化は、相変化無しに塩分や有害物質を分離除去でき、運転管理が容易でエネルギー的に有利であることから、飲料用或いは工業用の淡水を取得する分野で利用されている。逆浸透膜の透過性、分離性の低下を防ぐために、通常、海水やかん水を逆浸透膜に供給する前に、砂ろ過、凝集沈殿、加圧浮上、精密ろ過膜と限外ろ過膜のろ過などの方法を用いて前処理を行っている。   Seawater desalination and brine desalination using the reverse osmosis membrane method can separate and remove salinity and harmful substances without phase change, and are easy to manage and energy efficient. It is used in the field. To prevent reverse osmosis membrane permeability and separability from decreasing, sand filtration, coagulation sedimentation, pressurized flotation, microfiltration membrane and ultrafiltration membrane filtration are usually performed before supplying seawater or brine to the reverse osmosis membrane. Pre-processing is performed using a method such as

逆浸透膜の透過原理から、海水またはかん水など、ある程度の塩分を含んだ供給水が逆浸透膜を透過するには、高圧ポンプなどを用いて供給水の圧力を浸透圧以上にする必要がある。浸透圧は塩分濃度と関係するが、例えば海水を逆浸透膜で分離する場合、最低3MPa程度以上、実用性を考慮すると少なくとも5MPa程度以上の圧力が必要となる。かん水の場合でも最低1MPa程度以上の圧力が必要となる。   Based on the permeation principle of reverse osmosis membranes, it is necessary to make the supply water pressure higher than the osmotic pressure using a high-pressure pump or the like so that the supply water containing a certain amount of salt, such as seawater or brine, can permeate the reverse osmosis membrane. . The osmotic pressure is related to the salinity concentration. For example, when seawater is separated by a reverse osmosis membrane, a pressure of at least about 3 MPa or more and at least about 5 MPa is required in consideration of practicality. Even in the case of irrigation, a pressure of at least about 1 MPa is required.

また、処理水の水質の関係から、1段の逆浸透膜モジュールのみで必要な処理水水質が得られない場合、1段目逆浸透膜モジュールの処理水を2段目逆浸透膜モジュールに供給して処理を行う2段処理を行うことがある。2段処理を行うことにより、1段の逆浸透膜モジュールのみでは得られなかった良好な処理水水質を得ることができる。一方で、2段処理を行う上でのデメリットとして、トータル回収率の低下が挙げられる。回収率とは、処理水量/供給水量の比を示し、1に近いほど同量の供給水から得られる処理水量が多いことを示す。トータル回収率とは、2段の逆浸透膜モジュールを備えた塩水淡水化装置における、2段目処理水量/1段目供給水量の比を示す。一般的なTDS(総溶存塩濃度)が35000mg/Lの海水を処理する場合、1段目逆浸透膜モジュールの回収率は30%〜60%程度であり、2段目逆浸透膜モジュールの回収率は70%〜90%程度とすることが多い。つまり、1段処理では30%〜60%程度の回収率で処理水を生産できていたが、2段処理とすることよってトータル回収率が21%〜54%に低下する。   Also, if the required treated water quality cannot be obtained with only the first-stage reverse osmosis membrane module because of the quality of the treated water, the treated water from the first-stage reverse osmosis membrane module is supplied to the second-stage reverse osmosis membrane module. In some cases, two-stage processing is performed. By performing the two-stage treatment, it is possible to obtain a good treated water quality that cannot be obtained only by the one-stage reverse osmosis membrane module. On the other hand, as a demerit in performing the two-stage process, there is a decrease in the total recovery rate. The recovery rate indicates the ratio of treated water amount / feed water amount, and the closer to 1, the greater the amount of treated water obtained from the same amount of feed water. The total recovery rate indicates a ratio of the second-stage treated water amount / first-stage supplied water amount in a salt water desalination apparatus equipped with a two-stage reverse osmosis membrane module. When processing seawater with a general TDS (total dissolved salt concentration) of 35000 mg / L, the recovery rate of the first-stage reverse osmosis membrane module is about 30% to 60%, and the recovery of the second-stage reverse osmosis membrane module The rate is often about 70% to 90%. In other words, the treated water could be produced at a recovery rate of about 30% to 60% in the first stage treatment, but the total recovery rate is reduced to 21% to 54% by using the second stage treatment.

供給水が、あらかじめ塩濃度が明確となっている水であれば、その供給水塩濃度にあわせて装置を設計することによって、必要な処理水水質、水量を得ることができるが、災害対策用などの様々な原水を供給水として使用しなければならない装置においては、供給水塩濃度が設計時から明らかになっておらず、1段処理で処理可能な低塩濃度の水を2段処理してしまうと、無駄に処理水量を減らすことになってしまう。   If the supply water is a water whose salt concentration is clear in advance, the necessary quality and quantity of treated water can be obtained by designing the equipment according to the supply water salt concentration. In equipment that must use various raw water as feed water, the supply salt concentration is not clear from the time of design, and low salt concentration water that can be treated in one stage is treated in two stages. If this happens, the amount of treated water will be reduced.

この問題を解決するため、様々な提案がなされている。特許文献1では原水が海水の場合は2段処理を行い、かん水の場合は1段処理できるよう2段目逆浸透膜モジュールをバイパスするラインを設けることを提案している。また、特許文献2では、原水が海水の場合は2段処理を行い、かん水の場合は2段目逆浸透膜モジュールに直接1段目供給水を供給することによって、即ち、2段目逆浸透膜モジュールを1段目逆浸透膜モジュールとして使用することを提案している。いずれの場合も、供給水がかん水の場合に処理水量を増加させる効果を得ることができる。しかしながら原水が海水の場合は2段処理が前提となっており、トータル回収率は低くならざるを得ない。   Various proposals have been made to solve this problem. Patent Document 1 proposes to provide a line that bypasses the second-stage reverse osmosis membrane module so that two-stage treatment is performed when the raw water is seawater and one-stage treatment is possible when brine is used. In Patent Document 2, when raw water is seawater, two-stage treatment is performed, and when brine is supplied, the first-stage feed water is directly supplied to the second-stage reverse osmosis membrane module, that is, the second-stage reverse osmosis. It has been proposed to use the membrane module as a first-stage reverse osmosis membrane module. In either case, the effect of increasing the amount of treated water can be obtained when the supplied water is brine. However, when the raw water is seawater, a two-stage treatment is assumed, and the total recovery rate must be low.

特開2006−263542号公報JP 2006-263542 A 特許3957080号公報Japanese Patent No. 3957080

一方で、逆浸透膜モジュールによる2段処理においては、低水温時の水の粘度上昇による処理水量の低下の問題があることが分かった。同じ塩濃度の海水であっても水温が低下すると粘度上昇により逆浸透膜の透水性能が低下し、同量の処理水を得るためにはより高圧で供給水を供給しなければならなかった。例えば、2段目逆浸透膜モジュールの供給ラインにポンプを設置せず、1段目逆浸透膜モジュールの処理水ラインを2段目逆浸透膜モジュールの供給ラインに直結し、1段目逆浸透膜モジュール供給ラインのポンプによって2段目逆浸透膜モジュールまで連続して供給しようとすると、一般的な塩濃度35000mg/Lの海水の場合、水温がおよそ15℃を下回ると、一般的な逆浸透膜の設計圧力である8.4MPaを上回る圧力が必要となってしまうことが分かった。その場合、設計圧力を上回る圧力で運転することは通常認められないことから、トータル回収率を下げるなどの対策を採り、処理水量を減らした運転をせざるを得ない。即ち低水温時に定格水量が得られないという問題があった。   On the other hand, in the two-stage treatment by the reverse osmosis membrane module, it has been found that there is a problem of a decrease in the amount of treated water due to an increase in the viscosity of water at low water temperature. Even with seawater with the same salt concentration, the water permeability of the reverse osmosis membrane decreased due to an increase in viscosity when the water temperature decreased, and supply water had to be supplied at a higher pressure in order to obtain the same amount of treated water. For example, without installing a pump on the supply line of the second-stage reverse osmosis membrane module, the treated water line of the first-stage reverse osmosis membrane module is directly connected to the supply line of the second-stage reverse osmosis membrane module, and the first-stage reverse osmosis membrane module When trying to supply continuously to the second-stage reverse osmosis membrane module by the pump of the membrane module supply line, in the case of seawater with a general salt concentration of 35000mg / L, if the water temperature falls below about 15 ° C, the general reverse osmosis It has been found that a pressure exceeding the design pressure of the membrane, 8.4 MPa, is required. In that case, since it is not normally allowed to operate at a pressure exceeding the design pressure, measures such as lowering the total recovery rate must be taken to operate with a reduced amount of treated water. That is, there is a problem that the rated water volume cannot be obtained at a low water temperature.

本発明の目的は、逆浸透膜モジュールを用いて海水やかん水などの塩水から淡水を得る塩水淡水化装置において、原水の温度や塩濃度によらず一定の処理水量を確保する造水方法を提供することである。   An object of the present invention is to provide a fresh water generation method that ensures a constant amount of treated water regardless of the temperature and salt concentration of raw water in a salt water desalination apparatus that obtains fresh water from salt water such as seawater and brine using a reverse osmosis membrane module. It is to be.

前記課題を解決するための本発明は、次の特徴を有するものである。
(1)塩水を昇圧する供給ポンプ、昇圧された塩水を逆浸透膜によって淡水と濃縮水とに分離する1段目逆浸透膜モジュール、1段目逆浸透膜モジュールで得られた淡水を逆浸透膜によって処理水である淡水と濃縮水とに分離する2段目逆浸透膜モジュール、及び2段目逆浸透膜モジュールをバイパスして1段目逆浸透膜モジュールで得られた淡水をそのまま処理水として取り出すためのバイパスラインを備えた塩水淡水化装置を用いた造水方法であって、塩水の温度及び塩濃度に応じてバイパスラインの使用是非の判断を行うことを特徴とする造水方法。
(2)塩水の温度をT[℃]、塩水の塩濃度をC[mg/L]としたときに、不等式C<15T−2000T+72800が成り立つ場合にバイパスラインを使用する(1)に記載の造水方法。
The present invention for solving the above-described problems has the following characteristics.
(1) Supply pump for boosting salt water, reverse osmosis of fresh water obtained by the first-stage reverse osmosis membrane module and the first-stage reverse osmosis membrane module for separating the pressurized salt water into fresh water and concentrated water by a reverse osmosis membrane The second-stage reverse osmosis membrane module that separates the treated water into fresh water and concentrated water, and the fresh water obtained from the first-stage reverse osmosis membrane module by bypassing the second-stage reverse osmosis membrane module is treated as it is. A fresh water generation method using a salt water desalination apparatus provided with a bypass line for taking out as a method for determining whether or not to use a bypass line according to the temperature and salt concentration of salt water.
(2) The bypass line is used when the inequality C <15T 2 -2000T + 72800 holds when the salt water temperature is T [° C.] and the salt concentration is C [mg / L]. Fresh water generation method.

本発明によれば、比較的高温かつ低塩濃度の海水が原水の場合は2段処理を行い、必要な水量、水質とも確保でき、比較的低温かつ高塩濃度の海水が原水の場合は、2段目逆浸透膜モジュールを使用せずにバイパスすることによって、必要な水量、水質とも確保することができる。   According to the present invention, when seawater with relatively high temperature and low salt concentration is raw water, two-stage treatment is performed, and the required amount of water and water quality can be ensured. When seawater with relatively low temperature and high salt concentration is raw water, By bypassing without using the second-stage reverse osmosis membrane module, both the required amount of water and water quality can be ensured.

本発明の造水方法に係る塩水の温度と塩濃度を計測可能とした塩水淡水化装置を示すフロー図である。It is a flowchart which shows the salt water desalination apparatus which made it possible to measure the temperature and salt concentration of the salt water which concern on the water preparation method of this invention. 1段目逆浸透膜モジュール、及び2段目逆浸透膜モジュールを有する従来の塩水淡水化装置を示すフロー図である。It is a flowchart which shows the conventional salt water desalination apparatus which has a 1st step | paragraph reverse osmosis membrane module and a 2nd step | paragraph reverse osmosis membrane module.

本発明の実施形態を説明するために、まず、1段目逆浸透膜モジュール、及び2段目逆浸透膜モジュールを有する従来の塩水淡水化装置を比較例として説明する。   In order to describe an embodiment of the present invention, first, a conventional salt water desalination apparatus having a first-stage reverse osmosis membrane module and a second-stage reverse osmosis membrane module will be described as a comparative example.

従来の塩水淡水化装置は、図2に示すように、主に、供給ポンプ1、逆浸透膜(RO膜)からなる1段目逆浸透膜モジュール2、同じく逆浸透膜からなる2段目逆浸透膜モジュール3、2段目逆浸透膜モジュール3への通水とバイパスラインとを切り替えるための2段目逆浸透膜モジュール供給弁4、2段目逆浸透膜モジュールバイパス弁5、2段目逆浸透膜モジュールへの逆流を防止する逆止弁6からなる。   As shown in FIG. 2, the conventional salt water desalination apparatus mainly includes a feed pump 1, a first-stage reverse osmosis membrane module 2 composed of a reverse osmosis membrane (RO membrane), and a second-stage reverse osmosis membrane composed of a reverse osmosis membrane. Osmosis membrane module 3, second stage reverse osmosis membrane module supply valve 4, second stage reverse osmosis membrane module bypass valve 5, second stage for switching water flow to bypass line and second stage reverse osmosis membrane module 3 It consists of a check valve 6 that prevents backflow to the reverse osmosis membrane module.

従来の塩水淡水化装置の塩水淡水化のフローは、典型的には次に述べるとおりである。前処理装置から導入された塩水が供給ポンプ1によって加圧され、1段目逆浸透膜モジュール2に供給される。浸透膜モジュール2にて、逆浸透膜法により淡水、及び濃縮水に分離され、淡水は2段目逆浸透膜モジュール3に供給される。2段目逆浸透膜モジュール3にて、逆浸透膜法により淡水、及び濃縮水に分離され、淡水は処理水として取り出される。1段目逆浸透膜モジュール2から排出される濃縮水、及び2段目逆浸透膜モジュール3から排出される濃縮水はいずれも濃縮水として系外に排出される。   The flow of salt water desalination of a conventional salt water desalination apparatus is typically as described below. The salt water introduced from the pretreatment device is pressurized by the supply pump 1 and supplied to the first-stage reverse osmosis membrane module 2. In the osmosis membrane module 2, fresh water and concentrated water are separated by the reverse osmosis membrane method, and the fresh water is supplied to the second-stage reverse osmosis membrane module 3. In the second-stage reverse osmosis membrane module 3, it is separated into fresh water and concentrated water by the reverse osmosis membrane method, and the fresh water is taken out as treated water. The concentrated water discharged from the first-stage reverse osmosis membrane module 2 and the concentrated water discharged from the second-stage reverse osmosis membrane module 3 are both discharged out of the system as concentrated water.

従来の塩水淡水化装置を用いた造水方法は、典型的には次に述べるとおりである。前処理装置に導入される塩水が海水の場合、2段目逆浸透膜モジュール3を使用して処理水を得る。即ち、2段目逆浸透膜モジュール供給弁4を開とし、且つ2段目逆浸透膜モジュールバイパス弁5を閉止し、1段目逆浸透膜モジュール2で得られた淡水の全量を2段目逆浸透膜モジュール3に供給し、処理水を得る。前処理に供給される塩水がかん水の場合、2段目逆浸透膜モジュール3をバイパスして処理水を得る。即ち2段目逆浸透膜モジュール供給弁4を閉止し、且つ2段目逆浸透膜モジュールバイパス弁5を開とし、1段目逆浸透膜モジュール2で得られた淡水をそのまま処理水として系外に排出する。   A water production method using a conventional salt water desalination apparatus is typically as follows. When the salt water introduced into the pretreatment device is sea water, the second stage reverse osmosis membrane module 3 is used to obtain treated water. That is, the second-stage reverse osmosis membrane module supply valve 4 is opened, the second-stage reverse osmosis membrane module bypass valve 5 is closed, and the total amount of fresh water obtained by the first-stage reverse osmosis membrane module 2 is Supply to the reverse osmosis membrane module 3 to obtain treated water. When the brine supplied for pretreatment is brine, treated water is obtained by bypassing the second-stage reverse osmosis membrane module 3. That is, the second-stage reverse osmosis membrane module supply valve 4 is closed, the second-stage reverse osmosis membrane module bypass valve 5 is opened, and the fresh water obtained from the first-stage reverse osmosis membrane module 2 is treated directly as treated water. To discharge.

なお、前処理設備から導入された塩水は、通常逆浸透膜モジュール2で処理される前に前処理されることが好ましく、本発明の塩水淡水化装置においても好ましく採用することができる。前処理設備が導入される位置は通常、供給ポンプ1の上流であり、図1においても供給ポンプの上流に前処理設備が導入されている。ここで、前処理設備としては、精密膜ろ過あるいは限外膜ろ過、活性炭ろ過、保安フィルターなどが使用される。また、必要に応じ、殺菌剤、凝集剤、さらに還元剤、pH調整剤、スケール防止剤などの薬液添加を行うことができる。   In addition, it is preferable that the salt water introduce | transduced from the pre-processing equipment is normally pre-processed before processing with the reverse osmosis membrane module 2, and can also be preferably employ | adopted also in the salt water desalination apparatus of this invention. The position where the pretreatment facility is introduced is usually upstream of the supply pump 1, and the pretreatment facility is also introduced upstream of the supply pump in FIG. Here, precision membrane filtration or ultramembrane filtration, activated carbon filtration, a safety filter, etc. are used as pretreatment equipment. Moreover, chemical | medical solution additions, such as a disinfectant, a flocculant, a reducing agent, pH adjuster, a scale inhibitor, can be performed as needed.

ここで、供給ポンプ1とは、様々な形式があるが、本発明においては目的の圧力と流量を得られるものであれば特に形式を限定するものではなく、例えばプランジャーポンプのようなピストンタイプのポンプ、渦巻ポンプ、遠心ポンプ、多段遠心ポンプなどを適宜目的に応じて用いることができる。   Here, the supply pump 1 has various types. However, in the present invention, the type is not particularly limited as long as the desired pressure and flow rate can be obtained. For example, a piston type such as a plunger pump is used. These pumps, centrifugal pumps, centrifugal pumps, multistage centrifugal pumps, and the like can be appropriately used according to the purpose.

本発明で言う塩水とは、塩分を含む水の総称であり、塩化物イオン濃度が300から15,000mg/l程度の一般的にかん水と呼称する比較的低濃度の塩水や、塩化物イオン濃度が15,000から40,000mg/l程度の一般的に海水と呼称する比較的高濃度の塩水などを指すが、海水とかん水には明確な区分けは無く、比較的低濃度の海水をかん水として扱っても良い。また、塩水には北極圏などの0℃に近い海水から、中東の40℃を超える海水も対象となる。設置場所が予め決まっている塩水淡水化装置であれば、当該水域の年間最低水温と最高水温を調査し、その最低と最高の温度範囲において必要な処理水量が得られるよう、高圧ポンプの揚程や逆浸透膜モジュールの本数を選定することができるが、災害対策用の塩水淡水化装置などではできるだけ広い温度範囲で必要な処理水量が得られるようにすることが望ましい。   The salt water referred to in the present invention is a general term for salt-containing water, and a relatively low concentration salt water generally referred to as brine having a chloride ion concentration of about 300 to 15,000 mg / l, or a chloride ion concentration. This refers to relatively high-concentration salt water, generally referred to as seawater, of about 15,000 to 40,000 mg / l, but there is no clear distinction between seawater and brine, and relatively low-concentration seawater may be treated as brine. . In addition, seawater that is close to 0 ° C, such as the Arctic Circle, and seawater that exceeds 40 ° C in the Middle East are also subject to saltwater. If the installation location is a salt water desalination system, the annual minimum and maximum water temperatures of the water area will be investigated, and the head of the high-pressure pump will be adjusted so that the required amount of treated water can be obtained in the minimum and maximum temperature ranges. Although the number of reverse osmosis membrane modules can be selected, it is desirable that a necessary amount of treated water be obtained in a temperature range as wide as possible in a saltwater desalination apparatus for disaster countermeasures.

即ち、原水が海水あるいはかん水であるという種類で運転方法を変えるのでなく、塩水の塩濃度と温度で運転方法を変えることが望ましい。即ち、塩濃度と温度にそれぞれしきい値を設けて、そのしきい値を超えた塩水の場合は2段目逆浸透膜モジュールを使用し、しきい値を下回った場合は2段目逆浸透膜モジュールをバイパスする、といった運転方法が採用できる。その場合の塩水の塩濃度測定の手段としては、装置内に組み込んだ電気電導度計の指示値を塩分濃度に換算しても良いし、電気電導度計の指示値そのものにしきい値を設けても良い。また、塩水のサンプリングを行って、TDS濃度分析を行っても良いし、塩水中の一部又は複数のイオン濃度分析を行って、しきい値を設定しても良い。温度測定の方法としては、水温を測定できるものであれば制約は無く、熱電対、抵抗温度計、放射温度計、液柱温度計、バイメタル式温度計などを使用することができる。   That is, it is desirable to change the operation method according to the salt concentration and temperature of salt water, instead of changing the operation method depending on the type of raw water being seawater or brine. That is, a threshold value is set for each of the salt concentration and the temperature, and when the salt water exceeds the threshold value, the second-stage reverse osmosis membrane module is used. An operation method such as bypassing the membrane module can be employed. As a means for measuring the salt concentration of salt water in that case, the indication value of the electric conductivity meter incorporated in the apparatus may be converted into the salt concentration, or a threshold value is provided for the indication value itself of the electric conductivity meter. Also good. Further, sampling of salt water may be performed to perform TDS concentration analysis, or a threshold value may be set by performing partial or plural ion concentration analysis in salt water. The temperature measurement method is not limited as long as the water temperature can be measured, and a thermocouple, a resistance thermometer, a radiation thermometer, a liquid column thermometer, a bimetal thermometer, and the like can be used.

ここで、本発明に係る1段目逆浸透膜モジュール2および2段目逆浸透膜モジュール3に使用される逆浸透膜とは、供給液の一部の成分、例えば塩分を透過させ他の成分を透過させない半透性膜である。その素材には酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材が使用できる。膜形態には中空糸膜、平膜などがある。本発明では、逆浸透膜の素材、膜形態によらず利用することができる。   Here, the reverse osmosis membrane used in the first-stage reverse osmosis membrane module 2 and the second-stage reverse osmosis membrane module 3 according to the present invention refers to other components that permeate some components of the supply liquid, for example, salt. It is a semipermeable membrane that does not allow permeation. The material can be a polymer material such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer. Examples of membrane forms include hollow fiber membranes and flat membranes. In this invention, it can utilize regardless of the raw material and membrane form of a reverse osmosis membrane.

逆浸透膜エレメントとは上記逆浸透膜を実際に使用するための形態化したものであり平膜、スパイラル、チューブラー、プレート・アンド・フレームのエレメントに組み込んで、また中空糸膜は束ねた上でエレメントに組み込んで使用することができるが、本発明ではこれらの逆浸透膜エレメントの形態に左右されるものではない。   The reverse osmosis membrane element is a form for practical use of the above reverse osmosis membrane. It is incorporated into a flat membrane, spiral, tubular, plate and frame element, and the hollow fiber membrane is bundled. However, in the present invention, it does not depend on the form of these reverse osmosis membrane elements.

逆浸透膜モジュールとは上述の逆浸透膜エレメントの1本〜数本を圧力容器の中に収めたモジュールを並列に配置したもので、その組合せ、本数、配列は目的に応じて任意に行うことができる。   A reverse osmosis membrane module is a module in which one to several of the above-mentioned reverse osmosis membrane elements are placed in parallel in a pressure vessel, and the combination, number, and arrangement are arbitrarily determined according to the purpose. Can do.

本発明では、図1に示す実施形態(実施例)のように、塩水淡水化装置のフローは比較例(図2)と同一である。但し、図1に示すとおり、供給ポンプ1の上流側に水温を測定する手段である水温計7、及び塩濃度を測定する手段である塩濃度計8を有することが望ましい。水温計、及び/又は塩濃度計は装置内に必ずしも組み込む必要は無く、塩水のサンプリングを行って、水温、及び/又は塩濃度を測定しても良い。また、水温計としては、水温を測定できるものであれば制約は無く、熱電対、抵抗温度計、放射温度計、液柱温度計、バイメタル式温度計などを使用することができる。塩濃度計としては、塩濃度を測定でき、若しくは塩濃度に換算できる物理量を測定できるもの、若しくは塩濃度の代替として使用可能な物理量を測定できるものであれば制約は無く、電気電導度計の指示値を塩分濃度に換算しても良いし、TDS濃度分析を実施しても良い。また、塩水中の一部又は複数のイオン濃度分析を行い、その濃度を用いても良い。   In this invention, like embodiment (Example) shown in FIG. 1, the flow of a salt water desalination apparatus is the same as a comparative example (FIG. 2). However, as shown in FIG. 1, it is desirable to have a water temperature meter 7 as a means for measuring the water temperature and a salt concentration meter 8 as a means for measuring the salt concentration on the upstream side of the supply pump 1. The water temperature meter and / or the salt concentration meter are not necessarily incorporated in the apparatus, and the salt water sampling may be performed to measure the water temperature and / or the salt concentration. The water temperature meter is not limited as long as it can measure the water temperature, and a thermocouple, a resistance thermometer, a radiation thermometer, a liquid column thermometer, a bimetal thermometer, or the like can be used. The salt concentration meter is not limited as long as it can measure the salt concentration, or can measure a physical quantity that can be converted into the salt concentration, or can measure a physical quantity that can be used as an alternative to the salt concentration. The indicated value may be converted into a salinity concentration or a TDS concentration analysis may be performed. Alternatively, partial or multiple ion concentration analysis in salt water may be performed and the concentration may be used.

本発明の造水方法は、塩水の温度及び塩濃度に応じて2段目逆浸透膜モジュール3を使用するかバイパスするかの判断を行う点に特徴を有する。本発明の造水方法は、この特徴を備えることで、塩濃度のみでバイパスする運転方法に比較し、低温時に処理水量を増加させることが可能となる。   The fresh water generation method of the present invention is characterized in that it is determined whether to use or bypass the second-stage reverse osmosis membrane module 3 according to the temperature and salt concentration of salt water. By providing this feature, the fresh water generation method of the present invention makes it possible to increase the amount of treated water at a low temperature, as compared to an operation method that bypasses only by salt concentration.

本発明の具体的な実施例を以下に示す。この例では、処理水の塩濃度の目標は、TDS濃度で200mg/L以下とする。この時、1段目逆浸透膜モジュール2のみを使用し、2段目逆浸透膜モジュール3をバイパスした運転を行った場合に、処理水塩濃度(TDS)が200mg/Lとなる、塩水の水温と塩濃度の相関は以下の通りであった。   Specific examples of the present invention are shown below. In this example, the target salt concentration of the treated water is set to 200 mg / L or less in terms of TDS concentration. At this time, when only the first-stage reverse osmosis membrane module 2 is used and the operation is performed with the second-stage reverse osmosis membrane module 3 being bypassed, the treated water salt concentration (TDS) is 200 mg / L. The correlation between water temperature and salt concentration was as follows.

Figure 2013052349
Figure 2013052349

表1より、例えば塩水塩濃度が25000mg/Lの場合は、水温30.7℃以下であれば2段目逆浸透膜モジュール3をバイパスした運転を行っても処理水塩濃度200mg/L以下の処理水を得ることができ、逆に水温が30.7℃を上回ると、2段目逆浸透膜モジュール3を使用した運転をしないと処理水塩濃度200mg/L以下の処理水を得られないことが分かる。   From Table 1, for example, when the salt water salt concentration is 25000 mg / L, if the water temperature is 30.7 ° C. or less, even if the operation bypassing the second-stage reverse osmosis membrane module 3 is performed, the treated water salt concentration is 200 mg / L or less. Treated water can be obtained. Conversely, if the water temperature exceeds 30.7 ° C, treated water having a treated water salt concentration of 200 mg / L or less cannot be obtained unless the second stage reverse osmosis membrane module 3 is operated. I understand that.

ここで、塩水の温度をT[℃]、塩水の塩濃度をC[mg/L]として表1の結果からTとCの関係式を示す近似曲線を求めると、以下の式1が得られる。   Here, when the temperature of the salt water is T [° C.] and the salt concentration of the salt water is C [mg / L], an approximate curve showing the relational expression of T and C is obtained from the results of Table 1, and the following formula 1 is obtained. .

C=15T−2000T+72800 ・・・(式1)
即ち、以下の式2が成り立つ時には、2段目逆浸透膜モジュール3をバイパスした運転を行っても処理水塩濃度200mg/Lを満足することができ、式2が成り立たない時には、2段目逆浸透膜モジュール3を使用することで処理水塩濃度200mg/Lを満足することができることが分かる。このように、本発明の造水方法においては、式2を用いて2段目逆浸透膜モジュール3を使用するかバイパスするかの判断を行うことが好ましい。
C = 15T 2 −2000T + 72800 (Formula 1)
That is, when the following formula 2 is satisfied, the treated water salt concentration of 200 mg / L can be satisfied even if the operation is performed by bypassing the second-stage reverse osmosis membrane module 3, and when the formula 2 is not satisfied, the second-stage reverse osmosis membrane module 3 is bypassed. It can be seen that the use of the reverse osmosis membrane module 3 can satisfy the treated water salt concentration of 200 mg / L. Thus, in the fresh water generation method of the present invention, it is preferable to use Formula 2 to determine whether to use or bypass the second-stage reverse osmosis membrane module 3.

C<15T−2000T+72800 ・・・(式2)
(ただし、塩水の温度をT[℃]、塩水の塩濃度をC[mg/L]とする。)
式2を用いて運転方法の判断を行うことにより、海水であっても海水温度が式2を満たす程度に高ければ1段処理のみで処理水質を満足する処理水を得ることが分かることから、トータル回収率を高くすることができ、低温時の処理水量の減少を防止することができる。
C <15T 2 −2000T + 72800 (Formula 2)
(However, the temperature of salt water is T [° C.] and the salt concentration of salt water is C [mg / L].)
By judging the operation method using Equation 2, it can be seen that even if it is seawater, if the seawater temperature is high enough to satisfy Equation 2, it will be possible to obtain treated water that satisfies treated water quality only by one-stage treatment. The total recovery rate can be increased, and a reduction in the amount of treated water at low temperatures can be prevented.

なお、実施例では処理水塩濃度は200mg/L以下とすることを前提にしているが、他のプラントに応用する場合は、このしきい値を自由に変更し、適用することができる。また、式2も様々なプラントによって様々な式を取り得ることから、シミュレーションを行って、適用するプラントに合わせた式2を導くことができる。   In the examples, it is assumed that the treated water salt concentration is 200 mg / L or less, but this threshold value can be freely changed and applied when applied to other plants. Moreover, since Formula 2 can also take various formulas with various plants, it is possible to derive Formula 2 according to the applied plant by performing simulation.

このように、本発明の造水方法に基づき、塩水の温度及び塩濃度に応じて2段目逆浸透膜モジュール3を使用するかバイパスするかの判断を行うことにより、原水の温度や塩濃度によらず一定の処理水量を確保することができる。   Thus, based on the fresh water generation method of the present invention, by determining whether to use or bypass the second-stage reverse osmosis membrane module 3 according to the temperature and salt concentration of salt water, the temperature and salt concentration of raw water are determined. Regardless of this, a certain amount of treated water can be secured.

1:供給ポンプ
2:1段目逆浸透膜モジュール
3:2段目逆浸透膜モジュール
4:2段目逆浸透膜供給弁
5:2段目逆浸透膜バイパス弁
6:2段目逆浸透膜モジュール淡水出口逆止弁
7:水温計
8:塩濃度計
1: Supply pump 2: 1st stage reverse osmosis membrane module 3: 2nd stage reverse osmosis membrane module 4: 2nd stage reverse osmosis membrane supply valve 5: 2nd stage reverse osmosis membrane bypass valve 6: 2nd stage reverse osmosis membrane Module fresh water outlet check valve 7: Water temperature gauge 8: Salt concentration meter

Claims (2)

塩水を昇圧する供給ポンプ、昇圧された塩水を逆浸透膜によって淡水と濃縮水とに分離する1段目逆浸透膜モジュール、1段目逆浸透膜モジュールで得られた淡水を逆浸透膜によって処理水である淡水と濃縮水とに分離する2段目逆浸透膜モジュール、及び2段目逆浸透膜モジュールをバイパスして1段目逆浸透膜モジュールで得られた淡水をそのまま処理水として取り出すためのバイパスラインを備えた塩水淡水化装置を用いた造水方法であって、塩水の温度及び塩濃度に応じてバイパスラインの使用是非の判断を行うことを特徴とする造水方法。 Supply pump that boosts salt water, first-stage reverse osmosis membrane module that separates pressurized salt water into fresh water and concentrated water by reverse osmosis membrane, and treats fresh water obtained by first-stage reverse osmosis membrane module by reverse osmosis membrane To bypass the second-stage reverse osmosis membrane module that separates the fresh water and concentrated water, and the second-stage reverse osmosis membrane module, and extract fresh water obtained from the first-stage reverse osmosis membrane module as treated water as it is. A fresh water generation method using a salt water desalination apparatus having a bypass line, wherein the use of the bypass line is determined according to the temperature and salt concentration of the salt water. 塩水の温度をT[℃]、塩水の塩濃度をC[mg/L]としたときに、不等式C<15T−2000T+72800が成り立つ場合にバイパスラインを使用する請求項1に記載の造水方法。 The fresh water generation method according to claim 1, wherein a bypass line is used when the inequality C <15T 2 -2000T + 72800 holds when the temperature of the salt water is T [° C.] and the salt concentration of the salt water is C [mg / L]. .
JP2011192419A 2011-09-05 2011-09-05 Water making method Pending JP2013052349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011192419A JP2013052349A (en) 2011-09-05 2011-09-05 Water making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011192419A JP2013052349A (en) 2011-09-05 2011-09-05 Water making method

Publications (1)

Publication Number Publication Date
JP2013052349A true JP2013052349A (en) 2013-03-21

Family

ID=48129831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011192419A Pending JP2013052349A (en) 2011-09-05 2011-09-05 Water making method

Country Status (1)

Country Link
JP (1) JP2013052349A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493446B1 (en) * 2013-07-18 2015-02-16 (주)대우건설 Energy-saving seawater desalination apparatus and method using nano filtration
JP2015142903A (en) * 2013-12-26 2015-08-06 栗田工業株式会社 Operational method of reverse osmosis membrane device and reverse osmosis membrane device
CN105366742A (en) * 2015-11-05 2016-03-02 东华工程科技股份有限公司 Method for allocating quality and quantity of reuse water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10314734A (en) * 1997-05-14 1998-12-02 Toshiba Corp Water distilling plant control device
JP2006263542A (en) * 2005-03-23 2006-10-05 Kurita Water Ind Ltd Water making apparatus and water making method
JP2010063976A (en) * 2008-09-09 2010-03-25 Ebara Corp Membrane separation apparatus and method of operating the same
JP2011120988A (en) * 2009-12-09 2011-06-23 Mitsubishi Heavy Ind Ltd Desalination apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10314734A (en) * 1997-05-14 1998-12-02 Toshiba Corp Water distilling plant control device
JP2006263542A (en) * 2005-03-23 2006-10-05 Kurita Water Ind Ltd Water making apparatus and water making method
JP2010063976A (en) * 2008-09-09 2010-03-25 Ebara Corp Membrane separation apparatus and method of operating the same
JP2011120988A (en) * 2009-12-09 2011-06-23 Mitsubishi Heavy Ind Ltd Desalination apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493446B1 (en) * 2013-07-18 2015-02-16 (주)대우건설 Energy-saving seawater desalination apparatus and method using nano filtration
JP2015142903A (en) * 2013-12-26 2015-08-06 栗田工業株式会社 Operational method of reverse osmosis membrane device and reverse osmosis membrane device
CN105366742A (en) * 2015-11-05 2016-03-02 东华工程科技股份有限公司 Method for allocating quality and quantity of reuse water

Similar Documents

Publication Publication Date Title
JP5549589B2 (en) Fresh water system
JP4808399B2 (en) Two-stage nanofiltration seawater desalination system
EP1468964A1 (en) Method of generating fresh water and fresh-water generator
US20030121856A1 (en) Desalination system
US20130140233A1 (en) Fresh water producing apparatus and method for operating same
JP2001239134A (en) Method for operating reverse osmosis treatment device, control device therefor and method for making water
KR102107881B1 (en) Method for treating water containing low molecular weight organic substance
WO2012111402A1 (en) Water treatment system and method for injecting flocculant therefor
JP2008149285A (en) Water treatment system for producing drinking water and its operation method
JP2008100220A (en) Method for producing freshwater
US20160220964A1 (en) Fresh water generation system and fresh water generation method
JP2015104710A (en) Seawater desalination system
JP2013052349A (en) Water making method
JP2014184438A (en) Reverse osmosis treatment apparatus
KR101578470B1 (en) Closed circuit desalination retrofit unit for improved performance of common reverse osmosis systems
JP5966639B2 (en) Salt water desalination apparatus and fresh water generation method
JP2017012985A (en) Water treatment system and method
JP2002085941A (en) Fresh water making process and fresh water maker
JP2010207805A (en) Fresh water generator and fresh water generating method
JP2014034005A (en) Salt water desalination apparatus and fresh water production method
JP2000051663A (en) Apparatus and method for separation of reverse osmosis membrane
JP4825932B2 (en) Water treatment method
Cséfalvay et al. Applicability of nanofiltration and reverse osmosis for the treatment of wastewater of different origin
JP2005246281A (en) Seawater desalination method and seawater desalination apparatus
JP2004097911A (en) Treatment method for highly concentrated solution using reverse osmosis membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151027