JP2020060456A - Inspection method of anion exchange membrane containing polyvinyl chloride component - Google Patents

Inspection method of anion exchange membrane containing polyvinyl chloride component Download PDF

Info

Publication number
JP2020060456A
JP2020060456A JP2018192148A JP2018192148A JP2020060456A JP 2020060456 A JP2020060456 A JP 2020060456A JP 2018192148 A JP2018192148 A JP 2018192148A JP 2018192148 A JP2018192148 A JP 2018192148A JP 2020060456 A JP2020060456 A JP 2020060456A
Authority
JP
Japan
Prior art keywords
anion exchange
exchange membrane
polyvinyl chloride
fluorescent
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018192148A
Other languages
Japanese (ja)
Other versions
JP7148124B2 (en
Inventor
正一 土井
Shoichi Doi
正一 土井
充 比嘉
Mitsuru Higa
充 比嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astom Co Ltd
Original Assignee
Astom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astom Co Ltd filed Critical Astom Co Ltd
Priority to JP2018192148A priority Critical patent/JP7148124B2/en
Publication of JP2020060456A publication Critical patent/JP2020060456A/en
Application granted granted Critical
Publication of JP7148124B2 publication Critical patent/JP7148124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide an inspection method of an anion exchange membrane containing a polyvinyl chloride component, which can inspect performance decrement of a membrane due to the actual machine use not necessarily according to a destructive inspection.SOLUTION: The inspection method of an anion exchange membrane containing a polyvinyl chloride component includes the steps of: preparing an unused anion exchange membrane containing a polyvinyl chloride component; performing the deterioration promotion test by bringing the anion exchange membrane into contact with an aqueous alkaline solution, and creating an analytical curve indicating the change in the physical characteristics and/or electrochemical characteristics of the anion exchange membrane with respect to the optical characteristic change or fluorescent X-ray intensity change by measuring the optical characteristics with respect to the visible light of the membrane, the chlorine intensity by the fluorescent X-ray intensity analysis and the physical characteristics and/or electrochemical characteristics of the anion exchange membrane for each deterioration degree; measuring the optical characteristics or fluorescent X-ray intensity with respect to the visible light of the anion exchange membrane containing a polyvinyl chloride component in use; and determining the physical characteristics and/or electrochemical characteristics of the anion exchange membrane in use from the optical characteristics or fluorescent X-ray intensity measurement value on the basis of the analytical curve.SELECTED DRAWING: Figure 1

Description

本発明は、ポリ塩化ビニル成分を含有するアニオン交換膜について、使用による劣化に伴う性能低下を検査する方法に関する。   The present invention relates to a method for inspecting anion exchange membranes containing a polyvinyl chloride component for performance deterioration due to deterioration due to use.

イオン交換膜は、イオン交換樹脂を一定の空隙を有する基材シートに保持させたものであり、電気エネルギーを用いて特定のイオンを透過させる機能を有している。このようなイオン交換膜には、アニオン交換膜とカチオン交換膜とがある。   The ion exchange membrane is one in which an ion exchange resin is held on a base material sheet having a certain void, and has a function of allowing specific ions to permeate using electric energy. Such ion exchange membranes include anion exchange membranes and cation exchange membranes.

即ち、アニオン交換膜は、イオン交換樹脂の官能基としてアニオン交換基を有するアニオン交換性樹脂が使用されたものであり、電気エネルギーを加えることにより、例えば塩素イオン(Cl)等のアニオンを透過する。一方、カチオン交換膜は、官能基としてカチオン交換基を有するカチオン交換性樹脂が使用されたものであり、電気エネルギーを加えることにより、例えばナトリウムイオン(Na)等のカチオンを透過する。 That is, the anion exchange membrane uses an anion exchange resin having an anion exchange group as a functional group of the ion exchange resin, and permeates anions such as chlorine ion (Cl ) by applying electric energy. To do. On the other hand, the cation exchange membrane uses a cation exchange resin having a cation exchange group as a functional group, and permeates cations such as sodium ions (Na + ) by applying electric energy.

このようなイオン交換膜は、代表的には、電気透析に使用され、例えばアニオン交換膜とカチオン交換膜とを電極間に交互に配置し、イオンを含む水溶液を流しながら一定の電圧を印加することにより、イオンの濃縮、脱塩、精製、回収等を行うことができ、海水からの製塩、かん水からの飲料水製造、醤油の脱塩など、種々の用途に利用されている。   Such an ion exchange membrane is typically used for electrodialysis. For example, an anion exchange membrane and a cation exchange membrane are alternately arranged between electrodes, and a constant voltage is applied while flowing an aqueous solution containing ions. As a result, the ions can be concentrated, desalted, purified, recovered, etc. and used for various purposes such as salt production from seawater, drinking water production from brackish water, and desalination of soy sauce.

ところで、上記のようなイオン交換膜を実機の装置に組み込んで運転していくと、種々の問題を生じる。
例えば、電気透析で海水の濃縮脱塩を行う場合、脱塩室の塩濃度をあるレベル以上に保つ必要があるが、期せずして塩濃度が低下すると、過脱塩となり、移動できるイオンが足りなくなり、代わりに水が分裂して水素イオンと水酸化物イオンになることがある。この水酸化物イオンは、濃縮室のカルシウムなどの多価イオンと反応して水酸化物のスケールを形成し流路を閉塞するなどの障害を起こし運転ができなくなるばかりか、直接的に特にアニオン交換膜のアニオン交換基を脱離させたり、膜の骨格およびネットワーク構造を破壊し、イオン交換膜そのものの性能、強度低下を起こすことがある。また、特に食品分野においてはアニオン交換膜に有機物などが吸着して性能を低下させるファウリング(膜汚染)と呼ばれる現象が起きることがあるが、このファウリング物質を除去して性能回復を図る際に、アルカリ溶液を用いることがあり、このアルカリが膜の骨格およびネットワーク構造をも破壊してしまい、性能、強度低下を起こすこともある。特にポリ塩化ビニルを基材織布、基材シートとして用いている場合や、ポリ塩化ビニルを増粘剤として用いている場合は、アルカリによって塩ビから脱塩酸し、ポリエンと呼ばれる構造が生じ、膜が着色することがある(例えば、非特許文献1参照)。
By the way, when the above-mentioned ion exchange membrane is incorporated into an actual apparatus and operated, various problems occur.
For example, when concentrating and desalting seawater by electrodialysis, it is necessary to keep the salt concentration in the desalting chamber at a certain level or higher. May run out, and instead water splits into hydrogen and hydroxide ions. The hydroxide ion reacts with polyvalent ions such as calcium in the concentrating chamber to form hydroxide scale and block the flow path, which makes it impossible to operate. The anion-exchange group of the exchange membrane may be removed, the skeleton and network structure of the membrane may be destroyed, and the performance and strength of the ion-exchange membrane itself may be reduced. Also, especially in the food field, a phenomenon called fouling (membrane fouling) may occur in which an organic substance is adsorbed on the anion exchange membrane to reduce its performance. When removing this fouling substance, the performance is recovered. In some cases, an alkali solution is used, and this alkali also destroys the skeleton and network structure of the film, which may cause deterioration in performance and strength. In particular, when polyvinyl chloride is used as a base woven fabric or base sheet, or when polyvinyl chloride is used as a thickening agent, it is dehydrochlorinated from vinyl chloride with an alkali to form a structure called polyene, May be colored (for example, see Non-Patent Document 1).

Journal of Membrane Science, 446 (2013) 255-265Journal of Membrane Science, 446 (2013) 255-265

従って、イオン交換膜を用いた実機の装置では、実際の運転に伴う膜の性能低下を把握するために、一定の時間毎に、膜の性能(例えば電気化学的特性、機械的強度)を測定すること(モニタリング)が必要である。しかしながら、このようなモニタリングは、実機の装置に組み込まれているイオン交換膜を評価用に切り出して、その特性を評価する測定装置に装着しなければならない。即ち、検査をするためには、膜を破壊しなければならず、検査測定に供される膜は、実機では使用できなくなってしまうという問題がある。また、電気化学特性として、例えばアニオンの透過阻止率を測定するためにはサンプルを該アニオン含有水溶液中に液密状態で長時間固定して実験する必要があり、現場で評価するのはきわめて煩雑である。   Therefore, in an actual device using an ion-exchange membrane, the performance of the membrane (for example, electrochemical characteristics, mechanical strength) is measured at regular intervals in order to understand the deterioration of membrane performance due to actual operation. It is necessary to do (monitoring). However, in such monitoring, the ion exchange membrane incorporated in the actual device must be cut out for evaluation and attached to a measuring device for evaluating its characteristics. That is, in order to carry out the inspection, the film must be destroyed, and the film used for the inspection measurement cannot be used in an actual machine. Further, as an electrochemical property, for example, in order to measure the anion permeation blocking rate, it is necessary to fix the sample in the anion-containing aqueous solution in a liquid-tight state for a long time, and it is extremely complicated to evaluate it on site. Is.

このような問題について、本発明者等は多くの実験を行い検討した結果、特にポリ塩化ビニル成分を含有するアニオン交換膜では、アルカリ接触により劣化した膜の物理特性や電気化学特性の程度は、可視光に対する光学特性或いは蛍光X線分析により測定される塩素強度との間に相関性があるという知見を見出した。   The inventors of the present invention have conducted a number of experiments to investigate such problems. As a result, in the anion exchange membrane containing a polyvinyl chloride component, the degree of physical properties and electrochemical properties of the membrane deteriorated by alkali contact is It was found that there is a correlation between the optical characteristics for visible light and the chlorine intensity measured by fluorescent X-ray analysis.

従って本発明の目的は、ポリ塩化ビニル成分を含有するアニオン交換膜について、必ずしも破壊検査によらず、実機使用による膜の性能低下を簡便に検査することが可能な検査方法を提供することにある。   Therefore, an object of the present invention is to provide an inspection method capable of easily inspecting anion exchange membrane containing a polyvinyl chloride component for deterioration of the membrane performance due to actual use, not necessarily by destructive inspection. .

本発明によれば、未使用のポリ塩化ビニル成分含有アニオン交換膜を用意し、
該アニオン交換膜をアルカリ水溶液と接触させて劣化促進試験を行い、劣化の度合いごとに該膜の可視光に対する光学特性又は蛍光X線強度分析による塩素強度と、該アニオン交換膜の物理特性及び/又は電気化学特性を測定することにより、光学特性変化又は蛍光X線強度変化に対する該アニオン交換膜の物理特性及び/又は電気化学特性の変化を示す検量線を作成しておき、
使用中のポリ塩化ビニル成分含有アニオン交換膜の可視光に対する光学特性又は蛍光X線強度を測定し、前記検量線に基づいて該光学特性若しくは該蛍光X線強度測定値から使用中の該アニオン交換膜の物理特性及び/又は電気化学特性を判定することを特徴とするポリ塩化ビニル成分含有アニオン交換膜の検査方法が提供される。
According to the present invention, an unused polyvinyl chloride component-containing anion exchange membrane is prepared,
A deterioration acceleration test is conducted by contacting the anion exchange membrane with an alkaline aqueous solution, and the optical characteristics of the membrane with respect to visible light or the chlorine strength by fluorescent X-ray intensity analysis and the physical characteristics of the anion exchange membrane and / or Alternatively, a calibration curve showing changes in physical properties and / or electrochemical properties of the anion exchange membrane with respect to changes in optical properties or changes in fluorescent X-ray intensity is prepared by measuring electrochemical properties,
The anion exchange membrane in use is measured by measuring the optical characteristic or fluorescent X-ray intensity of visible light of the polyvinyl chloride component-containing anion exchange membrane, and measuring the optical characteristic or the fluorescent X-ray intensity based on the calibration curve. Provided is a method for inspecting an anion exchange membrane containing a polyvinyl chloride component, which comprises determining a physical property and / or an electrochemical property of the membrane.

本発明の検査方法においては、
(1)前記劣化の度合いごとに測定する、前記アニオン交換膜の可視光に対する光学特性として、吸光度を測定すること
(2)前記アニオン交換膜の物理特性として機械的強度又は含水率を判定すること、
(3)前記アニオン交換膜の物理特性を判定する機械的強度として、ヤング率を測定すること
(4)前記アニオン交換膜の電気化学特性として電気抵抗又は輸率を判定すること、
という態様を好適に採用することができる。
In the inspection method of the present invention,
(1) Measuring the absorbance as the optical characteristic of the anion exchange membrane with respect to visible light, which is measured for each degree of deterioration, and (2) determining the mechanical strength or the water content as the physical characteristic of the anion exchange membrane. ,
(3) Young's modulus is measured as the mechanical strength for determining the physical property of the anion exchange membrane. (4) Electrical resistance or transport number is determined as the electrochemical property of the anion exchange membrane.
This aspect can be preferably adopted.

本発明の検査方法は、先に述べた通り、塩化ビニル成分を含有するアニオン交換膜の物理特性(例えば機械的強度や含水率)や電気特性(例えば電気抵抗や輸率)は、可視光に対する光学特性や蛍光X線分析により測定される塩素強度と相関性があるという新規知見に基づくものであり、これを利用して、アルカリ水溶液を用いて予め劣化促進試験を行い、劣化した含ポリ塩化ビニル含有アニオン交換膜(以下、単に含Clアニオン交換膜と呼ぶことがある)について、可視光に対する光学特性或いは蛍光X線分析による塩素強度を測定し、同時に、その物理特性(例えば機械的強度や含水率)或いは電気化学特性(例えば電気抵抗や輸率)を測定し、これにより、光学特性或いは塩素強度との関係をプロットして検量線を作成し、この検量線に基づいて、実機で使用されている含Clアニオン交換膜の劣化の程度を判定するというものである。   As described above, the inspection method of the present invention has a physical property (for example, mechanical strength and water content) and an electrical property (for example, electric resistance and transport number) of an anion exchange membrane containing a vinyl chloride component, with respect to visible light. It is based on the new knowledge that there is a correlation with the optical properties and the chlorine intensity measured by X-ray fluorescence analysis. Using this, a deterioration acceleration test was performed in advance using an alkaline aqueous solution, and the deteriorated polychlorinated product was used. For vinyl-containing anion exchange membranes (hereinafter sometimes simply referred to as Cl-containing anion exchange membranes), the optical characteristics with respect to visible light or the chlorine strength by fluorescent X-ray analysis is measured, and at the same time, the physical characteristics (such as mechanical strength and Water content) or electrochemical characteristics (for example, electrical resistance and transport number) are measured, and the relationship with optical characteristics or chlorine strength is plotted to create a calibration curve, and this calibration Based on, is that to determine the degree of degradation of free Cl anion exchange membrane used in the actual machine.

さらに、可視光に対する光学特性や蛍光X線分析は、必ずしも膜を切り取って破壊することなく、測定を行うことができる。このため、本発明では、実機で使用された含Clアニオン交換膜について、可視光に対する吸光度の測定或いは蛍光X線分析による塩素強度の測定を行うことにより、使用されている含Clアニオン交換膜を破壊せずに、性能低下を検査することができるという大きな利点を有する。要するに、測定された吸光度や塩素強度から前記検量線により一定のレベル以上の性能低下が判定された場合には、その含Clアニオン交換膜は交換或いは洗浄等に供され、性能低下が一定のレベルにまでは達していないと判定されたならば、そのまま実機使用が継続されることとなる。
このように、本発明の検査方法は、実機で使用されている含Clアニオン交換膜を必ずしも破壊せずに検査することができる。
Furthermore, the optical characteristics for visible light and the fluorescent X-ray analysis can be measured without necessarily cutting and breaking the film. Therefore, in the present invention, for the Cl-containing anion exchange membrane used in the actual machine, the Cl-containing anion exchange membrane used is measured by measuring the absorbance for visible light or the chlorine intensity by fluorescent X-ray analysis. It has the great advantage that it can be inspected for performance degradation without destruction. In short, when a performance deterioration of a certain level or more is determined from the measured absorbance or chlorine intensity by the calibration curve, the Cl-containing anion exchange membrane is subjected to replacement or washing, and the performance deterioration is at a constant level. If it is determined that the time has not reached up to, the actual use will be continued.
As described above, the inspection method of the present invention can perform the inspection without necessarily destroying the Cl-containing anion exchange membrane used in the actual machine.

40℃の劣化促進試験に供された含Clアニオン交換膜について、可視光(600nm)に対する吸光度と電気抵抗保持率との関係を示す図。The figure which shows the relationship between the light absorbency with respect to visible light (600 nm), and the electrical resistance retention rate about the Cl-containing anion exchange membrane used for the 40 degreeC deterioration acceleration test. 40℃の劣化促進試験に供された含Clアニオン交換膜について、可視光(600nm)に対する吸光度とヤング率保持率との関係を示す図。The figure which shows the relationship between the light absorbency with respect to visible light (600 nm), and the Young's modulus retention rate about the Cl containing anion exchange membrane used for the 40 degreeC deterioration acceleration test. 40℃の劣化促進試験に供された含Clアニオン交換膜について、可視光(600nm)に対する吸光度と輸率(プロトン透過阻止率)保持率との関係を示す図。The figure which shows the relationship between the light absorbency with respect to visible light (600 nm), and the transport number (proton permeation | blocking rate) retention rate about the Cl-containing anion exchange membrane used for the 40 degreeC deterioration acceleration test. 40℃の劣化促進試験に供された含Clアニオン交換膜について、可視光(600nm)に対する吸光度と含水率保持率との関係を示す図。The figure which shows the relationship between the light absorbency with respect to visible light (600 nm), and the water content retention rate about the Cl-containing anion exchange membrane used for the 40 degreeC deterioration acceleration test. 40℃の劣化促進試験に供された含Clアニオン交換膜について、可視光(600nm)に対する反射率と電気抵抗保持率との関係を示す図。The figure which shows the relationship between the reflectance with respect to visible light (600 nm), and the electrical resistance retention rate about the Cl-containing anion exchange membrane used for the 40 degreeC deterioration acceleration test. 60℃の劣化促進試験に供された含Clアニオン交換膜について、可視光(600nm)に対する反射率と電気抵抗保持率との関係を示す図。The figure which shows the relationship between the reflectance with respect to visible light (600 nm), and the electrical resistance retention rate about the Cl-containing anion exchange membrane used for the deterioration acceleration test at 60 ° C. 40℃の劣化促進試験に供された含Clアニオン交換膜について、可視光(600nm)に対する反射率とヤング率保持率との関係を示す図。The figure which shows the relationship between the reflectance with respect to visible light (600 nm), and the Young's modulus retention rate about the Cl-containing anion exchange membrane used for the 40 degreeC deterioration acceleration test. 40℃の劣化促進試験に供された含Clアニオン交換膜について、蛍光X線分析により測定された塩素強度保持率と電気抵抗保持率との関係を示す図。The figure which shows the relationship between the chlorine strength retention rate measured by fluorescent X-ray analysis, and the electrical resistance retention rate about the Cl containing anion exchange membrane used for the 40 degreeC deterioration acceleration test. 40℃の劣化促進試験に供された含Clアニオン交換膜について、蛍光X線分析により測定された塩素強度保持率とヤング率保持率との関係を示す図。The figure which shows the relationship between the chlorine strength retention rate and Young's modulus retention rate measured by the fluorescent X-ray analysis about the Cl-containing anion exchange membrane used for the 40 degreeC deterioration acceleration test.

<ポリ塩化ビニル成分含有アニオン交換膜>
本発明における検査対象のアニオン交換膜は、ポリ塩化ビニル成分を含有するものである。
即ち、ポリ塩化ビニル成分を含むアニオン交換膜(含Clアニオン交換膜)は、アルカリとの接触によって劣化し、例えば、ポリ塩化ビニルから脱塩酸を生じ、ポリエン構造が形成され、このため、膜が着色する。本発明では、脱塩酸の程度を可視光に対する光学特性或いは蛍光X線分析による塩素強度で判定する。このため、本発明における検査対象のアニオン交換樹脂は、ポリ塩化ビニルを含有するものでなければならない。
<Anion exchange membrane containing polyvinyl chloride component>
The anion exchange membrane to be inspected in the present invention contains a polyvinyl chloride component.
That is, the anion exchange membrane containing a polyvinyl chloride component (Cl-containing anion exchange membrane) is deteriorated by contact with an alkali, for example, dehydrochlorination is generated from polyvinyl chloride, and a polyene structure is formed. Color it. In the present invention, the degree of dehydrochlorination is determined by the optical characteristics for visible light or the chlorine intensity by fluorescent X-ray analysis. Therefore, the anion exchange resin to be inspected in the present invention must contain polyvinyl chloride.

本発明において、検査対象である含Clアニオン交換膜は、ポリ塩化ビニルを含有している限りにおいて、その組成或いは製法は限定されない。   In the present invention, the Cl-containing anion exchange membrane to be inspected is not limited in composition or production method as long as it contains polyvinyl chloride.

例えば、アニオン交換膜の代表的な製法としてペースト法がある。ペースト法では、不織布、織布、フィルムなどの多孔質の補強基材シートに、イオン交換樹脂成分(イオン交換基を導入するための前駆体ポリマーを得るための単官能モノマーおよび必要に応じて配合される多官能モノマー)と増粘剤、さらに必要に応じて各種添加剤を加えて作成したペーストを塗布し、モノマーを重合後にイオン交換基導入処理を施すことにより製造される。   For example, a typical method for producing an anion exchange membrane is the paste method. In the paste method, an ion-exchange resin component (a monofunctional monomer for obtaining a precursor polymer for introducing an ion-exchange group and, if necessary, a non-woven fabric, a woven fabric, a film, or the like, which is a porous reinforcing base material sheet, is blended as necessary. It is manufactured by applying a paste prepared by adding a polyfunctional monomer), a thickener, and various additives as required, and subjecting the monomer to polymerization and then an ion exchange group introduction treatment.

上記の基材シートとしては、ポリ塩化ビニル、ポリエチレン、ポリプロピレンなどのポリオレフィンからなる多孔質シート、織布、不織布などが代表的である。
また、イオン交換樹脂成分には、イオン交換基が導入される単官能モノマーとしてスチレン、クロルメチルスチレン、ビニルピリジンなどが用いられ、また、多官能モノマーにはジビニルベンゼンやジビニルビフェニルなどが用いられる。何れにしろ、官能基として、1〜3級アミノ基、4級アンモニウム塩、ピリジル基、イミダゾール基、4級ピリジニウム基などのアニオン交換基を有しているか、或いはこのようなアニオン交換基が導入されるものであればよい。
さらに、増粘剤としては、ポリ塩化ビニルの粉末、ゴム、その他、各種のポリマー粉などが用いられる。
Typical examples of the above-mentioned substrate sheet are porous sheets made of polyolefin such as polyvinyl chloride, polyethylene and polypropylene, woven cloth and non-woven cloth.
Further, in the ion exchange resin component, styrene, chloromethylstyrene, vinyl pyridine or the like is used as a monofunctional monomer into which an ion exchange group is introduced, and as the polyfunctional monomer, divinylbenzene, divinylbiphenyl or the like is used. In any case, it has an anion exchange group such as a primary to tertiary amino group, a quaternary ammonium salt, a pyridyl group, an imidazole group or a quaternary pyridinium group as a functional group, or such an anion exchange group is introduced. Anything can be used.
Further, as the thickener, polyvinyl chloride powder, rubber, and various polymer powders are used.

即ち、本発明の検査対象である含Clアニオン交換膜は、補強用の基材シート、増粘剤などとしてポリ塩化ビニルが使用されているものであればよい。アニオン交換膜の物理特性及び/又は電気化学特性を高い信頼性で判定するためには、ポリ塩化ビニルの含有量が、含Clアニオン交換膜の全重量に対して20〜80質量%、特には50〜70質量%であるのが好ましい。   That is, the Cl-containing anion exchange membrane to be inspected in the present invention may be one that uses polyvinyl chloride as a reinforcing base sheet, a thickener, and the like. In order to determine the physical properties and / or electrochemical properties of the anion exchange membrane with high reliability, the content of polyvinyl chloride is 20 to 80% by mass relative to the total weight of the Cl-containing anion exchange membrane, and particularly, It is preferably 50 to 70% by mass.

<劣化促進試験>
本発明においては、検査対象である含Clアニオン交換膜は、劣化促進試験により供される。
この劣化促進試験は、前述したポリ塩化ビニルからの脱塩酸を生じさせるために行われるものであり、具体的には、アルカリ水溶液に含Clアニオン交換膜(実機での使用に供されていない未使用の膜)を浸漬等により接触させることにより行う。
<Degradation accelerated test>
In the present invention, the Cl-containing anion exchange membrane to be inspected is subjected to a deterioration acceleration test.
This deterioration acceleration test is carried out in order to cause dehydrochlorination from the above-mentioned polyvinyl chloride, and specifically, a Cl-containing anion exchange membrane (not used in an actual machine but not used in an actual machine) was used in an alkaline aqueous solution. It is carried out by bringing the used film) into contact by immersion.

ところで、上記劣化促進試験を施したアニオン交換膜の、物理特性及び電気特性と、膜の光学特性や塩素強度との関係は、劣化促進試験が同じ温度条件の時に最も良好に相関し、前記電気抵抗やヤング率であれば、良好な比例関係になる。ただし、劣化促進試験の温度が高くなるにつれ、同じ光学特性や塩素強度であったとしても、膜の劣化程度は少し進んだ状態になり、前記電気抵抗やヤング率も若干悪化した値にスライドする。従って、本発明においては、電気透析等のアニオン交換膜の実機での使用は液温を一定に制御し、劣化促進試験もこれと実質同一温度(±5℃以内)で実施して、実機と同一温度下での物理特性及び電気特性と、膜の吸光度や塩素強度との関係を正確に求めておくのが、膜の劣化程度を高い正確性で判定する上で最も好ましい。   By the way, the relationship between the physical properties and the electrical properties of the anion exchange membrane subjected to the deterioration acceleration test and the optical characteristics and the chlorine strength of the film are best correlated when the deterioration acceleration test is performed under the same temperature condition, The resistance and Young's modulus have a good proportional relationship. However, as the temperature of the deterioration acceleration test becomes higher, even if the optical characteristics and chlorine strength are the same, the degree of deterioration of the film will be slightly advanced, and the electric resistance and Young's modulus will slide to a value slightly deteriorated. . Therefore, in the present invention, when an anion exchange membrane such as electrodialysis is used in an actual machine, the liquid temperature is controlled to be constant, and the deterioration acceleration test is also carried out at substantially the same temperature (within ± 5 ° C) as compared with the actual machine. It is most preferable to accurately determine the relationship between the physical properties and electrical properties under the same temperature and the absorbance or chlorine intensity of the film in order to determine the degree of deterioration of the film with high accuracy.

一般に、電気透析等のアニオン交換膜の実機での使用は、通常は室温下放置で運転され、好ましくは透析槽内の液温を40℃を超えない範囲内に制御して運転される。これに対して、前記透析槽内の液温変動が20〜70℃(より好ましくは20〜50℃)の範囲内であれば、上記温度上昇に伴っての膜の劣化進行は、さほどには激しいものにはならない。従って、本発明においては、前記劣化促進試験を上記一定温度に制御して実施し、他方で、アニオン交換膜の実機での使用は、必ずしも前記一定温度に制御せずに実施したとしても、その液温変動幅が上記20〜70℃の範囲内に収まるように設定しておけば、膜の物理特性及び電気特性の低下幅は一定の範囲内に収まる。このため斯様な態様でも、膜の劣化の程度は概要的には把握でき、簡便な劣化の判定方法として大変有意義である。   In general, the use of an anion exchange membrane such as electrodialysis in an actual machine is usually carried out by leaving it at room temperature, preferably by controlling the liquid temperature in the dialysis tank within a range not exceeding 40 ° C. On the other hand, if the liquid temperature fluctuation in the dialysis tank is within the range of 20 to 70 ° C. (more preferably 20 to 50 ° C.), the deterioration of the membrane due to the temperature increase is not so much. It doesn't become violent. Therefore, in the present invention, the deterioration acceleration test is carried out by controlling the temperature to the constant temperature, and on the other hand, the use of the anion exchange membrane in an actual machine is not necessarily controlled at the constant temperature, If the fluctuation range of the liquid temperature is set to fall within the above range of 20 to 70 ° C., the range of deterioration of the physical properties and electrical properties of the film falls within a certain range. Therefore, even in such a mode, the degree of deterioration of the film can be roughly grasped, which is very meaningful as a simple method for judging deterioration.

従って、前述した劣化促進試験の試験条件、例えば、用いるアルカリ水溶液の種類、アルカリ濃度等は特に制限されないが、一般的には、比較的短時間で膜劣化が生じるような条件が採用される。また、アルカリ水溶液の液温は、前記したように20〜70℃の範囲内から選択するのが好ましい。また、電気透析等のアニオン交換膜を実機で使用する際の液温と実質同一温度(±5℃以内)とするのがより好ましい。因みに、後述する実施例では、40℃および60℃の温度に保持された0.01M、0.1M、1Mの三段階のNaOH水溶液中にClアニオン交換膜を浸漬することによって劣化促進試験を行っている。   Therefore, the test conditions for the above-described deterioration acceleration test, such as the type of the alkaline aqueous solution used and the alkali concentration, are not particularly limited, but generally, conditions that cause film deterioration in a relatively short time are adopted. The liquid temperature of the alkaline aqueous solution is preferably selected from the range of 20 to 70 ° C as described above. Further, it is more preferable that the temperature is substantially the same as the liquid temperature (within ± 5 ° C.) when an anion exchange membrane such as electrodialysis is used in an actual machine. By the way, in Examples described later, a deterioration acceleration test is performed by immersing the Cl anion exchange membrane in a 0.01 M, 0.1 M, and 1 M three-stage aqueous NaOH solution maintained at temperatures of 40 ° C. and 60 ° C. ing.

<検量線の作成>
本発明においては、上記促進試験により、含Clアニオン交換膜の劣化レベルに対する物理特性や電気化学特性を測定し、検量線を作成する。
この劣化レベルは、可視光に対する光学特性或いは蛍光X線分析による塩素強度で同定される。
<Creation of calibration curve>
In the present invention, the acceleration test is used to measure the physical properties and electrochemical properties of the Cl-containing anion exchange membrane with respect to the deterioration level, and prepare a calibration curve.
This deterioration level is identified by optical characteristics with respect to visible light or chlorine intensity by fluorescent X-ray analysis.

即ち、含Clアニオン交換膜は、アルカリに晒されるとポリ塩化ビニルから脱塩酸が生じて、ポリエンが形成され、まず黄色に発色し、さらにアルカリとの接触が続くと、紫色になってゆく。このように劣化が進行すると、含Clアニオン交換膜は変色していき、この変色の程度を可視光に対する光学特性により同定することができる。
光学特性としては、透過率、吸光度、反射率が挙げられる。
尚、上記で述べたように、劣化が進行していくと紫色に変色していくが、このとき、可視光に対する光学特性としては、低波長の吸光度は高くなり(透過率、反射率は低くなり)飽和してゆく一方で、高波長側は、吸光度(透過率、反射率)変化を識別しにくくなる。従って、可視光に対する光学特性により劣化の程度を同定する場合には、700nm以下、特に500〜700nmの波長により測定することが好適である。因みに、実施例では、600nmの波長により光学特性を測定している。
That is, the Cl-containing anion exchange membrane is dehydrochlorinated from polyvinyl chloride when exposed to alkali to form polyene, which first develops a yellow color, and then becomes purple when contact with the alkali continues. As the deterioration progresses in this way, the Cl-containing anion exchange membrane is discolored, and the degree of this discoloration can be identified by the optical characteristics with respect to visible light.
The optical characteristics include transmittance, absorbance and reflectance.
As described above, as the deterioration progresses, the color changes to purple, but at this time, as the optical characteristics for visible light, the absorbance at low wavelength is high (the transmittance and the reflectance are low. While becoming saturated, it becomes difficult to identify changes in absorbance (transmittance, reflectance) on the high wavelength side. Therefore, in the case of identifying the degree of deterioration by the optical characteristics with respect to visible light, it is preferable to measure at a wavelength of 700 nm or less, particularly 500 to 700 nm. Incidentally, in the examples, the optical characteristics are measured at a wavelength of 600 nm.

また、蛍光X線分析では、塩素強度により劣化の程度が同定される。即ち、ポリ塩化ビニルからの脱塩酸の程度により劣化の程度を同定するものである。例えば、劣化の進行に伴い、脱塩酸量が多くなるため、蛍光X線分析により測定される塩素強度は低下してゆく。通常は塩素のKa線の強度を読み取ることができる。   Further, in the fluorescent X-ray analysis, the degree of deterioration is identified by the chlorine intensity. That is, the degree of deterioration is identified by the degree of dehydrochlorination from polyvinyl chloride. For example, as the amount of dehydrochlorination increases with the progress of deterioration, the chlorine intensity measured by fluorescent X-ray analysis decreases. Usually, the intensity of the Ka line of chlorine can be read.

このように、本発明では、劣化の程度を光学特性測定及び塩素強度により同定するわけであるが、ここで重要なことは、含Clアニオン交換膜から分析用サンプルを必ずしも切り出すことなく(即ち、破壊検査)、測定することができるということである。特に、蛍光X線分析であれば、小型で可搬型(ハンドヘルド)のものが市販されており、これを用いれば膜破壊を行うことなく直接的に測定することができる。同様に、可視光に対する光学特性測定においても、反射法は、小型で可搬型(ハンドヘルド)のものが市販されている。また、仮に破壊せざるを得なかったとしても、光学的分析は電気化学分析よりも簡便に行えるという利点がある。   As described above, in the present invention, the degree of deterioration is identified by optical property measurement and chlorine intensity, but what is important here is that the analytical sample is not necessarily cut out from the Cl-containing anion exchange membrane (that is, Destructive inspection), can be measured. In particular, in the case of fluorescent X-ray analysis, a small and portable (handheld) one is commercially available, and if this is used, it is possible to directly perform measurement without causing film destruction. Similarly, also in the measurement of optical characteristics for visible light, a small and portable (handheld) reflection method is commercially available. Further, even if it has to be destroyed, optical analysis has an advantage that it can be performed more simply than electrochemical analysis.

本発明では、上記のように劣化の程度を光学特性或いは塩素強度を測定することにより同定するのであるが、同時に、物理特性或いは電気化学特性を測定し、同定された劣化の程度と測定された物理特性或いは電気化学特性とをプロットしておき、検量線を作成しておく。   In the present invention, the degree of deterioration is identified by measuring the optical characteristics or the chlorine strength as described above, but at the same time, the physical characteristics or the electrochemical characteristics are measured, and the degree of deterioration identified is measured. A physical curve or an electrochemical characteristic is plotted, and a calibration curve is created.

<実機で使用されている含Clアニオン交換膜についての検査>
ところで、実機で使用されている膜について、その物理特性や電気化学特性は、通常は、膜破壊検査により測定されるものであるが、本発明では、上記の検量線を作成しておくことにより、必ずしも破壊検査によらず、可視光に対する光学特性測定或いは蛍光X線分析による塩素強度を測定することにより、物理特性や電気化学特性の変化を推定することができる。
<Inspection of Cl-containing anion exchange membrane used in actual equipment>
By the way, for a film used in an actual machine, its physical properties and electrochemical properties are usually measured by a film breakdown test, but in the present invention, by preparing the above calibration curve, It is possible to estimate changes in physical characteristics and electrochemical characteristics by measuring optical characteristics with respect to visible light or measuring chlorine intensity by fluorescent X-ray analysis, not necessarily by destructive inspection.

例えば、図1は、前述した劣化促進試験を行い、波数600nmで測定した吸光度と、電気抵抗保持率とをプロットした検量線が示されている。
尚、電気抵抗保持率は、下記式により算出される。
電気抵抗保持率(%)
=100×(劣化した膜の電気抵抗値)/(劣化促進前の膜の電気抵抗値)
ここでは交流電気抵抗を測定した。この図1から理解されるように、この吸光度と電気抵抗値とは明らかに相関関係があり、従って、吸光度を測定することにより、上記の検量線から膜の電気抵抗値を推定することができる。
For example, FIG. 1 shows a calibration curve obtained by plotting the absorbance measured at a wave number of 600 nm and the electric resistance retention rate by performing the deterioration acceleration test described above.
The electric resistance retention rate is calculated by the following formula.
Electric resistance retention rate (%)
= 100 × (electrical resistance value of deteriorated film) / (electrical resistance value of film before accelerated deterioration)
Here, the AC electric resistance was measured. As can be seen from FIG. 1, there is a clear correlation between the absorbance and the electric resistance value. Therefore, by measuring the absorbance, the electric resistance value of the membrane can be estimated from the above calibration curve. .

また、図2には、波数600nmで測定した吸光度と、ヤング率保持率とをプロットした検量線が示されている。
尚、ヤング率保持率は、下記式により算出される。
ヤング率保持率(%)
=100×(劣化した膜のヤング率)/(劣化促進前の膜のヤング率)
図2から理解されるように、この吸光度とヤング率とは明らかに相関関係があり、従って、吸光度を測定することにより、上記の検量線から膜のヤング率を推定することができる。
同様に図3から輸率、図4から含水率を推定できることを示している。
また、図5、6では反射率から電気抵抗を、図7では反射率からヤング率を推定できることを示している。
Further, FIG. 2 shows a calibration curve in which the absorbance measured at a wave number of 600 nm and the Young's modulus retention rate are plotted.
The Young's modulus retention rate is calculated by the following formula.
Young's modulus retention rate (%)
= 100 × (Young's modulus of deteriorated film) / (Young's modulus of film before accelerated deterioration)
As can be understood from FIG. 2, there is a clear correlation between the absorbance and the Young's modulus. Therefore, by measuring the absorbance, the Young's modulus of the film can be estimated from the above calibration curve.
Similarly, it is shown that the transport number can be estimated from FIG. 3 and the water content can be estimated from FIG.
Further, FIGS. 5 and 6 show that the electric resistance can be estimated from the reflectance and the Young's modulus can be estimated from the reflectance in FIG. 7.

さらに、図8には、蛍光X線分析により測定された塩素強度保持率と電気抵抗値とをプロットした検量線が示されている。
尚、塩素強度保持率は、下記式により算出される。
塩素強度保持率(%)
=100×(劣化した膜の塩素強度)/(劣化促進前の膜の塩素強度)
この図8から明らかなように、塩素強度の低下にしたがい、電気抵抗値は低下しており、両者の間には明らかに相関関係がある。従って、蛍光X線分析により塩素強度を測定することによっても、上記の検量線から膜の電気抵抗値を推定することができる。
Further, FIG. 8 shows a calibration curve in which the chlorine strength retention rate and the electric resistance value measured by the fluorescent X-ray analysis are plotted.
The chlorine strength retention rate is calculated by the following formula.
Chlorine strength retention rate (%)
= 100 x (chlorine strength of deteriorated film) / (chlorine strength of film before accelerated deterioration)
As is clear from FIG. 8, the electric resistance value decreases as the chlorine strength decreases, and there is a clear correlation between the two. Therefore, the electric resistance value of the film can be estimated from the above calibration curve by measuring the chlorine intensity by fluorescent X-ray analysis.

図9には、蛍光X線分析により測定された塩素強度保持率とヤング率とをプロットした検量線が示されている。
この図9から明らかなように、塩素強度の低下にしたがい、ヤング率は低下しており、両者の間には明らかに相関関係がある。従って、蛍光X線分析により塩素強度を測定することによっても、上記の検量線から膜のヤング率を推定することができる。
FIG. 9 shows a calibration curve obtained by plotting the chlorine strength retention rate and Young's modulus measured by fluorescent X-ray analysis.
As is clear from FIG. 9, the Young's modulus decreases as the chlorine strength decreases, and there is a clear correlation between the two. Therefore, the Young's modulus of the film can be estimated from the above calibration curve by measuring the chlorine intensity by fluorescent X-ray analysis.

このように、本発明では、実機で用いる含Clアニオン交換膜について、劣化促進試験を行い、可視光に対する光学特性或いは蛍光X線分析による塩素強度を測定して、電気抵抗値等の電気化学特性やヤング率等の物理特性を測定して検量線を測定しておくことにより、実機に装着されている含Clアニオン交換膜について、破壊検査によらず、その可視光に対する光学特性或いは蛍光X線分析による塩素強度を測定することにより、装着されている膜の劣化の度合いを把握することができ、これに基づいて、継続使用或いは膜の交換が行われることとなる。   As described above, in the present invention, a Cl-containing anion exchange membrane used in an actual machine is subjected to a deterioration acceleration test, optical characteristics with respect to visible light or chlorine intensity by fluorescent X-ray analysis is measured, and electrochemical characteristics such as electric resistance value are measured. By measuring the physical characteristics such as Young's modulus and Young's modulus and measuring the calibration curve, the Cl-containing anion exchange membrane mounted on the actual machine can be measured for its optical characteristics or fluorescent X-rays for visible light, regardless of the destructive inspection. By measuring the chlorine intensity by analysis, the degree of deterioration of the attached film can be grasped, and based on this, continuous use or replacement of the film will be performed.

尚、上記の例では、電気化学特性として電気抵抗値を例に挙げ、また、物理特性としてヤング率を例に挙げて、光学特性及び塩素強度との相関性を示したが、電気抵抗値やヤング率以外のパラメータを測定して検量線を作成しておくことも勿論可能である。
例えば、電気化学特性であれば、膜の電気抵抗値と輸率とが相関関係を有していることが知られているから、電気抵抗値の代わりに輸率を用いて検量線を作成しておくこともできる。ここで、輸率とは、いわゆる静的輸率に限らず、電気透析中の特定のイオン(例えばプロトン)の透過率、阻止率など、イオン透過性や選択性を表す指標を含む。また、物理特性であれば、含水率と電気抵抗率とが相関関係を有していることも知られている。従って、ヤング率以外にも含水率を用いて検量線を作成しておくことも可能である。同様に、物理特性としては、イオン交換容量、拡散係数、機械強度(破裂強度〔ミューレン法〕、突き刺し強度、引張試験によって得られる引張強度(最大点、破断点)、引張伸度(最大点、破断点)なども、これらの測定値を用いて検量線を作成しておくことが可能である。
In the above example, the electrical resistance value was taken as an example of the electrochemical characteristic, and the Young's modulus was taken as an example of the physical characteristic to show the correlation with the optical characteristic and the chlorine strength. Of course, it is also possible to measure parameters other than the Young's modulus and prepare a calibration curve.
For example, if it is an electrochemical property, it is known that the electrical resistance value of the membrane and the transport number have a correlation, so a calibration curve is created using the transport number instead of the electrical resistance value. You can also keep it. Here, the transference number is not limited to a so-called static transference number, but includes an index indicating ion permeability or selectivity such as a transmission rate and a blocking rate of specific ions (for example, protons) during electrodialysis. It is also known that the water content and the electrical resistivity have a correlation in the case of physical properties. Therefore, it is possible to prepare a calibration curve using the moisture content in addition to the Young's modulus. Similarly, the physical properties include ion exchange capacity, diffusion coefficient, mechanical strength (burst strength [Mullen method], puncture strength, tensile strength (maximum point, break point) obtained by a tensile test, tensile elongation (maximum point, It is also possible to prepare a calibration curve for these values such as the breaking point).

尚、電気抵抗は、前記塩ビの脱塩酸以外の原因でも、脱塩酸の場合ほどではないが、変動することがある。即ち、Clアニオン交換膜では、アルカリとの接触により、前記塩ビの脱塩酸の他、イオン交換基の脱離も生じ易く、イオン交換基が脱離すれば電気抵抗は増加する。また、移動しにくい対イオンがイオン交換基と結合したり、ファウリングやスケーリングなどその他の要因が重なれば、電気抵抗は増加する可能性がある。これに対して、機械的強度等の物理特性の場合、上記塩ビの脱塩酸以外の原因による性状変動は小さい。従って、使用中のアニオン交換膜の特性判定の正確性からは、電気抵抗よりも、機械的強度等の物理特性の方が信頼性はより高く好ましい。   The electric resistance may fluctuate due to causes other than the dehydrochlorination of the vinyl chloride, though not as much as in the case of dehydrochlorination. That is, in the Cl anion exchange membrane, contact with alkali easily causes desorption of ion-exchange groups in addition to dehydrochlorination of vinyl chloride, and the elimination of ion-exchange groups increases electrical resistance. In addition, if a counter-ion that is difficult to move is bound to an ion-exchange group, or if other factors such as fouling and scaling overlap, the electric resistance may increase. On the other hand, in the case of physical properties such as mechanical strength, changes in properties due to causes other than dehydrochlorination of PVC are small. Therefore, in terms of accuracy in determining the characteristics of the anion exchange membrane in use, physical characteristics such as mechanical strength are more reliable and preferable than electric resistance.

本発明を次の実験例で説明する。   The present invention will be described in the following experimental example.

実験に用いた含Clアニオン交換膜;
ポリ塩化ビニル製織布を基材シートとして含有
含Clアニオン交換膜当りのポリ塩化ビニルの含有量:63質量%
(アニオン交換樹脂中のポリ塩化ビニル含量は約25質量%)
初期吸光度(波長600nm):0.0
初期塩素強度:15337cps
初期交流抵抗:2.36Ω・cm
初期ヤング率:1085N/mm
Cl-containing anion exchange membrane used in the experiment;
Containing woven fabric made of polyvinyl chloride as a base sheet Content of polyvinyl chloride per Cl-containing anion exchange membrane: 63% by mass
(Polyvinyl chloride content in the anion exchange resin is about 25% by mass)
Initial absorbance (wavelength 600 nm): 0.0
Initial chlorine strength: 15337 cps
Initial AC resistance: 2.36 Ω · cm 2
Initial Young's modulus: 1085 N / mm 2

吸光度及び反射率の測定;
日本分光株式会社製可視光分光光度計V−730を使用し、透明の参照サンプルと試料膜について、波数600nmでの吸光度、または反射率を測定した。
試料膜と参照サンプルの吸光度、または反射率との差を、試料膜の吸光度、または反射率とした。
Absorbance and reflectance measurements;
The visible light spectrophotometer V-730 manufactured by JASCO Corporation was used to measure the absorbance or the reflectance at a wave number of 600 nm for the transparent reference sample and the sample film.
The difference between the absorbance or reflectance of the sample film and the reference sample was defined as the absorbance or reflectance of the sample film.

塩素強度の測定;
蛍光X線分析装置として、オリンパス株式会社ハンドヘルド蛍光X線装置VANTAを使用し塩素に帰属するKa線の強度を測定した。
Measurement of chlorine strength;
As a fluorescent X-ray analyzer, a handheld fluorescent X-ray device VANTA manufactured by Olympus Corporation was used to measure the intensity of Ka rays attributed to chlorine.

膜の交流抵抗の測定;
抵抗測定アクリルセルに25℃に維持した0.5N食塩水溶液を循環した。
このセルに試料膜(含Clアニオン交換膜)を挟み、HIOKI製交流測定器LCR−4263Aを使用し、周波数1000cycleで全交流抵抗(R2)を測定した。また、膜を挟んでいない状態での交流抵抗(R1)を測定し、下記式より膜の交流抵抗(ER)を算出した。
ER=R2−R1
Measuring the AC resistance of the membrane;
Resistance measurement A 0.5N saline solution maintained at 25 ° C was circulated in the acrylic cell.
A sample membrane (Cl-containing anion exchange membrane) was sandwiched in this cell, and a total alternating current resistance (R2) was measured at a frequency of 1000 cycle using a HIOKI alternating current measuring device LCR-4263A. Further, the AC resistance (R1) in the state where the film was not sandwiched was measured, and the AC resistance (ER) of the film was calculated from the following formula.
ER = R2-R1

膜の輸率(プロトン透過阻止率)の測定;
手製のアクリルセルに白金電極を装備し、テストピースを挟んだ。2M−HSO溶液をアノードセルに、0.25−HSO溶液をカソードセルに満たした。それぞれをマグネチックスターラーで攪拌し、25℃に維持した。電流密度10dA/dmで3600秒通電し、アノードセルのHイオン濃度(M2)、通電前の初期のHイオン濃度(M1)を0.1M−NaOHで滴定し、下記式よりプロトン透過阻止率PR(%)を算出した。
PR=(M2/M1)×100
Measurement of membrane transport number (proton permeation inhibition rate);
A handmade acrylic cell was equipped with a platinum electrode and a test piece was sandwiched. The 2M-H 2 SO 4 solution in the anode cell was filled with 0.25-H 2 SO 4 solution in the cathode cell. Each was stirred with a magnetic stirrer and maintained at 25 ° C. A current density of 10 dA / dm 2 was applied for 3600 seconds, the H + ion concentration (M2) of the anode cell and the initial H + ion concentration (M1) before energization were titrated with 0.1 M-NaOH, and proton permeation was performed according to the following formula. The inhibition rate PR (%) was calculated.
PR = (M2 / M1) × 100

膜の含水率の測定;
0.5M−NaCl溶液で平衡したテストピースを脱イオン水で洗浄後、2枚の濾紙の間に挟んで軽く圧力をかけ表面の水分を拭き取った。湿潤状態のテストピースの重量(Wa)を直ちに測定した。
続いて60℃に維持された真空乾燥器DP−32(ヤマトサイエンティフィック製)に入れ4時間真空乾燥した。乾燥テストピースの重量(Wb)を測定し、下記式より膜の含水率Wc(%)を算出した。
Wc=[(Wa−Wb)/Wb]×100
Measurement of the water content of the membrane;
The test piece equilibrated with a 0.5 M NaCl solution was washed with deionized water, sandwiched between two pieces of filter paper, and light pressure was applied to wipe off water on the surface. The weight (Wa) of the wet test piece was immediately measured.
Then, it was put in a vacuum dryer DP-32 (manufactured by Yamato Scientific) maintained at 60 ° C. and vacuum dried for 4 hours. The weight (Wb) of the dried test piece was measured, and the water content Wc (%) of the membrane was calculated from the following formula.
Wc = [(Wa-Wb) / Wb] × 100

ヤング率の測定;
A&D株式会社製引張試験機「テンシロン」を用いて機械強度試験を行い、得られた応力−歪曲線からヤング率を算出した。
Young's modulus measurement;
A mechanical strength test was performed using a tensile tester “Tensilon” manufactured by A & D Co., Ltd., and Young's modulus was calculated from the obtained stress-strain curve.

<実施例1>
試料の含Clアニオン交換膜を、40℃に維持された0.01M、0.1M、1M濃度のNaOH水溶液にそれぞれ浸漬し、40℃下での劣化促進試験を行った。
これらの膜を、1時間後から一週間経過するまで所定時間ごとに取出し、可視光に対する吸光度(波長600nm)を測定し、及び電気抵抗(交流抵抗)保持率を算出し、相関関係を、図1に示した。
図1から理解されるように、電気抵抗保持率をy、600nm吸光度をxとして、最小二乗法により、40℃下での劣化促進試験では、y=−0.4501x+0.9873の回帰直線が得られた。相関係数Rは0.84だった。
一方、同じ含Clアニオン交換膜を、地下かん水の脱塩によって工業用水を製造する電気透析装置に装着し、槽内の液温が40℃を超えない条件で電気透析を1年間実行した膜(以下、「現場膜」とする)を調べた。肉眼観察では、水解発生によって、アニオン膜の一部が赤く劣化していた。この部分からサンプルを切り出して600nmでの吸光度及び交流抵抗保持率を測定したところ、吸光度は0.27、交流抵抗保持率は91%と測定された。しかるに、図1の回帰直線から、吸光度が0.27のときの交流抵抗保持率は87%と推定された。約4%の誤差であり概ね一致していた。
<Example 1>
The Cl-containing anion exchange membrane of the sample was immersed in a 0.01 M, 0.1 M, and 1 M concentration NaOH aqueous solution maintained at 40 ° C., and a deterioration acceleration test at 40 ° C. was performed.
These films were taken out at a predetermined time interval from 1 hour to 1 week later, the absorbance for visible light (wavelength 600 nm) was measured, and the electric resistance (AC resistance) retention rate was calculated. Shown in 1.
As can be understood from FIG. 1, a regression line of y = −0.4501x + 0.9873 was obtained by the least squares method in a deterioration acceleration test at 40 ° C., where the electric resistance retention rate was y and the 600 nm absorbance was x. Was given. The correlation coefficient R 2 was 0.84.
On the other hand, the same Cl-containing anion exchange membrane was attached to an electrodialysis device for producing industrial water by desalting underground brackish water, and electrodialysis was carried out for one year under conditions where the liquid temperature in the tank did not exceed 40 ° C ( Hereinafter, referred to as "in-situ membrane"). Visual observation revealed that a part of the anion film was deteriorated in red due to the occurrence of water decomposition. When a sample was cut out from this portion and the absorbance at 600 nm and the AC resistance retention rate were measured, the absorbance was 0.27 and the AC resistance retention rate was 91%. However, from the regression line of FIG. 1, the AC resistance retention rate when the absorbance was 0.27 was estimated to be 87%. There was an error of about 4%, which was in good agreement.

<実施例2>
実施例1の劣化促進試験において、膜の交流抵抗を測定するのに変えてヤング率を測定し、吸光度とヤング率との関係を求める以外は同様に実施し、その結果を図2に示した。図2から理解されるように40℃下での劣化促進試験では、可視光(600nm)に対する吸光度とヤング率との関係はy=−0.5207x+0.9755の回帰直線が得られた。
次に、実施例1で得られた含Clアニオン交換膜の現場膜の吸光度は0.27であるから、回帰直線からヤング率は83%と推定された。実際の現場膜のヤング率は、79%であって概ね一致していた。
<Example 2>
In the deterioration acceleration test of Example 1, the Young's modulus was measured instead of measuring the AC resistance of the film, and the same procedure was performed except that the relationship between the absorbance and the Young's modulus was obtained. The results are shown in FIG. . As understood from FIG. 2, in the deterioration acceleration test at 40 ° C., a regression line of y = −0.5207x + 0.9755 was obtained for the relationship between the absorbance with respect to visible light (600 nm) and the Young's modulus.
Next, since the in-situ absorbance of the Cl-containing anion exchange membrane obtained in Example 1 was 0.27, the Young's modulus was estimated to be 83% from the regression line. The actual Young's modulus of the in-situ film was 79%, which was almost in agreement.

<実施例3>
実施例1の劣化促進試験において、膜の交流抵抗を測定するのに変えて輸率を測定し、吸光度と輸率との関係を求める以外は同様に実施し、その結果を図3に示した。図3から理解されるように40℃下での劣化促進試験では、可視光(600nm)に対する吸光度と輸率との関係はy=−0.2407x+1.0023の回帰直線が得られた。
次に、実施例1で得られた含Clアニオン交換膜の現場膜の吸光度は0.27であるから、回帰直線から輸率保持率は94%と推定された。実際の現場膜の輸率保持率は、90%であって概ね一致していた。
<Example 3>
In the deterioration acceleration test of Example 1, the transport number was measured instead of measuring the AC resistance of the membrane, and the same procedure was performed except that the relationship between the absorbance and the transport number was obtained. The results are shown in FIG. . As can be understood from FIG. 3, in the deterioration acceleration test at 40 ° C., a regression line of y = −0.2407x + 1.0023 was obtained for the relationship between the absorbance with respect to visible light (600 nm) and the transport number.
Next, the in-situ absorbance of the Cl-containing anion exchange membrane obtained in Example 1 was 0.27. Therefore, the transport number retention rate was estimated to be 94% from the regression line. The actual transport rate retention rate of the on-site membrane was 90%, which was almost in agreement.

<実施例4>
実施例1の劣化促進試験において、膜の交流抵抗を測定するのに変えて含水率を測定し、吸光度と含水率との関係を求める以外は同様に実施し、その結果を図4に示した。図4から理解されるように40℃下での劣化促進試験では、可視光(600nm)に対する吸光度と含水率との関係はy=−0.2404x+1.0065の回帰直線が得られた。
次に、実施例1で得られた含Clアニオン交換膜の現場膜の吸光度は0.27であるから、回帰直線から含水率保持率は94%と推定された。実際の現場膜の含水率保持率は、92%であって概ね一致していた。
<Example 4>
In the deterioration acceleration test of Example 1, the moisture content was measured instead of measuring the AC resistance of the membrane, and the same procedure was performed except that the relationship between the absorbance and the moisture content was obtained. The results are shown in FIG. . As can be understood from FIG. 4, in the deterioration acceleration test at 40 ° C., a regression line of y = −0.2404x + 1.0065 was obtained for the relationship between the absorbance with respect to visible light (600 nm) and the water content.
Next, since the in-situ absorbance of the Cl-containing anion exchange membrane obtained in Example 1 was 0.27, the water content retention rate was estimated to be 94% from the regression line. The actual water content retention rate of the in-situ membrane was 92%, which was almost the same.

<実施例5>
実施例1の劣化促進試験において、可視光に対する吸光度に変えて反射率を測定し、可視光(600nm)に対する反射率と電気抵抗保持率との関係との関係を求める以外は同様に実施し、その結果を図5に示した。
図5から理解されるように、電気抵抗保持率をy、600nm反射率をxとして、最小二乗法により、40℃下での劣化促進試験では、y=0.5897x+0.3871の回帰直線が得られた。相関係数Rは0.86だった。
実施例1で得られた含Clアニオン交換膜の現場膜の反射率は80%であり、電気抵抗保持率は86%と推定された。現場膜の電気抵抗保持率は91%であったので約5%の誤差があった。
<Example 5>
In the deterioration acceleration test of Example 1, the reflectance was measured in place of the absorbance for visible light, and the same procedure was performed except that the relationship between the reflectance for visible light (600 nm) and the electrical resistance retention was obtained. The results are shown in Fig. 5.
As can be seen from FIG. 5, a regression line of y = 0.5897x + 0.3871 was obtained by the least squares method in the deterioration acceleration test at 40 ° C., where the electric resistance retention rate was y and the 600 nm reflectance was x. Was given. The correlation coefficient R 2 was 0.86.
It was estimated that the in-situ reflectance of the Cl-containing anion exchange membrane obtained in Example 1 was 80% and the electrical resistance retention was 86%. Since the electric resistance retention rate of the in-situ film was 91%, there was an error of about 5%.

<実施例6>
実施例5の劣化促進試験において、NaOH水溶液の温度を60℃で行った以外は同様に実施し、その結果を図6に示した。図6から理解されるように60℃下での劣化促進試験結果を追加すると、可視光(600nm)に対する反射率と電気抵抗保持率との関係はy=0.5992x+0.2815の回帰直線が得られた。相関係数R=0.74となり精度が低下した。
この結果、この回帰直線から、反射率80%に対する電気抵抗保持率は76%となり、劣化促進試験が40℃で実施された実施例5の結果(86%)と比較すると差は約10%となった。温度の高い実験の電気抵抗は低めになりやすく、40℃での推定に比べ低めの値になった。しかし、劣化が酷い場合はx軸の反射率が低い値になるので、時間をかけて検量線を作るのでなければ、劣化の傾向は十分に把握可能であり、簡易な判定方法として有意義であった。
<Example 6>
The degradation acceleration test of Example 5 was performed in the same manner except that the temperature of the aqueous NaOH solution was 60 ° C., and the results are shown in FIG. As can be seen from FIG. 6, when the deterioration acceleration test result at 60 ° C. is added, the regression line of y = 0.5992x + 0.2815 is obtained for the relationship between the reflectance with respect to visible light (600 nm) and the electric resistance retention rate. Was given. The correlation coefficient was R 2 = 0.74, and the accuracy was lowered.
As a result, from this regression line, the electric resistance retention ratio with respect to the reflectance of 80% was 76%, and the difference was about 10% as compared with the result (86%) of Example 5 in which the deterioration acceleration test was performed at 40 ° C. became. The electric resistance of the experiment in which the temperature was high was likely to be low, and the value was lower than that estimated at 40 ° C. However, when the deterioration is severe, the reflectance of the x-axis becomes a low value, so the tendency of deterioration can be sufficiently grasped unless a calibration curve is created over time, which is a meaningful judgment method. It was

<実施例7>
実施例5の劣化促進試験において、膜の交流抵抗を測定するのに変えてヤング率を測定し、反射率とヤング率との関係を求める以外は同様に実施し、その結果を図7に示した。図7から理解されるように40℃下での劣化促進試験では、可視光(600nm)に対する反射率とヤング率との関係はy=0.8017x+0.1907の回帰直線が得られた。
次に、実施例5で示したように、実施例1で得られた含Clアニオン交換膜膜の現場膜の反射率は80%であるから、回帰直線からヤング率は83%と推定された。実際の現場膜のヤング率は、79%であって概ね一致していた。
<Example 7>
In the deterioration acceleration test of Example 5, the Young's modulus was measured instead of measuring the AC resistance of the film, and the same procedure was performed except that the relationship between the reflectance and the Young's modulus was obtained. The results are shown in FIG. It was As can be understood from FIG. 7, in the deterioration acceleration test at 40 ° C., a regression line of y = 0.018x + 0.1907 was obtained for the relationship between the reflectance and the Young's modulus with respect to visible light (600 nm).
Next, as shown in Example 5, the in-situ reflectance of the Cl-containing anion exchange membrane obtained in Example 1 was 80%, so the Young's modulus was estimated to be 83% from the regression line. . The actual Young's modulus of the in-situ film was 79%, which was almost in agreement.

<実施例8>
実施例1の劣化促進試験において、可視光に対する吸光度に変えて塩素強度(蛍光X線分析)を測定し、塩素強度保持率と電気抵抗保持率との関係との関係を求める以外は同様に実施し、その結果を図8に示した。図8から理解されるように40℃下での劣化促進試験では、塩素強度保持率と電気抵抗保持率との関係はy=2.3286x−1.3733の回帰直線が得られた。
実施例1で得られた含Clアニオン交換膜の現場膜の塩素強度保持率は93%であり、電気抵抗保持率は79%と推定された。
<Example 8>
In the deterioration acceleration test of Example 1, chlorine intensity (fluorescent X-ray analysis) was measured instead of absorbance for visible light, and the same procedure was performed except that the relationship between the chlorine intensity retention rate and the electrical resistance retention rate was obtained. The results are shown in FIG. As can be seen from FIG. 8, in the deterioration acceleration test at 40 ° C., a regression line of y = 2.3286x−1.3733 was obtained for the relationship between the chlorine strength retention rate and the electrical resistance retention rate.
The chlorine strength retention of the Cl-containing anion exchange membrane obtained in Example 1 was 93%, and the electrical resistance retention was estimated to be 79%.

<実施例9>
実施例8の劣化促進試験において、膜の交流抵抗を測定するのに変えてヤング率を測定し、塩素強度保持率とヤング率との関係を求める以外は同様に実施し、その結果を図9に示した。図9から理解されるように40℃下での劣化促進試験では、塩素強度とヤング率との関係はy=2.9444x−2.0012の回帰直線が得られた。
実施例1で得られた含Clアニオン交換膜の現場膜の塩素強度保持率は93%であり、ヤング率保持率は74%と推定された。
<Example 9>
In the deterioration acceleration test of Example 8, the Young's modulus was measured instead of measuring the AC resistance of the film, and the same procedure was performed except that the relationship between the chlorine strength retention rate and the Young's modulus was obtained. It was shown to. As can be understood from FIG. 9, in the deterioration acceleration test at 40 ° C., a regression line of y = 2.9444x−2.0012 was obtained for the relationship between the chlorine strength and the Young's modulus.
The chlorine strength retention of the Cl-containing anion exchange membrane obtained in Example 1 was 93%, and the Young's modulus retention was estimated to be 74%.

Claims (5)

未使用のポリ塩化ビニル成分含有アニオン交換膜を用意し、
該アニオン交換膜をアルカリ水溶液と接触させて劣化促進試験を行い、劣化の度合いごとに該膜の可視光に対する光学特性又は蛍光X線強度分析による塩素強度と、該アニオン交換膜の物理特性及び/又は電気化学特性を測定することにより、光学特性変化又は蛍光X線強度変化に対する該アニオン交換膜の物理特性及び/又は電気化学特性の変化を示す検量線を作成しておき、
使用中のポリ塩化ビニル成分含有アニオン交換膜の可視光に対する光学特性又は蛍光X線強度を測定し、前記検量線に基づいて該光学特性若しくは該蛍光X線強度測定値から使用中の該アニオン交換膜の物理特性及び/又は電気化学特性を判定することを特徴とするポリ塩化ビニル成分含有アニオン交換膜の検査方法。
Prepare an unused anion exchange membrane containing polyvinyl chloride component,
A deterioration acceleration test is conducted by contacting the anion exchange membrane with an alkaline aqueous solution, and the optical characteristics of the membrane with respect to visible light or the chlorine strength by fluorescent X-ray intensity analysis and the physical characteristics of the anion exchange membrane and / or Alternatively, a calibration curve showing changes in physical properties and / or electrochemical properties of the anion exchange membrane with respect to changes in optical properties or changes in fluorescent X-ray intensity is prepared by measuring electrochemical properties,
The anion exchange membrane in use is measured by measuring the optical characteristic or fluorescent X-ray intensity of visible light of the polyvinyl chloride component-containing anion exchange membrane, and measuring the optical characteristic or the fluorescent X-ray intensity based on the calibration curve. A method for inspecting an anion exchange membrane containing a polyvinyl chloride component, which comprises determining a physical characteristic and / or an electrochemical characteristic of the membrane.
前記劣化の度合いごとに測定する、アニオン交換膜の可視光に対する光学特性が、吸光度である請求項1に記載の検査方法。   The inspection method according to claim 1, wherein the optical property of the anion exchange membrane with respect to visible light, which is measured for each degree of deterioration, is absorbance. 前記アニオン交換膜の物理特性として機械的強度又は含水率を判定する請求項1に記載の検査方法。   The inspection method according to claim 1, wherein mechanical strength or water content is determined as a physical property of the anion exchange membrane. 前記アニオン交換膜の物理特性を判定する機械的強度が、ヤング率である請求項3に記載の検査方法。   The inspection method according to claim 3, wherein the mechanical strength for determining the physical property of the anion exchange membrane is Young's modulus. 前記アニオン交換膜の電気化学特性として電気抵抗又は輸率を判定する請求項1に記載の検査方法。   The inspection method according to claim 1, wherein an electrical resistance or a transport number is determined as an electrochemical characteristic of the anion exchange membrane.
JP2018192148A 2018-10-10 2018-10-10 Inspection method for anion exchange membrane containing polyvinyl chloride component Active JP7148124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018192148A JP7148124B2 (en) 2018-10-10 2018-10-10 Inspection method for anion exchange membrane containing polyvinyl chloride component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018192148A JP7148124B2 (en) 2018-10-10 2018-10-10 Inspection method for anion exchange membrane containing polyvinyl chloride component

Publications (2)

Publication Number Publication Date
JP2020060456A true JP2020060456A (en) 2020-04-16
JP7148124B2 JP7148124B2 (en) 2022-10-05

Family

ID=70219990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018192148A Active JP7148124B2 (en) 2018-10-10 2018-10-10 Inspection method for anion exchange membrane containing polyvinyl chloride component

Country Status (1)

Country Link
JP (1) JP7148124B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181211A1 (en) * 2021-02-26 2022-09-01 東レ株式会社 Method for analyzing composite semipermeable membrane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133095A (en) * 1985-12-05 1987-06-16 Asahi Glass Co Ltd Electrolytic cell for aqueous alkali chloride solution
JPH06330369A (en) * 1993-05-19 1994-11-29 Asahi Glass Co Ltd Electrolytic cell for alkali metal chloride aqueous solution
JP2005281777A (en) * 2004-03-30 2005-10-13 Nippon Rensui Co Ltd Method for electrolyzing alkali metal chloride
JP2010194479A (en) * 2009-02-26 2010-09-09 Nippon Rensui Co Ltd Pure-water production apparatus
CN104941468A (en) * 2015-05-29 2015-09-30 厦门大学 Semi-interpenetrating network anion exchange membrane and production method thereof
JP2015180486A (en) * 2014-03-07 2015-10-15 富士フイルム株式会社 Ion-exchangeable polymer and production method thereof, electrolyte film and production method thereof, and composition for producing ion-exchangeable polymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133095A (en) * 1985-12-05 1987-06-16 Asahi Glass Co Ltd Electrolytic cell for aqueous alkali chloride solution
JPH06330369A (en) * 1993-05-19 1994-11-29 Asahi Glass Co Ltd Electrolytic cell for alkali metal chloride aqueous solution
JP2005281777A (en) * 2004-03-30 2005-10-13 Nippon Rensui Co Ltd Method for electrolyzing alkali metal chloride
JP2010194479A (en) * 2009-02-26 2010-09-09 Nippon Rensui Co Ltd Pure-water production apparatus
JP2015180486A (en) * 2014-03-07 2015-10-15 富士フイルム株式会社 Ion-exchangeable polymer and production method thereof, electrolyte film and production method thereof, and composition for producing ion-exchangeable polymer
CN104941468A (en) * 2015-05-29 2015-09-30 厦门大学 Semi-interpenetrating network anion exchange membrane and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181211A1 (en) * 2021-02-26 2022-09-01 東レ株式会社 Method for analyzing composite semipermeable membrane
JP7156570B1 (en) * 2021-02-26 2022-10-19 東レ株式会社 Analysis method of composite semipermeable membrane

Also Published As

Publication number Publication date
JP7148124B2 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
Sedkaoui et al. A new lateral method for characterizing the electrical conductivity of ion-exchange membranes
Ghalloussi et al. Ageing of ion-exchange membranes in electrodialysis: A structural and physicochemical investigation
Bdiri et al. Characterization and cleaning of anion-exchange membranes used in electrodialysis of polyphenol-containing food industry solutions; comparison with cation-exchange membranes
Stenina et al. Ion mobility in Nafion-117 membranes
Zhu et al. Impact of solution composition on the resistance of ion exchange membranes
Hosseini et al. Fabrication of mixed matrix heterogeneous cation exchange membrane modified by titanium dioxide nanoparticles: Mono/bivalent ionic transport property in desalination
CA2814699C (en) Anion exchange membranes and process for making
Hosseini et al. Fabrication of (polyvinyl chloride/cellulose acetate) electrodialysis heterogeneous cation exchange membrane: Characterization and performance in desalination process
Doi et al. Alkali attack on anion exchange membranes with PVC backing and binder: Effect on performance and correlation between them
Kamcev et al. Effect of ambient carbon dioxide on salt permeability and sorption measurements in ion-exchange membranes
Luo et al. Effect of free radical-induced degradation on water permeation through PFSA ionomer membranes
Ji et al. Effects of fixed charge group physicochemistry on anion exchange membrane permselectivity and ion transport
Bessbousse et al. Poly (4-vinyl pyridine) radiografted PVDF track etched membranes as sensors for monitoring trace mercury in water
Bance-Soualhi et al. Radiation-grafted anion-exchange membranes for reverse electrodialysis: a comparison of N, N, N′, N′-tetramethylhexane-1, 6-diamine crosslinking (amination stage) and divinylbenzene crosslinking (grafting stage)
JP7148124B2 (en) Inspection method for anion exchange membrane containing polyvinyl chloride component
Mei et al. Effects of hypochlorite exposure on the structure and electrochemical performance of ion exchange membranes in reverse electrodialysis
EP2898319A1 (en) Electrochemical sensors for testing water
Xia et al. Cardopoly (arylene ether sulfone) s membranes bearing N-cyclic cationic groups enable high performance during both diffusion dialysis and electrodialysis
Caprarescu et al. Removal of copper ions from simulated wastewaters using different bicomponent polymer membranes
Verbeke et al. Elemental depth profiling of chlorinated polyamide-based thin-film composite membranes with elastic recoil detection
Innocent et al. Characterisation of cation exchange membrane in hydro-organic media by electrochemistry and Raman spectroscopy
González-Gago et al. Analytical potential of rf-PGD-TOFMS for depth profiling of an oxidized thin film composite
Khodabakhshi et al. Effect of polymers blend ratio binder on electrochemical and morphological properties of PC/S‐PVC‐based heterogeneous cation‐exchange membranes
RU2586817C2 (en) pH CONTROL DEVICE
Tsai et al. Electrochemical Detection of 2‐Naphthol at a Glassy Carbon Electrode Modified with Tosflex Film

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20181107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220914

R150 Certificate of patent or registration of utility model

Ref document number: 7148124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150