JP2006055728A - Method and apparatus for treating fluorine-containing wastewater - Google Patents

Method and apparatus for treating fluorine-containing wastewater Download PDF

Info

Publication number
JP2006055728A
JP2006055728A JP2004239263A JP2004239263A JP2006055728A JP 2006055728 A JP2006055728 A JP 2006055728A JP 2004239263 A JP2004239263 A JP 2004239263A JP 2004239263 A JP2004239263 A JP 2004239263A JP 2006055728 A JP2006055728 A JP 2006055728A
Authority
JP
Japan
Prior art keywords
fluorine
containing wastewater
concentration
aluminum
slaked lime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004239263A
Other languages
Japanese (ja)
Other versions
JP4661132B2 (en
Inventor
Norio Yamaguchi
典生 山口
Masatake Watanabe
正剛 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004239263A priority Critical patent/JP4661132B2/en
Publication of JP2006055728A publication Critical patent/JP2006055728A/en
Application granted granted Critical
Publication of JP4661132B2 publication Critical patent/JP4661132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the excessive use of a chemical agent, to also reduce the generation amount of sludge and to suppress the concentration of fluorine in wastewater to a discharge standard or below, in the treatment of fluorine-containing wastewater. <P>SOLUTION: In the subject treatment apparatus for fluorine-containing wastewater using a calcium method, composed of a reaction tank 1, a neutralization tank 2, a flocculation tank 3 and a sedimentation tank 4, a pre-reaction tank 5 for reacting slaked lime with an aluminum flocculant is provided and an aluminum salt being a reaction product is charged in the reaction tank 1 to adsorb a fluoride in the wastewater or to be compounded with the fluoride to sediment the fluoride. By this constitution, treated water wherein fluorine treatment concentration is the discharge standard or below is obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フッ素含有排水の処理方法及び処理装置に係り、特にフッ素を含有する排水中のフッ素を排出基準以下にまで低減すると共に、薬剤の使用量も低減できるフッ素含有排水の処理方法及び処理装置に関する。   The present invention relates to a treatment method and a treatment apparatus for fluorine-containing wastewater, and in particular, a fluorine-containing wastewater treatment method and treatment that can reduce fluorine in wastewater containing fluorine to below the discharge standard and also reduce the amount of chemicals used. Relates to the device.

近年、液晶、半導体、太陽電池の製造等のエッチング工程や洗浄工程などから発生する、フッ素を含有する排水の処理が問題となっている。   In recent years, there has been a problem of treatment of wastewater containing fluorine generated from an etching process or a cleaning process such as manufacturing liquid crystals, semiconductors, and solar cells.

また最近では、フッ素の排出基準は、15mg/Lから8mg/Lに強化されたため、より高度な処理方法が望まれている。   Also, recently, since the emission standard of fluorine has been strengthened from 15 mg / L to 8 mg / L, a more advanced treatment method is desired.

従来、フッ素含有排水からフッ素を除去する方法としては、カルシウム塩をフッ素含有排水に投入して不溶性のフッ化カルシウムを生成させ、これを固液分離する方法(以下、この方法を「カルシウム法」と略称する)が知られている。   Conventionally, as a method of removing fluorine from fluorine-containing wastewater, a method in which calcium salt is introduced into fluorine-containing wastewater to produce insoluble calcium fluoride and this is solid-liquid separated (hereinafter, this method is referred to as “calcium method”). For short).

しかしながら、このカルシウム法では、フッ素処理濃度は理想的な条件でも8mg/L程度が限界であり、各種の物質が共存する実際の工場排水ではフッ素とカルシウム塩との反応が妨害され、実際にはフッ素処理濃度は20〜30mg/Lが限界である。このため、カルシウム法単独では排出基準8mg/Lを満足し得ない。   However, in this calcium method, the fluorine treatment concentration is limited to about 8 mg / L even under ideal conditions, and the reaction between fluorine and calcium salt is hindered in actual factory wastewater where various substances coexist. The fluorine treatment concentration is limited to 20 to 30 mg / L. For this reason, the calcium method alone cannot satisfy the emission standard of 8 mg / L.

フッ素の処理濃度を更に低減する方法として、フッ化物含有水をアルミニウム化合物の存在下において、pH4以下に調整する第1工程と、この第1工程で生じた排出水にカルシウム化合物を加えてpH5以上に調整した後、固液分離する第2工程等を含む方法が知られている(例えば、特許文献1参照)。   As a method of further reducing the treatment concentration of fluorine, a first step of adjusting fluoride-containing water to pH 4 or lower in the presence of an aluminum compound, and a calcium compound added to the discharged water generated in this first step to a pH of 5 or higher A method including a second step of solid-liquid separation after adjusting to (for example, see Patent Document 1) is known.

この方法は、フッ化物とホウ素化合物を同時に含有するような水に対して好適であり、特に第1工程はホウフッ化物を分解するため、第2工程で、カルシウム化合物を加えてpH5以上に調整することにより、フッ化物イオンとカルシウムイオンとが反応し、フッ化カルシウムの難溶性沈殿を生じる。   This method is suitable for water that contains a fluoride and a boron compound at the same time. In particular, since the first step decomposes the borofluoride, in the second step, the calcium compound is added to adjust the pH to 5 or more. As a result, fluoride ions and calcium ions react with each other, resulting in poorly soluble precipitates of calcium fluoride.

また、溶存していたアルミニウムイオンもAl(OH)となって析出し、その表面や内部にフッ化物が吸着あるいは抱き込まれることにより、フッ素の除去が促進すると考えられる。 In addition, dissolved aluminum ions are also precipitated as Al (OH) 3, and it is considered that fluoride removal is promoted by adsorption or embedding of fluoride on the surface or inside thereof.

そして実施例では、排水中のフッ素濃度365ppmに対し、水酸化カルシウム(本発明で記載の消石灰と同義語)7000ppm、硫酸バンド4000ppmを加え、フッ素処理濃度が2ppmであった、としている。
特開昭57−144086号公報
And in the Example, 7000 ppm of calcium hydroxide (synonymous with slaked lime described in the present invention) and 4000 ppm of sulfuric acid band were added to the fluorine concentration of 365 ppm in the waste water, and the fluorine treatment concentration was 2 ppm.
Japanese Patent Laid-Open No. 57-144086

このように従来のフッ素の排水処理方法では、フッ素処理濃度を下げようとした場合、薬剤の投入量が過剰となり、また汚泥の発生量が増加するという課題があった。   As described above, in the conventional fluorine wastewater treatment method, there is a problem that when the fluorine treatment concentration is lowered, the amount of chemicals to be introduced becomes excessive and the amount of sludge generated increases.

そこで、薬剤の投入量と汚泥の発生量が少なく、フッ素の排出基準を満足する排水処理方法の確立が要求されている。   Therefore, establishment of a wastewater treatment method that satisfies a fluorine emission standard with a small amount of chemical input and sludge generation is required.

また、発生した汚泥の処分が困難という課題があり、セメント原料としてリサイクルすることが要求されている。   Moreover, there exists a subject that disposal of the generated sludge is difficult, and recycling as a cement raw material is requested | required.

本発明は、このような従来の課題を解決するものであり、薬剤を過剰投入することがなく、汚泥の発生量を抑制し、しかも発生した汚泥も回収してリサイクルを行い、フッ素の排出基準を満足するフッ素の排水処理方法を提供することを目的としている。   The present invention solves such a conventional problem, does not excessively input chemicals, suppresses the amount of sludge generated, collects and recycles the generated sludge, and discharges fluorine. It aims at providing the wastewater treatment method of the fluorine which satisfies.

本発明のフッ素含有排水の処理方法は、フッ素含有排水の処理工程で、消石灰とアルミ凝集剤を反応させる予備反応工程を備え、フッ素含有排水に、カルシウム源として、予備反応工程で発生した生成物を投入する反応工程を備えるものである。   The treatment method of fluorine-containing wastewater of the present invention comprises a preliminary reaction step of reacting slaked lime with an aluminum flocculant in the fluorine-containing wastewater treatment step, and the product generated in the preliminary reaction step as a calcium source in fluorine-containing wastewater. Is provided with a reaction step of charging.

この手段を用いることで、処理水のフッ素濃度が排出基準以下となるような、フッ素含有排水の処理方法が得られる。   By using this means, it is possible to obtain a method for treating fluorine-containing wastewater such that the fluorine concentration of the treated water is equal to or lower than the discharge standard.

また他の手段は、フッ素含有排水の処理工程で、フッ素含有排水に、カルシウム源としてアルミニウム塩を投入する反応工程を備えるものである。   Another means is a treatment step of fluorine-containing wastewater, which includes a reaction step of adding an aluminum salt as a calcium source to the fluorine-containing wastewater.

これにより、予備反応工程を設けずに、処理水のフッ素濃度が排出基準以下となるようなフッ素含有排水の処理方法が得られる。   Thereby, the treatment method of the fluorine-containing waste water from which the fluorine density | concentration of treated water becomes below a discharge | emission standard, without providing a preliminary reaction process is obtained.

また他の手段は、フッ素含有排水の処理工程で、フッ素含有排水に消石灰とアルミ凝集剤を同時に投入する反応工程を備えるものである。   Another means is a treatment process of fluorine-containing wastewater, which comprises a reaction step of simultaneously adding slaked lime and aluminum flocculant to the fluorine-containing wastewater.

この手段により、従来の処理方法のままで薬剤投入タイミングを変更するだけで、処理水のフッ素濃度が排出基準以下となるようなフッ素含有排水の処理方法が得られる。   By this means, it is possible to obtain a fluorine-containing wastewater treatment method in which the fluorine concentration of the treated water is equal to or lower than the discharge standard simply by changing the chemical charging timing with the conventional treatment method.

また他の手段は、フッ素含有排水のフッ素濃度に基づいて消石灰及びアルミ凝集剤の投入量を決定するものである。   Another means is to determine the amount of slaked lime and aluminum flocculant input based on the fluorine concentration of the fluorine-containing waste water.

この手段により、薬剤の過剰投入がないフッ素含有排水の処理方法が得られる。   By this means, a method for treating fluorine-containing waste water without excessive charging of the medicine can be obtained.

また他の手段は、消石灰の投入量はフッ素含有排水のフッ素濃度の1〜3倍当量とし、アルミ凝集剤の投入量はアルミニウムに換算してフッ素濃度の0.002〜0.1倍当量とするものである。   Another means is that the input amount of slaked lime is 1 to 3 times the fluorine concentration of the fluorine-containing wastewater, and the input amount of the aluminum flocculant is 0.002 to 0.1 times the fluorine concentration in terms of aluminum. To do.

この手段により、薬剤の過剰投入がないフッ素含有排水の処理方法が得られる。   By this means, a method for treating fluorine-containing waste water without excessive charging of the medicine can be obtained.

また他の手段は、消石灰とアルミ凝集剤を反応させる予備反応槽を備え、フッ素含有排水にカルシウム源として、前記予備反応槽での生成物を投入する反応槽を備えたものである。   Another means includes a preliminary reaction tank for reacting slaked lime with an aluminum flocculant, and a reaction tank for charging the fluorine-containing wastewater with a product in the preliminary reaction tank as a calcium source.

この手段により、処理水のフッ素濃度が排出基準以下となるフッ素含有排水の処理装置が得られる。   By this means, a treatment apparatus for fluorine-containing waste water in which the fluorine concentration of the treated water is below the discharge standard is obtained.

また他の手段は、フッ素含有排水のフッ素濃度を検知するフッ素濃度検知手段を設け、検知したフッ素濃度に応じて消石灰及びアルミ凝集剤の投入量を決定するものである。   Another means is to provide a fluorine concentration detection means for detecting the fluorine concentration of the fluorine-containing waste water, and determine the input amount of slaked lime and aluminum flocculant according to the detected fluorine concentration.

この手段により、薬剤の過剰投入がないフッ素含有排水の処理装置を得ることができる。   By this means, it is possible to obtain a fluorine-containing wastewater treatment apparatus in which no excessive amount of chemicals is introduced.

また他の手段は、消石灰の投入量をフッ素含有排水のフッ素濃度の1〜3倍当量とし、アルミ凝集剤の投入量をアルミニウムに換算してフッ素濃度の0.002〜0.1倍当量とするものである。   Another means is that the amount of slaked lime is 1 to 3 times equivalent to the fluorine concentration of the fluorine-containing wastewater, and the amount of aluminum flocculant is 0.002 to 0.1 times equivalent to the fluorine concentration in terms of aluminum. To do.

この手段により、薬剤の過剰投入がないフッ素含有排水の処理装置が得られる。   By this means, a treatment apparatus for fluorine-containing waste water without excessive injection of chemicals can be obtained.

本発明によれば、薬剤の過剰投入がなく、汚泥の発生量も少なく、フッ素の排出基準を満足するフッ素の排水処理方法を提供できる。   According to the present invention, it is possible to provide a fluorine wastewater treatment method that does not excessively add chemicals, generates less sludge, and satisfies the fluorine emission standards.

以下、本発明を実施するための最良の形態について図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1におけるフッ素含有排水の処理方法の工程図である。
(Embodiment 1)
FIG. 1 is a process diagram of a method for treating fluorine-containing wastewater according to Embodiment 1 of the present invention.

図1に示すように、フッ素含有排水は、フッ素とカルシウムを反応させる反応工程11、中和工程12、凝集工程13、固液分離工程14を経て、処理水と汚泥に分離される。   As shown in FIG. 1, the fluorine-containing wastewater is separated into treated water and sludge through a reaction step 11, a neutralization step 12, a coagulation step 13, and a solid-liquid separation step 14 for reacting fluorine and calcium.

汚泥については、脱水乾燥工程15を経て、回収先であるセメント工場へ引き取られ、セメント原料としてリサイクルされる。   The sludge is taken through a dehydration drying process 15 to a cement factory as a collection destination and recycled as a cement raw material.

反応工程11においては、予備反応工程16で消石灰(化学式はCa(OH))と硫酸バンド(化学式はAl(SO)を反応させて生成するアルミン酸カルシウムなどのアルミニウム塩を、カルシウム源として投入する。 In the reaction step 11, an aluminum salt such as calcium aluminate produced by reacting slaked lime (chemical formula is Ca (OH) 2 ) and a sulfate band (chemical formula is Al 2 (SO 4 ) 3 ) in the preliminary reaction step 16, Input as a calcium source.

また、中和工程12においては、中和剤として硫酸を投入、凝集工程13では、有機系凝集剤としてポリマーを投入している。   Further, in the neutralization step 12, sulfuric acid is added as a neutralizing agent, and in the aggregation step 13, a polymer is input as an organic flocculant.

その他の薬剤として、消石灰の代わりに塩化カルシウム、硫酸バンドの代わりにPAC(ポリ塩化アルミニウム)、硫酸の代わりに塩酸が使用可能であるが、汚泥をセメント原料にリサイクルする場合、塩化物の混入は嫌われている。   As other chemicals, calcium chloride can be used instead of slaked lime, PAC (polyaluminum chloride) can be used instead of sulfuric acid band, and hydrochloric acid can be used instead of sulfuric acid. Hated.

本発明の処理方法では、薬剤に塩化物を使用しないので、発生した汚泥をセメント原料としてリサイクルしやすくすることができる。   In the treatment method of the present invention, since no chloride is used as a chemical, the generated sludge can be easily recycled as a cement raw material.

つぎに、本発明のフッ素含有排水の処理装置の一例を図2に示す。   Next, an example of the fluorine-containing wastewater treatment apparatus of the present invention is shown in FIG.

図2のように、フッ素含有排水は、反応槽1、中和槽2、凝集槽3を経て、沈殿槽4で処理水と汚泥に分離される。反応槽1には、消石灰と硫酸バンドを反応させる予備反応槽5から反応生成物であるアルミン酸カルシウムなどのアルミニウム塩が投入される。   As shown in FIG. 2, the fluorine-containing wastewater is separated into treated water and sludge in the sedimentation tank 4 through the reaction tank 1, the neutralization tank 2, and the aggregation tank 3. The reaction tank 1 is charged with an aluminum salt such as calcium aluminate, which is a reaction product, from a preliminary reaction tank 5 for reacting slaked lime with a sulfate band.

消石灰の投入量は、フッ素含有排水のフッ素濃度検出手段6により検出したフッ素濃度の1〜3倍当量、好ましくは1.5倍当量、アルミ凝集剤の投入量はアルミニウムに換算してフッ素濃度の0.002〜0.1倍当量、好ましくは0.01倍当量とすることにより、薬剤の最適量を投入でき、過剰投入を防止できる。   The input amount of slaked lime is 1 to 3 times equivalent, preferably 1.5 times equivalent to the fluorine concentration detected by the fluorine concentration detecting means 6 of the fluorine-containing waste water, and the input amount of the aluminum flocculant is the fluorine concentration in terms of aluminum. By setting the equivalent to 0.002 to 0.1-fold equivalent, preferably 0.01-fold equivalent, the optimal amount of the drug can be charged and excessive charging can be prevented.

反応槽内のpHは10.5から12、好ましくは11.5であり、中和槽2における硫酸の投入量は、中和槽2のpH検出手段7により検出したpHにより制御され、中和槽2内のpHは7〜8に調整される。   The pH in the reaction tank is 10.5 to 12, preferably 11.5, and the amount of sulfuric acid charged in the neutralization tank 2 is controlled by the pH detected by the pH detection means 7 in the neutralization tank 2 and neutralized. The pH in the tank 2 is adjusted to 7-8.

もしpH7以下になった場合には、消石灰Ca(OH)を投入してpHを上昇させる。次に凝集槽3では、有機系凝集剤としてポリマー2〜3ppmが投入され、凝集を促進し、次の沈殿槽4に送られ、汚泥と処理水に固液分離される。 If the pH is 7 or less, slaked lime Ca (OH) 2 is added to raise the pH. Next, in the coagulation tank 3, 2-3 ppm of polymer is added as an organic coagulant to promote coagulation, and is sent to the next settling tank 4 for solid-liquid separation into sludge and treated water.

本処理方法の発明となる特徴は、反応工程における薬剤の投入順序に着眼し、同時投入が最も反応が促進されることを見つけた点である。すなわち、2種類の薬剤、消石灰と硫酸バンドを反応させて生成されるアルミン酸カルシウムなどのアルミニウム塩が、フッ素の除去効果が大であることを見つけた点にある。   The characteristic feature of the present processing method is that it is found that the reaction is most promoted by focusing on the order of the chemicals in the reaction step. That is, it has been found that an aluminum salt such as calcium aluminate produced by reacting two kinds of chemicals, slaked lime and a sulfate band, has a great effect of removing fluorine.

本発明に至った過程は、排水のフッ素含有量、薬剤投入順序、pH調整を変えて行なったテストであり、以下図2を用いて詳しく説明する。ただし、実際のテストした装置は予備反応槽5がなく、消石灰と硫酸バンドを同時に反応槽1に投入した。   The process that led to the present invention is a test conducted by changing the fluorine content of waste water, the order of adding the chemicals, and the pH adjustment, and will be described in detail below with reference to FIG. However, the actual tested apparatus does not have the preliminary reaction tank 5, and slaked lime and a sulfuric acid band were put into the reaction tank 1 simultaneously.

まず、フッ素約400ppmを含有した排水に対し、反応槽1において消石灰を排水含有フッ素の1.5倍当量(約2340ppm)、硫酸バンドをアルミニウムに換算して排水含有フッ素の0.1倍当量(約200ppm)を同時に加え、約30分攪拌を行なった。そのとき消石灰と硫酸バンドの反応は、
4Ca(OH)+SiO,Al
→CaO・SiO・nHO,3Ca・Al・nH
で、アルミン酸カルシウム3Ca・Al・nHOなどのアルミニウム塩が生成されていると発明者は推定した。
First, for wastewater containing about 400 ppm of fluorine, slaked lime is 1.5 times equivalent (about 2340 ppm) of wastewater-containing fluorine in reaction tank 1, and sulfuric acid band is converted to aluminum and 0.1 times equivalent of wastewater-containing fluorine ( About 200 ppm) was added at the same time and stirred for about 30 minutes. At that time, the reaction between slaked lime and sulfate band is
4Ca (OH) 2 + SiO 2 , Al 2 O 3
→ CaO · SiO 2 · nH 2 O, 3Ca · Al 2 O 3 · nH 2 O
The inventors estimated that aluminum salts such as calcium aluminate 3Ca.Al 2 O 3 .nH 2 O were produced.

このとき反応槽1内のpHは11.5であった。
pHが11.5付近では、このアルミン酸カルシウムがフッ素と結合し、フルオロアルミン酸カルシウム(化学式は、CaAlF,CaAlF,CaAlF,…と推定)を生成し、これにフッ化物が吸着または化合して沈殿するという共沈作用を有し、排水中のフッ素をより除去できると考えられる。
At this time, the pH in the reaction vessel 1 was 11.5.
When the pH is around 11.5, this calcium aluminate is combined with fluorine to produce calcium fluoroaluminate (chemical formulas estimated as CaAlF 5 , Ca 2 AlF 7 , Ca 3 AlF 9 ,...). It has a coprecipitation effect that the chemical compound is adsorbed or combined and precipitates, and it is considered that fluorine in the waste water can be removed more.

その後中和槽2において、中和のため硫酸を加え約30分放置、この時のpHは7〜8であった。その後凝集槽3において有機系凝集剤のポリマー1〜3mg/Lを加え、排水は固液分離工程である沈殿槽4に導入され、数時間放置後上澄み液を処理水として、系外へ排出する。そのときの処理水のフッ素濃度は4〜8mg/Lであった。   Thereafter, in the neutralization tank 2, sulfuric acid was added for neutralization and left for about 30 minutes. The pH at this time was 7-8. Thereafter, 1 to 3 mg / L of an organic flocculant polymer is added to the coagulation tank 3, and the wastewater is introduced into the precipitation tank 4, which is a solid-liquid separation process. . The fluorine concentration of the treated water at that time was 4 to 8 mg / L.

これに対し、背景技術では前述のように、排水中のフッ素イオン365ppmに対し、水酸化カルシウム7000ppm、硫酸バンド4000ppmを加えており、本発明の処理方法及び処理装置より処理濃度は低くなっているが、水酸化カルシウムは約3倍、硫酸バンドは20倍も使用しており、本発明の処理方法及び処理装置では、薬剤の使用量が大幅に低減され、汚泥の発生も薬剤の使用量に比例して少なくなる。   On the other hand, in the background art, as described above, 7000 ppm of calcium hydroxide and 4000 ppm of sulfuric acid band are added to 365 ppm of fluorine ions in the waste water, and the treatment concentration is lower than that of the treatment method and treatment apparatus of the present invention. However, calcium hydroxide is used approximately 3 times and sulfate band is used 20 times. In the treatment method and treatment apparatus of the present invention, the amount of chemical used is greatly reduced, and the generation of sludge is also reduced to the amount of chemical used. Proportionally decreases.

さらに背景技術では、処理水のpHが10以上であり、後処理に中和工程・中和槽が必要であるのに対し、本発明では、処理水のpHは7〜8であり、後処理に中和工程・中和槽は不要である。   Furthermore, in the background art, the pH of the treated water is 10 or more and a neutralization step / neutralization tank is required for the post-treatment, whereas in the present invention, the pH of the treated water is 7 to 8, and the post-treatment In addition, the neutralization process and neutralization tank are unnecessary.

また、従来、この反応槽内では30分攪拌を行い、反応時間を確保する必要があったが、今回のテストでは、15分、10分でも排出基準の8mg/Lを満足でき、反応時間が1/2〜1/3に短縮されており、同じ処理水量に対しては、反応槽1を小さくすることも可能である。   Conventionally, it was necessary to stir for 30 minutes in this reaction tank to ensure the reaction time, but in this test, the discharge standard of 8 mg / L could be satisfied even in 15 minutes and 10 minutes, and the reaction time was The reaction tank 1 can be made smaller for the same amount of treated water.

また、アルミン酸カルシウムの効果からは、消石灰と硫酸バンドの同時投入より、アルミン酸カルシウムなどのアルミニウム塩を直接反応槽1に投入する方がフッ素との反応は促進されるはずであり、アルミン酸カルシウムなどのアルミニウム塩が市販されていない場合は、予備反応槽5で予め消石灰と硫酸バンドを反応させアルミン酸カルシウムなどのアルミニウム塩を生成させた方が、より効果的と考えられる。   In addition, from the effect of calcium aluminate, the reaction with fluorine should be accelerated when aluminum salt such as calcium aluminate is introduced directly into the reaction tank 1 rather than simultaneous addition of slaked lime and sulfuric acid band. In the case where an aluminum salt such as calcium is not commercially available, it is considered more effective that the preliminary reaction tank 5 previously reacts slaked lime with a sulfate band to produce an aluminum salt such as calcium aluminate.

また今回のテストでは、排水中のフッ素含有量については、フッ素140ppmの低濃度も行い、フッ素濃度に比例した薬剤使用量で、処理基準を満足できることも確認した。   In this test, the fluorine content in the wastewater was also reduced to 140 ppm fluorine, and it was confirmed that the treatment standard could be satisfied with the amount of chemical used in proportion to the fluorine concentration.

本発明にかかるフッ素含有排水の処理方法及び処理装置は、フッ素を含有する排水中のフッ素を排出基準以下にまで低減すると共に、薬剤の使用量及び汚泥も低減させることが可能である。   The method and apparatus for treating fluorine-containing wastewater according to the present invention can reduce the amount of fluorine in wastewater containing fluorine to below the discharge standard, and also reduce the amount of chemical used and sludge.

本発明の処理方法の一例を示す工程フローチャートProcess flowchart showing an example of the processing method of the present invention 本発明の処理装置の一例を示す模式図The schematic diagram which shows an example of the processing apparatus of this invention

符号の説明Explanation of symbols

1 反応槽
2 中和槽
3 凝集槽
4 沈殿槽
5 予備反応槽
6 フッ素濃度検出手段
7 pH検出手段
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Neutralization tank 3 Aggregation tank 4 Settling tank 5 Preliminary reaction tank 6 Fluorine concentration detection means 7 pH detection means

Claims (8)

フッ素含有排水の処理工程で、消石灰とアルミ凝集剤とを反応させる予備反応工程を備え、フッ素含有排水にカルシウム源として前記予備反応工程での生成物を投入する反応工程を備えたフッ素含有排水の処理方法。 A fluorine-containing wastewater treatment process comprising a preliminary reaction step of reacting slaked lime with an aluminum flocculant in a treatment process of fluorine-containing wastewater, and a reaction step of charging the fluorine-containing wastewater with a product in the preliminary reaction step as a calcium source Processing method. フッ素含有排水の処理工程で、フッ素含有排水にカルシウム源としてアルミニウム塩を投入する反応工程を備えたフッ素含有排水の処理方法。 A method for treating fluorine-containing wastewater, comprising a reaction step of adding aluminum salt as a calcium source to fluorine-containing wastewater in a treatment process of fluorine-containing wastewater. フッ素含有排水の処理工程で、フッ素含有排水に消石灰とアルミ凝集剤とを同時に投入する反応工程を備えたフッ素含有排水の処理方法。 A method for treating fluorine-containing wastewater, comprising a reaction step of simultaneously adding slaked lime and aluminum flocculant to fluorine-containing wastewater in a treatment process of fluorine-containing wastewater. フッ素含有排水のフッ素濃度に基づいて、消石灰及びアルミ凝集剤の投入量を決定する請求項1または3記載のフッ素含有排水の処理方法。 The processing method of the fluorine-containing wastewater of Claim 1 or 3 which determines the input amount of slaked lime and an aluminum flocculant based on the fluorine concentration of fluorine-containing wastewater. 前記消石灰の投入量はフッ素含有排水のフッ素濃度の1から3倍当量とし、前記アルミ凝集剤の投入量はアルミニウムに換算してフッ素濃度の0.002から0.1倍当量とする請求項4記載のフッ素含有排水の処理方法。 5. The amount of slaked lime input is 1 to 3 times equivalent to the fluorine concentration of fluorine-containing wastewater, and the amount of aluminum flocculant input is 0.002 to 0.1 times equivalent to the fluorine concentration in terms of aluminum. The treatment method of fluorine-containing waste water as described. 消石灰とアルミ凝集剤とを反応させる予備反応槽を備え、フッ素含有排水にカルシウム源として前記予備反応槽での生成物を投入する反応槽を備えたフッ素含有排水の処理装置。 An apparatus for treating fluorine-containing wastewater, comprising: a preliminary reaction tank for reacting slaked lime with an aluminum flocculant, and a reaction tank for charging the fluorine-containing wastewater with a product in the preliminary reaction tank as a calcium source. フッ素含有排水のフッ素濃度を検知するフッ素濃度検知手段を設け、検知したフッ素濃度に応じて消石灰及びアルミ凝集剤の投入量を決定する請求項6記載のフッ素含有排水の処理装置。 The fluorine-containing wastewater treatment apparatus according to claim 6, wherein a fluorine-concentration detection means for detecting the fluorine concentration of the fluorine-containing wastewater is provided, and the input amounts of slaked lime and aluminum flocculant are determined according to the detected fluorine concentration. 前記消石灰の投入量はフッ素含有排水のフッ素濃度の1から3倍当量とし、前記アルミ凝集剤の投入量はアルミニウムに換算してフッ素濃度の0.002から0.1倍当量とする請求項7記載のフッ素含有排水の処理装置。 The amount of slaked lime is 1 to 3 equivalents of the fluorine concentration of fluorine-containing wastewater, and the amount of aluminum flocculant is 0.002 to 0.1 equivalents of the fluorine concentration in terms of aluminum. The fluorine-containing waste water treatment apparatus as described.
JP2004239263A 2004-08-19 2004-08-19 Method and apparatus for treating fluorine-containing wastewater Expired - Fee Related JP4661132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004239263A JP4661132B2 (en) 2004-08-19 2004-08-19 Method and apparatus for treating fluorine-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004239263A JP4661132B2 (en) 2004-08-19 2004-08-19 Method and apparatus for treating fluorine-containing wastewater

Publications (2)

Publication Number Publication Date
JP2006055728A true JP2006055728A (en) 2006-03-02
JP4661132B2 JP4661132B2 (en) 2011-03-30

Family

ID=36103648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004239263A Expired - Fee Related JP4661132B2 (en) 2004-08-19 2004-08-19 Method and apparatus for treating fluorine-containing wastewater

Country Status (1)

Country Link
JP (1) JP4661132B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281057A (en) * 2005-03-31 2006-10-19 Kurita Water Ind Ltd Method and apparatus for treating fluorine-containing wastewater
JP2008173527A (en) * 2007-01-16 2008-07-31 Matsushita Electric Ind Co Ltd Method and apparatus for treating fluorine-containing water
KR100881141B1 (en) 2007-05-30 2009-02-03 주식회사 지앤지인텍 High rate fluorine and calcium removal equipment in water using activated neuclei
JP2011101830A (en) * 2009-11-10 2011-05-26 Waseda Univ Water treatment agent and water treatment method
JP2011200852A (en) * 2010-03-26 2011-10-13 Panasonic Corp Method for treating fluorine-containing water
CN105060579A (en) * 2015-08-11 2015-11-18 安徽锦洋氟化学有限公司 Advanced treatment method of fluoride-containing wastewater
JP2016022444A (en) * 2014-07-23 2016-02-08 株式会社アイザック Method for immobilizing boron in coagulated-sedimented sludge
CN105461106A (en) * 2015-11-25 2016-04-06 北京翰祺环境技术有限公司 Optimization of wastewater fluorine-removal method and process through sludge refluxing effect
CN106927600A (en) * 2017-04-19 2017-07-07 长江大学 The integrated sewage treating apparatus of fluoride waste
WO2019159661A1 (en) * 2018-02-13 2019-08-22 三菱日立パワーシステムズ環境ソリューション株式会社 Water treatment system
CN111484159A (en) * 2020-04-07 2020-08-04 广东湛化集团有限公司 Fluoride treatment process for sewage of phosphorus chemical industry
CN114835335A (en) * 2022-03-22 2022-08-02 西安隆基乐叶光伏科技有限公司 System and method for removing fluorine and controlling calcium of wastewater containing nitrogen and fluorine in battery process

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132686A (en) * 1979-04-03 1980-10-15 Mitsubishi Keikinzoku Kogyo Kk Method for treatment of fluorine-containing waste water
JPS57144086A (en) * 1981-03-03 1982-09-06 Kurita Water Ind Ltd Treatment of water contg. fluoride
JPS59109286A (en) * 1982-12-14 1984-06-23 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water
JPS60197293A (en) * 1984-03-21 1985-10-05 Kurita Water Ind Ltd Apparatus for treating fluorine-containing waste water
JPH10479A (en) * 1996-06-12 1998-01-06 Kurita Water Ind Ltd Fluorine removing device
JPH10137769A (en) * 1996-11-11 1998-05-26 Nec Corp Treatment of fluorine-containing waste water
JP2000084570A (en) * 1998-07-17 2000-03-28 Nec Corp Treatment of fluorine-containing waste water and treating apparatus
JP2000246267A (en) * 1999-02-26 2000-09-12 Sumitomo Metal Ind Ltd Fixing method of fluorine in waste water and stabilizing treatment method of waste water
JP2001286873A (en) * 2000-04-07 2001-10-16 Sharp Corp Method and device for treating waste water
JP2003024953A (en) * 2001-07-16 2003-01-28 Toshiba Corp Method for treating water containing fluorine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132686A (en) * 1979-04-03 1980-10-15 Mitsubishi Keikinzoku Kogyo Kk Method for treatment of fluorine-containing waste water
JPS57144086A (en) * 1981-03-03 1982-09-06 Kurita Water Ind Ltd Treatment of water contg. fluoride
JPS59109286A (en) * 1982-12-14 1984-06-23 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water
JPS60197293A (en) * 1984-03-21 1985-10-05 Kurita Water Ind Ltd Apparatus for treating fluorine-containing waste water
JPH10479A (en) * 1996-06-12 1998-01-06 Kurita Water Ind Ltd Fluorine removing device
JPH10137769A (en) * 1996-11-11 1998-05-26 Nec Corp Treatment of fluorine-containing waste water
JP2000084570A (en) * 1998-07-17 2000-03-28 Nec Corp Treatment of fluorine-containing waste water and treating apparatus
JP2000246267A (en) * 1999-02-26 2000-09-12 Sumitomo Metal Ind Ltd Fixing method of fluorine in waste water and stabilizing treatment method of waste water
JP2001286873A (en) * 2000-04-07 2001-10-16 Sharp Corp Method and device for treating waste water
JP2003024953A (en) * 2001-07-16 2003-01-28 Toshiba Corp Method for treating water containing fluorine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281057A (en) * 2005-03-31 2006-10-19 Kurita Water Ind Ltd Method and apparatus for treating fluorine-containing wastewater
JP2008173527A (en) * 2007-01-16 2008-07-31 Matsushita Electric Ind Co Ltd Method and apparatus for treating fluorine-containing water
JP4591452B2 (en) * 2007-01-16 2010-12-01 パナソニック株式会社 Method and apparatus for treating fluorine-containing water
KR100881141B1 (en) 2007-05-30 2009-02-03 주식회사 지앤지인텍 High rate fluorine and calcium removal equipment in water using activated neuclei
JP2011101830A (en) * 2009-11-10 2011-05-26 Waseda Univ Water treatment agent and water treatment method
JP2011200852A (en) * 2010-03-26 2011-10-13 Panasonic Corp Method for treating fluorine-containing water
JP2016022444A (en) * 2014-07-23 2016-02-08 株式会社アイザック Method for immobilizing boron in coagulated-sedimented sludge
CN105060579B (en) * 2015-08-11 2017-07-07 锦洋高新材料股份有限公司 A kind of method of advanced treating fluoride waste
CN105060579A (en) * 2015-08-11 2015-11-18 安徽锦洋氟化学有限公司 Advanced treatment method of fluoride-containing wastewater
CN105461106A (en) * 2015-11-25 2016-04-06 北京翰祺环境技术有限公司 Optimization of wastewater fluorine-removal method and process through sludge refluxing effect
CN106927600A (en) * 2017-04-19 2017-07-07 长江大学 The integrated sewage treating apparatus of fluoride waste
WO2019159661A1 (en) * 2018-02-13 2019-08-22 三菱日立パワーシステムズ環境ソリューション株式会社 Water treatment system
JP2019136665A (en) * 2018-02-13 2019-08-22 三菱日立パワーシステムズ環境ソリューション株式会社 Water processing system
CN111484159A (en) * 2020-04-07 2020-08-04 广东湛化集团有限公司 Fluoride treatment process for sewage of phosphorus chemical industry
CN114835335A (en) * 2022-03-22 2022-08-02 西安隆基乐叶光伏科技有限公司 System and method for removing fluorine and controlling calcium of wastewater containing nitrogen and fluorine in battery process
CN114835335B (en) * 2022-03-22 2024-01-19 西安隆基乐叶光伏科技有限公司 System and method for removing fluorine and controlling calcium from nitrogen-containing fluorine-containing wastewater in battery technology

Also Published As

Publication number Publication date
JP4661132B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP4661132B2 (en) Method and apparatus for treating fluorine-containing wastewater
Gomelya et al. Application of Auminium coagulants for the removal of sulphate from mine water
JP2006218354A (en) Method for treating fluorine-containing waste water
JP2009233605A (en) Treatment method of boron fluoride-containing water
KR20150120971A (en) Method and apparatus for treating borofluoride-containing water
CN107739121A (en) A kind of further treatment technique of fluorine-containing silicon waste water
JP2007125510A (en) Method for treating fluorine-containing water
KR101802859B1 (en) Method and apparatus of treating fluoric wastewater
JP4631425B2 (en) Method and apparatus for treating fluorine-containing wastewater containing phosphoric acid
JP2005125153A (en) Method and apparatus for treating fluorine-containing waste water
JP2912237B2 (en) Treatment method for fluorine-containing wastewater
JP5149323B2 (en) Fluorine-containing water treatment method
TWI263623B (en) Effluent water treatment method
JP3077174B2 (en) Treatment method for fluoride-containing liquid
JP2004000846A (en) Treatment method for fluorine-containing water
JP2010075928A (en) Treatment method and treatment device for fluorine-containing waste water
JP2002346574A (en) Boron-containing water treatment method
JP2008149222A (en) Removal method of fluorine ions in hot spring water
KR20080058077A (en) Method for treating wastewater including fluorine
KR100390159B1 (en) Treatment agent and method for treating industrial waste-water including flourine
JPH09248577A (en) Treatment of fluorine-containing waste water
JPH0910548A (en) Treatment of drain containing fluorine
JP4752351B2 (en) Method and apparatus for treating fluorine-containing water
JP2003047972A (en) Method for treating fluorine-containing wastewater
JP2003251367A (en) Treatment method for selenic acid-containing waste water and treating agent used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R151 Written notification of patent or utility model registration

Ref document number: 4661132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees