JP3593726B2 - Method for treating wastewater containing sulfuric acid and copper - Google Patents

Method for treating wastewater containing sulfuric acid and copper Download PDF

Info

Publication number
JP3593726B2
JP3593726B2 JP27773294A JP27773294A JP3593726B2 JP 3593726 B2 JP3593726 B2 JP 3593726B2 JP 27773294 A JP27773294 A JP 27773294A JP 27773294 A JP27773294 A JP 27773294A JP 3593726 B2 JP3593726 B2 JP 3593726B2
Authority
JP
Japan
Prior art keywords
sludge
copper
sulfuric acid
tank
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27773294A
Other languages
Japanese (ja)
Other versions
JPH08132067A (en
Inventor
勇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP27773294A priority Critical patent/JP3593726B2/en
Publication of JPH08132067A publication Critical patent/JPH08132067A/en
Application granted granted Critical
Publication of JP3593726B2 publication Critical patent/JP3593726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は硫酸と銅とを含む排水の処理方法に係り、特に、硫酸と銅とを含む排水にアルカリを添加して生成する銅不溶化物を含む汚泥と処理水とに分離する方法において、得られる銅含有汚泥の濃度を高めて銅の回収効率を向上させる方法に関する。
【0002】
【従来の技術】
銅は有価金属であるため、これを多量に含有する汚泥は、一般に銅原料として回収利用されている。
【0003】
しかし、銅を含有する排水にアルカリを添加して得られる銅不溶化物(水酸化銅)を含む汚泥は濃縮性が悪く、通常1〜3重量%程度の濃度である。このような汚泥をフィルタープレスで脱水して得られる脱水ケーキの含水率は通常70〜80重量%であり、このような高含水率の脱水ケーキでは、発生源から回収工場への運搬効率が悪い上に、脱水ケーキから乾式法により粗酸化銅を製造する場合において水分の蒸発に多量のエネルギーを要する。従って、銅の回収効率の向上のためには、脱水ケーキの含水率をできるだけ低くすることが必要とされる。
【0004】
前述の如く、通常の処理で得られる銅含有汚泥の濃度は1〜3重量%であるが、この汚泥の濃度を10重量%程度にまで上げると、含水率50重量%程度の脱水ケーキが得られることが経験的に確認されている。
【0005】
従来、汚泥濃度を高くする方法としては、次のような方法がある。
【0006】
▲1▼ HDS法:分離された汚泥を排水の中和工程に返送し、汚泥中の水酸化銅を脱水縮合物に改質する(Cu(OH) →CuO)方法。
【0007】
▲2▼ 加熱法:分離された汚泥を60〜100℃で加熱し、汚泥中の水酸化銅を酸化銅とする方法。
【0008】
【発明が解決しようとする課題】
しかし、硫酸と銅とを含む排水の処理に当り、上記HDS法や加熱法を適用しても、汚泥濃度を高めることができない場合がある。
【0009】
本発明は、上記従来の問題点を解決し、硫酸と銅とを含む排水にアルカリを添加して生成する銅不溶化物を含む汚泥と処理水とに分離する方法において、得られる銅含有汚泥の濃度を高めて銅の回収効率を向上させる方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
請求項1の硫酸と銅とを含む排水の処理方法は、硫酸と銅とを含む排水にアルカリを添加して生成する銅不溶化物を含む汚泥と処理水とに分離する方法であって、アルカリを、該分離された汚泥と混合して得られる混合物として前記排水に添加する方法において、まず、排水にカルシウム化合物を添加してpH3〜5に調整することにより生成する石膏を分離して、SO /Cu重量比を6以下とした後、前記混合物を添加し、生成する銅不溶化物を含む汚泥と処理水とに固液分離することを特徴とする。
【0011】
請求項2の硫酸と銅とを含む排水の処理方法は、硫酸と銅とを含む排水にアルカリを添加して生成する銅不溶化物を含む汚泥と処理水とに分離する方法において、まず、排水にカルシウム化合物を添加してpH3〜5に調整することにより生成する石膏を分離して、SO /Cu重量比を6以下とした後、アルカリを添加し、生成する銅不溶化物を含む汚泥と処理水とに固液分離し、分離汚泥を加熱処理することを特徴とする。
【0012】
【作用】
一般に、銅を含有する排水は硫酸酸性排水である場合が多いが、このような排水に、HDS法や加熱法を適用しても、汚泥濃度を高めることができないことが、本発明者らの研究により判明した。
【0013】
即ち、硫酸と銅とを含む排水にアルカリを添加して処理するに当り、アルカリとして安価な消石灰を用いると石膏が生成する。石膏は銅を回収する場合の不純物となり、従って、脱水ケーキ中に混入することは望ましくないが、石膏が銅に対して一定比率以上存在すると、HDS法や加熱法を適用しても、下記の如く、汚泥濃度を高めることはできないことが判明した。
【0014】
HDS法や加熱法において、汚泥中の水酸化銅の脱水縮合が起きる反応は下式に基き、いわゆる通常の水酸化物は結晶水を持つが、脱水縮合が起きると(1)式のように結晶水が離脱するため、濃縮性に富む汚泥が生成する。
【0015】
Cu(OH) ・nH O→CuO+(n+1)H O ……(1)
しかし、硫酸イオンを多量に含む銅含有排水を消石灰で中和すると、このような脱水縮合反応が起きないため、汚泥濃度が高くならない。なお、脱水縮合が起きると、液がCu(OH) の青白色からCuOの黒色となるため、外観から容易にその反応の進行の有無を推定できる。
【0016】
脱水縮合が起きない理由は、当然、水酸化銅に石膏が混入して何らかの原因で脱水縮合反応を妨害するためと考えられるが、実験の結果、石膏の溶解度(CaSO :2080mg/l(25℃))以下の混入でも、銅濃度によっては妨害を受け、しかも、水酸化銅の沈殿物中にCaとSO がほぼ等量の関係で検出されることから、Cu(OH) とCaSO の化合物が生成することが推定された。
【0017】
従って、本発明においては、硫酸と銅とを含む排水の処理に当り、カルシウム化合物により水酸化銅が析出しない領域のpH3〜5で、まず石膏を析出させて分離して、SO /Cu重量比を6以下とし、水酸化銅の脱水縮合反応の妨害因子である硫酸イオンを系内から取り除く。その後、HDS法又は加熱法を適用して処理することにより、汚泥濃度10重量%以上の高濃度汚泥を得る。
【0018】
しかして、このような高濃度汚泥であれば、従来に比べて5倍以上の脱水速度で効率的な脱水を行って、従来に比べて20〜30重量%程度含水率の低い、低含水率脱水ケーキを容易に得ることができ、銅の回収効率は大幅に向上する。
【0019】
【実施例】
以下、図面を参照して本発明の硫酸と銅とを含む排水の処理方法を詳細に説明する。
【0020】
図1,2は本発明の硫酸と銅とを含む排水の処理方法の一実施例を示す系統図である。
【0021】
図1,2において、1は第1中和槽、2は第1凝集槽、3は第1沈殿槽、4は第2中和槽、5は第2凝集槽、6は第2沈殿槽、7は汚泥反応槽、8はヒーター8Aを備える熟成槽であり、11〜26の各符号は配管を示す。
【0022】
図1に示す方法は、本発明の請求項1に係る実施例方法であり、原水(硫酸と銅とを含む排水)は、まず、配管11より第1中和槽1に導入され、この第1中和槽1内で、配管19よりカルシウム化合物として消石灰(Ca(OH) )が添加され、pH3〜5のpH条件下で処理される。これにより、硫酸が石膏として析出する。第1中和槽の流出液は次いで第1凝集槽2において、配管20よりポリマー(高分子凝集剤)が添加されて凝集処理される。第1凝集槽2の流出液は配管12より第1沈殿槽3に導入され、固液分離される。これにより石膏を含有する汚泥が分離される。
【0023】
分離された汚泥は配管21より抜き出されるが、本実施例においては、この分離汚泥の一部を配管23より第1中和槽1に返送する。このように汚泥を循環させることにより、石膏の析出速度を速めることができる。分離汚泥の残部は配管22より系外へ排出される。
【0024】
なお、この石膏の析出処理において、カルシウム化合物としては、Caイオンの注入効率を高めるために塩化カルシウムを併用しても良い。また、pH調整のために、消石灰と共に塩酸を使用しても良い。
【0025】
第1沈殿槽3の上澄液は次いで配管13より、第2中和槽4に導入され、第2中和槽4において、汚泥反応槽7内のアルカリと後段の第2沈殿槽6からの返送汚泥との混合物(以下「アルカリ汚泥」と称する場合がある。)が配管25より添加され、銅、その他の金属の析出処理が行われる。
【0026】
第2中和槽4の流出液は次いで第2凝集槽5において、配管26よりポリマーが添加されて凝集処理される。第2凝集槽5の流出液は配管14より第2沈殿槽6に導入され、固液分離される。これにより、銅不溶化物を含有する汚泥が分離される。
【0027】
分離された汚泥は配管16より抜き出され、一部は返送汚泥として配管18より汚泥反応槽7に送給され、配管24から注入されるアルカリ(本実施例ではCa(OH) )と混合される。汚泥の残部は配管17より系外へ排出される。第2沈殿槽6の上澄水は処理水として配管15より系外へ排出される。
【0028】
本実施例の方法で得られる汚泥は、水酸化銅の脱水縮合反応の阻害因子である硫酸を予め除去した後、HDS法を適用して得られるものであるため、水酸化銅の脱水縮合が円滑に進行した高濃度汚泥である。
【0029】
図2に示す方法は、本発明の請求項2に係る実施例方法であり、原水から石膏含有汚泥を析出させて分離する工程は、図1に示す方法と同様であり、第2沈殿槽6の分離汚泥を返送せずに、第2中和槽4において、アルカリを添加する点が異なる。
【0030】
即ち、第2中和槽4において、配管24よりCa(OH) を添加し、その後、第2凝集槽5、第2沈殿槽6を経て上澄水を処理水として系外へ排出する。
【0031】
一方、第2沈殿槽6で分離した汚泥を配管16より熟成槽8に送り、この熟成槽8で加熱処理して汚泥中の水酸化銅を脱水縮合させた後、配管17より系外へ排出する。
【0032】
本実施例の方法で得られる汚泥は、水酸化銅の脱水縮合反応の阻害因子である硫酸を予め除去した後、加熱法を適用して得られるものであるため、水酸化銅の脱水縮合が円滑に進行した高濃度汚泥である。
【0033】
なお、本発明の方法においては、得られる汚泥の濃度を高めるために、予め排水中の硫酸イオンを石膏として析出、分離することにより、この石膏分離後の水、即ち、図1,2において第1沈殿槽3の上澄水は、SO/Cu重量比が6以下となるように処理する。この比が6を超えると、硫酸イオンによる水酸化銅の脱水縮合反応の阻害が著しく高濃度汚泥を得ることができない。
【0034】
このような本発明の方法は、特に、硫酸イオン濃度が2000ppm以上であるような硫酸と銅とを含む排水の処理に有効である。
【0035】
以下に実験例並びに具体的な実施例及び比較例を挙げて本発明をより具体的に説明する。
【0036】
実験例1
硫酸銅と硫酸とを表1に示すCu,SO 濃度となるように添加して調製した合成廃水に、消石灰を添加してpH9〜10に調整した後、生成した汚泥を純水で3〜4回洗浄した。この洗浄の目的は残存するCaイオンとSO イオンの除去である。なお、洗浄により一部CaSO ・2H Oの結晶も溶出したと推定される。
【0037】
洗浄後の汚泥を60℃で3時間加熱し、24時間静置後の汚泥濃度,汚泥中のCaSO 濃度の測定及び汚泥の外観観察を行った。結果を表1に示す。
【0038】
表1より次のことが明らかである。即ち、No.1に示すように、CaSO の溶解度(2080mg/l(25℃))以下でも、汚泥中にCaSO が17%も検出され、CaSO とCu(OH) が複塩を形成していることが分かる。一方、CaSO が析出する条件のNo.2,3,4でも、脱水縮合は起きるが、SO /Cu=7のNo.5では脱水縮合が起きず、汚泥濃度は10重量%以下であった。
【0039】
【表1】

Figure 0003593726
【0040】
実験例2
表2に示す濃度の実廃水(銅箔製造廃水)と合成廃水(硫酸銅+硫酸)に消石灰を添加してpH9〜10とし、生成汚泥を100℃で1時間加熱し、3時間静置した後の汚泥濃度の測定及び外観の観察を行った。結果を表2に示す。
【0041】
表2より、銅の初濃度が低い場合でも、SO /Cu重量比が大きくなると脱水縮合が起きにくくなることが分かる。
【0042】
【表2】
Figure 0003593726
【0043】
実施例1
図1に示す方法に従って、下記水質の原水の処理を行った。
【0044】
原水水質
pH :1.6
Cu :520mg/l
SO :3500mg/l
Zn :20mg/l
Cr :1.5mg/l
即ち、まず、第1中和槽1にて、原水にCa(OH) を2000mg/l添加してpHを4に調整した後、第1凝集槽2において、ポリマー(ポリアクリルアミド系高分子凝集剤「クリフロックPA362」栗田工業(株)製)を1mg/l添加し、第1沈殿槽3で固液分離した。なお、第1中和槽1には、この分離汚泥を原水/汚泥=5/1の割合で返送した。
【0045】
第1沈殿槽3の上澄水は、石膏の析出、分離により、そのSO /Cu比が4.2となっていた。
【0046】
次いで、第1沈殿槽3の上澄水を第2中和槽4に送り、アルカリ汚泥を添加した。このアルカリ汚泥は、返送汚泥と第1沈澱槽3の上澄水を中和するためのCa(OH) とを混合してなるものであり、Ca(OH) は上澄水に対して700mg/lに相当する量が混合される。第2中和槽4においては、このアルカリ汚泥を原水/汚泥=6/1の割合で添加し、pH8.5〜9に調整した。その後、ポリマー(クリフロックPA362)を2mg/l添加し、第2沈殿槽6で固液分離し、汚泥の一部は汚泥反応槽7に返送し、残部を系外に排出した。
【0047】
得られた汚泥濃度は21重量%であり、この汚泥をフィルタープレスで脱水したところ、27.7kg/m ・hrの処理速度で含水率38重量%の脱水ケーキを得ることができた。
【0048】
なお、フィルタープレスの脱水条件は次のとおりとした。
【0049】
圧力:15kg/cm
濾過時間:2分
圧搾時間:15分
比較例1
実施例1で処理した原水と同水質の原水を直接第2中和槽に導入したこと以外は実施例1と同様にして処理を行った。ただし、第2中和槽に添加するアルカリ汚泥の量を調整してpHを実施例1と同様に8.5〜9とした。また、ポリマー添加量は2mg/lとした。
【0050】
得られた汚泥濃度は7.2重量%であり、この汚泥を実施例1と同様にフィルタープレスで脱水したところ、処理速度は5.2kg/m ・hrであり、得られた脱水ケーキの含水率は66重量%であった。
【0051】
実施例2
図2に示す方法に従って、下記水質の原水の処理を行った。
【0052】
原水水質
pH :1.6
Cu :520mg/l
SO :3500mg/l
Zn :20mg/l
Cr :1.5mg/l
即ち、まず、第1中和槽1にて、原水にCa(OH) を2000mg/l添加してpHを4に調整した後、第1凝集槽2において、ポリマー(クリフロックPA362)を1mg/l添加し、第1沈殿槽3で固液分離した。なお、第1中和槽1には、この分離汚泥を原水/汚泥=5/1の割合で返送した。
【0053】
第1沈殿槽3の上澄水は、石膏の析出、分離により、そのSO /Cu比が4.2となっていた。
【0054】
次いで、第1沈殿槽3の上澄水を第2中和槽4に送り、Ca(OH) を700mg/l添加して、pHを8.5〜9に調整した。次いで、ポリマー(クリフロックPA362)を2mg/l添加し、第2沈殿槽6で固液分離し、分離された汚泥を熟成槽8において、65℃で4時間加熱処理した後、排出した。
【0055】
得られた汚泥濃度は16重量%であり、この汚泥を実施例1と同様にフィルタープレスで脱水したところ、21kg/m ・hrの処理速度で含水率45重量%の脱水ケーキを得ることができた。
【0056】
比較例2
実施例2で処理した原水と同水質の原水を直接第2中和槽に導入したこと以外は実施例2と同様にして処理を行った。ただし、第2中和槽に添加するアルカリ汚泥の量を調整してpHを実施例2と同様に8.5〜9とした。また、ポリマー添加量は2mg/lとした。
【0057】
得られた汚泥濃度は5.7重量%であり、この汚泥を実施例1と同様にフィルタープレスで脱水したところ、処理速度は2.5kg/m ・hrであり、得られた脱水ケーキの含水率は70重量%であった。
【0058】
【発明の効果】
以上詳述した通り、本発明の硫酸と銅とを含む排水の処理方法によれば、硫酸と銅とを含む排水を容易かつ効率的に処理して高濃度汚泥を得ることができる。従って、この高濃度汚泥を効率的に脱水して低含水率の脱水ケーキを得ることができ、この脱水ケーキから、有価金属である銅を高い回収効率で回収することが可能とされる。
【図面の簡単な説明】
【図1】本発明の硫酸と銅とを含む排水の処理方法の一実施例を示す系統図である。
【図2】本発明の硫酸と銅とを含む排水の処理方法の他の実施例を示す系統図である。
【符号の説明】
1 第1中和槽
2 第1凝集槽
3 第1沈殿槽
4 第2中和槽
5 第2凝集槽
6 第2沈殿槽
7 汚泥反応槽
8 熟成槽[0001]
[Industrial applications]
The present invention relates to a method for treating wastewater containing sulfuric acid and copper, and more particularly, to a method for separating sludge containing copper insolubilized product generated by adding alkali to wastewater containing sulfuric acid and copper and treated water. The present invention relates to a method for increasing the concentration of copper-containing sludge to be used to improve the copper collection efficiency.
[0002]
[Prior art]
Since copper is a valuable metal, sludge containing a large amount thereof is generally recovered and used as a copper raw material.
[0003]
However, sludge containing copper insolubilized material (copper hydroxide) obtained by adding an alkali to wastewater containing copper has poor concentration properties, and usually has a concentration of about 1 to 3% by weight. The water content of a dewatered cake obtained by dewatering such sludge by a filter press is usually 70 to 80% by weight, and in such a dewatered cake having a high water content, the transportation efficiency from the generation source to the recovery plant is poor. In addition, when crude copper oxide is produced from a dehydrated cake by a dry method, a large amount of energy is required for evaporating water. Therefore, in order to improve the copper recovery efficiency, it is necessary to reduce the water content of the dewatered cake as much as possible.
[0004]
As described above, the concentration of the copper-containing sludge obtained by the ordinary treatment is 1 to 3% by weight. When the concentration of the sludge is increased to about 10% by weight, a dewatered cake having a water content of about 50% by weight is obtained. Has been confirmed empirically.
[0005]
Conventionally, as a method for increasing the sludge concentration, there is the following method.
[0006]
(1) HDS method: A method in which separated sludge is returned to a wastewater neutralization step, and copper hydroxide in the sludge is reformed into a dehydrated condensate (Cu (OH) 2 → CuO).
[0007]
{Circle around (2)} Heating method: A method in which the separated sludge is heated at 60 to 100 ° C. to convert copper hydroxide in the sludge into copper oxide.
[0008]
[Problems to be solved by the invention]
However, when treating the wastewater containing sulfuric acid and copper, even if the HDS method or the heating method is applied, it may not be possible to increase the sludge concentration.
[0009]
The present invention solves the above-mentioned conventional problems, and in a method of separating sludge containing copper insolubilized product generated by adding alkali to wastewater containing sulfuric acid and copper and treated water, the obtained copper-containing sludge It is an object of the present invention to provide a method for improving the copper collection efficiency by increasing the concentration.
[0010]
[Means for Solving the Problems]
The method for treating wastewater containing sulfuric acid and copper according to claim 1 is a method for separating sludge containing copper insolubilized product generated by adding alkali to wastewater containing sulfuric acid and copper and treated water, Is added to the wastewater as a mixture obtained by mixing with the separated sludge. First, a gypsum produced by adding a calcium compound to the wastewater to adjust the pH to 3 to 5 is separated , After the weight ratio of 4 / Cu is set to 6 or less , the mixture is added, and solid-liquid separation is performed into sludge containing copper insolubilized product and treated water.
[0011]
The method for treating wastewater containing sulfuric acid and copper according to claim 2 is a method for separating sludge containing copper insolubilized product generated by adding alkali to wastewater containing sulfuric acid and copper and treated water, Gypsum produced by adding a calcium compound to the mixture to adjust the pH to 3 to 5 and separating the SO 4 / Cu weight ratio to 6 or less , adding an alkali, and forming a sludge containing a copper insolubilized product. It is characterized by solid-liquid separation with treated water and heat treatment of the separated sludge.
[0012]
[Action]
Generally, wastewater containing copper is often sulfuric acid acid wastewater. However, even if the HDS method or the heating method is applied to such wastewater, the sludge concentration cannot be increased. Revealed by research.
[0013]
That is, gypsum is generated when an inexpensive slaked lime is used as an alkali in treating wastewater containing sulfuric acid and copper by adding an alkali. Gypsum becomes an impurity when recovering copper, and therefore it is not desirable to mix it into the dehydrated cake. However, if gypsum is present in a certain ratio or more with respect to copper, even if the HDS method or the heating method is applied, the following will occur. Thus, it was found that the sludge concentration could not be increased.
[0014]
In the HDS method and the heating method, the reaction in which dehydration and condensation of copper hydroxide in sludge occurs is based on the following formula. A so-called ordinary hydroxide has water of crystallization, but when dehydration and condensation occurs, as in formula (1), Since the water of crystallization is separated, sludge having a high concentration property is generated.
[0015]
Cu (OH) 2 .nH 2 O → CuO + (n + 1) H 2 O (1)
However, when the copper-containing wastewater containing a large amount of sulfate ions is neutralized with slaked lime, such a dehydration-condensation reaction does not occur, so that the sludge concentration does not increase. When dehydration condensation occurs, the liquid changes from bluish white of Cu (OH) 2 to black of CuO, so that the appearance of the reaction can be easily estimated from the appearance.
[0016]
It is considered that the reason why dehydration condensation does not occur is that gypsum is mixed into copper hydroxide to hinder the dehydration condensation reaction for some reason. However, as a result of the experiment, the solubility of gypsum (CaSO 4 : 2080 mg / l (25 C)), the following contamination is hindered depending on the copper concentration, and Ca (SO) 4 is detected in the precipitate of copper hydroxide in a substantially equal relationship, so that Cu (OH) 2 and CaSO 4 are detected. It was estimated that 4 compounds would be formed.
[0017]
Therefore, in the present invention, in treating wastewater containing sulfuric acid and copper, gypsum is first deposited and separated at pH 3 to 5 in a region where copper hydroxide is not precipitated by a calcium compound, and the weight of SO 4 / Cu is increased. The ratio is set to 6 or less, and sulfate ions, which are factors that hinder the dehydration-condensation reaction of copper hydroxide, are removed from the system. Thereafter, by applying the HDS method or the heating method, a high-concentration sludge having a sludge concentration of 10% by weight or more is obtained.
[0018]
With such a high-concentration sludge, efficient dehydration is performed at a dehydration rate five times or more higher than the conventional sludge, and the water content is lower by about 20 to 30% by weight than the conventional sludge. A dehydrated cake can be easily obtained, and the copper recovery efficiency is greatly improved.
[0019]
【Example】
Hereinafter, a method for treating wastewater containing sulfuric acid and copper according to the present invention will be described in detail with reference to the drawings.
[0020]
1 and 2 are system diagrams showing one embodiment of the method for treating wastewater containing sulfuric acid and copper of the present invention.
[0021]
1 and 2, 1 is a first neutralization tank, 2 is a first coagulation tank, 3 is a first sedimentation tank, 4 is a second neutralization tank, 5 is a second coagulation tank, 6 is a second sedimentation tank, 7 is a sludge reaction tank, 8 is an aging tank provided with a heater 8A, and reference numerals 11 to 26 indicate pipes.
[0022]
The method shown in FIG. 1 is an embodiment method according to claim 1 of the present invention, in which raw water (effluent containing sulfuric acid and copper) is first introduced from a pipe 11 into a first neutralization tank 1. In the neutralization tank 1, slaked lime (Ca (OH) 2 ) is added as a calcium compound from a pipe 19 and is treated under a pH condition of pH 3 to 5. Thereby, sulfuric acid precipitates as gypsum. The effluent from the first neutralization tank is then subjected to a coagulation treatment in the first coagulation tank 2 by adding a polymer (polymer coagulant) from the pipe 20. The effluent of the first flocculation tank 2 is introduced into the first sedimentation tank 3 through the pipe 12, and is separated into solid and liquid. Thereby, the sludge containing gypsum is separated.
[0023]
The separated sludge is extracted from the pipe 21. In the present embodiment, a part of the separated sludge is returned to the first neutralization tank 1 from the pipe 23. By thus circulating the sludge, the precipitation rate of gypsum can be increased. The remainder of the separated sludge is discharged out of the system through the pipe 22.
[0024]
In this gypsum precipitation treatment, calcium chloride may be used in combination with calcium chloride as a calcium compound in order to increase the Ca ion implantation efficiency. Further, hydrochloric acid may be used together with slaked lime for pH adjustment.
[0025]
The supernatant of the first sedimentation tank 3 is then introduced from a pipe 13 into a second neutralization tank 4, where the alkali in the sludge reaction tank 7 and the second sedimentation tank 6 from the second stage are separated. A mixture with the returned sludge (hereinafter sometimes referred to as “alkaline sludge”) is added from the pipe 25, and a precipitation treatment of copper and other metals is performed.
[0026]
The effluent from the second neutralization tank 4 is then subjected to a coagulation treatment in a second coagulation tank 5 by adding a polymer from a pipe 26. The effluent of the second flocculation tank 5 is introduced into the second sedimentation tank 6 from the pipe 14, and is separated into solid and liquid. Thereby, the sludge containing the copper insolubilized material is separated.
[0027]
The separated sludge is withdrawn from the pipe 16, and a part of the sludge is sent to the sludge reaction tank 7 from the pipe 18 as returned sludge and mixed with alkali (Ca (OH) 2 in this embodiment) injected from the pipe 24. Is done. The remainder of the sludge is discharged out of the system through the pipe 17. The supernatant water of the second sedimentation tank 6 is discharged as treated water from the pipe 15 to the outside of the system.
[0028]
The sludge obtained by the method of the present embodiment is obtained by applying the HDS method after removing sulfuric acid, which is an inhibitor of the dehydration-condensation reaction of copper hydroxide, in advance. It is a highly concentrated sludge that has progressed smoothly.
[0029]
The method shown in FIG. 2 is an embodiment method according to claim 2 of the present invention. The step of depositing and separating gypsum-containing sludge from raw water is the same as the method shown in FIG. The difference is that alkali is added to the second neutralization tank 4 without returning the separated sludge.
[0030]
That is, Ca (OH) 2 is added from the pipe 24 in the second neutralization tank 4, and then the supernatant water is discharged out of the system through the second flocculation tank 5 and the second precipitation tank 6 as treated water.
[0031]
On the other hand, the sludge separated in the second sedimentation tank 6 is sent from the pipe 16 to the maturation tank 8, which is heated in the maturation tank 8 to dehydrate and condense the copper hydroxide in the sludge, and then discharged out of the system from the pipe 17. I do.
[0032]
The sludge obtained by the method of the present embodiment is obtained by applying a heating method after previously removing sulfuric acid, which is an inhibitor of the dehydration-condensation reaction of copper hydroxide. It is a highly concentrated sludge that has progressed smoothly.
[0033]
In the method of the present invention, in order to increase the concentration of the obtained sludge, the sulfate ions in the wastewater are previously precipitated and separated as gypsum, so that the water after the separation of the gypsum, that is, in FIG. supernatant water of 1 sedimentation tank 3 must be disposed as sO 4 / Cu weight ratio is 6 or less. When this ratio exceeds 6, the inhibition of the dehydration-condensation reaction of copper hydroxide by sulfate ions is remarkable, and it is not possible to obtain high-concentration sludge.
[0034]
Such a method of the present invention is particularly effective for treating wastewater containing sulfuric acid and copper having a sulfate ion concentration of 2000 ppm or more.
[0035]
Hereinafter, the present invention will be described more specifically with reference to experimental examples and specific examples and comparative examples.
[0036]
Experimental example 1
Slaked lime was added to synthetic wastewater prepared by adding copper sulfate and sulfuric acid to the Cu and SO 4 concentrations shown in Table 1 to adjust the pH to 9 to 10, and the generated sludge was purified with pure water to 3 to 10 mL. Washed 4 times. The purpose of this cleaning is to remove the remaining Ca ions and SO 4 ions. It is presumed that some CaSO 4 .2H 2 O crystals were also eluted by the washing.
[0037]
The sludge after washing was heated at 60 ° C. for 3 hours, and the sludge concentration after standing for 24 hours, the CaSO 4 concentration in the sludge were measured, and the appearance of the sludge was observed. Table 1 shows the results.
[0038]
The following is clear from Table 1. That is, No. As shown in 1, the solubility of the CaSO 4 (2080mg / l (25 ℃)) in the following, CaSO 4 17% in the sludge are also detected, CaSO 4 and Cu (OH) 2 forms a double salt You can see that. On the other hand, No. of conditions that CaSO 4 is precipitated Dehydration condensation also occurs in Nos. 2, 3, and 4, but No. 2 of SO 4 / Cu = 7. In No. 5, dehydration condensation did not occur, and the sludge concentration was 10% by weight or less.
[0039]
[Table 1]
Figure 0003593726
[0040]
Experimental example 2
Slaked lime was added to actual wastewater (copper foil production wastewater) and synthetic wastewater (copper sulfate + sulfuric acid) at the concentrations shown in Table 2 to adjust the pH to 9 to 10, the resulting sludge was heated at 100 ° C. for 1 hour, and allowed to stand for 3 hours. The subsequent measurement of the sludge concentration and observation of the appearance were performed. Table 2 shows the results.
[0041]
From Table 2, it can be seen that even when the initial copper concentration is low, the dehydration condensation hardly occurs when the SO 4 / Cu weight ratio increases.
[0042]
[Table 2]
Figure 0003593726
[0043]
Example 1
According to the method shown in FIG. 1, raw water having the following quality was treated.
[0044]
Raw water quality pH: 1.6
Cu: 520 mg / l
SO 4 : 3500 mg / l
Zn: 20 mg / l
Cr: 1.5 mg / l
That is, first, in the first neutralization tank 1, Ca (OH) 2 was added to raw water at 2000 mg / l to adjust the pH to 4, and then the polymer (polyacrylamide polymer aggregation) was added in the first aggregation tank 2. 1 mg / l of an agent “Cryfloc PA362” manufactured by Kurita Water Industries Ltd. was added, and solid-liquid separation was performed in the first settling tank 3. The separated sludge was returned to the first neutralization tank 1 at a ratio of raw water / sludge = 5/1.
[0045]
The supernatant water of the first settling tank 3 had a SO 4 / Cu ratio of 4.2 due to precipitation and separation of gypsum.
[0046]
Next, the supernatant water of the first settling tank 3 was sent to the second neutralization tank 4, and alkali sludge was added. This alkaline sludge is a mixture of returned sludge and Ca (OH) 2 for neutralizing the supernatant water of the first settling tank 3, and Ca (OH) 2 is added to the supernatant water at a concentration of 700 mg / ml. An amount corresponding to 1 is mixed. In the second neutralization tank 4, the alkaline sludge was added at a ratio of raw water / sludge = 6/1 to adjust the pH to 8.5 to 9. Thereafter, 2 mg / l of a polymer (Cryfloc PA362) was added, and solid-liquid separation was performed in the second sedimentation tank 6, a part of the sludge was returned to the sludge reaction tank 7, and the remaining part was discharged out of the system.
[0047]
The obtained sludge concentration was 21% by weight, and when this sludge was dewatered by a filter press, a dewatered cake having a water content of 38% by weight could be obtained at a treatment speed of 27.7 kg / m 2 · hr.
[0048]
In addition, the dehydration conditions of the filter press were as follows.
[0049]
Pressure: 15 kg / cm 2
Filtration time: 2 minutes Squeezing time: 15 minutes Comparative Example 1
The processing was performed in the same manner as in Example 1 except that the raw water treated in Example 1 and the raw water having the same quality were directly introduced into the second neutralization tank. However, the pH was adjusted to 8.5 to 9 as in Example 1 by adjusting the amount of alkaline sludge added to the second neutralization tank. The amount of the polymer added was 2 mg / l.
[0050]
The obtained sludge concentration was 7.2% by weight, and when this sludge was dewatered with a filter press in the same manner as in Example 1, the processing speed was 5.2 kg / m 2 · hr. The water content was 66% by weight.
[0051]
Example 2
According to the method shown in FIG. 2, raw water having the following quality was treated.
[0052]
Raw water quality pH: 1.6
Cu: 520 mg / l
SO 4 : 3500 mg / l
Zn: 20 mg / l
Cr: 1.5 mg / l
That is, first, in a first neutralization tank 1, Ca (OH) 2 was added to raw water at 2000 mg / l to adjust the pH to 4, and then in a first flocculation tank 2, 1 mg of a polymer (Cryfloc PA362) was added. / L, followed by solid-liquid separation in the first precipitation tank 3. The separated sludge was returned to the first neutralization tank 1 at a ratio of raw water / sludge = 5/1.
[0053]
The supernatant water of the first settling tank 3 had a SO 4 / Cu ratio of 4.2 due to precipitation and separation of gypsum.
[0054]
Next, the supernatant water of the first precipitation tank 3 was sent to the second neutralization tank 4, and 700 mg / l of Ca (OH) 2 was added to adjust the pH to 8.5 to 9. Next, 2 mg / l of a polymer (Cryfloc PA362) was added, and solid-liquid separation was performed in the second sedimentation tank 6. The separated sludge was heated in an aging tank 8 at 65 ° C. for 4 hours, and then discharged.
[0055]
The obtained sludge concentration was 16% by weight, and when this sludge was dewatered by a filter press in the same manner as in Example 1, a dewatered cake having a water content of 45% by weight was obtained at a processing speed of 21 kg / m 2 · hr. did it.
[0056]
Comparative Example 2
The treatment was carried out in the same manner as in Example 2, except that the raw water treated in Example 2 and the raw water having the same quality were directly introduced into the second neutralization tank. However, the pH was adjusted to 8.5 to 9 as in Example 2 by adjusting the amount of alkaline sludge added to the second neutralization tank. The amount of the polymer added was 2 mg / l.
[0057]
The obtained sludge concentration was 5.7% by weight, and when this sludge was dewatered with a filter press in the same manner as in Example 1, the treatment speed was 2.5 kg / m 2 · hr. The water content was 70% by weight.
[0058]
【The invention's effect】
As described in detail above, according to the method for treating wastewater containing sulfuric acid and copper of the present invention, wastewater containing sulfuric acid and copper can be easily and efficiently treated to obtain high-concentration sludge. Therefore, the high-concentration sludge can be efficiently dewatered to obtain a dewatered cake having a low water content, and from this dewatered cake, copper as a valuable metal can be recovered with high recovery efficiency.
[Brief description of the drawings]
FIG. 1 is a system diagram showing one embodiment of a method for treating wastewater containing sulfuric acid and copper of the present invention.
FIG. 2 is a system diagram showing another embodiment of the method for treating wastewater containing sulfuric acid and copper of the present invention.
[Explanation of symbols]
Reference Signs List 1 First neutralization tank 2 First coagulation tank 3 First sedimentation tank 4 Second neutralization tank 5 Second coagulation tank 6 Second sedimentation tank 7 Sludge reaction tank 8 Ripening tank

Claims (2)

硫酸と銅とを含む排水にアルカリを添加して生成する銅不溶化物を含む汚泥と処理水とに分離する方法であって、アルカリを、該分離された汚泥と混合して得られる混合物として前記排水に添加する方法において、
まず、排水にカルシウム化合物を添加してpH3〜5に調整することにより生成する石膏を分離して、SO /Cu重量比を6以下とした後、前記混合物を添加し、生成する銅不溶化物を含む汚泥と処理水とに固液分離することを特徴とする硫酸と銅とを含む排水の処理方法。
A method for separating sludge containing copper insolubilized product produced by adding an alkali to wastewater containing sulfuric acid and copper and treated water, wherein the alkali is mixed as a mixture obtained with the separated sludge. In the method of adding to wastewater,
First, gypsum produced by adding a calcium compound to the waste water to adjust the pH to 3 to 5 is separated , and the SO 4 / Cu weight ratio is adjusted to 6 or less, and then the mixture is added to produce the copper insolubilized product. A method for treating wastewater containing sulfuric acid and copper, comprising performing solid-liquid separation into sludge containing water and treated water.
硫酸と銅とを含む排水にアルカリを添加して生成する銅不溶化物を含む汚泥と処理水とに分離する方法において、
まず、排水にカルシウム化合物を添加してpH3〜5に調整することにより生成する石膏を分離して、SO /Cu重量比を6以下とした後、アルカリを添加し、生成する銅不溶化物を含む汚泥と処理水とに固液分離し、分離汚泥を加熱処理することを特徴とする硫酸と銅とを含む排水の処理方法。
In a method of separating into sludge and treated water containing copper insolubilized product generated by adding alkali to wastewater containing sulfuric acid and copper,
First, gypsum produced by adding a calcium compound to the waste water and adjusting the pH to 3 to 5 is separated , and the SO 4 / Cu weight ratio is adjusted to 6 or less, and then alkali is added to produce a copper insolubilized product. A method for treating wastewater containing sulfuric acid and copper, comprising subjecting the separated sludge to solid-liquid separation into treated sludge and treated water, and subjecting the separated sludge to heat treatment.
JP27773294A 1994-11-11 1994-11-11 Method for treating wastewater containing sulfuric acid and copper Expired - Fee Related JP3593726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27773294A JP3593726B2 (en) 1994-11-11 1994-11-11 Method for treating wastewater containing sulfuric acid and copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27773294A JP3593726B2 (en) 1994-11-11 1994-11-11 Method for treating wastewater containing sulfuric acid and copper

Publications (2)

Publication Number Publication Date
JPH08132067A JPH08132067A (en) 1996-05-28
JP3593726B2 true JP3593726B2 (en) 2004-11-24

Family

ID=17587559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27773294A Expired - Fee Related JP3593726B2 (en) 1994-11-11 1994-11-11 Method for treating wastewater containing sulfuric acid and copper

Country Status (1)

Country Link
JP (1) JP3593726B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110759526A (en) * 2019-10-28 2020-02-07 中国恩菲工程技术有限公司 Method for treating copper-containing waste liquid
KR102283027B1 (en) * 2020-12-28 2021-07-28 한국광해관리공단 METHOD OF Cu RECOVERY FROM LEACHATE AFTER Cu EXTRACTION
CN115140776A (en) * 2022-08-03 2022-10-04 贵州金瑞新材料有限责任公司 Novel process for producing manganese sulfate by using manganese waste liquid

Also Published As

Publication number Publication date
JPH08132067A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
JP3284275B2 (en) Wastewater sludge treatment method
JP6288217B1 (en) Method and apparatus for treating wastewater containing sulfuric acid, fluorine and heavy metal ions
CN106396163B (en) A kind of method of rare-earth smelting amine wastewater of sulphuric acid comprehensive treatment reuse
JPH1190165A (en) Treatment of waste water from flue gas desulfurization
JP5118572B2 (en) Sewage treatment method
JP6269651B2 (en) Method and apparatus for treating borofluoride-containing water
JP3593726B2 (en) Method for treating wastewater containing sulfuric acid and copper
JP3945216B2 (en) Waste acid gypsum manufacturing method
JP4253203B2 (en) How to remove fluorine from gypsum
CN108341514B (en) Method for treating wastewater generated in purification process by using graphite acid method
JP2002177963A (en) Water cleaning treatment system and water cleaning method
JP3994227B2 (en) Treatment method for concentrated phosphoric acid-containing wastewater
JP2004000846A (en) Treatment method for fluorine-containing water
CN114605017A (en) Treatment process of ammonia nitrogen wastewater
JP4022909B2 (en) Method for treating copper-containing water
JP3632226B2 (en) Method for treating metal-containing wastewater
JP3420777B2 (en) Aluminum insolubilization method
JPH10156391A (en) Treatment of phosphorus recovered from treated water of sewerage
JP4136194B2 (en) Fluorine-containing wastewater treatment method
JPH057879A (en) Treatment of waste water containing heavy metal
JP2000167569A (en) Method and equipment for treating copper-containing acidic waste water
JPS5845320B2 (en) How to dispose of human waste
JP4640149B2 (en) Fluorine-containing water treatment method
JP3282452B2 (en) How to remove selenium from wastewater
JPH09253660A (en) Treatment of aluminate-containing water

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees