JP4395924B2 - Fluorine removal method and apparatus - Google Patents

Fluorine removal method and apparatus Download PDF

Info

Publication number
JP4395924B2
JP4395924B2 JP17995699A JP17995699A JP4395924B2 JP 4395924 B2 JP4395924 B2 JP 4395924B2 JP 17995699 A JP17995699 A JP 17995699A JP 17995699 A JP17995699 A JP 17995699A JP 4395924 B2 JP4395924 B2 JP 4395924B2
Authority
JP
Japan
Prior art keywords
sludge
solid
particle size
liquid
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17995699A
Other languages
Japanese (ja)
Other versions
JP2001009468A (en
Inventor
勇 加藤
一樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP17995699A priority Critical patent/JP4395924B2/en
Publication of JP2001009468A publication Critical patent/JP2001009468A/en
Application granted granted Critical
Publication of JP4395924B2 publication Critical patent/JP4395924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はフッ素含有水からフッ素を除去するための方法および装置に関するものである。
【0002】
【従来の技術】
フッ素含有水からフッ素を除去する方法として、フッ素含有水をカルシウム化合物と反応させて、フッ化カルシウム不溶化物を生成させ、固液分離する方法がある。この方法では固液分離した汚泥の一部を返送してカルシウム化合物と接触させた状態で原水を反応させることにより、フッ化カルシウムの結晶を生長させて大粒形化し、固液分離を容易にするHDS(High Density Solids)法が知られている(例えば、特開平10−479号)。
【0003】
図2は従来のHDS法のフロー図である。図2において、1は原水槽、2は反応槽、3は凝集槽、4は固液分離槽、5はカルシウム化合物槽、6は混合槽、7は凝集剤槽である。
【0004】
従来のフッ素除去方法は、原水路L1から原水槽1に原水(フッ素含有水)11を導入して貯留し、ポンプP1によりラインL2から反応槽2に送って不溶化反応を行う。反応液12はラインL3から凝集槽3に送って凝集反応を行い、凝集液13はラインL4から固液分離槽4に送って固液分離を行い、分離液14を処理水として処理水路L5から排出する。分離した汚泥15の一部は返送汚泥として返送路L6からポンプP2により混合槽6に送り、残部は余剰汚泥として排泥路L7から排出する。
【0005】
混合槽6には、カルシウム化合物槽5からポンプP3によりラインL8を通して消石灰のようなカルシウム化合物16を供給し、攪拌機M1で攪拌して返送汚泥とカルシウム化合物を混合することにより、汚泥表面にカルシウム化合物が付着した汚泥混合物17を形成する。この汚泥混合物17を循環路L9から反応槽2に供給し、攪拌機M2で攪拌して原水中のフッ化物イオンとカルシウム化合物を反応させ、フッ化カルシウム不溶化物を生成させる。反応槽2ではpH計により反応液12のpHを測定し、所定のpHを維持するように弁V1の開度を制御し、混合槽6へ供給するカルシウム化合物の量を制御する。余剰のカルシウム化合物はラインL10から循環する。
【0006】
反応槽2で生成したフッ化カルシウムを含む反応液12は凝集槽3に送って凝集処理を行う。凝集槽3では反応液中のフッ化カルシウム不溶化物を凝集するために、凝集剤槽7から凝集剤(例えば高分子凝集剤)18をポンプP4によりラインL11を通して注入し、攪拌機M3で攪拌して凝集反応を行ってフロックを形成する。これによりフッ化カルシウムの固液分離性が高まり固液分離槽4における分離が効率よく行われる。
【0007】
上記の処理方法では、反応槽2において不溶化物として析出するフッ化カルシウムの結晶を主として含む固液分離槽4の汚泥を混合槽6に返送し、ここでカルシウム化合物と混合してカルシウム化合物を結晶表面に付着させ、これを反応槽2に送って原水と接触させるので、原水中のフッ化物イオンとカルシウム化合物との反応は結晶の表面で起こり、結晶が成長する。このため汚泥の固液分離性が高くなり、固液分離槽4の分離汚泥を機械脱水した脱水ケーキの含水率は汚泥を返送しない場合に比べて30〜50重量%低くなる。従ってこのケーキを乾燥して再利用する際、乾燥コストが低くなるという利点がある。
【0008】
ところで反応槽2におけるフッ化カルシウムの析出は結晶の表面のいわゆる固液反応によってのみ生じるのではなく、結晶から隔離したところにおけるフッ化物イオンとカルシウムイオンとの液液反応でも生じ、この場合は微小結晶が生成する。結晶の大きさは返送回数が多いほど大きくなり、固液分離性も高くなるが、一方では返送の際にポンプで破砕されるため均一な大きさの結晶を得ることが困難である。
【0009】
【発明が解決しようとする課題】
本発明の課題は、小粒径の結晶を返送して反応に用いることにより結晶を成長させ、大粒径で粒度のそろった結晶を分離して取り出すことにより脱水性に優れた汚泥を得ることができるフッ素除去方法および装置を提案することである。
【0010】
【課題を解決するための手段】
本発明は次のフッ素除去方法および装置である。
(1) フッ素含有水をカルシウム化合物と反応させて不溶性のフッ化カルシウムを析出させる反応工程、
反応工程の反応液を処理水と汚泥に固液分離する固液分離工程、および
固液分離工程で分離された汚泥の一部をカルシウム化合物と混合して反応槽に供給する混合工程を含み、
固液分離工程は汚泥を粒径に応じて大粒径の汚泥と小粒径の汚泥に分級して固液分離し、
分級された大粒径の汚泥を、混合工程に返送することなく、かつ破砕することなく系外へ排出し、
分級された小粒径の汚泥を混合工程に返送し、カルシウム化合物と混合して結晶の表面にカルシウム化合物を付着させて反応槽に供給するようにしたことを特徴とするフッ素除去方法。
(2) 固液分離工程は、液の進行方向に分割され、かつ境界部に整流板を有する複数の固液分離領域に反応液を進行させ、上流側で大粒径の結晶を沈降させ、下流側で小粒径の結晶を沈降させ、液の進行方向先端側の固液分離領域で分離された小粒径の汚泥を混合装置に返送するように構成された上記(1)記載の方法。
(3) フッ素含有水をカルシウム化合物と反応させて不溶性のフッ化カルシウムを析出させる反応槽、
反応槽の反応液を処理水と汚泥に固液分離する装置であって、汚泥を粒径に応じて大粒径の汚泥と小粒径の汚泥に分級して固液分離する固液分離装置、
固液分離装置で分級された小粒径の汚泥をカルシウム化合物と混合して反応槽に供給する混合装置、
固液分離装置で分級された大粒径の汚泥を破砕することなく系外へ排出する排泥路、および
固液分離装置で分級された小粒径の汚泥を混合装置に返送し、かつ大粒径の汚泥を返送しない返送路を含むことを特徴とするフッ素除去装置。
(4) 固液分離装置は液の進行方向に分割され、かつ境界部に整流板を有する複数の固液分離領域を有し、上流側で大粒径の結晶を沈降させ、下流側で小粒径の結晶を沈降させ、液の進行方向先端側の固液分離領域で分離された比較的小粒径の汚泥を混合装置に返送するように構成された上記(3)記載の装置。
【0011】
本発明で処理の対象となるフッ素含有水は、フッ素をフッ化物イオンの形で含む水であり、例えば排煙脱硫工程、アルミニウムの電解精練工程、リン酸肥料の製造工程、半導体を含む電子部品製造工程、ウラン製練工程、表面処理洗浄工程等の排水があげられる。
【0012】
このようなフッ素含有水と反応させるカルシウム化合物としては、消石灰、塩化カルシウムなどが使用できる。これらのカルシウム化合物とフッ素化合物が反応してフッ化カルシウムを生成するpH領域はpH5〜10、好ましくはpH6〜8であり、このために必要によりアルカリ剤を使用することができる。アルカリ剤としては水酸化ナトリウム、水酸化マグネシウム、消石灰などが使用できるが、消石灰を使用すると両者を兼用できる。
【0013】
本発明では反応工程として上記のフッ素含有水とカルシウム化合物を反応槽において反応させるが、この場合固液分離工程で分離した汚泥の一部を混合装置においてカルシウム化合物と混合して結晶の表面にカルシウム化合物を付着させて反応槽に供給する。これにより結晶表面に付着したカルシウム化合物とフッ化物を反応させて結晶表面にフッ化カルシウムを析出させ、結晶を成長させる。
【0014】
反応槽は、原水路から導入するフッ素含有水と、循環路から循環する汚泥に担持されたカルシウム化合物とを反応させるように構成される。具体的には槽内液を急速攪拌する攪拌装置、および槽内液のpHを測定するpH計を設置し、pHが一定範囲を維持するように、アルカリ剤の注入量を調整して、急速攪拌しながら反応させるように構成することができる。pHとしては6〜8とするのが好ましい。反応槽は連続式が好ましいが、バッチ式でもよく、公知のものが使用できる。
【0015】
混合装置は固液分離槽から返送される汚泥とカルシウム化合物槽から供給されるカルシウム化合物を混合するために攪拌機を設置し、混合液を反応槽へ供給するように構成することができる。混合装置へ供給するカルシウム化合物量は原水中のフッ化物イオン量に対応するように、例えば原水槽にフッ化物イオン濃度計を設置することにより、制御することができるが、カルシウム化合物として消石灰を用いる場合は、反応槽に設置したpH計により制御するのが好ましい。
【0016】
固液分離工程に用いる固液分離装置は反応液中に分散する汚泥を粒径に応じて分級して固液分離し、比較的小粒径の汚泥を混合装置に返送するように構成される。このような固液分離装置としては、液の進行方向に分割された複数の固液分離領域を有し、液の進行方向先端側の固液分離領域で分離された比較的小粒径の汚泥を混合装置に返送するように構成するのが好ましい。固液分離手段としては沈降分離、濾過分離、膜分離などがあげられる。沈降分離の場合複数の沈降分離領域を設ける際、境界部に多孔板等の整流板を設けることができる。
【0017】
固液分離装置の前に凝集装置を設けて凝集処理を行うのが好ましい。凝集装置には高分子凝集剤その他の凝集剤を添加して攪拌し、フロックを生成させることができる。凝集剤としてはポリアクリルアミド、ポリアクリルアミドの部分加水分解物、アクリルアミドとアクリル酸の共重合物などが使用できる。
【0018】
本発明のフッ素除去方法では反応工程においてフッ素含有水をカルシウム化合物と反応させて不溶性のフッ化カルシウムを析出させ、固液分離工程において反応工程の反応液を処理水と汚泥に固液分離し、混合工程において固液分離工程で分離された汚泥の一部をカルシウム化合物と混合して反応槽に供給して反応させる際、固液分離工程において汚泥を粒径に応じて大粒径の汚泥と小粒径の汚泥に分級して固液分離し、分級された大粒径の汚泥を、混合工程に返送することなく、かつ破砕することなく系外へ排出し、分級された小粒径の汚泥を混合工程に返送し、カルシウム化合物と混合して結晶の表面にカルシウム化合物を付着させて反応槽に供給することにより、大粒径で粒度のそろった汚泥に成長させて取り出すことができる。
【0019】
この場合固液分離工程において分級された小粒径の結晶を分離して混合装置に返送し、結晶の表面にカルシウム化合物を付着させて反応槽に供給すると、反応槽では結晶表面でフッ化カルシウムが生成するため、結晶が成長して大粒径化する。大粒径となった結晶は固液分離工程において分級されて系外に取り出されるが、脱水性に優れるため、機械脱水等により、低含水率の脱水ケーキを得ることができる。
【0020】
【発明の効果】
以上の通り、本発明のフッ素除去方法によれば、固液分離工程において汚泥を粒径に応じて大粒径の汚泥と小粒径の汚泥に分級して固液分離し、分級された大粒径の汚泥を、混合工程に返送することなく、かつ破砕することなく系外へ排出し、分級された小粒径の汚泥を混合工程に返送し、カルシウム化合物と混合して結晶の表面にカルシウム化合物を付着させて反応槽に供給するようにしたので、小粒径の結晶を返送して反応に用いることにより結晶を成長させ、大粒径で粒度のそろった結晶を分離して取り出すことにより脱水性に優れた汚泥を得ることができる。
【0021】
本発明のフッ素除去装置によれば、反応液を固液分離する際、汚泥を粒径に応じて大粒径の汚泥と小粒径の汚泥に分級して固液分離する固液分離装置、固液分離装置で分級された大粒径の汚泥を破砕することなく系外へ排出する排泥路、および固液分離装置で分級された小粒径の汚泥を混合装置に返送し、かつ大粒径の汚泥を返送しない返送路を設けたので、上記のようなフッ素除去方法に適した装置が得られる。
この場合、液の進行方向に分割された複数の固液分離領域を設けることにより、簡単な構成と操作により効率よく分級を行うことができる。
【0022】
【発明の実施の形態】
図1は本発明のフッ素除去方法および装置を示すフロー図であり、図2と同一符号は同一または相当部分を示す。
【0023】
図1において、原水槽1は原水路L1が連絡し、ポンプP1を有するラインL2が反応槽2に連絡している。反応槽2は攪拌機M2およびpH計pHを有し、ラインL3により凝集槽3に連絡している。凝集槽3は攪拌機M3を有し、凝集剤槽7からポンプP4を有するラインL11が連絡し、ラインL4が固液分離槽4に連絡している。混合槽6は攪拌機M1を有し、固液分離槽4からポンプP2を有する返送路L6が連絡し、またカルシウム化合物槽5からポンプP3および弁V1を有するラインL8が連絡し、循環路L9が反応槽2に連絡している。
【0024】
上記の構成は、図2と同様であるが、図1では固液分離槽4は液の進行方向に分割された複数の固液分離領域21、22、23を有し、その境界部は多孔板からなる整流板24、25で仕切られている。各固液分離領域21、22、23の下部に形成された濃縮部26、27,28から、ラインL11、L12、L13が導かれ、上流側の固液分離領域から導かれるラインL11とラインL12は合流して排泥路L7に連絡し、下流側の固液分離領域から導かれるラインL13はラインL12から分岐したラインL14と合流して返送路L6に連絡している。ラインL12、L13、L14には弁V2、V3およびV4が設けられている。下流側の固液分離領域23の上部には処理水路L5が連絡している。
【0025】
上記の装置によるフッ素除去方法は、まず原水路L1から原水槽1に原水(フッ素含有水)11を導入して貯留し、ポンプP1によりラインL2から反応槽2に送って不溶化反応を行う。反応液12はラインL3から凝集槽3に送って凝集反応を行い、凝集液13はラインL4から固液分離槽4に送って固液分離を行う。固液分離槽4では反応液が固液分離領域21、22、23を進行する間に上流側で大粒径の結晶が沈降し、下流側で小粒径の結晶が沈降して固液分離される。分離した分離液14は処理水として処理水路L5から排出し、分離汚泥はラインL11、L12、L13から抜き出す。このとき弁V2、V3の開度を調整し、下流側で分離した比較的小粒径の汚泥は返送汚泥として返送路L6からポンプP2により混合槽6に送り、上流側で分離した比較的大粒径の汚泥は余剰汚泥として排泥路L7から排出する。小粒径の汚泥を返送しない時は、V2、V3およびV4を開いて、排泥路L7から排出する。
【0026】
混合槽6にはカルシウム化合物槽5からポンプP3によりラインL8を通して消石灰のようなカルシウム化合物16として消石灰を供給し、攪拌機M1で攪拌して返送汚泥とカルシウム化合物を混合することにより、返送された小粒径の汚泥の表面にカルシウム化合物が付着した汚泥混合物17を形成する。この汚泥混合物17を循環路L9から反応槽2に供給し、攪拌機M2で攪拌して原水中のフッ化物イオンとカルシウム化合物を反応させ、フッ化カルシウム不溶化物を生成させる。反応槽2ではpH計pHにより反応液12のpHを測定し、所定のpHを維持するように弁V1の開度を制御し、混合槽6へ供給するカルシウム化合物の量を制御する。余剰のカルシウム化合物はラインL10から循環する。
【0027】
反応槽2で生成したフッ化カルシウムを含む反応液12は凝集槽3に送って凝集処理を行う。凝集槽3では、反応液中のフッ化カルシウム不溶化物を凝集するために、凝集剤槽7から凝集剤(例えば高分子凝集剤)18をポンプP4によりラインL11を通して注入し、攪拌機M3で攪拌して凝集反応を行ってフロックを形成する。これによりフッ化カルシウムの固液分離性が高まり、固液分離槽4における分離が効率よく行われる。
【0028】
上記の処理方法では、固液分離槽4で分離される汚泥のうち比較的小粒のフッ化カルシウム結晶を含む汚泥を混合槽6に返送し、ここでカルシウム化合物と混合してカルシウム化合物を結晶表面に付着させ、これを反応槽2に送って原水と接触させることにより、原水中のフッ化物イオンとカルシウム化合物との反応は結晶の表面で起こり、結晶が成長して大粒径化する。また固液分離槽4で分離する大粒径の結晶は排泥路L7から排出され、ポンプを通さないので、破砕は起こらない。
【0029】
これにより汚泥の固液分離性が良好な大粒径の粒度のそろった汚泥が排泥路L7から取り出され、得られる汚泥を機械脱水等により脱水すると、脱水速度は速く、含水率の低い脱水ケーキが得られる。このため脱水ケーキを乾燥する際、乾燥速度は速く、乾燥に要するエネルギーは小さい。
【0030】
【実施例】
以下、本発明の実施例および比較例について説明する。
【0031】
比較例1
図2に示す装置によりpH 1.7、F 1.750mg/l、Cl 4200mg/l、SO4 1500mg/l含む廃水を、カルシウム化合物として消石灰と反応させ、pH6.5に調整した。原水量100 liter/hrに汚泥を10liter/hr返送した。沈澱槽は円形で直径80cm、高さ100cmの大きさである。この時得られたCaF2汚泥の粒径分布を測定した結果、平均径は24μmであった。
【0032】
実施例1
比較例1と同じ原水を図1の装置で処理した。固液分離槽4は深さ80cm、幅35cm、長さ150cmの直方体形状であり、固液分離領域21、22、23は進行方向に20cm、40cm、90cmの長さに整流板24、25で仕切ってある。整流板24、25は直径3cmの穴を千鳥状形成されており、反応液は図2の右方向に進行して固液分離した。他の条件は比較例1と同様である。
【0033】
上記の処理の結果、固液分離領域21から回収された結晶の粒径は60〜80μm、固液分離領域22からは10〜30μm、固液分離領域23からは10μm以下であった。この結果から固液分離領域21から得られる結晶はそのまま回収でき、固液分離領域23から得られる結晶は返送するのが好ましく、固液分離領域22から得られた結晶は必要により回収するか返送するかを選択できることがわかる。
【図面の簡単な説明】
【図1】実施形態のフッ素除去方法および装置のフロー図である。
【図2】従来のフッ素除去方法および装置のフロー図である。
【符号の説明】
1 原水槽
2 反応槽
3 凝集槽
4 固液分離槽
5 カルシウム化合物槽
6 混合槽
7 凝集剤槽
21、22、23 固液分離領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for removing fluorine from fluorine-containing water.
[0002]
[Prior art]
As a method for removing fluorine from fluorine-containing water, there is a method in which fluorine-containing water is reacted with a calcium compound to produce a calcium fluoride insolubilized product and solid-liquid separation is performed. In this method, a part of sludge separated into solid and liquid is returned and reacted with raw water in contact with the calcium compound to grow calcium fluoride crystals into large particles and facilitate solid-liquid separation. An HDS (High Density Solids) method is known (for example, JP-A-10-479).
[0003]
FIG. 2 is a flowchart of the conventional HDS method. In FIG. 2, 1 is a raw water tank, 2 is a reaction tank, 3 is a coagulation tank, 4 is a solid-liquid separation tank, 5 is a calcium compound tank, 6 is a mixing tank, and 7 is a coagulant tank.
[0004]
In the conventional fluorine removal method, raw water (fluorine-containing water) 11 is introduced and stored in the raw water tank 1 from the raw water channel L1, and sent to the reaction tank 2 from the line L2 by the pump P1 to perform the insolubilization reaction. The reaction liquid 12 is sent from the line L3 to the agglomeration tank 3 for agglutination reaction, and the agglomeration liquid 13 is sent from the line L4 to the solid-liquid separation tank 4 for solid-liquid separation, and the separation liquid 14 is treated from the treatment channel L5. Discharge. A part of the separated sludge 15 is sent as return sludge from the return path L6 to the mixing tank 6 by the pump P2, and the remaining part is discharged as excess sludge from the exhaust mud path L7.
[0005]
A calcium compound 16 such as slaked lime is supplied to the mixing tank 6 from the calcium compound tank 5 through the line L8 by the pump P3, and the returned sludge and the calcium compound are mixed by stirring with the stirrer M1, so that the calcium compound is added to the sludge surface. This forms a sludge mixture 17 to which is attached. This sludge mixture 17 is supplied from the circulation path L9 to the reaction tank 2, and stirred by the stirrer M2 to react fluoride ions and calcium compounds in the raw water to generate calcium fluoride insolubilized material. PH of the reaction vessel 2, more reactive solution 12 to a pH meter to measure, to control the opening of the valve V1 so as to maintain a predetermined pH, controlling the amount of calcium compound supplied to the mixing tank 6. Excess calcium compound circulates from line L10.
[0006]
The reaction liquid 12 containing calcium fluoride generated in the reaction tank 2 is sent to the aggregation tank 3 to perform the aggregation treatment. In the aggregating tank 3, in order to agglomerate the calcium fluoride insolubilized material in the reaction solution, an aggregating agent (for example, a polymer flocculant) 18 is injected from the aggregating agent tank 7 through the line L11 by the pump P4 and stirred by the stirrer M3. A floc is formed by agglomeration reaction. Thereby, the solid-liquid separation property of calcium fluoride is enhanced, and the separation in the solid-liquid separation tank 4 is efficiently performed.
[0007]
In the above treatment method, the sludge of the solid-liquid separation tank 4 mainly containing calcium fluoride crystals precipitated as insolubilized substances in the reaction tank 2 is returned to the mixing tank 6 where it is mixed with the calcium compound to crystallize the calcium compound. Since it adheres to the surface and is sent to the reaction tank 2 and brought into contact with the raw water, the reaction between the fluoride ions and the calcium compound in the raw water occurs on the surface of the crystal, and the crystal grows. For this reason, the solid-liquid separation property of sludge becomes high, and the moisture content of the dewatered cake obtained by mechanically dehydrating the separated sludge in the solid-liquid separation tank 4 is reduced by 30 to 50% by weight as compared with the case where the sludge is not returned. Therefore, when this cake is dried and reused, there is an advantage that the drying cost is lowered.
[0008]
By the way, the precipitation of calcium fluoride in the reaction tank 2 is not only caused by a so-called solid-liquid reaction on the surface of the crystal, but also caused by a liquid-liquid reaction between fluoride ions and calcium ions at a place separated from the crystal. Crystals are formed. The larger the number of returns, the greater the crystal size and the solid-liquid separation properties. However, on the other hand, it is difficult to obtain crystals of uniform size because they are crushed by a pump during return.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to obtain a sludge having excellent dewaterability by returning crystals with a small particle size and using them in the reaction to grow the crystals, and separating and taking out crystals with a large particle size and a uniform particle size. It is to propose a method and apparatus for removing fluorine.
[0010]
[Means for Solving the Problems]
The present invention is the following fluorine removal method and apparatus.
(1) a reaction step of reacting fluorine-containing water with a calcium compound to precipitate insoluble calcium fluoride;
A solid-liquid separation step for solid-liquid separation of the reaction liquid in the reaction step into treated water and sludge, and a mixing step for mixing a part of the sludge separated in the solid-liquid separation step with a calcium compound and supplying the mixture to the reaction tank,
In the solid-liquid separation process, the sludge is classified into a large particle size sludge and a small particle size sludge according to the particle size and separated into solid and liquid,
The classified large particle size sludge is discharged out of the system without being returned to the mixing process and without being crushed.
A fluorine removing method, wherein the classified sludge having a small particle diameter is returned to the mixing step, mixed with the calcium compound, and the calcium compound is adhered to the surface of the crystal and supplied to the reaction vessel.
(2) In the solid-liquid separation step, the reaction liquid is advanced to a plurality of solid-liquid separation regions that are divided in the liquid traveling direction and have a rectifying plate at the boundary, so that crystals with a large particle size are allowed to settle upstream. The method according to (1), wherein the crystal having a small particle size is allowed to settle on the downstream side, and the sludge having a small particle size separated in the solid-liquid separation region at the tip side in the liquid traveling direction is returned to the mixing device. .
(3) a reaction vessel in which fluorine-containing water is reacted with a calcium compound to precipitate insoluble calcium fluoride;
A solid-liquid separation device that separates the reaction liquid in the reaction tank into treated water and sludge, and classifies the sludge into sludge with a large particle size and sludge with a small particle size according to the particle size. ,
A mixing device for mixing sludge having a small particle size classified by a solid-liquid separator with a calcium compound and supplying the mixture to a reaction tank;
A sludge passage that discharges sludge with a large particle size classified by the solid-liquid separator to the outside of the system without crushing, and a sludge with a small particle size classified by the solid-liquid separator is returned to the mixing device. A fluorine removing apparatus including a return path that does not return sludge having a particle size .
(4) The solid-liquid separation device has a plurality of solid-liquid separation regions that are divided in the liquid traveling direction and have a baffle plate at the boundary, and precipitate large-sized crystals on the upstream side and small on the downstream side. The apparatus according to the above (3), wherein the apparatus is configured to settle crystals having a particle size and return sludge having a relatively small particle size separated in a solid-liquid separation region at a tip side in a liquid traveling direction to a mixing device.
[0011]
The fluorine-containing water to be treated in the present invention is water containing fluorine in the form of fluoride ions. For example, flue gas desulfurization process, aluminum electrolytic scouring process, phosphate fertilizer manufacturing process, and electronic components including semiconductors Examples of the wastewater include a manufacturing process, a uranium smelting process, and a surface treatment cleaning process.
[0012]
As the calcium compound to be reacted with such fluorine-containing water, slaked lime, calcium chloride and the like can be used. The pH range in which these calcium compounds and fluorine compounds react to produce calcium fluoride is pH 5 to 10, preferably pH 6 to 8. For this purpose, an alkali agent can be used if necessary. As the alkali agent, sodium hydroxide, magnesium hydroxide, slaked lime, etc. can be used, but when slaked lime is used, both can be used.
[0013]
In the present invention, the fluorine-containing water and the calcium compound are reacted in the reaction tank as a reaction step. In this case, a part of the sludge separated in the solid-liquid separation step is mixed with the calcium compound in the mixing device, and the calcium is deposited on the crystal surface. The compound is deposited and fed to the reaction vessel. As a result, the calcium compound adhering to the crystal surface reacts with the fluoride to precipitate calcium fluoride on the crystal surface, thereby growing the crystal.
[0014]
The reaction tank is configured to react the fluorine-containing water introduced from the raw water channel with the calcium compound supported on the sludge circulating from the circulation channel. Specifically, a stirrer that rapidly stirs the liquid in the tank and a pH meter that measures the pH of the liquid in the tank are installed, and the amount of alkaline agent injected is adjusted so that the pH is maintained within a certain range. It can comprise so that it may react, stirring. The pH is preferably 6-8. The reaction tank is preferably a continuous type, but may be a batch type, and known ones can be used.
[0015]
The mixing device can be configured to install a stirrer to mix the sludge returned from the solid-liquid separation tank and the calcium compound supplied from the calcium compound tank, and to supply the mixed liquid to the reaction tank. The amount of calcium compound supplied to the mixing device can be controlled by, for example, installing a fluoride ion concentration meter in the raw water tank so as to correspond to the amount of fluoride ion in the raw water, but slaked lime is used as the calcium compound. In this case, it is preferable to control with a pH meter installed in the reaction vessel.
[0016]
The solid-liquid separation device used in the solid-liquid separation process is configured to classify the sludge dispersed in the reaction liquid according to the particle size, separate it into solid and liquid, and return the sludge having a relatively small particle size to the mixing device. . Such a solid-liquid separation device has a plurality of solid-liquid separation regions divided in the liquid traveling direction, and has a relatively small particle size sludge separated in the solid-liquid separation region on the tip side in the liquid traveling direction. Is preferably sent back to the mixing device. Examples of the solid-liquid separation means include sedimentation separation, filtration separation, and membrane separation. In the case of sedimentation separation, when a plurality of sedimentation separation regions are provided, a rectifying plate such as a perforated plate can be provided at the boundary.
[0017]
It is preferable to perform an aggregating treatment by providing an aggregating device in front of the solid-liquid separator. A floc can be generated by adding a polymer flocculant or other flocculant to the aggregating apparatus and stirring. As the flocculant, polyacrylamide, a polyacrylamide partial hydrolyzate, a copolymer of acrylamide and acrylic acid, and the like can be used.
[0018]
In the fluorine removal method of the present invention, fluorine-containing water is reacted with a calcium compound in the reaction step to precipitate insoluble calcium fluoride, and in the solid-liquid separation step, the reaction solution in the reaction step is solid-liquid separated into treated water and sludge, When a part of the sludge separated in the solid-liquid separation step in the mixing step is mixed with a calcium compound and supplied to the reaction vessel to react, the sludge is sludge having a large particle size according to the particle size in the solid-liquid separation step. Classify sludge of small particle size and separate it into solid and liquid , and discharge the classified large particle size sludge out of the system without returning it to the mixing process and without crushing it. By returning the sludge to the mixing step, mixing it with the calcium compound, adhering the calcium compound to the surface of the crystal and supplying it to the reaction tank, it is possible to grow and take out sludge having a large particle size and a uniform particle size.
[0019]
In this case, when the crystals having a small particle size classified in the solid-liquid separation step are separated and returned to the mixing apparatus, and a calcium compound is attached to the surface of the crystals and supplied to the reaction vessel, calcium fluoride is applied to the crystal surface in the reaction vessel. Therefore, the crystal grows to increase the particle size. Crystals having a large particle size are classified in the solid-liquid separation step and taken out of the system. However, since they have excellent dewaterability, a dehydrated cake having a low water content can be obtained by mechanical dehydration or the like.
[0020]
【The invention's effect】
As described above, according to the fluorine removal method of the present invention, in the solid-liquid separation step, the sludge is classified into a sludge having a large particle size and a sludge having a small particle size according to the particle size, and solid-liquid separation is performed. The sludge with the particle size is discharged out of the system without being returned to the mixing step and without being crushed , and the classified small particle size sludge is returned to the mixing step and mixed with the calcium compound on the surface of the crystal. Since the calcium compound is attached and supplied to the reaction vessel, the crystal is grown by returning the crystal with a small particle size and used for the reaction, and the crystal with a large particle size and a uniform particle size is separated and taken out. Thus, sludge having excellent dewaterability can be obtained.
[0021]
According to the fluorine removing device of the present invention, when the reaction liquid is separated into solid and liquid, the sludge is classified into a large particle size sludge and a small particle size sludge according to the particle size, and solid-liquid separation is performed. A sludge passage that discharges sludge with a large particle size classified by the solid-liquid separator to the outside of the system without crushing, and a sludge with a small particle size classified by the solid-liquid separator is returned to the mixing device. Since a return path that does not return sludge having a particle size is provided, an apparatus suitable for the above-described fluorine removal method can be obtained.
In this case, by providing a plurality of solid-liquid separation regions divided in the liquid traveling direction, classification can be performed efficiently with a simple configuration and operation.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a flowchart showing a fluorine removing method and apparatus according to the present invention, and the same reference numerals as those in FIG. 2 denote the same or corresponding parts.
[0023]
In FIG. 1, the raw water tank 1 communicates with the raw water channel L1, and the line L2 having the pump P1 communicates with the reaction tank 2. The reaction tank 2 has a stirrer M2 and a pH meter pH, and communicates with the coagulation tank 3 by a line L3. The agglomeration tank 3 has a stirrer M3, a line L11 having a pump P4 communicates with the flocculant tank 7, and the line L4 communicates with the solid-liquid separation tank 4. The mixing tank 6 has a stirrer M1, a return path L6 having a pump P2 communicates from the solid-liquid separation tank 4, and a line L8 having a pump P3 and a valve V1 communicates from the calcium compound tank 5, and a circulation path L9 is communicated. The reactor 2 is communicated.
[0024]
The above configuration is the same as in FIG. 2, but in FIG. 1, the solid-liquid separation tank 4 has a plurality of solid-liquid separation regions 21, 22, and 23 divided in the liquid traveling direction, and the boundary portion is porous. They are partitioned by current plates 24 and 25 made of plates. Lines L11, L12, and L13 are led from the concentration units 26, 27, and 28 formed below the solid-liquid separation regions 21, 22, and 23, and the lines L11 and L12 that are led from the upstream solid-liquid separation region. Are joined to the sludge passage L7, and the line L13 guided from the downstream solid-liquid separation region joins with the line L14 branched from the line L12 and communicates with the return passage L6. Lines L12, L13, and L14 are provided with valves V2, V3, and V4. A treatment water channel L5 communicates with the upper part of the solid-liquid separation region 23 on the downstream side.
[0025]
In the fluorine removal method using the above apparatus, first, raw water (fluorine-containing water) 11 is introduced and stored from the raw water channel L1 into the raw water tank 1, and sent to the reaction tank 2 from the line L2 by the pump P1 to perform the insolubilization reaction. The reaction liquid 12 is sent from the line L3 to the coagulation tank 3 to perform an agglutination reaction, and the coagulation liquid 13 is sent from the line L4 to the solid-liquid separation tank 4 to perform solid-liquid separation. In the solid-liquid separation tank 4, the large-sized crystals settle on the upstream side while the small-sized crystals settle on the downstream side while the reaction liquid proceeds through the solid-liquid separation regions 21, 22, and 23. Is done. The separated separation liquid 14 is discharged from the treatment water channel L5 as treated water, and the separated sludge is extracted from the lines L11, L12, and L13. At this time, the opening degree of the valves V2 and V3 is adjusted, and the sludge having a relatively small particle size separated on the downstream side is sent as return sludge to the mixing tank 6 from the return path L6 by the pump P2, and separated on the upstream side. Sludge having a particle diameter is discharged from the sludge passage L7 as excess sludge. When the sludge having a small particle size is not returned, V2, V3 and V4 are opened and discharged from the mud discharge passage L7.
[0026]
The mixture tank 6 is supplied with slaked lime as a calcium compound 16 such as slaked lime through the line L8 from the calcium compound tank 5 by the pump P3, and stirred by the stirrer M1 to mix the returned sludge and the calcium compound. A sludge mixture 17 having a calcium compound adhered to the surface of the sludge having a particle size is formed. This sludge mixture 17 is supplied from the circulation path L9 to the reaction tank 2, and stirred by the stirrer M2 to react fluoride ions and calcium compounds in the raw water to generate calcium fluoride insolubilized material. In the reaction tank 2, the pH of the reaction solution 12 is measured by a pH meter pH, the opening of the valve V <b> 1 is controlled so as to maintain a predetermined pH, and the amount of calcium compound supplied to the mixing tank 6 is controlled. Excess calcium compound circulates from line L10.
[0027]
The reaction liquid 12 containing calcium fluoride generated in the reaction tank 2 is sent to the aggregation tank 3 to perform the aggregation treatment. In the aggregating tank 3, in order to agglomerate the calcium fluoride insolubilized material in the reaction solution, an aggregating agent (for example, polymer aggregating agent) 18 is injected from the aggregating agent tank 7 through the line L11 by the pump P4 and stirred by the agitator M3. The flocs are formed by agglomeration reaction. Thereby, the solid-liquid separation property of calcium fluoride increases, and the separation in the solid-liquid separation tank 4 is performed efficiently.
[0028]
In the above processing method, sludge containing relatively small calcium fluoride crystals out of the sludge separated in the solid-liquid separation tank 4 is returned to the mixing tank 6, where it is mixed with the calcium compound and the calcium compound is crystallized on the crystal surface. By attaching this to the reaction tank 2 and bringing it into contact with the raw water, the reaction between the fluoride ions and the calcium compound in the raw water occurs on the surface of the crystal, and the crystal grows to increase the particle size. Moreover, since the crystal | crystallization of the large particle size isolate | separated with the solid-liquid separation tank 4 is discharged | emitted from the sludge passage L7, and does not let a pump pass, crushing does not occur.
[0029]
As a result, sludge having a large particle size with good solid-liquid separation property of sludge is taken out from the sludge passage L7, and when the obtained sludge is dehydrated by mechanical dehydration or the like, the dehydration rate is fast and the dehydration has a low water content. A cake is obtained. For this reason, when drying a dehydrated cake, the drying speed is fast and the energy required for drying is small.
[0030]
【Example】
Examples of the present invention and comparative examples will be described below.
[0031]
Comparative Example 1
Waste water containing pH 1.7, F 1.750 mg / l, Cl 4200 mg / l, and SO 4 1500 mg / l was reacted with slaked lime as a calcium compound by the apparatus shown in FIG. 2 and adjusted to pH 6.5. Sludge was returned to 10 liter / hr for 100 liter / hr of raw water. The sedimentation tank is circular and has a diameter of 80 cm and a height of 100 cm. As a result of measuring the particle size distribution of the CaF 2 sludge obtained at this time, the average diameter was 24 μm.
[0032]
Example 1
The same raw water as in Comparative Example 1 was treated with the apparatus shown in FIG. The solid-liquid separation tank 4 has a rectangular parallelepiped shape with a depth of 80 cm, a width of 35 cm, and a length of 150 cm, and the solid-liquid separation regions 21, 22, and 23 are 20 cm, 40 cm, and 90 cm long in the traveling direction with the rectifying plates 24 and 25, respectively. There is a partition. The rectifying plates 24 and 25 are formed in a zigzag shape with holes having a diameter of 3 cm, and the reaction solution proceeds to the right in FIG. Other conditions are the same as in Comparative Example 1.
[0033]
As a result of the above treatment, the particle size of the crystals recovered from the solid-liquid separation region 21 was 60 to 80 μm, 10 to 30 μm from the solid-liquid separation region 22, and 10 μm or less from the solid-liquid separation region 23. From this result, the crystals obtained from the solid-liquid separation region 21 can be recovered as they are, and the crystals obtained from the solid-liquid separation region 23 are preferably returned, and the crystals obtained from the solid-liquid separation region 22 are recovered or returned as necessary. It turns out that you can choose whether to do.
[Brief description of the drawings]
FIG. 1 is a flowchart of a fluorine removal method and apparatus according to an embodiment.
FIG. 2 is a flow diagram of a conventional fluorine removal method and apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Reaction tank 3 Coagulation tank 4 Solid-liquid separation tank 5 Calcium compound tank 6 Mixing tank 7 Coagulant tank 21, 22, 23 Solid-liquid separation area

Claims (4)

フッ素含有水をカルシウム化合物と反応させて不溶性のフッ化カルシウムを析出させる反応工程、
反応工程の反応液を処理水と汚泥に固液分離する固液分離工程、および
固液分離工程で分離された汚泥の一部をカルシウム化合物と混合して反応槽に供給する混合工程を含み、
固液分離工程は汚泥を粒径に応じて大粒径の汚泥と小粒径の汚泥に分級して固液分離し、
分級された大粒径の汚泥を、混合工程に返送することなく、かつ破砕することなく系外へ排出し、
分級された小粒径の汚泥を混合工程に返送し、カルシウム化合物と混合して結晶の表面にカルシウム化合物を付着させて反応槽に供給するようにしたことを特徴とするフッ素除去方法。
A reaction step of reacting fluorine-containing water with a calcium compound to precipitate insoluble calcium fluoride;
A solid-liquid separation step for solid-liquid separation of the reaction liquid in the reaction step into treated water and sludge, and a mixing step for mixing a part of the sludge separated in the solid-liquid separation step with a calcium compound and supplying the mixture to the reaction tank,
In the solid-liquid separation process, the sludge is classified into a large particle size sludge and a small particle size sludge according to the particle size and separated into solid and liquid,
The classified large particle size sludge is discharged out of the system without being returned to the mixing process and without being crushed.
A fluorine removing method, wherein the classified sludge having a small particle diameter is returned to the mixing step, mixed with the calcium compound, and the calcium compound is adhered to the surface of the crystal and supplied to the reaction vessel.
固液分離工程は、液の進行方向に分割され、かつ境界部に整流板を有する複数の固液分離領域に反応液を進行させ、上流側で大粒径の結晶を沈降させ、下流側で小粒径の結晶を沈降させ、液の進行方向先端側の固液分離領域で分離された小粒径の汚泥を混合装置に返送するように構成された請求項1記載の方法。  In the solid-liquid separation step, the reaction liquid is advanced to a plurality of solid-liquid separation regions that are divided in the liquid traveling direction and have a rectifying plate at the boundary, and large-sized crystals are precipitated on the upstream side. The method according to claim 1, wherein the sludge having a small particle size separated from the solid-liquid separation region at the front end side in the traveling direction of the liquid is returned to the mixing device. フッ素含有水をカルシウム化合物と反応させて不溶性のフッ化カルシウムを析出させる反応槽、
反応槽の反応液を処理水と汚泥に固液分離する装置であって、汚泥を粒径に応じて大粒径の汚泥と小粒径の汚泥に分級して固液分離する固液分離装置、
固液分離装置で分級された小粒径の汚泥をカルシウム化合物と混合して反応槽に供給する混合装置、
固液分離装置で分級された大粒径の汚泥を破砕することなく系外へ排出する排泥路、および
固液分離装置で分級された小粒径の汚泥を混合装置に返送し、かつ大粒径の汚泥を返送しない返送路を含むことを特徴とするフッ素除去装置。
A reaction vessel in which fluorine-containing water is reacted with a calcium compound to precipitate insoluble calcium fluoride;
A solid-liquid separation device that separates the reaction liquid in the reaction tank into treated water and sludge, and classifies the sludge into sludge with a large particle size and sludge with a small particle size according to the particle size. ,
A mixing device for mixing sludge having a small particle size classified by a solid-liquid separator with a calcium compound and supplying the mixture to a reaction tank;
A sludge passage that discharges sludge with a large particle size classified by the solid-liquid separator to the outside of the system without crushing, and a sludge with a small particle size classified by the solid-liquid separator is returned to the mixing device. A fluorine removing apparatus including a return path that does not return sludge having a particle size .
固液分離装置は液の進行方向に分割され、かつ境界部に整流板を有する複数の固液分離領域を有し、上流側で大粒径の結晶を沈降させ、下流側で小粒径の結晶を沈降させ、液の進行方向先端側の固液分離領域で分離された比較的小粒径の汚泥を混合装置に返送するように構成された請求項3記載の装置。  The solid-liquid separation device has a plurality of solid-liquid separation regions that are divided in the liquid traveling direction and have a rectifying plate at the boundary, and precipitate large-sized crystals on the upstream side and small-sized particles on the downstream side. The apparatus according to claim 3, wherein the apparatus is configured to settle the crystals and return the sludge having a relatively small particle size separated in the solid-liquid separation region at the front end side in the liquid traveling direction to the mixing apparatus.
JP17995699A 1999-06-25 1999-06-25 Fluorine removal method and apparatus Expired - Fee Related JP4395924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17995699A JP4395924B2 (en) 1999-06-25 1999-06-25 Fluorine removal method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17995699A JP4395924B2 (en) 1999-06-25 1999-06-25 Fluorine removal method and apparatus

Publications (2)

Publication Number Publication Date
JP2001009468A JP2001009468A (en) 2001-01-16
JP4395924B2 true JP4395924B2 (en) 2010-01-13

Family

ID=16074912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17995699A Expired - Fee Related JP4395924B2 (en) 1999-06-25 1999-06-25 Fluorine removal method and apparatus

Country Status (1)

Country Link
JP (1) JP4395924B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4689186B2 (en) * 2004-04-13 2011-05-25 オルガノ株式会社 Fluorine-containing water treatment method
JP4689187B2 (en) * 2004-04-13 2011-05-25 オルガノ株式会社 Method and apparatus for treating fluorine-containing water
JP4631425B2 (en) * 2004-12-16 2011-02-16 栗田工業株式会社 Method and apparatus for treating fluorine-containing wastewater containing phosphoric acid
JP5157040B2 (en) * 2005-03-15 2013-03-06 栗田工業株式会社 Method and apparatus for treating fluorine-containing wastewater
JP4726216B2 (en) * 2005-11-02 2011-07-20 オルガノ株式会社 Fluorine / phosphorus treatment method and apparatus for water containing chelating agent
JP2009072714A (en) * 2007-09-21 2009-04-09 Sanyo Electric Co Ltd Hydrofluoric acid treatment apparatus

Also Published As

Publication number Publication date
JP2001009468A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
US6919031B2 (en) Method of treating water and wastewater with a ballasted flocculation process and a chemical precipitation process
JP3169899B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP2634230B2 (en) Method and apparatus for treating liquid by settling using fine sand
AU2002220093A1 (en) Method and apparatus for treatment of water and wastewater
TW200906736A (en) Fluorine-containing wastewater treating apparatus and treating method
JP3196640B2 (en) Fluorine removal equipment
JP4395924B2 (en) Fluorine removal method and apparatus
JP4389297B2 (en) Fluorine removal device
JP2002336875A (en) Recovering method and equipment for phosphorus in water
CN103608303A (en) Method and apparatus for treating organic waste water and organic sludge
KR20180050254A (en) High-rate Water Treatment Method and Equipment using Mixed Mineral As Weighting Agent
JPH07108395B2 (en) Turbid water treatment method and treatment device
JP2002079004A (en) Aggregation method
JP4336059B2 (en) Solid-liquid separator for waste water
JP4626268B2 (en) Method for treating copper-containing liquid
JP3592175B2 (en) Treatment method for wastewater containing fluorine
JP2930594B2 (en) Coagulation settling equipment
CN112062366A (en) Coal-fired power plant desulfurization wastewater comprehensive treatment system and method
CN217732834U (en) High-efficient sedimentation system of coal chemical industry waste water hardness that removes
JP2019155282A (en) Solid/liquid separation apparatus
JPH07108278A (en) Method for flocculating waste water of low turbidity of power plant
JP3420777B2 (en) Aluminum insolubilization method
JP7117101B2 (en) Water treatment method and device
JP2005272210A (en) Method for separating and recovering aluminum hydroxide from waste solution containing aluminum hydroxide
JPH10332A (en) Method for clarifying stack gas desulfurization waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees