WO2019087867A1 - Seawater desalination method and seawater desalination system - Google Patents
Seawater desalination method and seawater desalination system Download PDFInfo
- Publication number
- WO2019087867A1 WO2019087867A1 PCT/JP2018/039342 JP2018039342W WO2019087867A1 WO 2019087867 A1 WO2019087867 A1 WO 2019087867A1 JP 2018039342 W JP2018039342 W JP 2018039342W WO 2019087867 A1 WO2019087867 A1 WO 2019087867A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seawater
- membrane
- water
- reverse osmosis
- diluted
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/04—Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Definitions
- the present invention relates to a seawater desalination method and a seawater desalination system.
- a freshwater production system seawater desalination system
- seawater pressurized to a predetermined pressure by a boost pump is supplied to an RO membrane module, and the RO membrane is permeated to allow salt and the like in seawater to be extracted.
- a reverse osmosis step is performed to remove and take out fresh water (produced water).
- the remaining salt water which has not permeated through the RO membrane is discharged from the RO membrane module as concentrated salt water (brine)
- Patent Document 1 Japanese Patent Application Laid-Open No. 2004-97911).
- an object of this invention is to provide the seawater desalination method which can reduce the energy consumption of a reverse osmosis process.
- a seawater desalination system for use in the seawater desalination method according to any one of [1] to [5], wherein A forward osmosis treatment device having a semipermeable membrane, bringing seawater supplied from a seawater tank into contact with low osmotic pressure water via the semipermeable membrane, and discharging diluted salt water diluted with the seawater; Reverse osmosis treatment, which comprises a reverse osmosis membrane and discharges, from the diluted brine discharged from the forward osmosis treatment device, the product water having permeated through the reverse osmosis membrane and the concentrated brine which is the concentrated dilute brine; A device, Desalination system, equipped with
- the forward osmosis treatment apparatus used in the forward osmosis step of the present invention has the semipermeable membrane 1a, and the seawater supplied from the seawater tank 6 is brought into contact with the low osmotic pressure water through the forward osmosis membrane 1a to Drain the diluted salted water.
- the forward osmosis treatment apparatus comprises a forward osmosis (FO) membrane module 1.
- the FO membrane module 1 includes an FO membrane 1a which is a semipermeable membrane used for forward osmosis treatment, a first chamber 11 to which a feed solution (FS) is supplied, and a second to which a draw solution (DS) is supplied.
- a chamber 12 is provided, and the first chamber 11 and the second chamber 12 are separated by the FO membrane 1a.
- the forward osmosis treatment apparatus includes a pump 31 for supplying FS to the first chamber 11 of the FO membrane module 1, and a pump 32 for supplying DS to the second chamber 12 of the FO membrane module 1 from the seawater tank 6. Prepare.
- DS is seawater.
- FS is not particularly limited as long as it is a liquid (hypotonic water) having an osmotic pressure lower than DS, but, for example, fresh water (for example, river water, drainage (industrial drainage, treated sewage etc.)), and seawater Low salt water (eg, brine, brackish water) is used.
- the low osmotic pressure water is preferably waste water. When waste water is used as the low osmotic pressure water, the amount of waste water discarded as industrial waste can be reduced.
- low osmotic pressure water is supplied to the first chamber 11 of the FO membrane module 1 via the pump 31, and the low osmotic pressure water is brought into contact with one surface of the semipermeable membrane 1a.
- the seawater pumped from the seawater tank 6 is supplied to the second chamber 12 of the FO membrane module 1 and brought into contact with the opposite surface of the semipermeable membrane 1a.
- the reverse osmosis treatment apparatus used in the reverse osmosis process of the present invention has a reverse osmosis membrane 2a, and from the diluted brine discharged from the forward osmosis treatment apparatus, the produced water permeating the reverse osmosis membrane and the concentrated diluted brine Drain the concentrated brine.
- the reverse osmosis treatment apparatus comprises a reverse osmosis (RO) membrane module 2a, a reverse osmosis (RO) membrane module 2, and a pressure rising pump for supplying seawater diluted in the RO membrane module 2 (diluted salt water) 33 is provided.
- RO reverse osmosis
- RO reverse osmosis
- the shapes of the FO membrane 1a and the RO membrane 2a are not particularly limited, and examples thereof include flat membranes, spiral membranes, and hollow fiber membranes.
- flat membrane is simplified and drawn as FO membrane and RO membrane, it is not limited in particular in such a shape.
- a hollow fiber membrane can increase the membrane area per module compared to a spiral type semipermeable membrane etc., and can improve the efficiency of reverse osmosis and forward osmosis. Is advantageous.
- the material of the FO membrane and the RO membrane is not particularly limited, and examples thereof include cellulose acetate, polyamide and sulfonated polysulfone.
- the materials of the FO film 1a and the RO film 2a may be the same or different. Since cellulose acetate is excellent in chlorine resistance, when cellulose acetate is used, a chlorine-based bactericide can be added to the water supplied to each module as a bactericide.
- the form of the FO membrane module 1 and the RO membrane module 2 is not particularly limited, but in the case of using a hollow fiber membrane, a module in which the hollow fiber membrane is arranged straight or a cross in which the hollow fiber membrane is wound around a core tube Wind-type module etc. are mentioned.
- a flat membrane is used, a stacked module in which flat membranes are stacked, or a spiral type module in which a flat membrane is enveloped and wound around a core tube may, for example, be mentioned.
- the diluted brine discharged from the FO membrane module 1 is pressurized by the pressure pump 33 to a pressure higher than the osmotic pressure possessed by the diluted brine, and is supplied to the RO membrane module 2.
- the diluted brine supplied to the RO membrane module 2 can pass through the RO membrane 2a to obtain fresh water from which the salt content, impurities and the like have been removed from the diluted seawater.
- the remaining diluted brine that has not permeated the RO membrane 2a is concentrated and discharged from the RO membrane module 2 as concentrated brine.
- the obtained fresh water is sent to the next purification step or the like as necessary to be produced water.
- the diluted brine discharged from the second chamber 12 of the FO membrane module 1 is diluted in the flow path (route) until it is supplied to the RO membrane module 2
- a method of installing a measuring device for measuring the concentration, osmotic pressure or flow rate of salt water, and controlling the output (pressure) of the pumps 31, 32 based on the value measured by the measuring device, and as necessary, an FO membrane A method of adjusting the opening degree of a flow rate adjusting valve (not shown) installed in a flow path (path) until the diluted brine discharged from the second chamber 12 of the module 1 is supplied to the RO membrane module 2, etc. It can be mentioned. Note that, for example, by reducing the output of the pump 32, the salt concentration of the diluted brine can be reduced. Also, for example, by increasing the output of the pump 31, the salt concentration of the diluted brine can be reduced.
- pretreatments require large-scale equipment. Moreover, in order to perform sufficient treatment according to the water quality condition of the taken-in seawater, detailed operation management by a skilled engineer is also necessary.
- concentrated salt water is circulated and reused, the amount of pretreatment of seawater can be reduced, and the pretreatment equipment can be miniaturized. Conventionally, when, for example, pretreatment of 30,000 tons / day of seawater is necessary, the amount of the treatment can be reduced to, for example, 500 tons / day by circulating concentrated salt water.
- the seawater required to simultaneously bring up all the trains (the smallest unit that can be switched on / off independently including multiple RO membrane modules) is pretreated at one time do not have to.
- the seawater pretreatment device 5 may be used to start up one train at a time, and in this case, the pretreatment device can be further miniaturized. Pretreatment can be partially omitted by using an aqueous NaCl solution which does not require pretreatment in place of seawater.
- a measuring device for measuring the concentration, osmotic pressure or flow rate of diluted brine in the flow path (pathway) where the diluted brine discharged from the second chamber 12 of the FO membrane module 1 is supplied to the RO membrane module 2 Install and integrate the outputs (pressures) of the pumps 31, 32 and boost pump 33 (also the opening of the flow rate adjustment valve provided in each flow path if necessary) based on the value measured by the measuring device. It is also possible to use control methods.
- seawater may be newly collected from the ocean, pretreated by the seawater pretreatment apparatus 5, and then replenished to the seawater tank 6.
- the anti-scaling agent is not particularly limited, but for example, inorganic polyphosphates such as sodium hexametaphosphate, sodium tripolyphosphate, phosphonic acids such as aminomethyl phosphonic acid and phosphonobutane tricarboxylic acid for preventing calcium-based scale
- inorganic polyphosphates such as sodium hexametaphosphate, sodium tripolyphosphate, phosphonic acids such as aminomethyl phosphonic acid and phosphonobutane tricarboxylic acid for preventing calcium-based scale
- a scale inhibitor containing phosphorus a copolymer of maleic acid and isobutylene, a terpolymer of maleic acid and vinyl ethyl acetate and ethyl acrylate, an AA (acrylic acid) -AMPS (2-acrylamido-2-methylpropyl sulfonic acid) copolymer and a PMA
- the scale inhibiting agent etc. which do not contain phosphorus, such
- the chlorine-based germicide is not particularly limited, and examples thereof include chlorine gas, free chlorine such as sodium hypochlorite and calcium hypochlorite, combined chlorine such as monochloramine, and chlorine dioxide.
- the addition of these chlorine-based germicides can suppress the growth of microorganisms that cause biofouling, and make it difficult to cause deterioration in membrane performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Provided is a seawater desalination method in which the amount of energy consumed in a reverse osmosis step is reduced. This seawater desalination method for obtaining fresh water from seawater includes: a forward osmosis step for contacting seawater supplied from a seawater tank and water having a low osmotic pressure with one another across a semi-permeable membrane, and obtaining a diluted salt water which is diluted seawater; and a reverse osmosis step for using a reverse osmosis membrane and obtaining, from the diluted salt water obtained in the forward osmosis step, concentrated salt water which is a concentrate of the diluted salt water, and produced water which has passed through the reverse osmosis membrane.
Description
本発明は、海水淡水化方法および海水淡水化システムに関する。
The present invention relates to a seawater desalination method and a seawater desalination system.
正浸透(FO:forward osmosis)とは、正浸透膜を介して、低濃度(低浸透圧)の被処理水(フィード溶液)側の水が高濃度(高浸透圧)の溶液(ドロー溶液)に向かって移動する現象のことである。一方、水処理分野においては、逆浸透(RO:reverse osmosis)工程を用いる水処理方法が従来から知られている。逆浸透工程は、人為的に強い圧力を加えることにより、正浸透とは逆に、高濃度の被処理水から低濃度の溶液側に水を移動させる工程である。
Forward osmosis (FO) means a solution (draw solution) with high concentration (high osmotic pressure) of water at the low concentration (low osmotic pressure) side of the treated water (feed solution) via the forward osmosis membrane It is a phenomenon that moves toward. On the other hand, in the field of water treatment, a water treatment method using a reverse osmosis (RO) process is conventionally known. The reverse osmosis step is a step of moving water from the high concentration treated water to the low concentration solution side contrary to the forward osmosis by artificially applying a strong pressure.
海水から淡水を生産する造水システム(海水淡水化システム)では、昇圧ポンプによって所定の圧力に昇圧された海水をRO膜モジュールに供給し、RO膜を透過させることで、海水中の塩分等を除去して淡水(生産水)を取り出す逆浸透工程が実施される。このとき、RO膜を透過しなかった残りの塩水は、濃縮塩水(ブライン)としてRO膜モジュールから排出される(特許文献1:特開2004-97911号公報)。
In a freshwater production system (seawater desalination system) that produces fresh water from seawater, seawater pressurized to a predetermined pressure by a boost pump is supplied to an RO membrane module, and the RO membrane is permeated to allow salt and the like in seawater to be extracted. A reverse osmosis step is performed to remove and take out fresh water (produced water). At this time, the remaining salt water which has not permeated through the RO membrane is discharged from the RO membrane module as concentrated salt water (brine) (Patent Document 1: Japanese Patent Application Laid-Open No. 2004-97911).
しかし、海水の塩濃度は約3.5w/v%であり、その浸透圧は2.5~3MPaと非常に高い。このため、海水淡水化装置における逆浸透工程は、海水の浸透圧以上の強い圧力(好ましくは6~8MPa)が必要であり、エネルギー消費量が極めて多いため、エネルギー効率が低い。
However, the salt concentration of seawater is about 3.5 w / v%, and the osmotic pressure is very high at 2.5 to 3 MPa. For this reason, the reverse osmosis step in the seawater desalination apparatus requires a pressure (preferably 6 to 8 MPa) that is higher than the osmotic pressure of seawater, and the energy consumption is extremely large, so the energy efficiency is low.
そこで、本発明は、逆浸透工程のエネルギー消費量を低減することのできる海水淡水化方法を提供することを目的とする。
Then, an object of this invention is to provide the seawater desalination method which can reduce the energy consumption of a reverse osmosis process.
[1] 海水から淡水を得る海水淡水化方法であって、
海水タンクから供給される海水を、半透膜を介して低浸透圧水と接触させて、前記海水が希釈された希釈塩水を得る、正浸透工程と、
前記正浸透工程で得られた前記希釈塩水から、逆浸透膜を用いて、前記逆浸透膜を透過した生産水と、濃縮された前記希釈塩水である濃縮塩水とを得る、逆浸透工程と、
を含む、海水淡水化方法。 [1] A seawater desalination method for obtaining fresh water from seawater,
A forward osmosis process, wherein seawater supplied from a seawater tank is brought into contact with hypotonic water through a semipermeable membrane to obtain diluted seawater in which the seawater is diluted;
A reverse osmosis step of obtaining, from the diluted brine obtained in the forward osmosis step, product water having permeated through the reverse osmosis membrane and a concentrated brine which is the concentrated dilute brine using a reverse osmosis membrane;
Seawater desalination methods, including:
海水タンクから供給される海水を、半透膜を介して低浸透圧水と接触させて、前記海水が希釈された希釈塩水を得る、正浸透工程と、
前記正浸透工程で得られた前記希釈塩水から、逆浸透膜を用いて、前記逆浸透膜を透過した生産水と、濃縮された前記希釈塩水である濃縮塩水とを得る、逆浸透工程と、
を含む、海水淡水化方法。 [1] A seawater desalination method for obtaining fresh water from seawater,
A forward osmosis process, wherein seawater supplied from a seawater tank is brought into contact with hypotonic water through a semipermeable membrane to obtain diluted seawater in which the seawater is diluted;
A reverse osmosis step of obtaining, from the diluted brine obtained in the forward osmosis step, product water having permeated through the reverse osmosis membrane and a concentrated brine which is the concentrated dilute brine using a reverse osmosis membrane;
Seawater desalination methods, including:
[2] 前記低浸透圧水は、排水である、[1]に記載の海水淡水化方法。
[2] The seawater desalination method according to [1], wherein the low osmotic pressure water is drainage.
[3] 前記逆浸透工程で得られた前記濃縮塩水を前記海水タンクに戻して、前記正浸透工程に再利用する、[1]または[2]に記載の海水淡水化方法。
[3] The seawater desalination method according to [1] or [2], wherein the concentrated brine obtained in the reverse osmosis step is returned to the seawater tank and reused in the forward osmosis step.
[4] 前記海水は、前処理された海水である、[1]~[3]のいずれかに記載の海水淡水化方法。
[4] The seawater desalination method according to any one of [1] to [3], wherein the seawater is pretreated seawater.
[5] 前記濃縮塩水の塩濃度が2w/v%以上である、[1]~[4]のいずれかに記載の海水淡水化方法。
[5] The seawater desalination method according to any one of [1] to [4], wherein the salt concentration of the concentrated brine is 2 w / v% or more.
[6] [1]~[5]のいずれかに記載の海水淡水化方法に用いられる海水淡水化システムであって、
半透膜を有し、海水タンクから供給される海水を、前記半透膜を介して低浸透圧水と接触させて、前記海水が希釈された希釈塩水を排出する、正浸透処理装置と、
逆浸透膜を有し、前記正浸透処理装置から排出された前記希釈塩水から、前記逆浸透膜を透過した生産水と、濃縮された前記希釈塩水である濃縮塩水とを排出する、逆浸透処理装置と、
を備える、海水淡水化システム。 [6] A seawater desalination system for use in the seawater desalination method according to any one of [1] to [5], wherein
A forward osmosis treatment device having a semipermeable membrane, bringing seawater supplied from a seawater tank into contact with low osmotic pressure water via the semipermeable membrane, and discharging diluted salt water diluted with the seawater;
Reverse osmosis treatment, which comprises a reverse osmosis membrane and discharges, from the diluted brine discharged from the forward osmosis treatment device, the product water having permeated through the reverse osmosis membrane and the concentrated brine which is the concentrated dilute brine; A device,
Desalination system, equipped with
半透膜を有し、海水タンクから供給される海水を、前記半透膜を介して低浸透圧水と接触させて、前記海水が希釈された希釈塩水を排出する、正浸透処理装置と、
逆浸透膜を有し、前記正浸透処理装置から排出された前記希釈塩水から、前記逆浸透膜を透過した生産水と、濃縮された前記希釈塩水である濃縮塩水とを排出する、逆浸透処理装置と、
を備える、海水淡水化システム。 [6] A seawater desalination system for use in the seawater desalination method according to any one of [1] to [5], wherein
A forward osmosis treatment device having a semipermeable membrane, bringing seawater supplied from a seawater tank into contact with low osmotic pressure water via the semipermeable membrane, and discharging diluted salt water diluted with the seawater;
Reverse osmosis treatment, which comprises a reverse osmosis membrane and discharges, from the diluted brine discharged from the forward osmosis treatment device, the product water having permeated through the reverse osmosis membrane and the concentrated brine which is the concentrated dilute brine; A device,
Desalination system, equipped with
本発明によれば、海水淡水化方法における、逆浸透工程のエネルギー消費量を低減することができる。
ADVANTAGE OF THE INVENTION According to this invention, the energy consumption of a reverse osmosis process in a seawater desalination method can be reduced.
以下、本発明の実施形態の海水淡水化方法および海水淡水化システムについて、図1を参照して説明する。なお、図面において、同一の参照符号は、同一部分または相当部分を示す。
Hereinafter, a seawater desalination method and a seawater desalination system according to an embodiment of the present invention will be described with reference to FIG. In the drawings, the same reference numerals indicate the same or corresponding parts.
(正浸透工程)
本工程では、図1を参照して、海水タンク6から供給される海水を、半透膜1aを介して低浸透圧水と接触させて、海水が希釈された希釈塩水を得る。 (Forward penetration process)
In this step, referring to FIG. 1, seawater supplied fromseawater tank 6 is brought into contact with low osmotic pressure water through semipermeable membrane 1a to obtain diluted brine in which seawater is diluted.
本工程では、図1を参照して、海水タンク6から供給される海水を、半透膜1aを介して低浸透圧水と接触させて、海水が希釈された希釈塩水を得る。 (Forward penetration process)
In this step, referring to FIG. 1, seawater supplied from
本発明の正浸透工程に用いられる正浸透処理装置は、半透膜1aを有し、海水タンク6から供給される海水を、正浸透膜1aを介して低浸透圧水と接触させて、海水が希釈された希釈塩水を排出する。
The forward osmosis treatment apparatus used in the forward osmosis step of the present invention has the semipermeable membrane 1a, and the seawater supplied from the seawater tank 6 is brought into contact with the low osmotic pressure water through the forward osmosis membrane 1a to Drain the diluted salted water.
具体的には、正浸透処理装置は、正浸透(FO)膜モジュール1を備える。FO膜モジュール1は、正浸透処理に用いられる半透膜であるFO膜1a、ならびに、フィード溶液(FS)が供給される第1室11、および、ドロー溶液(DS)が供給される第2室12を有し、第1室11と第2室12とはFO膜1aで仕切られている。また、正浸透処理装置は、FO膜モジュール1の第1室11にFSを供給するポンプ31と、海水タンク6から、FO膜モジュール1の第2室12にDSを供給するポンプ32と、を備える。
Specifically, the forward osmosis treatment apparatus comprises a forward osmosis (FO) membrane module 1. The FO membrane module 1 includes an FO membrane 1a which is a semipermeable membrane used for forward osmosis treatment, a first chamber 11 to which a feed solution (FS) is supplied, and a second to which a draw solution (DS) is supplied. A chamber 12 is provided, and the first chamber 11 and the second chamber 12 are separated by the FO membrane 1a. In addition, the forward osmosis treatment apparatus includes a pump 31 for supplying FS to the first chamber 11 of the FO membrane module 1, and a pump 32 for supplying DS to the second chamber 12 of the FO membrane module 1 from the seawater tank 6. Prepare.
本実施形態において、DSは海水である。FSは、DSよりも低い浸透圧を有する液体(低浸透圧水)であれば特に限定されないが、例えば、淡水(例えば、河川水、排水(工業排水、下水処理水など))、海水よりも塩濃度の低い塩水(例えば、かん水、汽水)などが用いられる。低浸透圧水は、好ましくは排水である。低浸透圧水として排水を用いた場合、産業廃棄物として廃棄する排水の量を減らすことができる。
In the present embodiment, DS is seawater. FS is not particularly limited as long as it is a liquid (hypotonic water) having an osmotic pressure lower than DS, but, for example, fresh water (for example, river water, drainage (industrial drainage, treated sewage etc.)), and seawater Low salt water (eg, brine, brackish water) is used. The low osmotic pressure water is preferably waste water. When waste water is used as the low osmotic pressure water, the amount of waste water discarded as industrial waste can be reduced.
正浸透工程では、ポンプ31を介して低浸透圧水をFO膜モジュール1の第1室11に供給し、低浸透圧水を半透膜1aの一方の面に接触させるとともに、ポンプ32を介して海水タンク6からくみ上げられた海水をFO膜モジュール1の第2室12に供給し、半透膜1aの反対側の面に接触させる。
In the forward osmosis step, low osmotic pressure water is supplied to the first chamber 11 of the FO membrane module 1 via the pump 31, and the low osmotic pressure water is brought into contact with one surface of the semipermeable membrane 1a. The seawater pumped from the seawater tank 6 is supplied to the second chamber 12 of the FO membrane module 1 and brought into contact with the opposite surface of the semipermeable membrane 1a.
半透膜を介して接触した海水と低浸透圧水の間には浸透圧差が生じているため、正浸透現象により、低浸透圧水に含まれる水が半透膜1aを透過し、海水中に移動する。希釈されて塩濃度が低下した海水(希釈塩水)は、FO膜モジュール1から排出され、昇圧ポンプ33を介してRO膜モジュール2に供給される。
Since an osmotic pressure difference occurs between seawater and hypotonic water in contact through the semipermeable membrane, the water contained in the low osmotic pressure water permeates the semipermeable membrane 1a by the forward osmosis phenomenon, and the seawater Move to The diluted seawater (salt water) having a reduced salt concentration is discharged from the FO membrane module 1 and supplied to the RO membrane module 2 via the pressure rising pump 33.
(逆浸透工程)
本工程では、図1を参照して、正浸透工程で得られた希釈塩水から、逆浸透膜2aを用いて、逆浸透膜2aを透過した生産水と、濃縮された希釈塩水である濃縮塩水とを得る。 (Reverse osmosis process)
In this step, referring to FIG. 1, from the diluted brine obtained in the forward osmosis step, usingreverse osmosis membrane 2a, the product water permeated through reverse osmosis membrane 2a and concentrated brine which is concentrated diluted brine Get
本工程では、図1を参照して、正浸透工程で得られた希釈塩水から、逆浸透膜2aを用いて、逆浸透膜2aを透過した生産水と、濃縮された希釈塩水である濃縮塩水とを得る。 (Reverse osmosis process)
In this step, referring to FIG. 1, from the diluted brine obtained in the forward osmosis step, using
本発明の逆浸透工程に用いられる逆浸透処理装置は、逆浸透膜2aを有し、正浸透処理装置から排出された希釈塩水から、逆浸透膜を透過した生産水と、濃縮された希釈塩水である濃縮塩水を排出する。
The reverse osmosis treatment apparatus used in the reverse osmosis process of the present invention has a reverse osmosis membrane 2a, and from the diluted brine discharged from the forward osmosis treatment apparatus, the produced water permeating the reverse osmosis membrane and the concentrated diluted brine Drain the concentrated brine.
具体的には、逆浸透処理装置は、逆浸透(RO)膜2aを有する、逆浸透(RO)膜モジュール2、および、RO膜モジュール2に希釈された海水(希釈塩水)を供給する昇圧ポンプ33を備える。
Specifically, the reverse osmosis treatment apparatus comprises a reverse osmosis (RO) membrane module 2a, a reverse osmosis (RO) membrane module 2, and a pressure rising pump for supplying seawater diluted in the RO membrane module 2 (diluted salt water) 33 is provided.
本発明において、FO膜1aおよびRO膜2aの形状としては、特に限定されないが、例えば、平膜、スパイラル膜または中空糸膜が挙げられる。なお、図1では、FO膜およびRO膜として平膜を簡略化して描いているが、特にこのような形状に限定されるものではない。なお、中空糸膜(中空糸型半透膜)は、スパイラル型半透膜などに比べて、モジュール当たりの膜面積を大きくすることができ、逆浸透および正浸透の効率を高めることができる点で有利である。
In the present invention, the shapes of the FO membrane 1a and the RO membrane 2a are not particularly limited, and examples thereof include flat membranes, spiral membranes, and hollow fiber membranes. In addition, in FIG. 1, although flat membrane is simplified and drawn as FO membrane and RO membrane, it is not limited in particular in such a shape. A hollow fiber membrane (hollow fiber type semipermeable membrane) can increase the membrane area per module compared to a spiral type semipermeable membrane etc., and can improve the efficiency of reverse osmosis and forward osmosis. Is advantageous.
FO膜およびRO膜の材質としては、特に限定されないが、例えば、酢酸セルロース、ポリアミドまたはスルホン化ポリスルホンが挙げられる。FO膜1aおよびRO膜2aの素材は、同一であっても異なっていてもよい。酢酸セルロースは耐塩素性に優れるため、酢酸セルロースを用いた場合、各モジュールへの供給水に殺菌剤として塩素系殺菌剤を添加することができる。
The material of the FO membrane and the RO membrane is not particularly limited, and examples thereof include cellulose acetate, polyamide and sulfonated polysulfone. The materials of the FO film 1a and the RO film 2a may be the same or different. Since cellulose acetate is excellent in chlorine resistance, when cellulose acetate is used, a chlorine-based bactericide can be added to the water supplied to each module as a bactericide.
また、FO膜モジュール1およびRO膜モジュール2の形態としては、特に限定されないが、中空糸膜を用いる場合は、中空糸膜をストレート配置したモジュールや、中空糸膜を芯管に巻きつけたクロスワインド型モジュールなどが挙げられる。平膜を用いる場合は、平膜を積み重ねた積層型モジュールや、平膜を封筒状として芯管に巻きつけたスパイラル型モジュールなどが挙げられる。
The form of the FO membrane module 1 and the RO membrane module 2 is not particularly limited, but in the case of using a hollow fiber membrane, a module in which the hollow fiber membrane is arranged straight or a cross in which the hollow fiber membrane is wound around a core tube Wind-type module etc. are mentioned. When a flat membrane is used, a stacked module in which flat membranes are stacked, or a spiral type module in which a flat membrane is enveloped and wound around a core tube may, for example, be mentioned.
逆浸透工程では、FO膜モジュール1から排出された希釈塩水は、昇圧ポンプ33によって、希釈塩水が有する浸透圧より高い圧力に昇圧されて、RO膜モジュール2に供給される。RO膜モジュール2に供給された希釈塩水は、RO膜2aを透過することで希釈海水から塩分、不純物等が除去された淡水を得ることができる。RO膜2aを透過しなかった残りの希釈塩水は濃縮され、濃縮塩水としてRO膜モジュール2から排出される。得られた淡水は、必要により次の精製工程等に送られて生産水となる。
In the reverse osmosis step, the diluted brine discharged from the FO membrane module 1 is pressurized by the pressure pump 33 to a pressure higher than the osmotic pressure possessed by the diluted brine, and is supplied to the RO membrane module 2. The diluted brine supplied to the RO membrane module 2 can pass through the RO membrane 2a to obtain fresh water from which the salt content, impurities and the like have been removed from the diluted seawater. The remaining diluted brine that has not permeated the RO membrane 2a is concentrated and discharged from the RO membrane module 2 as concentrated brine. The obtained fresh water is sent to the next purification step or the like as necessary to be produced water.
希釈塩水は海水と比較して、塩濃度が低下し、浸透圧が低くなっている。このため、逆浸透工程において、昇圧ポンプ33で消費するエネルギー量を抑制することができる。希釈塩水の塩濃度は特に限定されないが、例えば、0.5w/v%~2.0w/v%である。希釈塩水の濃度を上記範囲に調整する方法(手段)としては、FO膜モジュール1の第2室12から排出された希釈塩水がRO膜モジュール2に供給されるまでの流路(経路)に希釈塩水の濃度、浸透圧または流量を計測するための測定装置を設置し、測定装置によって計測された値に基づいてポンプ31、32の出力(圧力)を制御する方法や、必要に応じてFO膜モジュール1の第2室12から排出された希釈塩水がRO膜モジュール2に供給されるまでの流路(経路)に設置された流量調整バルブ(図示せず)の開度を調節する方法などが挙げられる。なお、例えば、ポンプ32の出力を下げることで、希釈塩水の塩濃度を下げることができる。また、例えば、ポンプ31の出力を上げることで、希釈塩水の塩濃度を下げることができる。
Diluted saltwater has lower salt concentration and lower osmotic pressure compared to seawater. Therefore, in the reverse osmosis step, the amount of energy consumed by the pressure rising pump 33 can be suppressed. The salt concentration of the diluted brine is not particularly limited, and is, for example, 0.5 w / v% to 2.0 w / v%. As a method (means) for adjusting the concentration of the diluted brine to the above range, the diluted brine discharged from the second chamber 12 of the FO membrane module 1 is diluted in the flow path (route) until it is supplied to the RO membrane module 2 A method of installing a measuring device for measuring the concentration, osmotic pressure or flow rate of salt water, and controlling the output (pressure) of the pumps 31, 32 based on the value measured by the measuring device, and as necessary, an FO membrane A method of adjusting the opening degree of a flow rate adjusting valve (not shown) installed in a flow path (path) until the diluted brine discharged from the second chamber 12 of the module 1 is supplied to the RO membrane module 2, etc. It can be mentioned. Note that, for example, by reducing the output of the pump 32, the salt concentration of the diluted brine can be reduced. Also, for example, by increasing the output of the pump 31, the salt concentration of the diluted brine can be reduced.
なお、本発明は、逆浸透処理(装置)を用いた既存の海水淡水化システムに対して適用する場合に特に有用性が高い。
The present invention is particularly useful when applied to an existing seawater desalination system using reverse osmosis treatment (apparatus).
本発明において、逆浸透工程で濃縮された濃縮塩水を海水タンク6に戻して、正浸透工程に再利用することが好ましい。
In the present invention, it is preferable to return the concentrated brine concentrated in the reverse osmosis step back to the seawater tank 6 for reuse in the forward osmosis step.
具体的には、図1において、RO膜モジュール2から排出された濃縮塩水は循環経路4を通り、海水タンク6に供給される。海水タンク6に供給された濃縮塩水は、ポンプ32を介してFO膜モジュール1の第2室12に供給され、DSとして再び用いられる。
Specifically, in FIG. 1, the concentrated salt water discharged from the RO membrane module 2 is supplied to the seawater tank 6 through the circulation path 4. The concentrated salt water supplied to the seawater tank 6 is supplied to the second chamber 12 of the FO membrane module 1 via the pump 32 and used again as DS.
また、海水は、海水前処理装置5により、前処理された海水であることが好ましい。海水の前処理を行わない場合、懸濁性の濁質、溶解性の有機物、膜表面上に付着する微生物などが発生し、膜汚染が引き起こされる。海水の前処理方法としては、図示しないポンプで取水した海水を砂濾過、凝集濾過、加圧浮上分離、UF膜(Ultrafiltration:限外濾過)、MF膜(Microfiltration:精密濾過)、カートリッジフィルターなどによって処理する方法があり、これにより汚染源を除去し、FO膜モジュール1に適合する水質の海水を得ることができる。
The seawater is preferably seawater pretreated by the seawater pretreatment device 5. When pretreatment of seawater is not performed, suspended turbidity, soluble organic matter, microorganisms adhering to the surface of the membrane, and the like are generated to cause membrane contamination. The pretreatment method of seawater includes sand filtration, flocculation filtration, pressure flotation separation, UF membrane (Ultrafiltration), MF membrane (Microfiltration: microfiltration), cartridge filter etc. There is a method of processing, which can remove pollution sources and obtain seawater of water quality compatible with the FO membrane module 1.
これらの前処理には、大型の設備が必要となる。また、取り込まれた海水の水質状況に応じて十分な処理を行うためには、熟練技術者によるきめ細かい運転管理も必要である。濃縮塩水を循環させて再利用する場合は、海水の前処理量を少なくすることができ、前処理設備を小型化することができる。従来では、例えば、3万トン/日の海水の前処理が必要であった場合に、濃縮塩水を循環させることで、その処理量を例えば、500トン/日にまで削減することができる。
These pretreatments require large-scale equipment. Moreover, in order to perform sufficient treatment according to the water quality condition of the taken-in seawater, detailed operation management by a skilled engineer is also necessary. When concentrated salt water is circulated and reused, the amount of pretreatment of seawater can be reduced, and the pretreatment equipment can be miniaturized. Conventionally, when, for example, pretreatment of 30,000 tons / day of seawater is necessary, the amount of the treatment can be reduced to, for example, 500 tons / day by circulating concentrated salt water.
なお、海水淡水化システムの運転を開始する際、すべてのトレイン(複数のRO膜モジュールを含む、独立に運転・停止を切り替えられる最少単位)を同時に立ち上げるのに必要な海水を一時に前処理する必要はない。海水前処理装置5を用いて、1トレインずつ立ち上げればよく、この場合はさらに前処理装置を小型化することができる。海水の代わりに、前処理が必要でないNaCl水溶液を用いることで部分的に前処理を省略することもできる。
In addition, when starting the operation of the seawater desalination system, the seawater required to simultaneously bring up all the trains (the smallest unit that can be switched on / off independently including multiple RO membrane modules) is pretreated at one time do not have to. The seawater pretreatment device 5 may be used to start up one train at a time, and in this case, the pretreatment device can be further miniaturized. Pretreatment can be partially omitted by using an aqueous NaCl solution which does not require pretreatment in place of seawater.
濃縮塩水を循環させて再利用する場合、濃縮塩水の塩濃度は、好ましくは、2w/v%以上であり、より好ましくは、2w/v%以上7w/v%以下であり、さらに好ましくは3w/v%以上4w/v%以下である。塩濃度がこの範囲にある場合に、海水タンク6に戻された後の正浸透処理工程において、低浸透圧水との浸透圧差が十分にあるため、正浸透現象が起こりやすい。また、塩濃度がこの範囲より高い場合は、浸透圧が上昇して、昇圧ポンプ33でのエネルギー消費が大きくなるため、好ましくない。
When the concentrated brine is recycled for reuse, the salt concentration of the concentrated brine is preferably 2 w / v% or more, more preferably 2 w / v% or more and 7 w / v% or less, still more preferably 3 w It is not less than / v% and not more than 4w / v%. When the salt concentration is in this range, in the forward osmosis treatment step after being returned to the seawater tank 6, the osmotic pressure difference with the low osmotic pressure water is sufficient, so that the forward osmosis phenomenon easily occurs. In addition, when the salt concentration is higher than this range, the osmotic pressure is increased, and energy consumption in the pressure rising pump 33 is increased, which is not preferable.
濃縮塩水の塩濃度を上記範囲に調整する方法(手段)としては、RO膜モジュール2より濃縮塩水が排出される経路(流路)または循環経路4に、濃縮塩水の濃度(浸透圧)を測定するための測定装置を設置し、測定装置によって計測された値に基づいて昇圧ポンプ33の出力を調整する方法や、必要に応じてRO膜モジュール2より濃縮塩水が排出される流路または循環経路4に設置された流量調整バルブ(図示せず)の開度を調節する方法などが挙げられる。なお、例えば、昇圧ポンプ33の出力を上げることで、濃縮塩水の塩濃度を上げることができる。
As a method (means) to adjust the salt concentration of the concentrated brine to the above range, measure the concentration (osmotic pressure) of the concentrated brine in the path (flow path) where the concentrated brine is discharged from the RO membrane module 2 or the circulation route 4 Method for installing a measuring device to adjust the output of the pressure pump 33 based on the value measured by the measuring device, or a flow path or circulation path where concentrated salt water is discharged from the RO membrane module 2 as needed The method of adjusting the opening degree of the flow control valve (not shown) installed in 4 etc. is mentioned. In addition, the salt concentration of concentrated salt water can be raised by raising the output of the pressure rising pump 33, for example.
なお、FO膜モジュール1の第2室12から排出された希釈塩水がRO膜モジュール2に供給される流路(経路)に、希釈塩水の濃度、浸透圧または流量を計測するための測定装置を設置し、測定装置によって計測された値に基づいて、ポンプ31、32、昇圧ポンプ33の出力(圧力)(必要に応じて各流路に設けられた流量調整バルブの開度も)を一体的に制御する方法を用いることもできる。
In addition, a measuring device for measuring the concentration, osmotic pressure or flow rate of diluted brine in the flow path (pathway) where the diluted brine discharged from the second chamber 12 of the FO membrane module 1 is supplied to the RO membrane module 2 Install and integrate the outputs (pressures) of the pumps 31, 32 and boost pump 33 (also the opening of the flow rate adjustment valve provided in each flow path if necessary) based on the value measured by the measuring device. It is also possible to use control methods.
ただし、塩はFO膜1aおよびRO膜2aを微かに通過するため、循環する海水中の塩分は少しずつ減少する。このときは、新たに海洋から海水をくみ取り、海水前処理装置5によって前処理した後、海水タンク6に補充すればよい。
However, since the salt slightly passes through the FO membrane 1a and the RO membrane 2a, the salinity in the circulating seawater gradually decreases. At this time, seawater may be newly collected from the ocean, pretreated by the seawater pretreatment apparatus 5, and then replenished to the seawater tank 6.
また、海水には必要により、スケール防止剤、塩素系殺菌剤、pH調整剤などの添加剤を投入することもできる。
In addition, additives such as a scale inhibitor, a chlorine-based bactericidal agent, and a pH adjuster can be added to the seawater if necessary.
スケール防止剤としては、特に限定されないが、例えば、カルシウム系スケールを防止するための、ヘキサメタリン酸ソーダ、トリポリリン酸ソーダ等の無機ポリリン酸類、アミノメチルホスホン酸、ホスホノブタントリカルボン酸等のホスホン酸類などのリンを含むスケール防止剤や、マレイン酸とイソブチレンのコポリマー、マレイン酸と酢酸ビニルエチルとエチルアクリレートのターポリマー、AA(アクリル酸)-AMPS(2-アクリルアミド-2-メチルプロピルスルホン酸)コポリマーとPMA(ポリマレイン酸)との併用剤などのリンを含まないスケール防止剤等が挙げられる。これらのスケール防止剤の添加により、膜のスケール障害を抑制することができる。
The anti-scaling agent is not particularly limited, but for example, inorganic polyphosphates such as sodium hexametaphosphate, sodium tripolyphosphate, phosphonic acids such as aminomethyl phosphonic acid and phosphonobutane tricarboxylic acid for preventing calcium-based scale A scale inhibitor containing phosphorus, a copolymer of maleic acid and isobutylene, a terpolymer of maleic acid and vinyl ethyl acetate and ethyl acrylate, an AA (acrylic acid) -AMPS (2-acrylamido-2-methylpropyl sulfonic acid) copolymer and a PMA The scale inhibiting agent etc. which do not contain phosphorus, such as a combined agent with polymaleic acid, etc. are mentioned. The addition of these scale inhibitors can suppress scale failure of the membrane.
塩素系殺菌剤としては、特に限定されないが、例えば、塩素ガス、次亜塩素酸ナトリウム、次亜塩素酸カルシウムなどの遊離塩素、モノクロラミンなどの結合塩素、または、二酸化塩素が挙げられる。これらの塩素系殺菌剤の添加により、バイオファウリングの原因となる微生物の増殖を抑制し、膜性能の劣化を生じにくくすることができる。
The chlorine-based germicide is not particularly limited, and examples thereof include chlorine gas, free chlorine such as sodium hypochlorite and calcium hypochlorite, combined chlorine such as monochloramine, and chlorine dioxide. The addition of these chlorine-based germicides can suppress the growth of microorganisms that cause biofouling, and make it difficult to cause deterioration in membrane performance.
これらの添加剤はFO膜やRO膜を透過し難いため、RO膜モジュール2から排出された濃縮塩水を循環させて再利用する場合、添加剤の再添加が必要ないか、あるいは、新しい海水を処理する場合に比べて添加剤の添加量を少なくすることができる。
Since these additives do not easily permeate through the FO membrane or RO membrane, there is no need to re-add additives when circulating the concentrated salt water discharged from the RO membrane module 2 for recycling, or fresh seawater The amount of additive added can be reduced compared to the case of treatment.
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above description but by the scope of claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of claims.
1 正浸透膜モジュール(FO膜モジュール)、1a 半透膜(FO膜)、11 第1室、12 第2室、2 逆浸透膜モジュール(RO膜モジュール)、2a 逆浸透膜(RO膜)、31,32 ポンプ、33 昇圧ポンプ、4 循環経路、5 海水前処理装置、6 海水タンク。
1 Forward Osmosis Membrane Module (FO Membrane Module), 1a Semipermeable Membrane (FO Membrane), 11 First Chamber, 12 Second Chamber, 2 Reverse Osmosis Membrane Module (RO Membrane Module), 2a Reverse Osmosis Membrane (RO Membrane), 31, 32 pumps, 33 boost pumps, 4 circulation paths, 5 seawater pretreatment equipment, 6 seawater tanks.
Claims (6)
- 海水から淡水を得る海水淡水化方法であって、
海水タンクから供給される海水を、半透膜を介して低浸透圧水と接触させて、前記海水が希釈された希釈塩水を得る、正浸透工程と、
前記正浸透工程で得られた前記希釈塩水から、逆浸透膜を用いて、前記逆浸透膜を透過した生産水と、濃縮された前記希釈塩水である濃縮塩水とを得る、逆浸透工程と、
を含む、海水淡水化方法。 A seawater desalination method for obtaining fresh water from seawater,
A forward osmosis process, wherein seawater supplied from a seawater tank is brought into contact with hypotonic water through a semipermeable membrane to obtain diluted seawater in which the seawater is diluted;
A reverse osmosis step of obtaining, from the diluted brine obtained in the forward osmosis step, product water having permeated through the reverse osmosis membrane and a concentrated brine which is the concentrated dilute brine using a reverse osmosis membrane;
Seawater desalination methods, including: - 前記低浸透圧水は、排水である、請求項1に記載の海水淡水化方法。 The seawater desalination method according to claim 1, wherein the low osmotic pressure water is drainage.
- 前記逆浸透工程で得られた前記濃縮塩水を前記海水タンクに戻して、前記正浸透工程に再利用する、請求項1または2に記載の海水淡水化方法。 The seawater desalination method according to claim 1 or 2, wherein the concentrated brine obtained in the reverse osmosis step is returned to the seawater tank and reused in the forward osmosis step.
- 前記海水は、前処理された海水である、請求項1~3のいずれか1項に記載の海水淡水化方法。 The seawater desalination method according to any one of claims 1 to 3, wherein the seawater is pretreated seawater.
- 前記濃縮塩水の塩濃度が2w/v%以上である、請求項1~4のいずれか1項に記載の海水淡水化方法。 The seawater desalination method according to any one of claims 1 to 4, wherein the salt concentration of the concentrated brine is 2 w / v% or more.
- 請求項1~5のいずれか1項に記載の海水淡水化方法に用いられる海水淡水化システムであって、
半透膜を有し、海水タンクから供給される海水を、前記半透膜を介して低浸透圧水と接触させて、前記海水が希釈された希釈塩水を排出する、正浸透処理装置と、
逆浸透膜を有し、前記正浸透処理装置から排出された前記希釈塩水から、前記逆浸透膜を透過した生産水と、濃縮された前記希釈塩水である濃縮塩水とを排出する、逆浸透処理装置と、
を備える、海水淡水化システム。 A seawater desalination system for use in the seawater desalination method according to any one of claims 1 to 5, comprising:
A forward osmosis treatment device having a semipermeable membrane, bringing seawater supplied from a seawater tank into contact with low osmotic pressure water via the semipermeable membrane, and discharging diluted salt water diluted with the seawater;
Reverse osmosis treatment, which comprises a reverse osmosis membrane and discharges, from the diluted brine discharged from the forward osmosis treatment device, the product water having permeated through the reverse osmosis membrane and the concentrated brine which is the concentrated dilute brine; A device,
Desalination system, equipped with
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-209524 | 2017-10-30 | ||
JP2017209524A JP7102706B2 (en) | 2017-10-30 | 2017-10-30 | Seawater desalination method and seawater desalination system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019087867A1 true WO2019087867A1 (en) | 2019-05-09 |
Family
ID=66331907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/039342 WO2019087867A1 (en) | 2017-10-30 | 2018-10-23 | Seawater desalination method and seawater desalination system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7102706B2 (en) |
WO (1) | WO2019087867A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112209547A (en) * | 2019-07-10 | 2021-01-12 | 苏州诺津环保科技有限公司 | Concentration and reduction method for high-salinity high-organic matter aqueous solution |
CN112919668A (en) * | 2020-12-31 | 2021-06-08 | 山东大学 | Reverse osmosis-fertilizer driven forward osmosis seawater desalination method |
CN113003813A (en) * | 2021-03-10 | 2021-06-22 | 辽宁莱特莱德环境工程有限公司 | Seawater desalination treatment device and method |
WO2022126877A1 (en) * | 2020-12-17 | 2022-06-23 | 广州中国科学院先进技术研究所 | High-salinity organic wastewater treatment system and treatment method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021065845A (en) * | 2019-10-24 | 2021-04-30 | 栗田工業株式会社 | Wastewater recovery system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060144789A1 (en) * | 2004-12-06 | 2006-07-06 | Cath Tzahi Y | Systems and methods for purification of liquids |
JP2010188344A (en) * | 2010-04-05 | 2010-09-02 | Kobelco Eco-Solutions Co Ltd | Method and apparatus of desalinating seawater |
KR20130103996A (en) * | 2012-03-12 | 2013-09-25 | 지에스건설 주식회사 | Forward osmosis/reverse osmosis hybrid seawater desalination apparatus and method |
JP2013202456A (en) * | 2012-03-27 | 2013-10-07 | Kobelco Eco-Solutions Co Ltd | Producing method of fresh water and producing device of fresh water |
KR20140073312A (en) * | 2012-12-06 | 2014-06-16 | 한국건설기술연구원 | Apparatus for producing fresh water and electric power through forward osmosis, reverse osmosis and pressure retarded osmosis using treated sewage and seawater, and method for the same |
JP2015150553A (en) * | 2014-02-19 | 2015-08-24 | 株式会社ササクラ | Fresh water generation device and fresh water generation method |
KR20170069614A (en) * | 2015-12-11 | 2017-06-21 | 효림산업주식회사 | Saltwater desalination system |
KR20170100864A (en) * | 2016-02-26 | 2017-09-05 | 주식회사 포스코 | Closed type desalination system using forward osmosis and reverse osmosis |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007152265A (en) | 2005-12-07 | 2007-06-21 | Toray Ind Inc | Method for operating freshwater production device and freshwater production device |
JP4518435B1 (en) | 2009-02-13 | 2010-08-04 | 株式会社神鋼環境ソリューション | Seawater desalination method and seawater desalination apparatus |
-
2017
- 2017-10-30 JP JP2017209524A patent/JP7102706B2/en active Active
-
2018
- 2018-10-23 WO PCT/JP2018/039342 patent/WO2019087867A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060144789A1 (en) * | 2004-12-06 | 2006-07-06 | Cath Tzahi Y | Systems and methods for purification of liquids |
JP2010188344A (en) * | 2010-04-05 | 2010-09-02 | Kobelco Eco-Solutions Co Ltd | Method and apparatus of desalinating seawater |
KR20130103996A (en) * | 2012-03-12 | 2013-09-25 | 지에스건설 주식회사 | Forward osmosis/reverse osmosis hybrid seawater desalination apparatus and method |
JP2013202456A (en) * | 2012-03-27 | 2013-10-07 | Kobelco Eco-Solutions Co Ltd | Producing method of fresh water and producing device of fresh water |
KR20140073312A (en) * | 2012-12-06 | 2014-06-16 | 한국건설기술연구원 | Apparatus for producing fresh water and electric power through forward osmosis, reverse osmosis and pressure retarded osmosis using treated sewage and seawater, and method for the same |
JP2015150553A (en) * | 2014-02-19 | 2015-08-24 | 株式会社ササクラ | Fresh water generation device and fresh water generation method |
KR20170069614A (en) * | 2015-12-11 | 2017-06-21 | 효림산업주식회사 | Saltwater desalination system |
KR20170100864A (en) * | 2016-02-26 | 2017-09-05 | 주식회사 포스코 | Closed type desalination system using forward osmosis and reverse osmosis |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112209547A (en) * | 2019-07-10 | 2021-01-12 | 苏州诺津环保科技有限公司 | Concentration and reduction method for high-salinity high-organic matter aqueous solution |
WO2022126877A1 (en) * | 2020-12-17 | 2022-06-23 | 广州中国科学院先进技术研究所 | High-salinity organic wastewater treatment system and treatment method |
CN112919668A (en) * | 2020-12-31 | 2021-06-08 | 山东大学 | Reverse osmosis-fertilizer driven forward osmosis seawater desalination method |
CN112919668B (en) * | 2020-12-31 | 2022-08-26 | 山东大学 | Reverse osmosis-fertilizer driven forward osmosis seawater desalination method |
CN113003813A (en) * | 2021-03-10 | 2021-06-22 | 辽宁莱特莱德环境工程有限公司 | Seawater desalination treatment device and method |
Also Published As
Publication number | Publication date |
---|---|
JP7102706B2 (en) | 2022-07-20 |
JP2019081134A (en) | 2019-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019087867A1 (en) | Seawater desalination method and seawater desalination system | |
JP5549589B2 (en) | Fresh water system | |
JP5549591B2 (en) | Fresh water production method and fresh water production apparatus | |
Qin et al. | Preliminary study of osmotic membrane bioreactor: effects of draw solution on water flux and air scouring on fouling | |
JP5330901B2 (en) | Salt and freshwater co-production device and method | |
WO2012115114A1 (en) | Seawater desalination system and seawater desalination method | |
JP6269241B2 (en) | Forward osmosis processing system | |
WO2020179594A1 (en) | Zero liquid discharge system | |
WO2012098969A1 (en) | Method for cleaning membrane module, method of fresh water generation, and fresh water generator | |
JP2008161797A (en) | Operation method of freshwater production apparatus, and freshwater production apparatus | |
JP2013111559A (en) | Pretreating apparatus for supplying seawater to apparatus desalting or concentrating salt in seawater by using film | |
US20180297866A1 (en) | Water treatment system and water treatment method | |
JP5867082B2 (en) | Fresh water production method | |
EP1894612B1 (en) | Method for purifying water by means of a membrane filtration unit | |
JP5238778B2 (en) | Desalination system | |
JPWO2014007262A1 (en) | Fresh water production apparatus and fresh water production method | |
KR20170069614A (en) | Saltwater desalination system | |
NO342342B1 (en) | Subsea water treatment installation adapted for treatment of raw seawater to process water and method for scaling prevention in such an installation | |
JP2016190214A (en) | Method for producing fresh water | |
JP2014221450A (en) | Method for producing fresh water | |
JP2014140794A (en) | Fresh water generator and fresh water generation metho | |
Gubari et al. | Application of reverse osmosis to improve removal of residual salt content in electrodialysis process | |
JP2017074532A (en) | Water treatment device and water treatment method | |
JP2004121896A (en) | Method of producing treated water and salt water treatment equipment | |
JP2005040661A (en) | Method and apparatus for treating fresh water or salt water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18873616 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18873616 Country of ref document: EP Kind code of ref document: A1 |