JP2010063976A - Membrane separation apparatus and method of operating the same - Google Patents

Membrane separation apparatus and method of operating the same Download PDF

Info

Publication number
JP2010063976A
JP2010063976A JP2008231159A JP2008231159A JP2010063976A JP 2010063976 A JP2010063976 A JP 2010063976A JP 2008231159 A JP2008231159 A JP 2008231159A JP 2008231159 A JP2008231159 A JP 2008231159A JP 2010063976 A JP2010063976 A JP 2010063976A
Authority
JP
Japan
Prior art keywords
reverse osmosis
raw water
flow rate
osmosis membrane
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008231159A
Other languages
Japanese (ja)
Inventor
Takayuki Ishiwatari
隆行 石渡
Shigeo Takita
茂雄 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2008231159A priority Critical patent/JP2010063976A/en
Publication of JP2010063976A publication Critical patent/JP2010063976A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane separation apparatus and a method of operating the same which can recover energy of high-pressure concentrated water discharged from a reverse osmosis membrane cartridge with high efficiency, can optimally control the whole power consumption of the membrane separation apparatus, and can stably supply the required flow rate of diluted water with optimum control while securing appropriate water quality. <P>SOLUTION: The membrane separation apparatus is provided with a supply seawater bypass line 15 for joining raw water pressurized by a positive displacement energy recovering device 5 with high-pressure raw water flowing through a high-pressure line 10 using the energy recovering device 5, a booster pump 6, a temperature sensor 43, and a controller 7 for controlling the flow rate of supply raw water. The controller 7 controls the flow rate of the raw water supplied to the reverse osmosis membrane cartridge 4 so as to obtain the preset diluted water flow rate Q<SB>1</SB>, by using raw water temperature detected by the temperature sensor 43, the membrane characteristics of a reverse osmosis membrane 4a of the reverse osmosis membrane cartridge 4 on temperature, a relationship between the concentration of solutes in the raw water and reverse osmosis, and a relationship between the performance curves of a high-pressure pump 3 and the booster pump 6. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、逆浸透膜カートリッジに海水等の原水を高圧ポンプで加圧して供給し、淡水等の希薄水を得る膜分離装置、及びその運転方法にある。   The present invention resides in a membrane separation device for supplying raw water such as seawater to a reverse osmosis membrane cartridge by pressurizing with a high pressure pump to obtain diluted water such as fresh water, and an operation method thereof.

上記膜分離装置を海水淡水化設備で説明すると、海水淡水化設備は主として、前処理装置、高圧ポンプ、逆浸透膜カートリッジから構成されている。取水された海水は、前処理装置により一定水質の条件に整えられた後、高圧ポンプにより加圧され、逆浸透膜カートリッジへと圧送される。逆浸透膜カートリッジ内の高圧海水の一部は逆浸透圧に打ち勝って逆浸透膜を通過し、塩分が除去された淡水として取り出される。その他の海水は、塩分濃度が高くなり濃縮された状態で逆浸透膜カートリッジから濃縮海水(リジェクト)として排出される。海水淡水化設備における最大の運用コストである使用する電力の半分以上は、高圧ポンプによる海水の加圧に費やされる。従って、逆浸透膜カートリッジから排出された高塩分濃度の濃縮海水(リジェクト)が保有する圧力エネルギーを回収する方法が、特許文献1乃至3等で紹介されている。   If the said membrane separation apparatus is demonstrated with seawater desalination equipment, seawater desalination equipment is mainly comprised from the pre-processing apparatus, the high pressure pump, and the reverse osmosis membrane cartridge. The taken seawater is adjusted to a condition of constant water quality by a pretreatment device, then pressurized by a high pressure pump and pumped to a reverse osmosis membrane cartridge. A part of the high-pressure seawater in the reverse osmosis membrane cartridge overcomes the reverse osmosis pressure, passes through the reverse osmosis membrane, and is taken out as fresh water from which the salt content has been removed. The other seawater is discharged as concentrated seawater (reject) from the reverse osmosis membrane cartridge in a state where the salinity is increased and concentrated. More than half of the electric power used, which is the maximum operating cost of seawater desalination facilities, is spent on pressurizing seawater with a high-pressure pump. Therefore, Patent Documents 1 to 3 disclose a method for recovering the pressure energy held by concentrated seawater (reject) having a high salinity concentration discharged from a reverse osmosis membrane cartridge.

上記特許文献1乃至3に示す膜分離装置では、エネルギー回収にペルトン水車を用い流量制御弁を介して逆浸透膜カートリッジからの濃縮海水(リジェクト)をペルトン水車に供給し、この水車の回転力で、高圧ポンプの回転力を助成するように構成されている。また、エネルギー回収に逆転ポンプを用いたものもある。このようにエネルギー回収にペルトン水車や逆転ポンプを用いるものはエネルギー回収効率が低いという問題があった。   In the membrane separation devices shown in Patent Documents 1 to 3, a concentrated water (reject) from a reverse osmosis membrane cartridge is supplied to a Pelton turbine through a flow control valve using a Pelton turbine for energy recovery, and the rotational force of the turbine is used. It is configured to support the rotational force of the high-pressure pump. Some use a reverse pump for energy recovery. As described above, those using a Pelton turbine or reverse pump for energy recovery have a problem of low energy recovery efficiency.

一方、容積形エネルギー回収装置(例えば、容積形のピストンポンプ)は、一般的にエネルギー回収効率が高く、エネルギー回収装置に容積形を用いているものもある。しかしながら、エネルギー回収装置に容積形を用いた既存のものは、エネルギー回収装置自体のエネルギー回収効率や動作のみに関しての着眼に基づくものであり、逆浸透膜の浸透圧特性を考慮した流量調整を行うものではなかった。
特開昭59−189910号公報 特開昭59−199004号公報 国際公開第1985/001221号
On the other hand, a positive displacement energy recovery device (for example, a positive displacement piston pump) generally has a high energy recovery efficiency, and there are some which use a positive displacement type energy recovery device. However, the existing type using the volume type for the energy recovery device is based on the focus on only the energy recovery efficiency and operation of the energy recovery device itself, and the flow rate is adjusted in consideration of the osmotic pressure characteristics of the reverse osmosis membrane. It was not a thing.
JP 59-189910 A JP 59-199004 A International Publication No. 1985/001221

本発明は上述の点に鑑みてなされたもので、エネルギー回収にペルトン水車や逆転ポンプを用いたときより、高い効率で逆浸透膜カートリッジから排出された高圧濃縮水が有するエネルギーを回収でき、膜分離装置の全体の消費電力量を最適に制御でき、要求された希薄水の流量を適切な水質を確保しつつ、最適な制御で安定して供給できる膜分離装置、膜分離装置の運転方法を提供することを目的とする。   The present invention has been made in view of the above points, and can recover the energy of the high-pressure concentrated water discharged from the reverse osmosis membrane cartridge with higher efficiency than when using a Pelton turbine or a reverse pump for energy recovery. A membrane separation device that can optimally control the overall power consumption of the separation device and can stably supply the required flow rate of dilute water with optimum control while ensuring the appropriate water quality, and a method for operating the membrane separation device The purpose is to provide.

また、本発明は、簡易かつ低価格で操作性のよい流量制御装置を備えた膜分離装置、膜分離装置の運転方法を提供することを目的とする。   Another object of the present invention is to provide a membrane separation apparatus equipped with a flow rate control device that is simple, inexpensive, and has good operability, and a method for operating the membrane separation apparatus.

上記課題を解決するため本発明は、供給された原水を加圧する高圧ポンプと、逆浸透膜カートリッジと、逆浸透膜カートリッジより濃縮水側下流に配置したエネルギー回収手段とを備え、高圧ポンプで加圧された高圧原水を逆浸透膜カートリッジに導入し、希薄水と濃縮水に分離する膜分離装置において、エネルギー回収手段として逆浸透膜カートリッジより排出される濃縮水を導入し、供給される原水の一部を加圧する容積形エネルギー回収装置を用い、容積形エネルギー回収装置で加圧された原水を高圧ポンプと逆浸透膜カートリッジを接続する高圧ラインを流れる高圧原水に合流させるバイパスラインと、バイパスラインの途中に設けられ該バイパス配管中を流れる原水を加圧するブースタポンプと、逆浸透膜カートリッジに供給される原水の温度を検出する原水温度センサと、逆浸透膜カートリッジに供給される原水流量を制御する原水流量制御手段を設け、原水流量制御手段は、原水温度センサで検出された原水の温度、逆浸透膜カートリッジの逆浸透膜の温度に対する膜特性、原水中の溶質濃度と逆浸透圧の関係、高圧ポンプ及びブースタポンプの性能曲線の関係を用いて設定された所定の希薄水流量が得られるように逆浸透膜カートリッジに供給される原水流量を制御することを特徴とする。   In order to solve the above-mentioned problems, the present invention comprises a high-pressure pump that pressurizes the supplied raw water, a reverse osmosis membrane cartridge, and energy recovery means disposed downstream of the reverse osmosis membrane cartridge on the concentrated water side, and is added by a high-pressure pump. In the membrane separation device that introduces the pressurized high-pressure raw water into the reverse osmosis membrane cartridge and separates it into dilute water and concentrated water, the concentrated water discharged from the reverse osmosis membrane cartridge is introduced as energy recovery means, and the supplied raw water A bypass line that uses a positive-pressure energy recovery device that pressurizes a part of the raw water and joins the raw water pressurized by the positive-pressure energy recovery device with the high-pressure raw water that flows through the high-pressure line that connects the high-pressure pump and reverse osmosis membrane cartridge; And a booster pump that pressurizes raw water flowing in the bypass pipe and a reverse osmosis membrane cartridge. A raw water temperature sensor for detecting the temperature of the raw water and a raw water flow rate control means for controlling the flow rate of the raw water supplied to the reverse osmosis membrane cartridge are provided. The raw water flow rate control means includes the temperature of the raw water detected by the raw water temperature sensor, reverse osmosis. A predetermined dilute water flow rate set using the membrane characteristics of the membrane cartridge with respect to the temperature of the reverse osmosis membrane, the relationship between the solute concentration in the raw water and the reverse osmotic pressure, and the performance curve of the high-pressure pump and booster pump is obtained. The flow rate of raw water supplied to the reverse osmosis membrane cartridge is controlled.

上記のようにエネルギー回収手段として逆浸透膜カートリッジより濃縮水を導入し、供給される原水の一部を加圧する容積形エネルギー回収装置を採用し、原水流量制御手段は、原水温度センサで検出された原水の温度、逆浸透膜カートリッジの逆浸透膜の温度に対する膜特性、原水中の溶質濃度と逆浸透圧の関係、高圧ポンプ及びブースタポンプの性能曲線の関係を用いて設定された所定の希薄水流量が得られるように逆浸透膜カートリッジに供給される原水流量を制御するので、逆浸透膜カートリッジから排出された高圧濃縮水の圧力エネルギーを効果的に回収、即ち高圧ポンプが原水を加圧するエネルギーと容積形エネルギー回収装置が回収するエネルギーの差を最小にすることができる。   As described above, a volumetric energy recovery device that introduces concentrated water from the reverse osmosis membrane cartridge as an energy recovery means and pressurizes a part of the supplied raw water is adopted, and the raw water flow rate control means is detected by the raw water temperature sensor. Specified dilution using the relationship between the raw water temperature, the membrane characteristics of the reverse osmosis membrane cartridge with respect to the reverse osmosis membrane temperature, the relationship between the solute concentration in the raw water and the reverse osmotic pressure, and the performance curves of the high pressure pump and booster pump Since the flow rate of the raw water supplied to the reverse osmosis membrane cartridge is controlled so that the water flow rate can be obtained, the pressure energy of the high pressure concentrated water discharged from the reverse osmosis membrane cartridge is effectively recovered, that is, the high pressure pump pressurizes the raw water. The difference between the energy and the energy recovered by the positive energy recovery device can be minimized.

また、本発明は、上記膜分離装置において、設定された所定の希薄水流量は、希薄水流の適切な水質を確保しつつ、逆浸透膜の希薄水流量曲線上の最適な流量であることを特徴とする。   Further, according to the present invention, in the membrane separation apparatus, the predetermined dilute water flow rate set is an optimum flow rate on the dilute water flow curve of the reverse osmosis membrane while ensuring an appropriate water quality of the dilute water flow. Features.

また、本発明は、上記膜分離装置において、原水流量制御手段は、高圧ポンプ及び/又はブースタポンプの回転数を制御して逆浸透膜カートリッジに供給される原水流量を制御することを特徴とする。   In the membrane separation apparatus according to the present invention, the raw water flow rate control means controls the flow rate of the raw water supplied to the reverse osmosis membrane cartridge by controlling the rotation speed of the high-pressure pump and / or the booster pump. .

また、本発明は、上記膜分離装置において、高圧ライン、バイパスライン、逆浸透膜カートリッジから吐出された濃縮水を容積形エネルギー回収装置に導く濃縮ライン、該容積形エネルギー回収装置から濃縮水を排水する排水ライン、濃縮ラインから容積形エネルギー回収装置をバイパスして濃縮水を排水する濃縮水バイパスラインにそれぞれ流量制御弁を設け、原水流量制御手段は、前記流量制御弁の少なくとも一つを制御して逆浸透膜カートリッジに供給される原水流量を制御することを特徴とする。   Further, the present invention provides a membrane separation apparatus, wherein the concentrated water discharged from the high-pressure line, the bypass line, and the reverse osmosis membrane cartridge is guided to the volumetric energy recovery apparatus, and the concentrated water is drained from the volumetric energy recovery apparatus. A flow rate control valve is provided in each of the concentrated water bypass line for draining the concentrated water by bypassing the volumetric energy recovery device from the drain line and the concentrated line, and the raw water flow rate control means controls at least one of the flow rate control valves. And controlling the flow rate of the raw water supplied to the reverse osmosis membrane cartridge.

上記のように流量制御手段は、高圧ポンプ及び/又はブースタポンプの回転数を制御するか、又は高圧ライン、バイパスライン、濃縮ライン、排水ライン、濃縮水バイパスラインに設けた流量制御弁の少なくとも1つを制御して逆浸透膜カートリッジに供給される原水流量を制御するので、簡単な構成で逆浸透膜カートリッジから排出された高圧濃縮水の圧力エネルギーを効果的に回収できる。   As described above, the flow rate control means controls the number of rotations of the high pressure pump and / or the booster pump, or at least one of the flow rate control valves provided in the high pressure line, bypass line, concentration line, drainage line, concentrated water bypass line. Since the flow rate of the raw water supplied to the reverse osmosis membrane cartridge is controlled by controlling the pressure, the pressure energy of the high-pressure concentrated water discharged from the reverse osmosis membrane cartridge can be effectively recovered with a simple configuration.

また、本発明は、供給された原水を加圧する高圧ポンプと、逆浸透膜カートリッジと、逆浸透膜カートリッジより濃縮水側下流に配置したエネルギー回収手段とを備え、高圧ポンプで加圧された高圧原水を逆浸透膜カートリッジに導入し、希薄水と濃縮水に分離する膜分離装置の運転方法において、エネルギー回収手段として容積形エネルギー回収装置を用いると共に、ブースタポンプを設け、逆浸透膜カートリッジより排水する濃縮水を容積形エネルギー回収装置に導入し、供給される原水の一部を加圧し、該加圧した原水をブースタポンプで加圧し、該加圧した原水を高圧ポンプと逆浸透膜カートリッジを接続する高圧ラインを流れる高圧原水に合流させると共に、原水温度センサで検出された原水の温度、逆浸透膜カートリッジの逆浸透膜の温度に対する膜特性、原水中の溶質濃度と逆浸透圧の関係、高圧ポンプ及びブースタポンプの性能曲線の関係を用いて設定された所定の希薄水流量が得られるように逆浸透膜カートリッジに供給される原水流量を制御することを特徴とする。   The present invention also includes a high-pressure pump that pressurizes the supplied raw water, a reverse osmosis membrane cartridge, and energy recovery means disposed downstream of the reverse osmosis membrane cartridge on the concentrated water side, and is pressurized by a high-pressure pump. In the operation method of the membrane separator that introduces raw water into the reverse osmosis membrane cartridge and separates it into dilute water and concentrated water, the volumetric energy recovery device is used as the energy recovery means, and a booster pump is provided to drain the water from the reverse osmosis membrane cartridge The concentrated water to be introduced is introduced into the volumetric energy recovery device, a part of the supplied raw water is pressurized, the pressurized raw water is pressurized with a booster pump, and the pressurized raw water is supplied with a high-pressure pump and a reverse osmosis membrane cartridge. Combined with the high-pressure raw water flowing through the connected high-pressure line, the temperature of the raw water detected by the raw water temperature sensor, reverse osmosis of the reverse osmosis membrane cartridge The reverse osmosis membrane cartridge can be used to obtain a predetermined dilute water flow rate set using the membrane characteristics with respect to the membrane temperature, the relationship between the solute concentration in the raw water and the reverse osmosis pressure, and the relationship between the performance curves of the high-pressure pump and booster pump. It is characterized by controlling the flow rate of the raw water supplied.

本発明によれば、下記のような優れた効果が期待できる。
・膜分離装置全体の所要電力が少なく、操作性のよい、簡易低価格の膜分離装置及び膜分離装置の運転方法を提供できる。
・要求された希薄水の流量を、適切な水質を確保しつつ、最適な制御で安定して供給することができる。
・逆浸透膜カートリッジから吐出された高圧濃縮水の圧力エネルギーを効果的に回収でき、即ち、高圧ポンプが原水を加圧するために使用したエネルギーとエネルギー回収手段が回収したエネルギーとの差が最小となるので、膜分離装置の運転に要する所要エネルギーが少なく、運用コストが安価となる。
According to the present invention, the following excellent effects can be expected.
-It is possible to provide a simple and low-cost membrane separation device and a method for operating the membrane separation device that require less power for the entire membrane separation device and have good operability.
-The required flow rate of dilute water can be stably supplied with optimal control while ensuring appropriate water quality.
・ The pressure energy of the high-pressure concentrated water discharged from the reverse osmosis membrane cartridge can be recovered effectively, that is, the difference between the energy used by the high-pressure pump to pressurize the raw water and the energy recovered by the energy recovery means is minimized. Therefore, the energy required for the operation of the membrane separation apparatus is small, and the operation cost is low.

以下、本願発明の実施の形態例を図面に基づいて説明する。膜分離装置として海水淡水化装置を例に説明する。図1は本発明に係る海水淡水化装置の第1の態様を示す模式図である。図示するように本海水淡水化装置は、取水ポンプ1、前処理装置2、高圧ポンプ3、逆浸透膜カートリッジ4、容積形エネルギー回収装置(ER)5、ブースタポンプ6、制御装置7を備えている。   Embodiments of the present invention will be described below with reference to the drawings. A seawater desalination apparatus will be described as an example of a membrane separation apparatus. FIG. 1 is a schematic diagram showing a first aspect of a seawater desalination apparatus according to the present invention. As shown in the figure, the seawater desalination apparatus includes a water intake pump 1, a pretreatment device 2, a high pressure pump 3, a reverse osmosis membrane cartridge 4, a positive displacement energy recovery device (ER) 5, a booster pump 6, and a control device 7. Yes.

取水ポンプ1により取水された海水100は、前処理装置2により所定の水質条件に整えられた後、供給ライン9を通って電動モータ8により駆動される高圧ポンプ(HP)3に供給され、該高圧ポンプ(HP)3で加圧され、高圧ポンプ(HP)3と高圧ポンプ(HP)3を接続する接続管である高圧ライン10を通って逆浸透膜カートリッジ4に流入する。逆浸透膜カートリッジ4の高圧室11内の海水の一部は、逆浸透圧力に打ち勝って逆浸透膜4aを通過し、溶質(塩分)が除去され、希薄水(脱塩水)102として取り出される。その他の海水は、溶質(塩分)濃度が高くなり濃縮された状態で逆浸透膜カートリッジ4から濃縮海水ライン13へ排出される。   The seawater 100 taken by the intake pump 1 is adjusted to a predetermined water quality condition by the pretreatment device 2 and then supplied to the high-pressure pump (HP) 3 driven by the electric motor 8 through the supply line 9. It is pressurized by the high pressure pump (HP) 3 and flows into the reverse osmosis membrane cartridge 4 through the high pressure line 10 which is a connecting pipe connecting the high pressure pump (HP) 3 and the high pressure pump (HP) 3. A part of the seawater in the high pressure chamber 11 of the reverse osmosis membrane cartridge 4 overcomes the reverse osmosis pressure and passes through the reverse osmosis membrane 4 a, the solute (salt content) is removed, and it is taken out as diluted water (demineralized water) 102. Other seawater is discharged from the reverse osmosis membrane cartridge 4 to the concentrated seawater line 13 in a state where the concentration of solute (salt) is increased and concentrated.

逆浸透膜カートリッジ4から排出された高圧の濃縮水である濃縮海水(リジェクト)103が保有する圧力エネルギーは容積形エネルギー回収装置(ER)5に導入され、圧力エネルギーを失った濃縮海水(リジェクト)103は、エネルギーが回収された低圧濃縮海水(リジェクト)104として排水ライン14を通って廃棄される。容積形エネルギー回収装置(ER)5としては、例えば後に詳述する容積形のピストンポンプ等が使用されており、該容積形のピストンポンプで供給ライン9の海水の一部がポンプアップされ、供給海水バイパスライン15へと排出され、最終的には高圧ライン10を通る高圧海水に合流する。   Concentrated seawater (reject) 103, which is high-pressure concentrated water discharged from the reverse osmosis membrane cartridge 4, is introduced into the volumetric energy recovery device (ER) 5 and concentrated seawater (reject) that has lost pressure energy. 103 is discarded through the drainage line 14 as low-pressure concentrated seawater (reject) 104 from which energy has been recovered. As the positive displacement energy recovery device (ER) 5, for example, a positive displacement piston pump, which will be described in detail later, is used, and a portion of the seawater in the supply line 9 is pumped up by the positive displacement piston pump and supplied. It is discharged to the seawater bypass line 15 and finally joins the high-pressure seawater passing through the high-pressure line 10.

逆浸透膜カートリッジ4や濃縮海水ライン13の圧力損失、容積形エネルギー回収装置(ER)5の制御弁や切替弁等における圧力損失、エネルギー回収チャンバーと内部ピストンとの間の漏れ損失等により、供給海水バイパスライン15中の海水の圧力は高圧ライン10を通って逆浸透膜カートリッジ4に流入する海水の圧力より低い。そこで、供給海水バイパスライン15中を通る海水と高圧ライン10中を通る海水を合流させるために、供給海水バイパスライン15の途中に電動モータ16で駆動されるブースタポンプ6を設置し、上記圧力損失分だけ供給海水バイパスライン15中の海水を加圧する。このブースタポンプ(BP)6は、高圧ポンプ(HP)3に比べて小さい容量で供給海水バイパスライン15中を通る海水を高圧ライン10中を通る海水に合流させることができる圧力に昇圧できる。   Supply due to pressure loss in reverse osmosis membrane cartridge 4 and concentrated seawater line 13, pressure loss in control valve and switching valve of positive displacement energy recovery device (ER) 5, leakage loss between energy recovery chamber and internal piston, etc. The pressure of seawater in the seawater bypass line 15 is lower than the pressure of seawater flowing into the reverse osmosis membrane cartridge 4 through the high pressure line 10. Therefore, in order to join the seawater passing through the supply seawater bypass line 15 and the seawater passing through the high pressure line 10, a booster pump 6 driven by an electric motor 16 is installed in the middle of the supply seawater bypass line 15, and the pressure loss The seawater in the supply seawater bypass line 15 is pressurized by the amount. The booster pump (BP) 6 can increase the pressure of the seawater passing through the supply seawater bypass line 15 to a pressure capable of joining the seawater passing through the high-pressure line 10 with a smaller capacity than the high-pressure pump (HP) 3.

制御装置7には、高圧ポンプ(HP)3の吐出流量Q0-1とブースタポンプ(BP)6の吐出流量Q0-2を算出するポンプ吐出流量(供給海水流量)算出部20、理想の希薄水流量を設定希薄水量QS1として設定する希薄水流量設定部21、ブースタポンプ(BP)6の回転数を選定するBP回転数選定部22−1、及びブースタポンプ(BP)6のQ−H曲線と高圧ポンプ(HP)3のQ−H曲線を記憶する記憶部23を備えている。なお、ここでは、高圧ポンプ(HP)3の回転数を一定としブースタポンプ6の回転数を制御して所定の希薄水流量Q1を得る場合であるが、後に詳述するが図5及び図6に示すように、バルブ開度選定部22−2、22−3を設け、高圧ポンプ(HP)3及びブースタポンプ(BP)6の設定吐出流量に対してバルブの開閉度を制御する場合、図7に示すようにブースタポンプ(BP)6の回転数を一定とし、HP回転数選定部22−4を用いて高圧ポンプ(HP)3の回転数を制御する場合もある。 The control device 7 includes a pump discharge flow rate (supply seawater flow rate) calculation unit 20 that calculates a discharge flow rate Q 0-1 of the high-pressure pump (HP) 3 and a discharge flow rate Q 0-2 of the booster pump (BP) 6. The diluted water flow rate setting unit 21 that sets the diluted water flow rate as the set diluted water amount Q S1 , the BP rotation number selection unit 22-1 that selects the rotation number of the booster pump (BP) 6, and the Q− of the booster pump (BP) 6 A storage unit 23 for storing the H curve and the QH curve of the high-pressure pump (HP) 3 is provided. In this case, the rotation speed of the high-pressure pump (HP) 3 is kept constant and the rotation speed of the booster pump 6 is controlled to obtain a predetermined dilute water flow rate Q 1 . As shown in FIG. 6, when the valve opening degree selectors 22-2 and 22-3 are provided and the opening / closing degree of the valve is controlled with respect to the set discharge flow rate of the high pressure pump (HP) 3 and the booster pump (BP) 6, As shown in FIG. 7, the rotation speed of the booster pump (BP) 6 may be fixed, and the rotation speed of the high-pressure pump (HP) 3 may be controlled using the HP rotation speed selection unit 22-4.

ポンプ吐出流量算出部20には圧力センサ26で検出した高圧ポンプ(HP)3の吐出圧力P0-1と圧力センサ27で検出したブースタポンプ(BP)6の吐出圧力P0-2、及び圧力センサ19で検出された逆浸透膜カートリッジ4の高圧室11側の圧力P2が入力されるようになっている。ポンプ吐出水流量算出部20は逆浸透膜カートリッジ4の逆浸透膜4aの膜特性変化及び海水100中の海水溶質(塩分)濃度等を考慮し、逆浸透膜カートリッジ4で処理する希薄水流量QIが希薄水流量設定部21で設定された設定希薄水量QS1になるように、供給海水流量(ポンプ吐出流量)Q0を算出する。即ち希薄水流量Q1が設定希薄水流量QS1になるように、高圧ポンプ(HP)3の吐出流量Q0-1とブースタポンプ(BP)6の吐出流量Q0-2を算出する。 The pump discharge flow rate calculation unit 20 includes a discharge pressure P 0-1 of the high pressure pump (HP) 3 detected by the pressure sensor 26, a discharge pressure P 0-2 of the booster pump (BP) 6 detected by the pressure sensor 27, and a pressure. The pressure P 2 on the high pressure chamber 11 side of the reverse osmosis membrane cartridge 4 detected by the sensor 19 is input. The pump discharge water flow rate calculation unit 20 considers changes in the membrane characteristics of the reverse osmosis membrane 4a of the reverse osmosis membrane cartridge 4 and the concentration of sea water in the seawater 100 (salt content), and the like. The supplied seawater flow rate (pump discharge flow rate) Q 0 is calculated so that I becomes the set diluted water amount Q S1 set by the diluted water flow rate setting unit 21. That is, the discharge flow rate Q 0-1 of the high-pressure pump (HP) 3 and the discharge flow rate Q 0-2 of the booster pump (BP) 6 are calculated so that the diluted water flow rate Q 1 becomes the set diluted water flow rate Q S1 .

BP回転数選定部22−1は、記憶部23に記憶されている高圧ポンプ(HP)3とブースタポンプ(BP)6のQ−H曲線を参照して、ポンプ吐出流量算出部20で算出したポンプ吐出流量Q0(Q0-1+Q0-2)が得られるようにブースタポンプ(BP)6の回転数を選定する(ここでは高圧ポンプ(HP)3の吐出流量Q0-1を所定の一定値としブースタポンプ(BP)6の回転数を制御して所定のポンプ吐出流量Q0を得る)。この選定された回転数はドライバ(ここではインバータ24)を介して、電動モータ16に送られ、ブースタポンプ(BP)6は選定された回転数で回転する。 The BP rotation speed selection unit 22-1 is calculated by the pump discharge flow rate calculation unit 20 with reference to the QH curves of the high pressure pump (HP) 3 and the booster pump (BP) 6 stored in the storage unit 23. The number of rotations of the booster pump (BP) 6 is selected so that the pump discharge flow rate Q 0 (Q 0-1 + Q 0-2 ) can be obtained (here, the discharge flow rate Q 0-1 of the high pressure pump (HP) 3 is set to a predetermined value). And a predetermined pump discharge flow rate Q 0 is obtained by controlling the rotation speed of the booster pump (BP) 6. The selected number of revolutions is sent to the electric motor 16 via a driver (here, the inverter 24), and the booster pump (BP) 6 rotates at the selected number of revolutions.

なお、図1において、P0-1は高圧ポンプ(HP)3の吐出圧力、Q0-1は高圧ポンプ(HP)3の吐出流量、C0-1は高圧ライン10の供給海水の溶質(塩分)濃度、P0-2はブースタポンプ(BP)6の吐出圧力、Q0-2はブースタポンプ(BP)6の吐出流量、C0-2は供給海水バイパスライン15の溶質(塩分)濃度、P1は逆浸透膜カートリッジ4の希薄水側(脱塩水側)圧力、Q1は希薄水(脱塩水)流量、C1は希薄水の溶質(塩分)濃度を夫々示す。 In FIG. 1, P 0-1 is the discharge pressure of the high pressure pump (HP) 3, Q 0-1 is the discharge flow rate of the high pressure pump (HP) 3, and C 0-1 is the solute of the seawater supplied to the high pressure line 10 ( Salinity) concentration, P 0-2 is the discharge pressure of the booster pump (BP) 6, Q 0-2 is the discharge flow rate of the booster pump (BP) 6, and C 0-2 is the solute (salt content) concentration of the supply seawater bypass line 15 , P 1 is the reverse osmosis membrane lean water side of the cartridge 4 (demineralized water side) pressure, Q 1 is lean water (demineralized) flow rate, C 1 represents respectively a solute (salt) concentration of dilute water.

図2は制御装置7の機能ブロック図であり、制御装置7は、DW−T機能部7−1、ΔP−Q1機能部7−2、π−CM機能部7−3、Q−H機能部7−4を備えている。DW−T機能部7−1は、図示するように縦軸にDW/T(DWは逆浸透膜4aの水の拡散係数)を横軸に供給海水の温度Tを示すデータを備えている。ΔP−Q1機能部7−2は縦軸に逆浸透膜4aの逆浸透圧πを越える圧力ΔPを横軸に希薄水流量Q1を示すデータを備えている。π−CM機能部7−3は縦軸に浸透圧πを横軸に海水溶質(塩分)濃度CMを示すデータを備えている。Q−H機能部7−4は縦軸に高圧ポンプ(HP)3とブースタポンプ(BP)の合成水頭圧Hを横軸に吐出流量Qを示すデータ(Q−H曲線)を備えている。 Figure 2 is a functional block diagram of the control device 7, the control device 7, D W -T functional unit 7-1, [Delta] P-Q 1 functional section 7-2, [pi-C M functional unit 7-3, Q- An H function unit 7-4 is provided. As shown in the figure, the D W -T function unit 7-1 includes data indicating D W / T (D W is the diffusion coefficient of water in the reverse osmosis membrane 4a) on the vertical axis and the temperature T of the supplied seawater on the horizontal axis. ing. The ΔP-Q 1 function unit 7-2 includes data indicating the pressure ΔP exceeding the reverse osmosis pressure π of the reverse osmosis membrane 4a on the vertical axis and the diluted water flow rate Q 1 on the horizontal axis. The π-C M function unit 7-3 includes data indicating the osmotic pressure π on the vertical axis and the sea water solubility (salt content) concentration C M on the horizontal axis. The QH function unit 7-4 includes data (QH curve) indicating the combined water head pressure H of the high pressure pump (HP) 3 and the booster pump (BP) on the vertical axis and the discharge flow rate Q on the horizontal axis.

次に、図2の機能ブロック図に基づいて制御装置7の作用を説明する。DW−T機能部7−1はTとDW/Tの関係式曲線55から温度センサ43で検出した供給海水の温度TよりDW/Tを算出しており、逆浸透膜カートリッジ4の逆浸透膜4aの種類により定まる係数Kは下式から求まる。
K=K0(DW/T)
(但し、K0は逆浸透膜4aの種類で定まる既知の定数、DWは水の拡散係数)
ここで、設定変更前の吐出圧力(供給海水圧力)P0が仮設定されている。
また、π−CM機能部7−3は、上記のように縦軸に浸透圧πを横軸に海水溶質(塩分)濃度CMを示しており、曲線54は海水溶質(塩分)濃度CMと浸透圧πの関係を示す。曲線54の関係から海水溶質(塩分)濃度CMが求まれば、供給海水の海水浸透圧πMが求まる。
Next, the operation of the control device 7 will be described based on the functional block diagram of FIG. The D W -T function unit 7-1 calculates D W / T from the temperature T of the supplied seawater detected by the temperature sensor 43 from the relational curve 55 of T and D W / T, and the reverse osmosis membrane cartridge 4 The coefficient K determined by the type of the reverse osmosis membrane 4a is obtained from the following equation.
K = K 0 (D W / T)
(Where K 0 is a known constant determined by the type of reverse osmosis membrane 4a, and D W is the diffusion coefficient of water)
Here, the discharge pressure (supply seawater pressure) P 0 before the setting change is temporarily set.
Further, as described above, the π-C M function unit 7-3 shows the osmotic pressure π on the vertical axis and the sea water solubility (salt content) concentration C M on the horizontal axis, and the curve 54 shows the sea water solubility (salt content) concentration C. The relationship between M and osmotic pressure π is shown. If seawater solute (salt) concentration C M from the relationship of the curve 54 is obtained, it is obtained seawater osmotic pressure [pi M feed seawater.

また、逆浸透膜カートリッジ4の供給側の海水溶質(塩分)濃度CMは、近似的にCM≒(C0+C2)/2で定まる。海水溶質(塩分)濃度C0、濃縮海水溶質(塩分)濃度C2は回収率Q1/Q0が著しく変化しない限り、上記近似式でよい。従って、逆浸透膜カートリッジ4に供給される海水の海水溶質(塩分)濃度C0、濃縮海水溶質(塩分)濃度C2は特に装置の通常運転中は定数とみなすことができる。 Further, the sea water concentration (salt content) C M on the supply side of the reverse osmosis membrane cartridge 4 is approximately determined by C M ≈ (C 0 + C 2 ) / 2. The sea water concentration (salt content) C 0 and the concentration sea water concentration (salt content) C 2 may be the above approximate equations as long as the recovery rate Q 1 / Q 0 does not change significantly. Therefore, the sea water concentration (salt content) C 0 and the concentrated sea water concentration (salt content) C 2 of the seawater supplied to the reverse osmosis membrane cartridge 4 can be regarded as constants, particularly during normal operation of the apparatus.

また、π−CM機能部7−3とQ−H機能部7−4は縦軸が同スケールでしてあり、逆浸透膜カートリッジ4の供給側圧力PMは仮設定した吐出圧力P0から逆浸透膜カートリッジ4での供給側高圧ライン10の海水の管路による損失ヘッドPL1を減じたものである。逆浸透膜カートリッジ4の希薄水側圧力P1は略一定であり、また希薄水の溶質(塩分)濃度C1は一定とみてよいから希薄水の浸透圧π1は一定としてよい。そこで逆浸透圧ΔPは、
ΔP=(PM−P1)−(πM−π1
と算出される。(この関係はπ−CM機能部7−3とQ−H機能部7−4の間に取り出して示している)
Further, the π-C M function unit 7-3 and the QH function unit 7-4 have the same vertical axis, and the supply-side pressure P M of the reverse osmosis membrane cartridge 4 is a temporarily set discharge pressure P 0. The loss head PL1 due to the seawater conduit of the supply side high-pressure line 10 in the reverse osmosis membrane cartridge 4 is reduced. The dilute water pressure P 1 of the reverse osmosis membrane cartridge 4 is substantially constant, and the solute (salt content) C 1 of dilute water may be considered constant, so that the osmotic pressure π 1 of dilute water may be constant. Therefore, the reverse osmotic pressure ΔP is
ΔP = (P M −P 1 ) − (π M −π 1 )
Is calculated. (This relationship is shown removed during [pi-C M functional unit 7-3 and Q-H functional unit 7-4)

ΔP−Q1機能部7−2はπ−CM機能部7−3とQ−H機能部7−4と縦軸のスケールを等しくしており、逆浸透膜カートリッジ4の希薄水流量Q1は、直線56で示される下記式で求まる。
1=AMKΔP (1)
(但し、AMは逆浸透膜4aの面積、ΔPは逆浸透膜カートリッジ4に供給される海水の浸透圧πMを越える逆浸透膜4a近傍の圧力である)
[Delta] P-Q 1 functional section 7-2 [pi-C M functional unit 7-3 and Q-H functional unit 7-4 and the scale of the vertical axis are equal, a reverse osmosis membrane dilute water cartridge 4 flow rate Q 1 Is obtained by the following equation represented by a straight line 56.
Q 1 = A M KΔP (1)
(Where A M is the area of the reverse osmosis membrane 4a, and ΔP is the pressure in the vicinity of the reverse osmosis membrane 4a exceeding the osmotic pressure π M of seawater supplied to the reverse osmosis membrane cartridge 4)

制御装置7のQ−H機能部7−4は、縦軸に圧力Hを横軸に流量Qを示したものであり、ポンプのQ−H曲線(図3に詳細を示すように、合成Q−H曲線53、53’は高圧ポンプ(HP)3とブースタポンプ(BP)6の合成Q−H曲線を、曲線51は高圧ポンプ(HP)3のQ−H曲線を、曲線52、曲線52’はブースタポンプ(BP)6のQ−H曲線)と、逆浸透膜カートリッジ4への吐出圧力P0に対応する逆浸透圧カートリッジ4の希薄水流量Q1の曲線57を同スケールで示した図となっている。 The Q-H function unit 7-4 of the control device 7 has a pressure H on the vertical axis and a flow rate Q on the horizontal axis. The Q-H curve of the pump (as shown in detail in FIG. -H curves 53 and 53 'are combined QH curves of the high pressure pump (HP) 3 and the booster pump (BP) 6, and curves 51 are QH curves of the high pressure pump (HP) 3 and curves 52 and 52. 'Shows the Q-H curve of the booster pump (BP) 6) and the curve 57 of the dilute water flow rate Q 1 of the reverse osmotic pressure cartridge 4 corresponding to the discharge pressure P 0 to the reverse osmosis membrane cartridge 4 on the same scale. It is a figure.

制御装置7で逆浸透膜カートリッジ4に供給する供給海水流量Q0を制御する制御処理手順を説明する。ここでは、高圧ポンプ(HP)3の回転数を一定とし、ブースタポンプ(BP)6の吐出流量、即ちブースタポンプ(BP)6の回転数を制御して逆浸透膜カートリッジ4に供給する海水の流量を制御する処理手順である。 A control processing procedure for controlling the supplied seawater flow rate Q 0 supplied to the reverse osmosis membrane cartridge 4 by the control device 7 will be described. Here, the rotation speed of the high-pressure pump (HP) 3 is made constant, the discharge flow rate of the booster pump (BP) 6, that is, the rotation speed of the booster pump (BP) 6 is controlled, and the seawater supplied to the reverse osmosis membrane cartridge 4 This is a processing procedure for controlling the flow rate.

(ステップST1)
先ず、理想の希薄水流量Q1(=QS1)を希薄水流量設定部21から設定する。
(Step ST1)
First, an ideal diluted water flow rate Q 1 (= Q S1 ) is set from the diluted water flow rate setting unit 21.

(ステップST2)
次に、ブースタポンプ(BP)6の回転数Nが仮定される。図3はQ−H機能部7−4の詳細を示す図である。ここでは、逆浸透膜カートリッジ4に供給する海水の流量制御を高圧ポンプ(HP)3の回転数を固定とし、ブースタポンプ(BP)6の回転数Nを変えることで行う場合のQ−H曲線を示している。図示するように、高圧ポンプ(HP)3の回転数を固定したQ−H曲線51に対して、ブースタポンプ(BP)6の(濃縮海水ライン13側圧力を含めた)Q−H曲線を曲線52から曲線52’に変えると高圧ポンプ(HP)3とブースタポンプ(BP)6の合成したQ−H曲線は合成Q−H曲線53から合成Q−H曲線53’へと変化する。
(Step ST2)
Next, the rotation speed N of the booster pump (BP) 6 is assumed. FIG. 3 is a diagram showing details of the QH function unit 7-4. Here, the QH curve when the flow rate control of the seawater supplied to the reverse osmosis membrane cartridge 4 is performed by fixing the rotation speed of the high-pressure pump (HP) 3 and changing the rotation speed N of the booster pump (BP) 6. Is shown. As shown in the drawing, the QH curve (including the concentrated seawater line 13 side pressure) of the booster pump (BP) 6 is curved with respect to the QH curve 51 in which the rotation speed of the high pressure pump (HP) 3 is fixed. When changing from 52 to the curve 52 ′, the combined QH curve of the high pressure pump (HP) 3 and the booster pump (BP) 6 changes from the combined QH curve 53 to the combined QH curve 53 ′.

(ステップST3)
上記式(1)により算出された希薄水流量Q1をQ1CALCとする。
(Step ST3)
Let the diluted water flow rate Q 1 calculated by the above equation (1) be Q 1CALC .

(ステップST4)
上記設定した設定希薄水流量QS1の値と上記算出した希薄水流量Q1CALCとを比較する。そしてこの誤差が大きいときは上記ステップST2に戻りブースタポンプ(BP)6の回転数Nを再仮定してステップST2〜ST4をループとして繰り返し、希薄水流量Q1と算出した希薄水流量Q1CALCの誤差が小さくなるまで繰り返す。つまり、先にステップST2で仮定した吐出圧力P0で求まるQ1CALCが、Q1CALC−QS1>0になるときは、再仮定の吐出圧力P0を小さくするように、Q1CALC−QS1<0になるときは、再仮定の吐出圧力P0の値が大きくなるようにブースタポンプ(BP)6の回転数Nを変更し、Q−H曲線を曲線52から曲線52’と変化することで全体のQ−H曲線(合成Q−H曲線)を曲線53から曲線53’にし、吐出圧力P0を曲線57において設定値QS1になるような値に持っていく。また、吐出圧力P0を曲線57において希薄水流量の最大値Q1maxになる吐出圧力値P01に持っていくことにより、希薄水流量を最大値Q1maxにすることができる。
(Step ST4)
The value of the set diluted water flow rate Q S1 is compared with the calculated diluted water flow rate Q 1CALC . Then repeat steps ST2~ST4 as a loop when the error is large, and re-assuming the rotational speed N of the booster pump (BP) 6 returns to step ST2, the lean water flow rate Q 1CALC calculated lean water flow rate Q 1 Repeat until the error is small. That, Q 1CALC which is obtained by the discharge pressure P 0 which is assumed in step ST2 earlier, when it comes to Q 1CALC -Q S1> 0, as to reduce the discharge pressure P 0 of the re-assumption, Q 1CALC -Q S1 < When it becomes 0, the rotation speed N of the booster pump (BP) 6 is changed so that the value of the re-assumed discharge pressure P 0 is increased, and the QH curve is changed from the curve 52 to the curve 52 ′. The entire QH curve (combined QH curve) is changed from the curve 53 to the curve 53 ′, and the discharge pressure P 0 is brought to a value such that the curve 57 becomes the set value Q S1 . Further, by bringing the discharge pressure P 0 to the discharge pressure value P 01 which becomes the maximum value Q 1max of the diluted water flow rate in the curve 57, the diluted water flow rate can be set to the maximum value Q 1max .

逆浸透膜カートリッジ4に供給する吐出圧力P0が曲線57に対して上記設定した希薄水流量QS1になるようにするために、具体的な制御方法としてはBP回転数選定部22−1により、ブースタポンプ(BP)6の回転数を選定し、ドライバ24(ここではインバータ)に出力する。ドライバ24は電動モータ16の回転数を制御してブースタポンプ(BP)6の回転数を制御し、回転数Nを変化させブースタポンプ(BP)6のQ−H曲線が曲線52から曲線52’と変化することで、相対的に全体のQ−H曲線も曲線53から曲線53’に変化する。 In order to set the discharge pressure P 0 supplied to the reverse osmosis membrane cartridge 4 to the diluted water flow rate Q S1 set for the curve 57, a specific control method is as follows. The number of rotations of the booster pump (BP) 6 is selected and output to the driver 24 (inverter here). The driver 24 controls the rotational speed of the electric motor 16 to control the rotational speed of the booster pump (BP) 6 and changes the rotational speed N so that the QH curve of the booster pump (BP) 6 changes from the curve 52 to the curve 52 ′. As a result, the entire QH curve relatively changes from the curve 53 to the curve 53 ′.

上記のように制御装置7は希薄水流量Q1の値を設定すると供給海水の濃度と浸透圧の関係が定まっているため、高圧ポンプ(HP)3とブースタポンプ(BP)6の合成Q−H曲線をブースタポンプ(BP)6の回転数を変更する事で任意に設定した希薄水の流量に合わせることができる。つまり高圧ポンプ(HP)3とブースタポンプ(BP)6の運転点と希薄水流量Q1との関係は一義的に決定される。また、希薄水流量Q1の設定値を逆浸透膜カートリッジ4(逆浸透膜4a)の曲線57における希薄水流量の最大値Q1max点に合せると、該最大値Q1max点での希薄水流量が得られる。 As described above, when the control device 7 sets the value of the dilute water flow rate Q 1 , the relationship between the concentration of the supplied seawater and the osmotic pressure is fixed, so the combined Q− of the high pressure pump (HP) 3 and the booster pump (BP) 6. The H curve can be adjusted to the flow rate of diluted water arbitrarily set by changing the rotation speed of the booster pump (BP) 6. That relationship between the high pressure pump (HP) 3 and the booster pump (BP) operating point and lean water flow rate to Q 1 6 is uniquely determined. Further, when the set value of the diluted water flow rate Q 1 is matched with the maximum value Q 1max point of the diluted water flow rate in the curve 57 of the reverse osmosis membrane cartridge 4 (reverse osmosis membrane 4a), the diluted water flow rate at the maximum value Q 1max point. Is obtained.

図4は容積形エネルギー回収装置(ER)5の一例として、容積形のピストンポンプの構成例を示す図である。容積形のピストンポンプ30は制御切替弁31、切替弁32、2個のエネルギー回収チャンバー33、34を備えている。制御切替弁31の流入口には濃縮海水ライン13が接続され、流出口には排水ライン14が接続されている。また、切替弁32の流入口には供給ライン9が接続され、流出口には供給海水バイパスライン15が接続されている。   FIG. 4 is a diagram showing a configuration example of a positive displacement piston pump as an example of the positive displacement energy recovery device (ER) 5. The positive displacement piston pump 30 includes a control switching valve 31, a switching valve 32, and two energy recovery chambers 33 and 34. The concentrated seawater line 13 is connected to the inlet of the control switching valve 31, and the drainage line 14 is connected to the outlet. The supply line 9 is connected to the inlet of the switching valve 32, and the supply seawater bypass line 15 is connected to the outlet.

上記構成の容積形のピストンポンプ30において、制御切替弁31を図4(a)に示すように切り替えると、濃縮海水ライン13からの高圧の濃縮海水(リジェクト)103はエネルギー回収チャンバー33に流入し、ピストン33aを矢印Bの方向に押圧移動させると共に、該エネルギー回収チャンバー33の内に供給ライン9及び切替弁32を通って供給されていた海水は、ピストン33aに押圧されて濃縮海水(リジェクト)103と同じ圧力に加圧され切替弁32を通って、供給海水バイパスライン15に吐出される。一方、供給海水バイパスに圧力エネルギーを伝達したエネルギー回収チャンバー34には、供給ライン9の海水が切替弁32を通って流入し、ピストン34aを矢印Cの方向に押圧移動させると共に、圧力の消失した低圧濃縮海水(リジェクト)104は排水ライン14に吐出される。   When the control switching valve 31 is switched as shown in FIG. 4A in the positive displacement piston pump 30 configured as described above, the high-pressure concentrated seawater (reject) 103 from the concentrated seawater line 13 flows into the energy recovery chamber 33. The piston 33a is pressed and moved in the direction of the arrow B, and the seawater supplied through the supply line 9 and the switching valve 32 in the energy recovery chamber 33 is pressed by the piston 33a and concentrated seawater (reject). The pressure is increased to the same pressure as 103, passes through the switching valve 32, and is discharged to the supply seawater bypass line 15. On the other hand, seawater in the supply line 9 flows into the energy recovery chamber 34 that has transmitted the pressure energy to the supply seawater bypass through the switching valve 32, and the piston 34a is pressed and moved in the direction of arrow C, and the pressure disappears. The low-pressure concentrated seawater (reject) 104 is discharged to the drain line 14.

制御切替弁31を図4(b)に示すように切り替えると、濃縮海水ライン13からの高圧の濃縮海水(リジェクト)103はエネルギー回収チャンバー34に流入し、ピストン34aを矢印Fの方向に押圧移動させると共に、該エネルギー回収チャンバー34の内の海水は、ピストン34aに押圧されて濃縮海水(リジェクト)103と同じ圧力に加圧され切替弁32を通って、供給海水バイパスライン15に吐出される。一方供給ライン9の海水は切替弁32を通ってエネルギー回収チャンバー33に流入し、ピストン33aを矢印Eの方向に押圧移動させると共に、圧力の消失した低圧濃縮海水(リジェクト)104は排水ライン14に吐出される。   When the control switching valve 31 is switched as shown in FIG. 4B, the high-pressure concentrated seawater (reject) 103 from the concentrated seawater line 13 flows into the energy recovery chamber 34, and the piston 34a is pushed and moved in the direction of arrow F. At the same time, the seawater in the energy recovery chamber 34 is pressed by the piston 34 a and pressurized to the same pressure as the concentrated seawater (reject) 103, passes through the switching valve 32, and is discharged to the supply seawater bypass line 15. On the other hand, the seawater in the supply line 9 flows into the energy recovery chamber 33 through the switching valve 32 and pushes and moves the piston 33a in the direction of the arrow E, and the low-pressure concentrated seawater (reject) 104 whose pressure has disappeared enters the drainage line 14. Discharged.

上記のように、逆浸透膜カートリッジ4や濃縮海水ライン13の圧力損失、容積形エネルギー回収装置(ER)5である容積形のピストンポンプ30の制御切替弁31や切替弁32等における圧力損失により、供給海水バイパスライン15中の海水の圧力は高圧ライン10を通って逆浸透膜カートリッジ4に流入する海水の圧力より低い。ブースタポンプ6は供給海水バイパスライン15中の海水を加圧してこの圧力損失を補償し、高圧ライン10中の海水と合流させるために設けられている。従って、ブースタポンプ6は高圧ポンプ3より小さい容量のポンプで済む。   As described above, due to pressure loss in the reverse osmosis membrane cartridge 4 and the concentrated seawater line 13, pressure loss in the control switching valve 31 and switching valve 32 of the positive displacement piston pump 30 that is the positive displacement energy recovery device (ER) 5. The pressure of seawater in the supply seawater bypass line 15 is lower than the pressure of seawater flowing into the reverse osmosis membrane cartridge 4 through the high pressure line 10. The booster pump 6 is provided to pressurize the seawater in the supply seawater bypass line 15 to compensate for this pressure loss and to merge with the seawater in the high-pressure line 10. Therefore, the booster pump 6 may be a pump having a capacity smaller than that of the high-pressure pump 3.

上記構成の海水淡水化装置において、逆浸透膜カートリッジ4の逆浸透膜4aの脱塩率は、膜特性、即ち温度、圧力、透過流量から予測される。なお、上記例では、容積形エネルギー回収装置(ER)5として、容積形のピストンポンプの例を示したが、容積形エネルギー回収装置(ER)5に限定されるものではなく、例えば特表2004−500502号公報に開示されている圧力交換装置でもよい。即ち、限られた空間内でエネルギー伝達をしている装置であれば、どのようなものでも良い。   In the seawater desalination apparatus having the above configuration, the desalination rate of the reverse osmosis membrane 4a of the reverse osmosis membrane cartridge 4 is predicted from membrane characteristics, that is, temperature, pressure, and permeate flow rate. In the above example, an example of a positive displacement piston pump is shown as the positive displacement energy recovery device (ER) 5. However, the positive displacement energy recovery device (ER) 5 is not limited to the positive displacement energy recovery device (ER) 5. It may be a pressure exchange device disclosed in Japanese Patent No. -500502. In other words, any device that transmits energy in a limited space may be used.

上記実施形態例では、ドライバ(ここではインバータ)24により、電動モータ16の回転数、即ちブースタポンプ(BP)6の回転数を制御して供給圧力を調整する場合を示したが、図5に示すように、制御装置7にBP回転数選定部22−1に替え、バルブ開度選定部22−2を設け、該バルブ開度選定部22−2でドライバ24を介して、設定した供給圧力に合わせるように、濃縮海水ライン13に設けた流量調整用のバルブ(流量制御弁)V1、排水ライン14に設けた流量調整用のバルブ(流量制御弁)V2、供給海水バイパスライン15に設けた流量調整用のバルブ(流量制御弁)V3、及び高圧ライン10に設けた流量調整用のバルブV(流量制御弁)4の開度を制御して、それぞれ流量を制御してもよい。   In the above embodiment example, the case where the supply pressure is adjusted by controlling the rotation speed of the electric motor 16, that is, the rotation speed of the booster pump (BP) 6, by the driver (here, the inverter) 24 is shown in FIG. As shown, the control device 7 is provided with a valve opening selection unit 22-2 instead of the BP rotation number selection unit 22-1 and the supply pressure set by the valve opening selection unit 22-2 via the driver 24. The flow adjustment valve (flow control valve) V1 provided in the concentrated seawater line 13, the flow adjustment valve (flow control valve) V2 provided in the drainage line 14, and the supply seawater bypass line 15 are provided. The flow rate may be controlled by controlling the opening degree of the flow rate adjusting valve (flow rate control valve) V3 and the flow rate adjusting valve V (flow rate control valve) 4 provided in the high pressure line 10, respectively.

また、図6に示すように、バルブ開度選定部22−3及び濃縮海水ライン13中を流れる濃縮海水を容積形エネルギー回収装置(ER)5をバイパスして排水する濃縮水バイパスライン17を設け、該バイパスライン17に流量を調整するバルブ(流量制御弁)V5を設け、該バルブ開度選定部22−3でドライバ24を介して該バルブV5の開度を制御して容積形エネルギー回収装置(ER)5に流入する濃縮海水流量を制御するようにしてもよい。   Moreover, as shown in FIG. 6, the concentrated water bypass line 17 which bypasses the volume-type energy recovery apparatus (ER) 5 and drains the concentrated seawater which flows through the valve opening selection part 22-3 and the concentrated seawater line 13 is provided. The bypass line 17 is provided with a valve (flow rate control valve) V5 for adjusting the flow rate, and the opening degree of the valve V5 is controlled via the driver 24 by the valve opening degree selection unit 22-3, so that the positive displacement energy recovery device. (ER) The flow rate of concentrated seawater flowing into 5 may be controlled.

更に、図7に示すように、HP回転数選定部22−4を設け、該HP回転数選定部22−4で高圧ポンプ(HP)3の吐出流量Q0-1をドライバ(ここではインバータ)24を介して高圧ポンプ(HP)3を駆動する電動モータ8の回転数を変更して、高圧ポンプ(HP)3から吐出される海水流量(逆浸透膜カートリッジ4に供給する海水流量)を制御してもよい。図8に示すように、ブースタポンプ(BP)6のQ−H曲線52に対して、高圧ポンプ(HP)3のQ−H曲線を曲線51から曲線51’に変化させた場合、ブースタポンプ(BP)6と高圧ポンプ(HP)3の合成Q−H曲線は曲線53から曲線53’となる。目標の希薄水流量(目標の脱塩水流量)Q1の設定値QS1を逆浸透膜カートリッジ4の逆浸透膜4aの曲線57の希薄水の最大値Q1MAXに合わせることにより、逆浸透膜カートリッジ4を逆浸透膜4aの最大希薄水点で運転できる。 Further, as shown in FIG. 7, an HP rotation speed selection unit 22-4 is provided, and the HP rotation speed selection unit 22-4 supplies a discharge flow rate Q 0-1 of the high-pressure pump (HP) 3 to a driver (here, an inverter). The flow rate of seawater discharged from the high-pressure pump (HP) 3 (the flow rate of seawater supplied to the reverse osmosis membrane cartridge 4) is controlled by changing the number of revolutions of the electric motor 8 that drives the high-pressure pump (HP) 3 via 24. May be. As shown in FIG. 8, when the QH curve of the high pressure pump (HP) 3 is changed from the curve 51 to the curve 51 ′ with respect to the QH curve 52 of the booster pump (BP) 6, the booster pump ( The combined QH curve of BP) 6 and the high pressure pump (HP) 3 changes from the curve 53 to the curve 53 ′. The reverse osmosis membrane cartridge is obtained by matching the set value Q S1 of the target diluted water flow rate (target desalted water flow rate) Q 1 with the maximum value Q 1MAX of the diluted water of the curve 57 of the reverse osmosis membrane cartridge 4a of the reverse osmosis membrane cartridge 4. 4 can be operated at the maximum diluted water point of the reverse osmosis membrane 4a.

次に、上記膜分離装置において、希薄水102の適切な水質を確保しつつ、希薄水流量Q1を逆浸透膜カートリッジの希薄水流量曲線上の最適な流量にすること(請求項2)について説明する。図2のDW−T機能部7−1のDW/TとTの関係を示す曲線55は、供給する海水100の溶質(塩分)濃度C0によって微小に変化する。よって、希薄水102の水質を適切に保つには微小な曲線55の変化を補償する必要がある。希薄水流量(脱塩水流量)Q1と海水温度Tの関係は、Q1=AMKΔP、K=K0(DW/T)の関係式と、DW/TとTの曲線55の関係から求まる。つまり希薄水流量Q1と海水温度Tとの関係も図9に示すように、略比例関係で示すことが可能とる。 Next, in the above-mentioned membrane separation device, the dilute water flow rate Q 1 is set to the optimum flow rate on the dilute water flow curve of the reverse osmosis membrane cartridge while ensuring an appropriate water quality of the dilute water 102 (Claim 2). explain. The curve 55 indicating the relationship between D W / T and T of the D W -T function unit 7-1 in FIG. 2 slightly changes depending on the solute (salt content) concentration C 0 of the seawater 100 to be supplied. Therefore, in order to keep the water quality of the diluted water 102 appropriate, it is necessary to compensate for the minute change in the curve 55. The relationship between the dilute water flow rate (desalted water flow rate) Q 1 and the seawater temperature T is as follows: Q 1 = A M KΔP, K = K 0 (D W / T), and the curve 55 of D W / T and T It is obtained from the relationship. That is, the relationship between the dilute water flow rate Q 1 and the seawater temperature T can also be shown in a substantially proportional relationship as shown in FIG.

図9のf(DW/T)は供給する海水100の溶質(塩分)濃度C0によって、図10に示すように変化する。また、一方で、供給する海水100の溶質(塩分)濃度C0が高いと図11に示すように、相対的に希薄水の溶質(塩分)C1濃度も高くなってしまう。つまり水質が悪くなる。 The f (D W / T) in FIG. 9 changes as shown in FIG. 10 depending on the solute (salt content) C 0 of the seawater 100 to be supplied. On the other hand, when the solute (salt content) C 0 of the seawater 100 to be supplied is high, the solute (salt content) C 1 concentration of dilute water is relatively high as shown in FIG. In other words, the water quality deteriorates.

そこで供給する海水100の溶質(塩分)濃度C0をモニターすると共に、上記希薄水流量Q1と海水温度Tとの関係図に供給する海水100の溶質(塩分)濃度C0をパラメータとしたデータマップを予め制御装置7に記憶しておくことにより、供給する海水100の温度Tに対しての希望の溶質(塩分)濃度C1を保った希薄水流量を提供できる。これを図12を用いて説明すると、例えば供給する海水100の溶質(塩分)濃度C0が高いため水質が悪い場合、水質を補償するために希薄水流量をQ1からQ1’へ移行する。これにより希望の溶質(塩分)濃度C1を保った希薄水を得ることができる。 Therefore, the solute (salinity) concentration C 0 of the seawater 100 supplied is monitored, and the solute (salinity) concentration C 0 of the seawater 100 supplied to the relationship diagram between the dilute water flow rate Q 1 and the seawater temperature T is used as a parameter. by storing in advance in the control device 7 maps can provide a lean water flow rate keeping the solute (salt) concentration C 1 of the desired relative temperature T of the supplied sea water 100. This will be explained with reference to FIG. 12, for example, when the water quality due to high solute (salt) concentration C 0 of the supplied sea water 100 is poor, shifts the lean water flow rate to compensate for the water quality from Q 1 to Q 1 ' . As a result, dilute water having a desired solute (salt content) concentration C 1 can be obtained.

以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。また、上記実施形態では容積形エネルギー回収装置(ER)5として容積形のピストンポンプ30を説明したが、容積形エネルギー回収装置(ER)5は容積形のピストンポンプに限定されるものではない。また、上記例では、膜分離装置として海水淡水化装置を例に説明したが、本発明に係る膜分離装置は膜海水淡水化装置に限定されるものではなく、例えば、井水や化石水等の各種原水を希薄水と濃縮水に分離するのに広く利用できる。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. In the above embodiment, the positive displacement piston pump 30 is described as the positive displacement energy recovery device (ER) 5, but the positive displacement energy recovery device (ER) 5 is not limited to the positive displacement piston pump. In the above example, the seawater desalination apparatus has been described as an example of the membrane separation apparatus. However, the membrane separation apparatus according to the present invention is not limited to the membrane seawater desalination apparatus, and examples thereof include well water and fossil water. It can be widely used to separate various raw waters into dilute water and concentrated water.

本発明に係る海水淡水化装置の第1の態様を示す模式図である。It is a schematic diagram which shows the 1st aspect of the seawater desalination apparatus which concerns on this invention. 本発明に係る海水淡水化装置の制御装置の機能ブロック図である。It is a functional block diagram of the control apparatus of the seawater desalination apparatus which concerns on this invention. 高圧ポンプ(HP)とブースタポンプ(BP)のQ−H曲線を示す図である。It is a figure which shows the QH curve of a high pressure pump (HP) and a booster pump (BP). 容積形エネルギー回収装置として容積の形ピストンポンプの構成例を示す図である。It is a figure which shows the structural example of the volume type piston pump as a volume type energy recovery apparatus. 本発明に係る海水淡水化装置の第2の態様を示す模式図である。It is a schematic diagram which shows the 2nd aspect of the seawater desalination apparatus which concerns on this invention. 本発明に係る海水淡水化装置の第3の態様を示す模式図である。It is a schematic diagram which shows the 3rd aspect of the seawater desalination apparatus which concerns on this invention. 本発明に係る海水淡水化装置の第4の態様を示す模式図である。It is a schematic diagram which shows the 4th aspect of the seawater desalination apparatus which concerns on this invention. 高圧ポンプ(HP)とブースタポンプ(BP)のQ−H曲線を示す図である。It is a figure which shows the QH curve of a high pressure pump (HP) and a booster pump (BP). 逆浸透膜の希薄水流量Q1と供給海水温度Tの関係を示す図である。Is a diagram showing the relationship between lean water flow rate Q 1 and supplying the seawater temperature T of the reverse osmosis membrane. 逆浸透膜の希薄水流量Q1と供給海水温度Tの関係が供給する海水の溶質(塩分)濃度で変化する状態を示す図である。It is a diagram showing a state where the relationship between the lean water flow rate Q 1 and supplying the seawater temperature T of the reverse osmosis membrane is changed by solute (salt) concentration of seawater supplied. 逆浸透膜の希薄水溶質(塩分)濃度C1と供給海水温度Tの関係が供給する海水の溶質(塩分)濃度で変化する状態を示す図である。It is a diagram showing a state where the lean water quality (salinity) relationship concentrations C 1 and supplying the seawater temperature T of the reverse osmosis membrane is changed by solute (salt) concentration of seawater supplied. 希薄水の水質を確保するため希薄水流量Q1をQ1’に移行する逆浸透膜の希薄水流量Q1と供給海水温度Tの関係を示す図である。It is a diagram showing the relationship between lean water flow rate Q 1 and supplying the seawater temperature T of the reverse osmosis membrane to migrate lean water flow rate Q 1 to Q 1 'to ensure the quality of the dilute water.

符号の説明Explanation of symbols

1 取水ポンプ
2 前処理装置
3 高圧ポンプ(HP)
4 逆浸透膜カートリッジ
4a 逆浸透膜
5 容積形エネルギー回収装置(ER)
6 ブースタポンプ(BP)
7 制御装置
7−1 DW−T機能部
7−2 ΔP−Q1機能部
7−3 π−CM機能部
7−4 Q−H機能部
8 電動モータ
9 供給ライン
10 高圧ライン
11 高圧室
12 希薄水側
13 濃縮海水ライン
14 排水ライン
15 供給海水バイパスライン
16 電動モータ
17 濃縮水バイパスライン
20 ポンプ吐出流量(供給海水流量)算出部
21 希薄水流量設定部
22−1 BP回転数選定部
22−2 バルブ開度選定部
22−3 バルブ開度選定部
22−4 HP回転数選定部
23 記憶部
24 ドライバ
26,27 圧力センサ
30 容積形のピストンポンプ
31 制御切替弁
32 切替弁
33,34 エネルギー回収チャンバー
33a,34aピストン
43 温度センサ
0 海水溶質(塩分)濃度
1 希薄水の溶質(塩分)濃度
2 濃縮海水溶質(塩分)濃度
M 海水溶質(塩分)濃度
M 逆浸透膜4aの面積
W 逆浸透膜4aの水の拡散係数
K 逆浸透膜4aの種類と温度により定まる係数
0 吐出圧力(供給海水圧力)
1 逆浸透膜カートリッジ4の希薄水側(脱塩水側)圧力
2 逆浸透膜カートリッジ4の濃縮海水側圧力
M 逆浸透膜カートリッジ4の供給側圧力
ΔP 逆浸透膜カートリッジ4に供給される浸透圧πMを越える逆浸透膜4a近傍の圧力
L1 管路による損失ヘッド
Q 吐出流量
0 供給海水流量Q0(ポンプ吐出流量),合成吐出流量
1 希薄水流量(脱塩水流量)
2 濃縮海水流量
1MAX 最大の希薄水流量
0-1 高圧ポンプ(HP)3の吐出圧力
0-2 ブースタポンプ(BP)6の吐出圧力
0-1 高圧ポンプ(HP)3の吐出流量
0-2 ブースタポンプ(BP)6の吐出流量
πM 逆浸透膜4aの浸透圧
π1 希薄水の浸透圧
H 合計水頭圧
T 海水温度
V1〜V5 バルブ(流量制御弁)
1 Intake pump 2 Pretreatment device 3 High pressure pump (HP)
4 Reverse Osmosis Membrane Cartridge 4a Reverse Osmosis Membrane 5 Volumetric Energy Recovery Device (ER)
6 Booster pump (BP)
7 controller 7-1 D W -T functional unit 7-2 [Delta] P-Q 1 functional section 7-3 π-C M functional unit 7-4 Q-H functional unit 8 electric motor 9 supply line 10 high pressure line 11 pressure chamber 12 Dilute Water Side 13 Concentrated Seawater Line 14 Drainage Line 15 Supply Seawater Bypass Line 16 Electric Motor 17 Concentrated Water Bypass Line 20 Pump Discharge Flow Rate (Supply Seawater Flow Rate) Calculation Unit 21 Diluted Water Flow Rate Setting Unit 22-1 BP Rotation Speed Selection Unit 22 -2 Valve opening selection unit 22-3 Valve opening selection unit 22-4 HP rotation speed selection unit 23 Storage unit 24 Driver 26, 27 Pressure sensor 30 Volumetric piston pump 31 Control switching valve 32 Switching valve 33, 34 Energy collection chamber 33a, 34a piston 43 temperature sensor C 0 seawater solute (salt) concentration C 1 of dilute aqueous solute (salt) concentration C 2 concentrated seawater solute (salt) concentration C M seawater Quality (salt) concentration A M reverse osmosis membrane 4a of the area D W reverse osmosis membrane 4a diffusion coefficient K reverse osmosis membrane 4a type and temperature by determined coefficient P 0 the discharge pressure of water (feed seawater pressure)
Is supplied to the P 1 reverse osmosis membrane lean water side of the cartridge 4 (demineralized water side) pressure P 2 reverse osmosis membrane feed side pressure ΔP reverse osmosis membrane cartridge 4 of the concentrated seawater side pressure of the cartridge 4 P M reverse osmosis membrane cartridge 4 Loss head Q due to pressure P L1 pipe line near reverse osmosis membrane 4a exceeding osmotic pressure π M Discharge flow rate Q 0 Supply seawater flow rate Q 0 (pump discharge flow rate), Composite discharge flow rate Q 1 Dilute water flow rate (desalted water flow rate)
Q 2 Concentrated seawater flow rate Q 1MAX Maximum dilute water flow rate P 0-1 High pressure pump (HP) 3 discharge pressure P 0-2 Booster pump (BP) 6 discharge pressure Q 0-1 High pressure pump (HP) 3 discharge Flow rate Q 0-2 Booster pump (BP) 6 discharge flow rate π M Reverse osmosis membrane 4a osmotic pressure π 1 Dilute water osmotic pressure H Total head pressure T Seawater temperature V1 to V5 Valve (flow control valve)

Claims (5)

供給された原水を加圧する高圧ポンプと、逆浸透膜カートリッジと、前記逆浸透膜カートリッジより濃縮水側下流に配置したエネルギー回収手段とを備え、前記高圧ポンプで加圧された高圧原水を前記逆浸透膜カートリッジに導入し、希薄水と濃縮水に分離する膜分離装置において、
前記エネルギー回収手段として前記逆浸透膜カートリッジより排出される濃縮水を導入し、前記供給される原水の一部を加圧する容積形エネルギー回収装置を用い、
前記容積形エネルギー回収装置で加圧された原水を前記高圧ポンプと前記逆浸透膜カートリッジを接続する高圧ラインを流れる高圧原水に合流させるバイパスラインと、
前記バイパスラインの途中に設けられ該バイパス配管中を流れる原水を加圧するブースタポンプと、
前記逆浸透膜カートリッジに供給される原水の温度を検出する原水温度センサと、
前記逆浸透膜カートリッジに供給される原水流量を制御する原水流量制御手段を設け、
前記原水流量制御手段は、前記原水温度センサで検出された原水の温度、前記逆浸透膜カートリッジの逆浸透膜の温度に対する膜特性、原水中の溶質濃度と逆浸透圧の関係、前記高圧ポンプ及びブースタポンプの性能曲線の関係を用いて設定された所定の希薄水流量が得られるように前記逆浸透膜カートリッジに供給される原水流量を制御することを特徴とする膜分離装置。
A high pressure pump for pressurizing the supplied raw water, a reverse osmosis membrane cartridge, and energy recovery means disposed downstream of the reverse osmosis membrane cartridge on the concentrated water side, and the high pressure raw water pressurized by the high pressure pump is In a membrane separator that is introduced into a osmotic membrane cartridge and separated into dilute water and concentrated water,
Using the positive displacement energy recovery device that introduces concentrated water discharged from the reverse osmosis membrane cartridge as the energy recovery means and pressurizes a part of the supplied raw water,
A bypass line that joins the raw water pressurized by the positive displacement energy recovery device to the high-pressure raw water flowing through the high-pressure line connecting the high-pressure pump and the reverse osmosis membrane cartridge;
A booster pump that is provided in the middle of the bypass line and pressurizes the raw water flowing in the bypass pipe;
A raw water temperature sensor for detecting the temperature of the raw water supplied to the reverse osmosis membrane cartridge;
Providing raw water flow rate control means for controlling the raw water flow rate supplied to the reverse osmosis membrane cartridge;
The raw water flow rate control means includes the raw water temperature detected by the raw water temperature sensor, the membrane characteristics with respect to the reverse osmosis membrane temperature of the reverse osmosis membrane cartridge, the relationship between the solute concentration in the raw water and the reverse osmotic pressure, the high-pressure pump and A membrane separation apparatus for controlling a raw water flow rate supplied to the reverse osmosis membrane cartridge so as to obtain a predetermined dilute water flow rate set using a relationship of performance curves of a booster pump.
請求項1に記載の膜分離装置において、
前記設定された所定の希薄水流量は、該希薄水の適切な水質を確保しつつ、前記逆浸透膜の希薄水流量曲線上の最適な流量であることを特徴とする膜分離装置。
The membrane separation apparatus according to claim 1,
The membrane separation apparatus characterized in that the predetermined dilute water flow rate set is an optimum flow rate on the dilute water flow curve of the reverse osmosis membrane while ensuring an appropriate water quality of the dilute water.
請求項1又は2に記載の膜分離装置において、
前記原水流量制御手段は、高圧ポンプ及び/又はブースタポンプの回転数を制御して前記逆浸透膜カートリッジに供給される原水流量を制御することを特徴とする膜分離装置。
The membrane separation apparatus according to claim 1 or 2,
The raw water flow rate control means controls the flow rate of raw water supplied to the reverse osmosis membrane cartridge by controlling the number of rotations of a high-pressure pump and / or a booster pump.
請求項1又は2に記載の膜分離装置において、
前記高圧ライン、前記バイパスライン、前記逆浸透膜カートリッジから吐出された濃縮水を前記容積形エネルギー回収装置に導く濃縮ライン、該容積形エネルギー回収装置から濃縮水を排水する排水ライン、前記濃縮ラインから前記容積形エネルギー回収装置をバイパスして濃縮水を排水する濃縮水バイパスラインにそれぞれ流量制御弁を設け、
前記原水流量制御手段は、前記流量制御弁の少なくとも一つを制御して前記逆浸透膜カートリッジに供給される原水流量を制御することを特徴とする膜分離装置。
The membrane separation apparatus according to claim 1 or 2,
From the high-pressure line, the bypass line, a concentration line that leads the concentrated water discharged from the reverse osmosis membrane cartridge to the positive displacement energy recovery device, a drainage line that drains the concentrated water from the positive displacement energy recovery device, and the concentration line A flow rate control valve is provided in each concentrated water bypass line that drains concentrated water by bypassing the positive displacement energy recovery device,
The membrane separation apparatus, wherein the raw water flow rate control means controls the flow rate of raw water supplied to the reverse osmosis membrane cartridge by controlling at least one of the flow rate control valves.
供給された原水を加圧する高圧ポンプと、逆浸透膜カートリッジと、前記逆浸透膜カートリッジより濃縮水側下流に配置したエネルギー回収手段とを備え、前記高圧ポンプで加圧された高圧原水を前記逆浸透膜カートリッジに導入し、希薄水と濃縮水に分離する膜分離装置の運転方法において、
前記エネルギー回収手段として容積形エネルギー回収装置を用いると共に、ブースタポンプを設け、
前記逆浸透膜カートリッジより排水する濃縮水を前記容積形エネルギー回収装置に導入し、前記供給される原水の一部を加圧し、該加圧した原水を前記ブースタポンプで加圧し、該加圧した原水を前記高圧ポンプと前記逆浸透膜カートリッジを接続する高圧ラインを流れる高圧原水に合流させると共に、原水温度センサで検出された原水の温度、逆浸透膜カートリッジの逆浸透膜の温度に対する膜特性、原水中の溶質濃度と逆浸透圧の関係、前記高圧ポンプ及びブースタポンプの性能曲線の関係を用いて設定された所定の希薄水流量が得られるように前記逆浸透膜カートリッジに供給される原水流量を制御することを特徴とする膜分離装置の運転方法。
A high pressure pump for pressurizing the supplied raw water, a reverse osmosis membrane cartridge, and energy recovery means disposed downstream of the reverse osmosis membrane cartridge on the concentrated water side, and the high pressure raw water pressurized by the high pressure pump is In the operation method of the membrane separator that is introduced into the osmotic membrane cartridge and separated into dilute water and concentrated water,
While using a positive displacement energy recovery device as the energy recovery means, a booster pump is provided,
Concentrated water drained from the reverse osmosis membrane cartridge is introduced into the positive displacement energy recovery device, a part of the supplied raw water is pressurized, the pressurized raw water is pressurized with the booster pump, and the pressurized The raw water is joined to the high-pressure raw water flowing through the high-pressure line connecting the high-pressure pump and the reverse osmosis membrane cartridge, and the membrane characteristics with respect to the temperature of the raw water detected by the raw water temperature sensor and the reverse osmosis membrane temperature of the reverse osmosis membrane cartridge, Raw water flow rate supplied to the reverse osmosis membrane cartridge so as to obtain a predetermined dilute water flow rate set using the relationship between the solute concentration in the raw water and the reverse osmotic pressure, and the relationship between the performance curves of the high pressure pump and the booster pump A method for operating a membrane separator characterized by controlling the pressure.
JP2008231159A 2008-09-09 2008-09-09 Membrane separation apparatus and method of operating the same Pending JP2010063976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008231159A JP2010063976A (en) 2008-09-09 2008-09-09 Membrane separation apparatus and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008231159A JP2010063976A (en) 2008-09-09 2008-09-09 Membrane separation apparatus and method of operating the same

Publications (1)

Publication Number Publication Date
JP2010063976A true JP2010063976A (en) 2010-03-25

Family

ID=42190042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008231159A Pending JP2010063976A (en) 2008-09-09 2008-09-09 Membrane separation apparatus and method of operating the same

Country Status (1)

Country Link
JP (1) JP2010063976A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240234A (en) * 2010-05-17 2011-12-01 Toshiba Corp Seawater desalination apparatus
JP2012081462A (en) * 2010-09-15 2012-04-26 Toshiba Corp Membrane filtration system
WO2012127271A1 (en) * 2011-03-21 2012-09-27 Abb Research Ltd Method and system for minimizing energy consumption during reverse osmosis unit operation
JP2012192324A (en) * 2011-03-15 2012-10-11 Toshiba Corp Seawater desalination device
JP2013052349A (en) * 2011-09-05 2013-03-21 Toray Ind Inc Water making method
JP2013128874A (en) * 2011-12-20 2013-07-04 Kayaba System Machinery Kk Seawater desalination apparatus
WO2013136500A1 (en) * 2012-03-15 2013-09-19 株式会社日立製作所 Water transport control system and water transport control method
CN103827492A (en) * 2011-09-30 2014-05-28 通用电气公司 Desalination system with energy recovery and related pumps, valves and controller
WO2015040153A1 (en) * 2013-09-20 2015-03-26 Ksb Aktiengesellschaft Membrane separation method with speed control of pressure exchanger and feed pump
WO2016068639A1 (en) * 2014-10-30 2016-05-06 주식회사 필드솔루션 Method for reducing membrane fouling in water treatment apparatus using separation membrane
US9476415B2 (en) 2012-12-04 2016-10-25 General Electric Company System and method for controlling motion profile of pistons
JPWO2015037645A1 (en) * 2013-09-11 2017-03-02 株式会社荏原製作所 Seawater desalination system
US9638179B2 (en) 2012-12-04 2017-05-02 General Electric Company Hydraulic control system for a reverse osmosis hydraulic pump
US9644761B2 (en) 2011-09-30 2017-05-09 General Electric Company Desalination system with energy recovery and related pumps, valves and controller
US9897080B2 (en) 2012-12-04 2018-02-20 General Electric Company Rotary control valve for reverse osmosis feed water pump with energy recovery
CN115417472A (en) * 2022-08-24 2022-12-02 苏州科索膜技术有限公司 Reverse osmosis ultrahigh-pressure reverse osmosis treatment system and treatment method thereof
KR102544210B1 (en) * 2023-03-08 2023-06-16 주식회사 청아이엔지 Seawater desalination system and method for improving energy saving and stability through energy recovery device control

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011202201B2 (en) * 2010-05-17 2013-11-28 Kabushiki Kaisha Toshiba Seawater desalination apparatus
CN102267743A (en) * 2010-05-17 2011-12-07 株式会社东芝 Seawater desalination apparatus
US9145310B2 (en) 2010-05-17 2015-09-29 Kabushiki Kaisha Toshiba Seawater desalination apparatus
CN102267743B (en) * 2010-05-17 2014-05-28 株式会社东芝 Seawater desalination apparatus
JP2011240234A (en) * 2010-05-17 2011-12-01 Toshiba Corp Seawater desalination apparatus
JP2012081462A (en) * 2010-09-15 2012-04-26 Toshiba Corp Membrane filtration system
US9932250B2 (en) 2010-09-15 2018-04-03 Kabushiki Kaisha Toshiba Membrane filtration system
JP2012192324A (en) * 2011-03-15 2012-10-11 Toshiba Corp Seawater desalination device
WO2012127271A1 (en) * 2011-03-21 2012-09-27 Abb Research Ltd Method and system for minimizing energy consumption during reverse osmosis unit operation
JP2013052349A (en) * 2011-09-05 2013-03-21 Toray Ind Inc Water making method
CN103827492A (en) * 2011-09-30 2014-05-28 通用电气公司 Desalination system with energy recovery and related pumps, valves and controller
US9644761B2 (en) 2011-09-30 2017-05-09 General Electric Company Desalination system with energy recovery and related pumps, valves and controller
US9387440B2 (en) 2011-09-30 2016-07-12 General Electric Company Desalination system with energy recovery and related pumps, valves and controller
JP2013128874A (en) * 2011-12-20 2013-07-04 Kayaba System Machinery Kk Seawater desalination apparatus
WO2013136500A1 (en) * 2012-03-15 2013-09-19 株式会社日立製作所 Water transport control system and water transport control method
US9476415B2 (en) 2012-12-04 2016-10-25 General Electric Company System and method for controlling motion profile of pistons
US9638179B2 (en) 2012-12-04 2017-05-02 General Electric Company Hydraulic control system for a reverse osmosis hydraulic pump
US9897080B2 (en) 2012-12-04 2018-02-20 General Electric Company Rotary control valve for reverse osmosis feed water pump with energy recovery
JPWO2015037645A1 (en) * 2013-09-11 2017-03-02 株式会社荏原製作所 Seawater desalination system
CN105531017A (en) * 2013-09-20 2016-04-27 Ksb股份公司 Membrane separation method with speed control of pressure exchanger and feed pump
WO2015040153A1 (en) * 2013-09-20 2015-03-26 Ksb Aktiengesellschaft Membrane separation method with speed control of pressure exchanger and feed pump
CN105531017B (en) * 2013-09-20 2018-12-14 Ksb 股份公司 Utilize the diaphragm separation method of pressure exchanger and the rotational speed regulation of supply pump
US10604425B2 (en) 2013-09-20 2020-03-31 Ksb Aktiengesellschaft Membrane separation method with speed control of pressure exchanger and feed pump
WO2016068639A1 (en) * 2014-10-30 2016-05-06 주식회사 필드솔루션 Method for reducing membrane fouling in water treatment apparatus using separation membrane
CN115417472A (en) * 2022-08-24 2022-12-02 苏州科索膜技术有限公司 Reverse osmosis ultrahigh-pressure reverse osmosis treatment system and treatment method thereof
KR102544210B1 (en) * 2023-03-08 2023-06-16 주식회사 청아이엔지 Seawater desalination system and method for improving energy saving and stability through energy recovery device control

Similar Documents

Publication Publication Date Title
JP2010063976A (en) Membrane separation apparatus and method of operating the same
EP2536484B1 (en) Control scheme for a reverse osmosis system using a hydraulic energy management integration system
EP2021586B1 (en) Hybrid ro/pro system
US9023210B2 (en) Method and apparatus for osmotic power generation
JP5933926B2 (en) Seawater desalination system and seawater desalination method
KR102180787B1 (en) Water treatment system and method by reverse osmosis or nanofiltration
CA2726869A1 (en) Method of improving performance of a reverse osmosis system for seawater desalination, and modified reverse osmosis system obtained thereby
US20080105617A1 (en) Two pass reverse osmosis system
JP2019171320A (en) Desalination system
JP6065687B2 (en) Water treatment equipment
JP2015104710A (en) Seawater desalination system
US10710024B2 (en) Method and system for performing a batch reverse osmosis process using a tank with a movable partition
JP5529491B2 (en) Seawater desalination equipment
JP2010089036A (en) Membrane separation apparatus, and operation management method of membrane separation apparatus
KR101926057B1 (en) Desalination apparatus and method using osmotic pressure equilibrium
KR200373511Y1 (en) Apparatus making fresh water from sea water using reverse osmosis
JP2002085941A (en) Fresh water making process and fresh water maker
JP5966639B2 (en) Salt water desalination apparatus and fresh water generation method
JP6907745B2 (en) Membrane separation device
WO2018047156A1 (en) Method and system for liquid treatment
JP2018012069A (en) Water treatment system
JP2014034005A (en) Salt water desalination apparatus and fresh water production method
JP2001300264A (en) Reverse osmosis membrane fresh water generator
JP2013192971A (en) Power recovery bwro system, and power recovery method