JP2002177963A - Water cleaning treatment system and water cleaning method - Google Patents

Water cleaning treatment system and water cleaning method

Info

Publication number
JP2002177963A
JP2002177963A JP2000379206A JP2000379206A JP2002177963A JP 2002177963 A JP2002177963 A JP 2002177963A JP 2000379206 A JP2000379206 A JP 2000379206A JP 2000379206 A JP2000379206 A JP 2000379206A JP 2002177963 A JP2002177963 A JP 2002177963A
Authority
JP
Japan
Prior art keywords
treatment
sludge
water
aluminum
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000379206A
Other languages
Japanese (ja)
Other versions
JP4468571B2 (en
Inventor
Yuji Sekine
勇二 関根
Toshio Tamura
俊雄 田村
Shigemi Ariga
茂美 有賀
Shinichi Sano
伸一 佐野
Minoru Tanaka
稔 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taimei Chemicals Co Ltd
Original Assignee
Taimei Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taimei Chemicals Co Ltd filed Critical Taimei Chemicals Co Ltd
Priority to JP2000379206A priority Critical patent/JP4468571B2/en
Publication of JP2002177963A publication Critical patent/JP2002177963A/en
Application granted granted Critical
Publication of JP4468571B2 publication Critical patent/JP4468571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a water cleaning treatment system and treatment method which decrease the amount of the effluent sludge from a drinking water treatment plant and decrease the manganese recovered in a regenerated flocculating agent. SOLUTION: Hydrochloric acid or sulfuric acid is injected into the slurry-like settled sludge generated when raw water is cleaned by injecting the flocculating agent consisting of an aluminum compound as an essential component into the raw water, by which the sludge is separated to a solution eluted with the aluminum compound and thick sludge. The solution is subjected to alkaline reaction separation treatment of adding an alkaline compound exhibiting strong alkalinity of a pH>=13 to the solution to regulate the solution to pH 4.5 to 6.5 and separating the deposit consisting essentially of the aluminum hydrate deposited by this regulation from the solution, then the regenerated flocculating agent essentially consisting of the aluminum chloride or aluminum sulfate obtained by using the deposit consisting essentially of the separated aluminum hydrate as raw material is injected into the raw water, by which the raw water is subjected to flocculation treatment. The thick sludge separated by the dissolution and separation treatment and the solution separated by the alkaline reaction separation treatment is subjected to neutralization treatment then to dehydrating treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は浄水処理システム及
び浄水処理方法に関し、更に詳細には主成分がアルミニ
ウム化合物から成る凝集剤を原水に注入し、凝集処理を
施して飲料用水等を供給する浄水システム及び浄水処理
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water purification system and a water purification method, and more particularly to a water purification system in which a coagulant mainly composed of an aluminum compound is injected into raw water, subjected to coagulation treatment and supplied for drinking water and the like. The present invention relates to a system and a water purification treatment method.

【0002】[0002]

【従来の技術】河川等から取水した原水から飲料等に供
給する上水を得る上水用水処理場(以下、浄水場と称す
ることがある)では、その水処理工程で水処理凝集剤
(以下、単に凝集剤と称することがある)が用いられて
いる。かかる凝集剤としては、アルミニウム化合物を主
成分とする凝集剤が汎用されている。従来、この凝集剤
は、新たな凝集剤が使用されていたが、凝集剤の浄水場
外からの搬入が必要であり、且つ薬剤費の面でもコスト
高となっていた。更に、近年、環境問題がクローズアッ
プされてきており、凝集剤の使い捨てが問題となりつつ
ある。このため、凝集剤を回収して再使用する浄水処理
システムが検討されており、例えば、特開平10―34
198号公報には、図2に示す浄水処理方法が提案され
ている。図2に示す浄水処理方法では、河川等から取水
した原水を混和池100でアルミニウム化合物を主成分
とする凝集剤を注入し、フロック形成池102で縣濁質
をフロック化した後、沈殿池103で縣濁質を沈殿して
スラリー状の沈殿スラッジとすると共に、上澄液を急速
濾過池115に送る。急速濾過池115で濾過されされ
た濾過水は、滅菌槽116で塩素滅菌されて上水として
供給する。一方、沈殿池103で沈殿したスラリー状の
沈殿スラッジは、汚泥沈殿槽104で重力沈降させて濃
縮した第1段濃縮汚泥とした後、更に遠心分離機106
によって脱水処理を施して更に濃縮した第2段濃縮汚泥
を得た。この汚泥濃縮槽104及び遠心分離機106で
分離された水は混和池100に戻される。
2. Description of the Related Art In a drinking water treatment plant (hereinafter sometimes referred to as a water purification plant) for obtaining drinking water to be supplied to beverages or the like from raw water taken from a river or the like, a water treatment flocculant (hereinafter referred to as a water treatment coagulant) is used in the water treatment process. , May be simply referred to as a flocculant). As such a coagulant, a coagulant mainly containing an aluminum compound is widely used. Conventionally, a new flocculant was used as this flocculant, but it was necessary to carry in the flocculant from outside the water purification plant, and the cost of chemicals was high. Further, in recent years, environmental problems have been highlighted, and disposable flocculants are becoming a problem. For this reason, a water purification system for collecting and reusing a flocculant has been studied.
No. 198 proposes a water purification treatment method shown in FIG. In the water purification treatment method shown in FIG. 2, raw water taken from a river or the like is injected into a mixing pond 100 with a coagulant containing an aluminum compound as a main component. The suspension is settled to form a slurry-like settling sludge, and the supernatant is sent to the rapid filtration pond 115. The filtered water filtered by the rapid filtration pond 115 is sterilized by chlorine in a sterilization tank 116 and supplied as clean water. On the other hand, the slurry-like sedimentation sludge settled in the sedimentation tank 103 is gravity-sedimented in the sludge sedimentation tank 104 to be concentrated first-stage sludge, and then the centrifugal separator 106
, To obtain a second-stage concentrated sludge which was further concentrated. The water separated by the sludge concentration tank 104 and the centrifugal separator 106 is returned to the mixing pond 100.

【0003】遠心分離機106で脱水処理を施した第2
段濃縮汚泥は、酸処理槽108に投入し、濃硫酸を注入
して攪拌しつつ、第2段濃縮汚泥中のアルミニウム化合
物を硫酸アルミニウムとする。硫酸アルミニウムを含む
溶液は、遠心分離機110によって脱水処理して再生凝
集剤貯留槽112に貯留し、再生凝集剤として再度混和
池100に注入する。一方、遠心分離機110で脱水処
理された酸性の残渣汚泥は、苛性ソーダを注入して中和
して汚泥貯留槽114に貯留した後、加圧脱水機118
によって脱水処理し脱水ケーキとする。
[0003] The second dewatering process performed by the centrifugal separator 106
The second-stage concentrated sludge is put into the acid treatment tank 108, and while the concentrated sulfuric acid is injected and stirred, the aluminum compound in the second-stage concentrated sludge is converted into aluminum sulfate. The solution containing aluminum sulfate is dehydrated by the centrifugal separator 110, stored in the regenerating flocculant storage tank 112, and injected again into the mixing pond 100 as the regenerating flocculant. On the other hand, the acidic residual sludge dewatered by the centrifugal separator 110 is neutralized by injecting caustic soda, and stored in the sludge storage tank 114.
To make a dewatered cake.

【0004】[0004]

【発明が解決しようとする課題】図2に示す浄水処理方
法によれば、原水に注入した凝集剤を再生して再度凝集
剤として注入でき、凝集剤の使い捨て等の問題が解消し
得る可能性がある。しかし、沈殿池103で沈殿するス
ラリー状の沈殿スラッジ中には、主成分としてのアルミ
ニウム化合物の他に、マンガン化合物も高濃度に含有さ
れている。原水中に含まれている天然由来のマンガン化
合物がスラッジに濃縮されるためである。かかるマンガ
ン化合物は、酸処理槽108で硫酸と反応して溶解し、
遠心脱水機110で分離された硫酸アルミニウムを主成
分とする溶液中にも含有される。このため、かかる溶液
を用いる再生凝集剤中にもマンガン化合物が含有され
る。この再生凝集剤中のマンガン化合物濃度は、当初は
低濃度であるものの、アルミニウム化合物に伴なって回
収され循環されるため、再生凝集剤中のマンガン化合物
が次第に蓄積される。一方、マンガンは人体に有害な金
属であるため、マンガンが高濃度で含有された凝集剤
は、浄水場の水処理凝集剤として使用できない。したが
って、図2に示す浄水処理方法では、再生凝集剤中のマ
ンガン量を常に測定し監視することを要し、再生凝集剤
中のマンガン量が規定未満となるように定期的にパージ
することが必要となる。
According to the water purification treatment method shown in FIG. 2, the flocculant injected into the raw water can be regenerated and injected again as a flocculant, and the problem of disposable flocculants can be solved. There is. However, the slurry-like sedimentation sludge settled in the sedimentation basin 103 contains a high concentration of a manganese compound in addition to the aluminum compound as a main component. This is because naturally-occurring manganese compounds contained in raw water are concentrated in sludge. The manganese compound reacts and dissolves with sulfuric acid in the acid treatment tank 108,
It is also contained in the solution containing aluminum sulfate as a main component separated by the centrifugal dehydrator 110. Therefore, a manganese compound is also contained in the regenerated coagulant using such a solution. Although the concentration of the manganese compound in the regenerated coagulant is initially low, the manganese compound in the regenerated coagulant gradually accumulates because it is collected and circulated with the aluminum compound. On the other hand, since manganese is a metal harmful to the human body, a coagulant containing manganese at a high concentration cannot be used as a water treatment coagulant in a water purification plant. Therefore, in the water purification treatment method shown in FIG. 2, it is necessary to constantly measure and monitor the amount of manganese in the regenerated coagulant, and it is necessary to periodically purge the regenerated coagulant so that the amount of manganese in the regenerated coagulant is less than the specified value. Required.

【0005】この様に、再生凝集剤中のマンガン量を常
に監視することを要する浄水処理方法は実用的ではな
い。しかしながら、従来から行われてきた沈殿池103
で沈殿したスラリー状の沈殿スラッジを加圧脱水機11
8等で直接脱水処理する場合に比較し、図2に示す浄水
処理方法では、加圧脱水機118での脱水処理効率を大
幅に向上させることができ、浄水場から廃棄する廃棄汚
泥量を減少できる。そこで、本発明の課題は、原水を浄
化する際に発生したスラリー状の沈殿スラッジの脱水処
理効率等を向上でき、浄水場から廃棄する廃棄汚泥量を
減少できると共に、再生凝集剤中に回収されるマンガン
を可及的に減少し得る浄水処理システム及び浄水処理方
法を提供することにある。
[0005] As described above, a water purification treatment method that requires constantly monitoring the amount of manganese in the regenerated flocculant is not practical. However, the conventional sedimentation basin 103
The slurry-like sediment sludge precipitated in
8, the efficiency of dewatering in the pressurized dehydrator 118 can be greatly improved and the amount of waste sludge discarded from the water treatment plant is reduced in the water purification method shown in FIG. it can. Accordingly, an object of the present invention is to improve the efficiency of dewatering treatment of slurry-like sedimentation sludge generated when purifying raw water, to reduce the amount of waste sludge discarded from a water treatment plant, and to be recovered in a regenerated flocculant. It is an object of the present invention to provide a water purification system and a water purification method capable of reducing manganese as much as possible.

【0006】[0006]

【課題を解決するための手段】本発明者等は、前記課題
を解決すべく検討したところ、マンガン化合物を含有す
る沈殿スラッジに硫酸を加えてアルミニウム化合物を溶
解した後、この硫酸水溶液に飽和水溶液のpHが約7〜
11を呈する弱塩基性の無機化合物を加えてpH4〜6
とし再びアルミニウム化合物を析出させことによって、
マンガン化合物が高濃度で存在する沈殿スラッジからマ
ンガン含有量が極めて少ない硫酸アルミニウムを主成分
とする凝集剤を得ることができることを知った。このた
め、図2に示す浄水システムにおいて、再生凝集剤貯留
槽112に貯留されている硫酸アルミニウム含有の溶液
に、飽和水溶液のpHが約7〜11を呈する弱塩基性の
無機化合物を加えてpH4〜6としてアルミニウム化合
物を析出し、この析出したアルミニウム化合物を再生凝
集剤として再使用することを試みた。しかしながら、沈
殿スラッジから回収して再生した硫酸アルミニウムを主
成分とする再生凝集剤の凝集効果は、市販の凝集剤に比
較して劣ることが判明した。
Means for Solving the Problems The inventors of the present invention have studied to solve the above-mentioned problems. As a result, sulfuric acid was added to a precipitated sludge containing a manganese compound to dissolve an aluminum compound, and then a saturated aqueous solution was added to the aqueous sulfuric acid solution. PH of about 7 ~
PH 4 to 6 by adding a weakly basic inorganic compound exhibiting 11
And by precipitating the aluminum compound again,
It has been found that a flocculant containing aluminum sulphate as a main component having a very low manganese content can be obtained from a sludge containing a high concentration of a manganese compound. For this reason, in the water purification system shown in FIG. 2, a weakly basic inorganic compound having a pH of about 7 to 11 is added to the solution containing aluminum sulfate stored in the regenerating flocculant storage tank 112 to adjust the pH to 4. As a result, an attempt was made to reuse the precipitated aluminum compound as a regenerated coagulant. However, it has been found that the flocculating effect of the regenerated flocculant containing aluminum sulfate as a main component, which is recovered from the precipitated sludge and regenerated, is inferior to that of a commercially available flocculant.

【0007】このため、本発明者等は、沈殿スラッジか
ら回収して再生した硫酸アルミニウムを主成分とする再
生凝集剤が、市販の凝集剤に比較して劣る原因について
検討したところ、沈殿スラッジには、鉄化合物も高濃度
に含有されているが、先に検討した回収方法では、沈殿
スラッジ中のマンガン化合物の除去と同時に鉄化合物も
除去されていることが判った。一方、鉄は人体に無害な
金属であり、鉄イオンは凝集効果を奏するため、原水に
注入される再生凝集剤の凝集効果を向上させるべく、再
生凝集剤中に鉄を残存させることは可能である。この様
な知見に基づいて本発明者等は、更に検討を重ねた結
果、鉄化合物及びマンガン化合物を含有する沈殿スラッ
ジに硫酸を加えてアルミニウム化合物を溶解した後、こ
の硫酸水溶液に苛性ソーダを添加し、アルミニウム水和
物を析出せしめることによって、マンガンを除去しつつ
鉄を残留させることができること、及び沈殿スラッジか
ら回収して再生した塩化アルミニウムを主成分とする再
生凝集剤でも、市販の塩化アルミニウムを主成分とする
水処理凝集剤と同程度の凝集効果を呈し得ることを見出
し、本発明に到達した。
[0007] For this reason, the present inventors examined the cause of the inferiority of the regenerated flocculant containing aluminum sulfate as a main component recovered and regenerated from the precipitated sludge as compared with a commercially available flocculant. Although iron compounds were also contained at a high concentration, it was found that, in the recovery method discussed above, the iron compounds were also removed simultaneously with the removal of the manganese compounds in the settled sludge. On the other hand, iron is a metal that is harmless to the human body, and iron ions have a flocculating effect, so it is possible to leave iron in the regenerated flocculant to improve the flocculating effect of the regenerated flocculant injected into raw water. is there. Based on such findings, the present inventors have further studied and found that after adding sulfuric acid to the precipitated sludge containing the iron compound and the manganese compound to dissolve the aluminum compound, caustic soda was added to the aqueous sulfuric acid solution. By precipitating aluminum hydrate, it is possible to leave iron while removing manganese, and even with a regenerated flocculant containing aluminum chloride as a main component recovered and regenerated from the precipitated sludge, commercially available aluminum chloride can be used. The present inventors have found that a coagulation effect similar to that of a water treatment coagulant as a main component can be exhibited, and have reached the present invention.

【0008】すなわち、本発明は、主成分がアルミニウ
ム化合物から成る凝集剤を原水に注入し、凝集処理を施
して飲料用水等を供給する浄水システムにおいて、該原
水を浄化する際に発生したスラリー状の沈殿スラッジに
塩酸又は硫酸を注入し、前記沈殿スラッジ中のアルミニ
ウム化合物を溶解した溶液と濃縮汚泥とに分離する溶解
分離処理手段と、前記溶解分離処理手段で分離された溶
液にpH13以上の強アルカリ性を呈するアルカリ化合
物を注入し、前記溶液をpH4.5〜6.5に調整する
ことによってアルミニウム水和物を主成分とする析出物
を析出し、前記析出物と溶液とに分離するアルカリ反応
分離手段と、前記アルカリ反応分離手段で分離されたア
ルミニウム水和物を主成分とする析出物を原料に用いて
塩化アルミニウム又は硫酸アルミニウムを主成分とする
凝集剤を再生する凝集剤再生手段と、前記凝集剤生成手
段で再生した凝集剤を、前記原水に注入して凝集処理を
施す再生凝集剤の注入手段と、前記溶解分離処理手段で
分離された濃縮汚泥と、前記アルカリ反応分離手段で分
離された溶液とに中和処理を施すと共に、脱水処理を施
す中和脱水処理手段とを具備することを特徴とする浄水
処理システムにある。
That is, according to the present invention, in a water purification system in which a coagulant mainly composed of an aluminum compound is injected into raw water and subjected to coagulation treatment to supply drinking water or the like, a slurry generated when the raw water is purified is used. Dissolving and separating treatment means for injecting hydrochloric acid or sulfuric acid into the sedimentation sludge to separate into a solution in which the aluminum compound in the sedimentation sludge is dissolved and concentrated sludge; An alkali compound exhibiting alkalinity is injected, and the solution is adjusted to pH 4.5 to 6.5 to precipitate a precipitate mainly composed of aluminum hydrate, and is separated into the precipitate and the solution. Separation means, aluminum chloride using as a raw material a precipitate mainly composed of aluminum hydrate separated by the alkali reaction separation means A coagulant regenerating means for regenerating a coagulant containing aluminum sulfate as a main component, a coagulant regenerated by the coagulant generating means, a coagulant injection means for injecting into the raw water and performing a coagulation treatment, A purified water treatment comprising: performing a neutralization treatment on the concentrated sludge separated by the dissolution separation treatment means and the solution separated by the alkali reaction separation means; In the processing system.

【0009】また、本発明は、主成分がアルミニウム化
合物から成る凝集剤を原水に注入し、凝集処理を施して
飲料用水等に供給する浄水を得る際に、該原水を浄化す
る際に発生したスラリー状の沈殿スラッジに塩酸又は硫
酸を注入し、前記沈殿スラッジ中のアルミニウム化合物
を溶解した溶液と濃縮汚泥とに分離する溶解分離処理を
施し、前記溶解分離処理で分離した溶液にpH13以上
の強アルカリ性を呈するアルカリ化合物を注入し前記溶
液をpH4.5〜6.5に調整して析出したアルミニウ
ム水和物を主成分とする析出物を、溶液と分離するアル
カリ反応分離処理を施した後、前記アルカリ反応分離処
理で分離したアルミニウム水和物を主成分とする析出物
を原料に用いて得た、塩化アルミニウム又は硫酸アルミ
ニウムを主成分とする再生凝集剤を、前記原水に注入し
て凝集処理を施すと共に、前記溶解分離処理で分離され
た濃縮汚泥と、前記アルカリ反応分離処理で分離した溶
液とを中和処理した後、脱水処理を施すことを特徴とす
る浄水処理方法でもある。
Further, the present invention has been developed in purifying raw water when injecting a coagulant mainly composed of an aluminum compound into raw water and performing coagulation treatment to obtain purified water to be supplied to drinking water or the like. Hydrochloric acid or sulfuric acid is injected into the slurry precipitation sludge, subjected to a dissolution separation treatment for separating a solution in which the aluminum compound in the precipitation sludge is dissolved and a concentrated sludge, and the solution separated by the dissolution separation treatment is subjected to a pH of 13 or more. After injecting an alkali compound exhibiting alkalinity, adjusting the solution to pH 4.5 to 6.5, and subjecting the precipitate containing aluminum hydrate as a main component to an alkaline reaction separation treatment for separating the precipitate from the solution, Obtained using as a raw material a precipitate mainly composed of aluminum hydrate separated by the alkali reaction separation treatment, aluminum chloride or aluminum sulfate as a main component The regenerated coagulant is injected into the raw water and subjected to coagulation treatment, and the concentrated sludge separated by the dissolution separation treatment and the solution separated by the alkali reaction separation treatment are neutralized, followed by dehydration treatment. It is also a water purification method characterized by applying.

【0010】かかる本発明において、スラリー状の沈殿
スラッジを濃縮スラッジと水とに沈降分離し、分離した
水を原水に戻すと共に、前記濃縮スラッジを溶解分離処
理手段に供給する沈降分離処理手段を設けることによっ
て、溶解分離処理手段以降の各処理手段での処理量を減
少できる。また、沈降分離処理手段で分離された濃縮ス
ラッジの一部に直接脱水処理を施す濃縮スラッジの脱水
処理手段を設けることによって、大雨等によって原水が
著しく濁り、濃縮スラッジ量が著しく多量に発生した場
合であっても、濃縮スラッジの一部を直接脱水処理する
ことによって、凝集剤の回収工程の負荷量を一定とする
ことができ、安定した品質の再生凝集剤を回収できる。
In the present invention, there is provided a sedimentation separation means for sedimenting and separating the slurry-like precipitation sludge into concentrated sludge and water, returning the separated water to raw water, and supplying the concentrated sludge to the dissolution separation treatment means. This makes it possible to reduce the amount of processing in each processing unit after the dissolution separation processing unit. Also, by providing a concentrated sludge dewatering treatment means for directly dehydrating a part of the concentrated sludge separated by the sedimentation separation treatment means, when the raw water becomes extremely turbid due to heavy rain, etc., and the concentrated sludge amount is extremely large. Even so, by directly dehydrating a part of the concentrated sludge, the load in the flocculant recovery step can be made constant, and a regenerated flocculant of stable quality can be recovered.

【0011】本発明によれば、原水を浄化する際に発生
したスラリー状の沈殿スラッジから回収した再生凝集剤
は、含有されるマンガン化合物を可及的に少なくできる
と共に、鉄含有量も多くできる。このため、再生凝集剤
を繰り返し使用しても、再生凝集剤中にマンガン化合物
が次第に蓄積することを防止でき、再生凝集剤の呈する
凝集性も市販の水処理凝集剤と同程度以上である。しか
も、スラリー状の沈殿スラッジからアルミニウム化合物
を実質的に除去した後、脱水処理を施しているため、ス
ラリー状の沈殿スラッジを直接脱水処理する場合に比較
して、その処理が容易で且つ脱水処理して浄水場から廃
棄する廃棄汚泥量の減少を図ることができる。
According to the present invention, the regenerated coagulant recovered from the slurry-like settling sludge generated when purifying raw water can contain as little manganese compounds as possible and also have a large iron content. . For this reason, even if the regenerated coagulant is used repeatedly, the manganese compound can be prevented from gradually accumulating in the regenerated coagulant, and the coagulability exhibited by the regenerated coagulant is equal to or higher than that of a commercially available water treatment coagulant. Moreover, since the aluminum compound is substantially removed from the slurry-like settling sludge and then subjected to the dehydration treatment, the treatment is easier and the dewatering treatment is easier than when the slurry-like precipitation sludge is directly dehydrated. The amount of waste sludge to be discarded from the water treatment plant can be reduced.

【0012】[0012]

【発明の実施の形態】本発明に係る浄水処理システムの
一例を図1に示す。図1に示す浄水場では、河川等から
取水した原水を混和池1でアルミニウム化合物を主成分
とする凝集剤を注入し、フロック形成池2で縣濁質をフ
ロック化した後、沈殿池3で縣濁質を沈殿して沈殿スラ
ッジとすると共に、上澄液を急速濾過池15に送る。急
速濾過池15で濾過されされた濾過水は、滅菌槽16で
塩素滅菌されて上水として供給する。一方、沈殿池3で
沈殿したスラリー状の沈殿スラッジは、沈降分離手段に
よって濃縮スラッジとする。この沈降分離手段には、排
泥池4、ポンプ5、沈殿槽としての第1シックナ6とか
ら構成される。かかる沈降分離手段では、沈殿池3から
排泥池4に排出されたスラリー状の沈殿スラッジをポン
プ5によって第1シックナ6に送液し、重力沈降によっ
て上澄水と第1濃縮汚泥に分離する。この第1シックナ
6で分離された上澄水は、混和池1に返送する。
FIG. 1 shows an example of a water purification system according to the present invention. In the water purification plant shown in FIG. 1, raw water taken from a river or the like is mixed with a coagulant containing an aluminum compound as a main component in a mixing pond 1, flocculants are suspended in a floc forming pond 2, and then flocculated in a sedimentation pond 3. The suspension is settled to form settled sludge, and the supernatant is sent to the rapid filtration pond 15. The filtered water filtered in the quick filtration pond 15 is sterilized with chlorine in a sterilization tank 16 and supplied as clean water. On the other hand, the slurry-like sediment sludge precipitated in the sedimentation basin 3 is converted into concentrated sludge by sedimentation and separation means. The sedimentation / separation means includes a sludge pond 4, a pump 5, and a first thickener 6 as a sedimentation tank. In this sedimentation separation means, the slurry-like sedimentation sludge discharged from the sedimentation basin 3 to the sludge basin 4 is sent to the first thickener 6 by the pump 5 and separated into supernatant water and first concentrated sludge by gravity sedimentation. The supernatant water separated by the first thickener 6 is returned to the mixing pond 1.

【0013】一方、第1シックナ6で分離された第1濃
縮汚泥には、混和池1に凝集剤として注入された凝集剤
等からのアルミニウム化合物が含有されている。このた
め、第1段濃縮汚泥を溶解分離処理手段に供する。この
溶解分離処理手段は、攪拌機付き酸混合槽7と酸反応槽
及び沈殿槽としての第2シックナ8とから構成される。
第1シックナ6から酸混合槽7に送られた第1段濃縮汚
泥は、攪拌機によって攪拌されつつ、注入された塩酸又
は硫酸と混合された後、第2シックナ8に送液される。
第2シックナ8では、第1段濃縮汚泥中のアルミニウム
化合物を塩酸又は硫酸と反応せしめて水溶性とし、水溶
性のアルミニウム化合物が溶解された上澄液と、非溶解
物から成る汚泥が沈降した第2段濃縮汚泥(以下、強酸
汚泥と称することがある)とに分離する。
On the other hand, the first concentrated sludge separated by the first thickener 6 contains an aluminum compound from a flocculant or the like injected into the mixing pond 1 as a flocculant. For this reason, the first-stage concentrated sludge is provided to the dissolution separation treatment means. This dissolution / separation treatment means comprises an acid mixing tank 7 with a stirrer and a second thickener 8 as an acid reaction tank and a precipitation tank.
The first-stage concentrated sludge sent from the first thickener 6 to the acid mixing tank 7 is mixed with the injected hydrochloric acid or sulfuric acid while being stirred by the stirrer, and then sent to the second thickener 8.
In the second thickener 8, the aluminum compound in the first-stage concentrated sludge was made water-soluble by reacting it with hydrochloric acid or sulfuric acid, and the supernatant in which the water-soluble aluminum compound was dissolved and the sludge consisting of the undissolved matter settled out. It is separated into second-stage concentrated sludge (hereinafter sometimes referred to as strong acid sludge).

【0014】ここで、第1シックナ6から酸混合槽7に
送液された第1段濃縮汚泥に注入する塩酸量又は硫酸量
は、その量を第1濃縮汚泥に含有されているアルミニウ
ムと当量となるように調整することが好ましい。また、
第2シックナ8で分離された上澄液中のアルミニウム濃
度は、Al2O3換算で0.1〜6重量%、特に1〜6重量
%となる様に、第1段濃縮汚泥量、水量及び塩酸量又は
硫酸量を調整することが好ましい。ここで、第2シック
ナ8で分離された上澄液中のアルミニウム濃度が低過ぎ
ると、最終的に得られる再生凝集剤が不安定となって、
再生凝集剤の凝集性能が不充分となり易い傾向がある。
他方、第2シックナ8で分離された上澄液中のアルミニ
ウム濃度が高過ぎると、第1段濃縮汚泥と塩酸又は硫酸
とから成るスラリーの粘度が高くなって、第2シックナ
8での強酸汚泥との分離操作等に支障を来す傾向があ
る。尚、第1濃縮汚泥中のアルミニウム化合物と塩酸又
は硫酸との反応は、室温〜100℃(好ましくは50〜
95℃)の範囲で行うことが好ましい。
The amount of hydrochloric acid or sulfuric acid injected into the first-stage concentrated sludge sent from the first thickener 6 to the acid mixing tank 7 is equivalent to the amount of aluminum contained in the first concentrated sludge. It is preferable to adjust so that Also,
The aluminum concentration in the supernatant separated in the second thickener 8 is 0.1 to 6% by weight, particularly 1 to 6% by weight in terms of Al 2 O 3 , so that the first-stage concentrated sludge amount and the water amount It is preferable to adjust the amount of hydrochloric acid or sulfuric acid. Here, if the aluminum concentration in the supernatant separated by the second thickener 8 is too low, the finally obtained regenerated flocculant becomes unstable,
The coagulation performance of the regenerated coagulant tends to be insufficient.
On the other hand, if the aluminum concentration in the supernatant separated in the second thickener 8 is too high, the viscosity of the slurry composed of the first-stage concentrated sludge and hydrochloric acid or sulfuric acid increases, and the strong acid sludge in the second thickener 8 increases. It tends to hinder the separation operation and the like. The reaction of the aluminum compound in the first concentrated sludge with hydrochloric acid or sulfuric acid is carried out at room temperature to 100 ° C (preferably 50 to 100 ° C).
(95 ° C.).

【0015】第2シックナ8分離された上澄液には、第
1段濃縮汚泥中に含有されているマンガン化合物や鉄化
合物も、アルミニウム化合物と同様に塩酸又は硫酸と反
応して溶解されている。このため、かかる上澄液中のマ
ンガン化合物を可及的に除去しつつ、アルミニウム化合
物及び鉄化合物を回収すべく、上澄液をアルカリ反応分
離手段に供する。このアルカリ反応分離手段には、アル
カリ反応槽9と濾過機10とから構成される。第2シッ
クナ8で分離された上澄液が送液されたアルカリ反応槽
9には、上澄液に中和剤としてpH13以上の強アルカ
リ性を呈するアルカリ化合物を添加し、上澄液をpH
4.5〜6.5に調整することによって、マンガン化合
物を実質的に析出させることなくアルミニウム水和物
(水酸化アルミニウム)及び鉄化合物を析出できる。こ
の様に、アルカリ反応槽9でpH調整し、アルミニウム
水和物が析出した溶液を濾過機10で濾過し、アルミニ
ウム水和物及び鉄化合物が含有されている脱水ケーキ
と、マンガン化合物が含有されている濾液とに分離す
る。ここで、中和剤として用いるpH13以上の強アル
カリ性を呈するアルカリ化合物としては、溶液として扱
うことのできる苛性ソーダや苛性カリを好ましく用いる
ことができるが、薬剤コストの観点から苛性ソーダが特
に好ましい。尚、濾過機10としては、加圧脱水機を用
いることができるが、フィルター濾過機或いは吸引濾過
機を用いることができる。
In the supernatant liquid separated from the second thickener 8, manganese compounds and iron compounds contained in the first-stage concentrated sludge are also dissolved by reacting with hydrochloric acid or sulfuric acid, like the aluminum compounds. . For this reason, the supernatant is subjected to an alkali reaction separation means in order to recover the aluminum compound and the iron compound while removing as much as possible the manganese compound in the supernatant. This alkali reaction separation means includes an alkali reaction tank 9 and a filter 10. Into the alkaline reaction tank 9 to which the supernatant separated in the second thickener 8 has been sent, an alkali compound exhibiting strong alkalinity of pH 13 or more is added to the supernatant as a neutralizing agent, and the supernatant is subjected to pH adjustment.
By adjusting to 4.5 to 6.5, an aluminum hydrate (aluminum hydroxide) and an iron compound can be deposited without substantially depositing a manganese compound. As described above, the pH is adjusted in the alkaline reaction tank 9, and the solution in which aluminum hydrate is precipitated is filtered by the filter 10, and the dehydrated cake containing aluminum hydrate and iron compound and the manganese compound are contained. And separated filtrate. Here, as the alkali compound exhibiting strong alkalinity of pH 13 or more used as a neutralizing agent, caustic soda or caustic potash which can be handled as a solution can be preferably used, and caustic soda is particularly preferable from the viewpoint of chemical cost. Note that a pressure dehydrator can be used as the filter 10, but a filter filter or a suction filter can be used.

【0016】かかる中和剤に代えて、重炭酸ソーダ、炭
酸カルシウム、炭酸マグネシウム等の弱塩基性のアルカ
リ化合物を用いると、塩酸溶液又は硫酸溶液中のマンガ
ンのみならず鉄も除去する。また、pH13以上の強ア
ルカリ性を呈するアルカリ化合物を添加した上澄液のp
Hが4.5未満の場合、第1濃縮汚泥に含有されている
アルミニウムの回収率が低下する。一方、アルカリ化合
物を添加した上澄液のpHが6.5を越える場合、上澄
液中のマンガンを充分に除去することができない。この
様に、化学的挙動が近似しているマンガンと鉄とを分離
できる詳細な理由は明確になっていないが、一般的に、
浄水場の沈殿池3で縣濁質を沈殿した沈殿スラッジに
は、河川水をアルミニウム系凝集剤で処理して生成した
ものであり、沈殿スラッジ中には土壌由来の成分も含有
されていること、及び中和剤としてpH13以上の強ア
ルカリ性を呈するアルカリ化合物を用いることにあるも
のと推察される。
When a weakly basic alkali compound such as sodium bicarbonate, calcium carbonate, and magnesium carbonate is used instead of the neutralizing agent, not only manganese but also iron in a hydrochloric acid solution or a sulfuric acid solution is removed. Further, p of the supernatant to which an alkali compound exhibiting a strong alkalinity of pH 13 or more was added.
When H is less than 4.5, the recovery rate of the aluminum contained in the first concentrated sludge decreases. On the other hand, when the pH of the supernatant to which the alkali compound has been added exceeds 6.5, manganese in the supernatant cannot be sufficiently removed. In this way, the detailed reason for separating manganese and iron whose chemical behaviors are similar is not clear, but in general,
The sediment sludge obtained by sedimenting the suspended matter in the sedimentation basin 3 of the water purification plant is produced by treating river water with an aluminum-based coagulant, and the sediment sludge also contains soil-derived components. It is presumed that an alkali compound exhibiting strong alkalinity of pH 13 or more is used as the neutralizing agent.

【0017】濾過機10で脱水された、アルミニウム水
和物(水酸化アルミニウム)及び鉄化合物を含み、且つ
実質的にマンガンが除去されている脱水ケーキを、凝集
剤に再生する凝集剤再生手段に供給する。かかる凝集剤
再生手段は、攪拌機付きの反応槽11から構成される。
この反応槽11では、濾過機10で脱水処理した脱水ケ
ーキに水及び塩酸又は硫酸を注入し混合しつつ反応させ
る。かかる反応槽11で脱水ケーキと塩酸とを反応させ
ると、主成分が塩化アルミニウムの再生凝集剤を得るこ
とができる。この脱水ケーキと塩酸とを反応させる際
に、塩酸をアルミニウムに対して当量未満とすることに
よって、下記一般式に示すポリ塩化アルミニウム(以
下、PACと称することがある)を主成分とする再生凝
集剤を得ることができる。 一般式 Al2(OH)nCl(6-n) 但し、0≦n<6 かかる脱水ケーキと塩酸との反応の際に、塩酸に適量の
硫酸塩、例えば無水芒硝(硫酸ナトリウム)を添加する
ことによって、凝集効果の優れたPACを主成分とする
再生凝集とすることができる。このPACを主成分とす
る再生凝集剤は、第1シックナ6で濃縮されたアルミニ
ウム含有の第1段濃縮汚泥に硫酸を添加して回収した
後、苛性ソーダで中和処理して得た脱水ケーキと塩酸と
を反応することによっても得ることができる。脱水ケー
キ中に硫酸根が残留しているためである。また、反応槽
11で脱水ケーキと硫酸とを反応させると、主成分が硫
酸アルミニウムの再生凝集剤を得ることができる。
The dewatered cake containing aluminum hydrate (aluminum hydroxide) and an iron compound and substantially free of manganese, which has been dehydrated by the filter 10, is used as a flocculant regenerating means for regenerating the dehydrated cake into a flocculant. Supply. Such a flocculant regenerating means is composed of a reaction tank 11 with a stirrer.
In the reaction tank 11, water and hydrochloric acid or sulfuric acid are injected into the dewatered cake dehydrated by the filter 10 and reacted while mixing. When the dehydrated cake is reacted with hydrochloric acid in the reaction tank 11, a regenerated flocculant whose main component is aluminum chloride can be obtained. When reacting the dehydrated cake with hydrochloric acid, by making hydrochloric acid less than an equivalent amount to aluminum, regenerated coagulation mainly containing polyaluminum chloride (hereinafter sometimes referred to as PAC) represented by the following general formula is used. Agent can be obtained. General formula Al 2 (OH) n Cl (6-n) where 0 ≦ n <6 In the reaction between the dehydrated cake and hydrochloric acid, an appropriate amount of sulfate, for example, anhydrous sodium sulfate (sodium sulfate) is added to hydrochloric acid. By doing so, it is possible to achieve regenerated cohesion mainly composed of PAC having an excellent coagulation effect. The regenerated flocculant containing PAC as a main component is obtained by adding sulfuric acid to the aluminum-containing first-stage concentrated sludge concentrated in the first thickener 6 and collecting the sludge, followed by neutralization with caustic soda to obtain a dehydrated cake. It can also be obtained by reacting with hydrochloric acid. This is because sulfate groups remain in the dehydrated cake. When the dehydrated cake is reacted with sulfuric acid in the reaction tank 11, a regenerated coagulant whose main component is aluminum sulfate can be obtained.

【0018】一方、濾過機10で濾過された濾液と、第
2シックナ8で分離された強酸汚泥とは、中和処理と脱
水処理とを施す中和脱水処理手段に供される。かかる中
和脱水処理手段では、濾過機10で濾過された濾液には
マンガンが溶解しているため、濾液をpH7付近とする
中和処理を施すことによって、水和物として析出させて
分離する。この濾過機10の濾液の中和処理と、第2シ
ックナ8で分離された強酸汚泥の中和処理とを別々の処
理設備で処理してもよいが、同一設備で処理することが
処理効率等の観点から好ましい。このため、中和脱水処
理手段は、攪拌付き中和槽13と第1加圧脱水機14と
から成る。かかる中和槽13では、濾過機10で濾過さ
れた濾液と、第2シックナ8で分離された強酸汚泥とを
攪拌しつつ、アルカリとしての苛性ソーダを注入して中
和処理を施す。中和処理が施された混合物は、第1加圧
脱水機14で濾過し、濾液を混和池1に戻すと共に、脱
水ケーキを浄水処理システムから廃棄汚泥として系外に
パージする。かかる廃棄汚泥の発生量は、従来の第1シ
ックナ6で濃縮された第1段濃縮汚泥を直接脱水処理す
る場合に比較して、その発生量を2〜3割程度減少する
ことができる。しかも、系外にパージする廃棄汚泥は、
植物の発芽障害となるアルミニウム化合物が除去されて
いるため、園芸用土壌等に有効利用できる。この点、従
来、系外にパージする廃棄汚泥には、植物の発芽障害と
なるアルミニウム化合物が大量に含有されており、産業
廃棄物として埋設処理されていたことに比較し、その経
済的効果も大きい。
On the other hand, the filtrate filtered by the filter 10 is
The strong acid sludge separated by the thickener 8 is supplied to a neutralization and dehydration treatment means for performing a neutralization treatment and a dehydration treatment. In such a neutralization and dehydration treatment means, since manganese is dissolved in the filtrate filtered by the filter 10, the filtrate is subjected to a neutralization treatment near pH 7 to precipitate and separate as a hydrate. The neutralization of the filtrate of the filtration device 10 and the neutralization of the strong acid sludge separated by the second thickener 8 may be performed in separate processing facilities. It is preferable from the viewpoint of. For this reason, the neutralization / dehydration treatment means comprises a neutralization tank 13 with stirring and a first pressure dehydrator 14. In the neutralization tank 13, while the filtrate filtered by the filter 10 and the strong acid sludge separated by the second thickener 8 are stirred, caustic soda as an alkali is injected to perform a neutralization treatment. The mixture subjected to the neutralization treatment is filtered by the first pressure dehydrator 14, the filtrate is returned to the mixing pond 1, and the dewatered cake is purged from the water purification system as waste sludge outside the system. The amount of the generated waste sludge can be reduced by about 20 to 30% as compared with the case where the first-stage concentrated sludge concentrated by the conventional first thickener 6 is directly dewatered. Moreover, the waste sludge to be purged out of the system is
Since the aluminum compound which causes germination failure of plants is removed, it can be effectively used for horticultural soil and the like. In this regard, conventionally, waste sludge to be purged out of the system contains a large amount of aluminum compounds that cause germination failure of plants, and has an economical effect compared to waste disposal that has been buried as industrial waste. large.

【0019】ところで、反応槽11で得られた再生凝集
剤は、アルミニウム成分がAl2O3として10重量%とな
るように換算した換算理剤中のマンガン含有量を20p
pm以下(好ましくは15ppm以下)とすることがで
き、1ppm以下とすることもできる。このため、再生
凝集剤を浄水場で使用することができ、反応槽11で得
られた再生凝集剤を混和池1に注入する注入手段に供す
る。かかる反応槽11で得られた再生凝集剤は液状であ
るため、そのまま混和池1に注入できる。この反応槽1
1で得られた再生凝集剤中のアルミニウム成分の濃度調
整は、反応槽11に注入する水量で調整可能である。こ
こで、再生凝集剤中のアルミニウム含有量は、再生凝集
剤の凝集効果及び再生凝集液を溶解した溶液の安定性等
の観点からは、主成分が硫酸アルミニウムの再生凝集剤
の場合は、Al2O3換算で0.5重量%以上とすることが
好ましい。一方、主成分がポリ塩化アルミニウムの再生
凝集剤の場合は、保存期間によって異なり、例えば保存
期間が1日程度の場合は、Al2O3換算で1重量%以上で
よく、保存期間が1週間程度の場合は、Al2O3換算で2
重量%程度でよい。更に、主成分がポリ塩化アルミニウ
ムの再生凝集剤を1週間を越えて保存する場合は、3重
量%以上とすることが好ましい。
Meanwhile, the regenerated coagulant obtained in the reaction tank 11 has a manganese content of 20 p in a conversion agent converted so that the aluminum component is 10% by weight as Al 2 O 3.
pm or less (preferably 15 ppm or less), and may be 1 ppm or less. For this reason, the regenerated coagulant can be used in a water purification plant, and is supplied to an injection means for injecting the regenerated coagulant obtained in the reaction tank 11 into the mixing pond 1. Since the regenerated coagulant obtained in the reaction tank 11 is in a liquid state, it can be directly injected into the mixing pond 1. This reaction tank 1
The concentration of the aluminum component in the regenerated coagulant obtained in 1 can be adjusted by the amount of water injected into the reaction tank 11. Here, from the viewpoint of the agglomeration effect of the regenerated coagulant and the stability of the solution in which the regenerated coagulant is dissolved, the aluminum content in the regenerated coagulant is, when the main component is the regenerated coagulant of aluminum sulfate, Al. The content is preferably 0.5% by weight or more in terms of 2 O 3 . On the other hand, when the main component is a regenerated coagulant of polyaluminum chloride, the storage period varies depending on the storage period. For example, when the storage period is about 1 day, it may be 1% by weight or more in terms of Al 2 O 3 , and the storage period is 1 week. for degree 2 in terms of Al 2 O 3
% By weight. Furthermore, when the regenerated coagulant whose main component is polyaluminum chloride is stored for more than one week, the content is preferably 3% by weight or more.

【0020】また、主成分がPACから成る再生凝集剤
の場合、PACの塩基度を50%以下とするように、塩
酸の添加量を調整することができる。その際に、再生凝
集剤の凝集性能等を考慮し塩基度を、15〜50%とす
ることが好ましい。PACの塩基度が15%未満の再生
凝集剤では、凝集効果が低下する傾向にあり、PACの
塩基度が50%を越える再生凝集剤を得ようとすると、
ゲル化して分解し易くなる傾向にある。この様に、塩基
度が15〜50%程度のPACを主成分とする再生凝集
剤は、塩基度が50%を越えるPACを主成分とする市
販の凝集剤と同程度以上の凝集効果を奏することができ
る。更に、主成分が硫酸アルミニウムの再生凝集剤も、
硫酸アルミニウムがAl2O3として10重量%となるよう
に換算した換算凝集剤中に、1000ppm以上(好ま
しくは3000ppm以上、特に好ましくは5000p
pm以上)の鉄が含有されており、市販の硫酸アルミニ
ウムから成る再生凝集剤と同程度以上の凝集効果を奏す
る。この様に、再生凝集剤中に含有されている鉄は、再
生凝集剤の奏する凝集性能を補っているものと推察され
る。このため、PACを主成分とする再生凝集剤にも、
ポリ塩化アルミニウムがAl2O3として10重量%となる
ように換算した換算凝集剤中に、1000ppm以上
(更に3000ppm以上、特に5000ppm以上)
の鉄が含有されていることが好ましい。尚、シリカも凝
集剤の凝集性向上に有効に作用するものと考えられるた
め、浄水場のスラッジから回収された再生凝集剤中に
も、その換算凝集剤中に500〜3000ppm程度の
シリカを含有することが好ましい。
In the case of a regenerated flocculant whose main component is PAC, the amount of hydrochloric acid added can be adjusted so that the basicity of PAC is 50% or less. At this time, the basicity is preferably set to 15 to 50% in consideration of the coagulation performance of the regenerated coagulant. In the case of a regenerated coagulant having a PAC basicity of less than 15%, the coagulation effect tends to be reduced. If a regenerated coagulant having a PAC basicity of more than 50% is to be obtained,
It tends to gel and decompose easily. As described above, the regenerated coagulant containing PAC having a basicity of about 15 to 50% as a main component exhibits a coagulation effect at least as high as that of a commercially available coagulant containing PAC having a basicity of more than 50% as a main component. be able to. Furthermore, the regenerated flocculant whose main component is aluminum sulfate is also
1000 ppm or more (preferably 3000 ppm or more, particularly preferably 5000 p) in the reduced flocculant converted to be 10% by weight of aluminum sulfate as Al 2 O 3.
pm or more of iron, and exhibits a coagulation effect at least as high as that of a commercially available regenerated coagulant composed of aluminum sulfate. As described above, it is presumed that iron contained in the regenerated coagulant supplements the coagulation performance of the regenerated coagulant. For this reason, the regenerated flocculant containing PAC as a main component
1000 ppm or more (further 3000 ppm or more, especially 5000 ppm or more) in the reduced flocculant converted so that the polyaluminum chloride becomes 10% by weight as Al 2 O 3.
It is preferable that iron is contained. Since silica is also considered to effectively act to improve the coagulability of the coagulant, the regenerated coagulant recovered from the sludge of the water purification plant also contains about 500 to 3000 ppm of silica in the reduced coagulant. Is preferred.

【0021】この様にして回収された再生凝集剤は、浄
水場で凝集剤として再使用することができ、再生凝集剤
だけでは凝集剤量が不足する場合には、市販の凝集剤を
併用してもよい。ところで、浄水場で発生するスラッジ
には、スラッジ中の全固形分に対してAl 2O3換算で約2
5重量%程度のアルミニウム化合物が含有されている
が、含有されているアルミニウム化合物量のうち、約5
0%が凝集剤由来のものであり、残りの50%が天然土
壌等から由来するものと考えられている。更に、凝集剤
由来のアルミニウム化合物は、塩酸、硫酸に溶解する水
酸化物の形態で存在しており、他方、天然土壌等から由
来するアルミニウム化合物は、主に常温では酸に難溶な
酸化物の形態で存在しているものと考えられる。従っ
て、スラッジから回収されるアルミニウムは、主に凝集
剤由来のものと推察される。このため、スラッジ中に含
有されているアルミニウム化合物量の約50%を回収し
て再生凝集剤として再使用することによって、凝集剤を
循環使用することができ、凝集剤の浄水場外からの搬入
及び凝集剤の使い捨ての問題を解消できる。
The recovered flocculant thus recovered is purified.
Reusable flocculant that can be reused as a flocculant in water
If the amount of coagulant alone is insufficient, use a commercially available coagulant.
You may use together. By the way, sludge generated in water treatment plants
Has a solid content of Al TwoOThreeAbout 2
Contains about 5% by weight of aluminum compound
Is about 5% of the amount of aluminum compound contained.
0% is derived from the flocculant and the remaining 50%
It is thought to be derived from the soil. Furthermore, flocculants
Aluminum compounds derived from water soluble in hydrochloric acid and sulfuric acid
It is present in the form of oxides, and on the other hand,
The coming aluminum compounds are mainly poorly soluble in acids at room temperature.
It is believed to exist in the form of an oxide. Follow
The aluminum recovered from the sludge is mainly agglomerated
It is presumed to be derived from the drug. For this reason, sludge contains
About 50% of the amount of aluminum compounds
By reusing it as a regenerated flocculant
It can be used for circulation, and the flocculant is brought in from outside the water purification plant.
In addition, the problem of disposable flocculants can be solved.

【0022】図1に示す浄水処理システムには、沈降分
離処理手段としての第1シックナ6で分離された第1段
濃縮汚泥の一部を、直接脱水処理する第1段濃縮汚泥の
脱水処理手段としての第2加圧脱水機12が設けられて
いる。かかる第2加圧脱水機12では、大雨等によって
原水が著しく濁り、第1シックナ6で大量の第1段濃縮
汚泥が大量に発生した場合であっても、第1段濃縮汚泥
の一部を第2加圧脱水機12で直接脱水処理することに
よって、再生凝集剤の回収工程の負荷量を一定とするこ
とができ、安定した品質の再生凝集剤を回収できる。こ
の第2加圧脱水機12で分離された水は混和池1に戻さ
れ、脱水ケーキは浄水処理システム外にパージされる
が、園芸用土壌等に有効利用できる。
In the water purification system shown in FIG. 1, the first-stage concentrated sludge dewatering means for directly dehydrating a part of the first-stage concentrated sludge separated by the first thickener 6 as the sedimentation separation means is provided. The second pressure dehydrator 12 is provided. In the second pressurized dewatering machine 12, even if the raw water becomes extremely turbid due to heavy rain or the like and a large amount of the first-stage concentrated sludge is generated in the first thickener 6, a part of the first-stage concentrated sludge is removed. By directly performing the dehydration treatment by the second pressure dehydrator 12, the load in the recovery step of the regenerated coagulant can be made constant, and the regenerated coagulant of stable quality can be collected. The water separated by the second pressure dehydrator 12 is returned to the mixing pond 1, and the dewatered cake is purged outside the water purification system, but can be effectively used for horticultural soil and the like.

【0023】以上、述べてきた浄水処理システムでは、
反応槽11から混和池1に液状の再生凝集剤を注入して
いたが、反応槽11で得られた再生凝集剤を乾燥し、粉
体としてもよい。この様に、粉体の再生凝集剤とするこ
とによって、その保存性を良好とすることができる。ま
た、図1に示す浄水処理システムでは、沈殿池3で沈殿
したスラリー状の沈殿スラッジを、排泥池4、ポンプ
5、沈殿槽としての第1シックナ6とから構成される沈
降分離手段によって沈降スラッジを濃縮している。しか
し、沈殿池4で沈殿する沈殿スラッジの量が少ない場
合、或いは小規模の浄水場の場合等では、沈降分離手段
を省略して攪拌機付き酸混合槽7と酸反応槽及び沈殿槽
としての第2シックナ8とから構成される溶解分離処理
手段に、沈殿スラッジを直接供給してもよい。
In the water purification system described above,
Although the liquid regenerated coagulant was injected from the reaction tank 11 into the mixing pond 1, the regenerated coagulant obtained in the reaction tank 11 may be dried to be a powder. As described above, by using the powder as a regenerated coagulant, its storage stability can be improved. In the water purification system shown in FIG. 1, the slurry sludge settled in the sedimentation basin 3 is settled by the sedimentation separation means composed of the sludge pond 4, the pump 5, and the first thickener 6 as a sedimentation tank. Concentrates sludge. However, when the amount of sedimentation sludge settling in the sedimentation basin 4 is small, or in the case of a small-scale water purification plant, the sedimentation / separation means is omitted and the acid mixing tank 7 with a stirrer and the acid reaction tank and the sedimentation tank are used. The settling sludge may be directly supplied to the dissolution / separation processing means constituted by the two thickeners 8.

【0024】[0024]

【実施例】以下、本発明に係る浄水処理システムについ
て、ビーカスケールで行ったモデル実験で更に詳細に説
明する。 比較例1 浄水場Aの沈殿池3で沈殿したスラリー状の沈殿スラッ
ジ(アルミニウム含有率がAl2O3換算で1.3重量%)
2950gを、現在の浄水場で広く実施されている状態
を再現すべく、No.2濾紙を用いて吸引濾過した。濾紙
上に824gの濾過汚泥が残留した。この濾過汚泥の含
水率は、水分計にて130℃/90分の条件で測定した
ところ、84.2重量%であった(固形分は130
g)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The water purification system according to the present invention will be described in more detail with reference to a model experiment conducted on a beaker scale. Comparative Example 1 Slurry sedimentation sludge precipitated in the sedimentation basin 3 of the water treatment plant A (the aluminum content is 1.3% by weight in terms of Al 2 O 3 )
2950 g was subjected to suction filtration using No. 2 filter paper in order to reproduce the state widely practiced in the current water purification plant. 824 g of filtered sludge remained on the filter paper. The water content of the filtered sludge was 84.2% by weight as measured with a moisture meter at 130 ° C./90 minutes (solid content was 130%).
g).

【0025】実施例1 浄水場Aの沈殿池3で沈殿したスラリー状の沈殿スラッ
ジ(アルミニウム含有率がAl2O3換算で1.3重量%)
2950gに、96%硫酸112gを添加して95℃で
120分間攪拌混合し、沈殿スラッジ中のアルミニウム
化合物と硫酸とを反応させた。スラリー状の反応液を、
No.2濾紙を用いて吸引濾過し、2212gの濾液aと
222.5gの強酸汚泥とに分離した。得られた濾液a
に、20%苛性ソーダ水溶液を攪拌しつつ徐々に加え、
最終pHを6.3に調整して水酸化アルミニウムを析出
させた。かかる水酸化アルミニウムが析出した溶液をN
o.2濾紙を用いて吸引濾過し、水酸化アルミニウムケー
キ613g(Al2O3換算で4.3重量%含有)と202
9gの濾液bを得た。更に、水酸化アルミニウムケーキ
613gと、96%硫酸79gとを反応させ、主成分が
硫酸アルミニウムから成る液状の再生凝集剤693gを
得た。得られた再生凝集剤は、アルミニウム含有量がAl
2O3換算で3.8重量%であり、マンガン含有量が3p
pm、鉄含有量が3500ppm、シリカ含有量が13
00ppmであった。かかる再生凝集剤に含有されてい
るマンガン、鉄、シリカの含有量について、アルミニウ
ム含有量がAl2O3換算で10重量%となるように換算し
た換算凝集剤中では、マンガンが8ppm、鉄が920
0ppm、シリカが3400ppmであり、浄水処理用
の凝集剤として充分に使用可能のものである。一方、強
酸汚泥は強酸性であるため、濾液bと混合した後、20
%苛性ソーダ水溶液を加えてpH7に中和し、No.2濾
紙を用いて吸引濾過してケーキと濾液cとに分離した。
濾紙上に残ったケーキ280gの含水率は、水分計にて
130℃/90分の条件で測定したところ、65.0重
量%であった(固形分は98g)。濾紙上に残ったケー
キは、比較例1の場合に比較して、総重量で66重量
%、固形分で25重量%減少している。尚、濾液cは、
浄水場の混和池1に戻すことができるものであった。
Example 1 Slurry sedimentation sludge settled in the sedimentation basin 3 of the water treatment plant A (the aluminum content is 1.3% by weight in terms of Al 2 O 3 )
112 g of 96% sulfuric acid was added to 2950 g, and the mixture was stirred and mixed at 95 ° C. for 120 minutes to react the aluminum compound in the precipitation sludge with sulfuric acid. The slurry reaction solution is
Suction filtration was performed using No. 2 filter paper to separate into 2212 g of filtrate a and 222.5 g of strong acid sludge. The filtrate a obtained
, Gradually add a 20% aqueous solution of caustic soda while stirring,
The final pH was adjusted to 6.3 to precipitate aluminum hydroxide. The solution in which the aluminum hydroxide is precipitated is referred to as N
o.2 Suction filtration was performed using a filter paper, and 613 g of aluminum hydroxide cake (containing 4.3% by weight in terms of Al 2 O 3 ) and 202
9 g of filtrate b were obtained. Further, 613 g of the aluminum hydroxide cake was reacted with 79 g of 96% sulfuric acid to obtain 693 g of a liquid regenerated coagulant composed mainly of aluminum sulfate. The obtained regenerated coagulant has an aluminum content of Al
It is 3.8% by weight in terms of 2 O 3 and the manganese content is 3p
pm, iron content 3500 ppm, silica content 13
It was 00 ppm. Regarding the contents of manganese, iron, and silica contained in such a regenerated coagulant, in the converted coagulant in which the aluminum content was converted to 10% by weight in terms of Al 2 O 3 , manganese was 8 ppm and iron was 8 ppm. 920
It is 0 ppm and silica is 3400 ppm, and can be sufficiently used as a flocculant for water purification treatment. On the other hand, since strong acid sludge is strongly acidic, it is mixed with the filtrate b.
Then, the mixture was neutralized to pH 7 by adding an aqueous solution of sodium hydroxide, and filtered by suction using No. 2 filter paper to separate the cake and the filtrate c.
The water content of 280 g of cake remaining on the filter paper was 65.0% by weight (solid content: 98 g) as measured by a moisture meter at 130 ° C./90 minutes. The cake remaining on the filter paper is reduced by 66% by weight in total weight and 25% by weight in solid content compared to the case of Comparative Example 1. The filtrate c is
It could be returned to the mixing pond 1 at the water purification plant.

【0026】比較例2 実施例1と同様の方法で得られた濾液a(2310g)
に20%苛性ソーダ水溶液を攪拌しつつ徐々に加えてp
H7.5とし、水酸化アルミニウムを析出させた。更
に、水酸化アルミニウムが析出した溶液を、No.2濾紙
を用いて吸引濾過し、No.2濾紙上にケーキ400gが
残った。このケーキ中の水酸化アルミニウム含有量は、
Al2O3換算で6.1重量%であった。更に、水酸化アル
ミニウム含有ケーキ440gと、96%硫酸80gとを
反応させ、主成分が硫酸アルミニウムから成る液状の再
生凝集剤522gを得た。得られた再生凝集剤は、アル
ミニウム含有量がAl2O3換算で5.1重量%であり、マ
ンガン含有量が2000ppm、鉄含有量が4200p
pm、及びシリカ含有量gが1700ppmであった。
また、再生凝集剤に含有されている硫酸アルミニウムが
Al2O3として10重量%となるように換算した換算凝集
剤中のマンガン、鉄、及びシリカの含有量は、マンガン
含有量が3900ppm、鉄含有量が8200ppm、
及びシリカ含有量が3300ppmであった。この様
に、換算凝集剤中のマンガン含有量が3900ppmに
も達する凝集剤は、浄水場の凝集剤としては使用できな
いものである。
Comparative Example 2 Filtrate a (2310 g) obtained in the same manner as in Example 1
20% caustic soda aqueous solution is gradually added to
H7.5, and aluminum hydroxide was precipitated. Further, the solution in which aluminum hydroxide was precipitated was filtered by suction using No. 2 filter paper, leaving 400 g of cake on the No. 2 filter paper. The aluminum hydroxide content in this cake is
It was 6.1% by weight in terms of Al 2 O 3 . Further, 440 g of the aluminum hydroxide-containing cake was reacted with 80 g of 96% sulfuric acid to obtain 522 g of a liquid regenerated coagulant composed mainly of aluminum sulfate. The obtained regenerated coagulant had an aluminum content of 5.1% by weight in terms of Al 2 O 3 , a manganese content of 2000 ppm, and an iron content of 4200 p.
pm and the silica content g were 1700 ppm.
Also, aluminum sulfate contained in the regenerated flocculant
The contents of manganese, iron, and silica in the reduced flocculant converted to be 10% by weight as Al 2 O 3 were such that the manganese content was 3900 ppm, the iron content was 8200 ppm,
And the silica content was 3300 ppm. Thus, the coagulant whose manganese content in the reduced coagulant reaches 3900 ppm cannot be used as a coagulant in a water purification plant.

【0027】比較例3 実施例1と同様な方法で得られた濾液a(2390g)
に20%苛性ソーダ水溶液を攪拌しつつ徐々に加えてp
H4.0とし、水酸化アルミニウムを析出させた。更
に、水酸化アルミニウムが析出した溶液を、No.2濾紙
を用いて吸引濾過し、No.2濾紙上にケーキ60gが残
った。このケーキ中の水酸化アルミニウム含有量は、Al
2O3換算で4.2重量%であった。この時点でのスラッ
ジ中に含有しているアルミニウムに対する回収率が8%
に過ぎず、実用性が乏しいため以後の操作を中止した。
Comparative Example 3 Filtrate a (2390 g) obtained in the same manner as in Example 1.
20% caustic soda aqueous solution is gradually added to
H4.0, and aluminum hydroxide was precipitated. Further, the solution in which aluminum hydroxide was precipitated was suction-filtered using No. 2 filter paper, leaving 60 g of cake on the No. 2 filter paper. The aluminum hydroxide content in this cake is Al
It was 4.2% by weight in terms of 2 O 3 . At this time, the recovery rate of aluminum contained in the sludge was 8%.
And the subsequent operation was stopped due to poor practicality.

【0028】実施例2 実施例1で用いたと同様の沈殿スラッジ(アルミニウム
含有率がAl2O3換算で1.3重量%)2950gに、3
5%塩酸230gを添加して95℃で120分間攪拌混
合し、沈殿スラッジ中のアルミニウム化合物と塩酸とを
反応させた。スラリー状の反応液を、No.2濾紙を用い
て吸引濾過し、2493gの濾液aと203.0gの強
酸汚泥とに分離した。得られた濾液aに、20%苛性ソ
ーダ水溶液を攪拌しつつ徐々に加え、最終pHを4.8
に調整して水酸化アルミニウムを析出させた。かかる水
酸化アルミニウムが析出した溶液をNo.2濾紙を用いて
吸引濾過し、水酸化アルミニウムケーキ824g(Al2O
3換算で3.3重量%含有)と2022gの濾液bを得
た。更に、水酸化アルミニウムケーキ824gと、無水
芒硝(硫酸ナトリウム)12g及び35%塩酸とを混合
し反応させ、主成分がポリ塩化アルミニウム(PAC)
から成る液状の再生凝集剤950gを得た。得られた再
生凝集剤は、アルミニウム含有量がAl2O3換算で2.8
重量%であり、マンガン含有量が1ppm未満、鉄含有
量が3000ppm、シリカ含有量が1500ppmで
あった。かかる再生凝集剤に含有されているマンガン、
鉄、シリカがの含有量について、アルミニウム含有量が
Al2O3換算で10重量%となるように換算した換算凝集
剤中では、マンガンが3.6ppm未満、鉄が1000
0ppm、シリカが5000ppmであり、浄水処理用
の凝集剤として充分に使用可能のものである。一方、強
酸汚泥は強酸性であるため、濾液bと混合した後、20
%苛性ソーダ水溶液を加えてpH7に中和し、No.2濾
紙を用いて吸引濾過してケーキと濾液cとに分離した。
濾紙上に残ったケーキ251gの含水率は、水分計にて
130℃/90分の条件で測定したところ、61.0重
量%であった(固形分は98g)。濾紙上に残ったケー
キは、比較例1の場合に比較して、総重量で70重量
%、固形分で25重量%減少している。尚、濾液cは、
浄水場の混和池1に戻すことができるものであった。
Example 2 To 2950 g of the same precipitated sludge as used in Example 1 (the aluminum content was 1.3% by weight in terms of Al 2 O 3 ), 3
230 g of 5% hydrochloric acid was added and mixed by stirring at 95 ° C. for 120 minutes to react the aluminum compound in the precipitated sludge with hydrochloric acid. The slurry-like reaction solution was subjected to suction filtration using No. 2 filter paper to separate into 2493 g of filtrate a and 203.0 g of strong acid sludge. To the obtained filtrate a, a 20% aqueous solution of caustic soda was gradually added with stirring to adjust the final pH to 4.8.
And aluminum hydroxide was precipitated. The solution in which the aluminum hydroxide was precipitated was filtered by suction using No. 2 filter paper, and 824 g of aluminum hydroxide cake (Al 2 O
3.3% by weight in terms of 3 ) and 2022 g of filtrate b. Further, 824 g of aluminum hydroxide cake, 12 g of anhydrous sodium sulfate (sodium sulfate) and 35% hydrochloric acid were mixed and reacted, and the main component was polyaluminum chloride (PAC).
950 g of a liquid regenerated coagulant consisting of The obtained regenerated coagulant had an aluminum content of 2.8 in terms of Al 2 O 3.
% By weight, the manganese content was less than 1 ppm, the iron content was 3000 ppm, and the silica content was 1500 ppm. Manganese contained in such a regenerated flocculant,
Regarding the content of iron and silica, the aluminum content is
In the reduced flocculant converted to be 10% by weight in terms of Al 2 O 3 , manganese is less than 3.6 ppm and iron is less than 1000 ppm.
The content is 0 ppm and the content of silica is 5000 ppm, and it can be sufficiently used as a coagulant for water purification treatment. On the other hand, since strong acid sludge is strongly acidic, it is mixed with the filtrate b.
Then, the mixture was neutralized to pH 7 by adding an aqueous solution of sodium hydroxide, and filtered by suction using No. 2 filter paper to separate the cake and the filtrate c.
The moisture content of 251 g of the cake remaining on the filter paper was 61.0% by weight (solid content: 98 g) as measured by a moisture meter at 130 ° C./90 minutes. The cake remaining on the filter paper is reduced by 70% by weight in total weight and 25% by weight in solid content as compared with the case of Comparative Example 1. The filtrate c is
It could be returned to the mixing pond 1 at the water purification plant.

【0029】実施例3 実施例1で用いたと同様の沈殿スラッジ(アルミニウム
含有率がAl2O3換算で1.3重量%)2950gを投入
したビーカに、96%硫酸112gを添加して25℃で
120分間攪拌混合し、沈殿スラッジ中のアルミニウム
化合物と硫酸とを反応させた後、このビーカを一昼夜静
置し、上澄液と重力沈降させた酸性汚泥とに分離した。
分離した上澄液2041gに、20%苛性ソーダ水溶液
を攪拌しつつ徐々に加え、pH5.2として水酸化アル
ミニウムを析出させた。かかる水酸化アルミニウムが析
出した溶液をNo.2濾紙を用いて吸引濾過し、水酸化ア
ルミニウムケーキ321g(Al2O3換算で4.7重量%
含有)と2067gの濾液bを得た。一方、重力沈降さ
せた酸性汚泥1021gは強酸性であるため、濾液bと
混合した後、20%苛性ソーダ水溶液を加えてpH7に
中和し、No.2濾紙を用いて吸引濾過してケーキと濾液
cとに分離した。濾紙上に残ったケーキ469gの含水
率は、水分計にて130℃/90分の条件で測定したと
ころ、76.0重量%であった(固形分は113g)。
濾紙上に残ったケーキは、比較例1の場合に比較して、
総重量で43重量%、固形分で13重量%減少してい
る。尚、濾液cは、浄水場の混和池1に戻すことができ
るものであった。
Example 3 To a beaker charged with 2950 g of the same precipitation sludge as used in Example 1 (the aluminum content was 1.3% by weight in terms of Al 2 O 3 ), 112 g of 96% sulfuric acid was added and the mixture was heated at 25 ° C. After stirring and mixing for 120 minutes at room temperature to allow the aluminum compound in the settling sludge to react with sulfuric acid, the beaker was allowed to stand still all day and night to separate the supernatant from the gravity-sedimented acid sludge.
A 20% aqueous sodium hydroxide solution was gradually added to 2041 g of the separated supernatant while stirring to adjust the pH to 5.2, and aluminum hydroxide was precipitated. The solution in which the aluminum hydroxide was precipitated was suction-filtered using No. 2 filter paper, and 321 g of an aluminum hydroxide cake (4.7% by weight in terms of Al 2 O 3).
) And 2067 g of filtrate b. On the other hand, since 1021 g of gravity-sedimented acid sludge is strongly acidic, it is mixed with filtrate b, then neutralized to pH 7 by adding a 20% aqueous solution of caustic soda, and subjected to suction filtration using No. 2 filter paper to obtain cake and filtrate. c. The water content of 469 g of the cake remaining on the filter paper was 76.0% by weight (solid content: 113 g) as measured with a moisture meter at 130 ° C./90 minutes.
The cake remaining on the filter paper was compared to the case of Comparative Example 1,
The total weight is reduced by 43% by weight and the solid content is reduced by 13% by weight. The filtrate c could be returned to the mixing pond 1 of the water purification plant.

【0030】実施例4 実施例1で用いたと同様の沈殿スラッジ(アルミニウム
含有率がAl2O3換算で1.3重量%)2950gを投入
したビーカに、35%塩酸230gを添加して20℃で
120分間攪拌混合し、沈殿スラッジ中のアルミニウム
化合物と塩酸とを反応させた後、このビーカを一昼夜静
置し、上澄液と重力沈降させた酸性汚泥とに分離した。
分離した上澄液2247gに、20%苛性ソーダ水溶液
を攪拌しつつ徐々に加え、pH6.0として水酸化アル
ミニウムを析出させた。かかる水酸化アルミニウムが析
出した溶液をNo.2濾紙を用いて吸引濾過し、水酸化ア
ルミニウムケーキ245g(Al2O3換算で6.0重量%
含有)と2036gの濾液bを得た。一方、重力沈降さ
せた酸性汚泥933gは強酸性であるため、濾液bと混
合した後、20%苛性ソーダ水溶液を加えてpH7に中
和し、No.2濾紙を用いて吸引濾過してケーキと濾液c
とに分離した。濾紙上に残ったケーキ410gの含水率
は、水分計にて130℃/90分の条件で測定したとこ
ろ、72.2重量%であった(固形分は114g)。濾
紙上に残ったケーキは、比較例1の場合に比較して、総
重量で50重量%、固形分で12重量%減少している。
尚、濾液cは、浄水場の混和池1に戻すことができるも
のであった。
Example 4 230 g of 35% hydrochloric acid was added to a beaker charged with 2950 g of the same precipitation sludge as used in Example 1 (the aluminum content was 1.3% by weight in terms of Al 2 O 3 ) at 20 ° C. After stirring and mixing for 120 minutes at room temperature to allow the aluminum compound in the settling sludge to react with hydrochloric acid, the beaker was allowed to stand still all day and night to separate the supernatant from the gravity-sedimented acid sludge.
To the separated supernatant (2247 g), a 20% aqueous sodium hydroxide solution was gradually added with stirring to adjust the pH to 6.0 to precipitate aluminum hydroxide. The solution in which the aluminum hydroxide was precipitated was filtered by suction using No. 2 filter paper, and 245 g of an aluminum hydroxide cake (6.0% by weight in terms of Al 2 O 3).
) And 2036 g of filtrate b. On the other hand, since 933 g of the acid sludge settled by gravity is strongly acidic, it is mixed with the filtrate b, then neutralized to pH 7 by adding a 20% aqueous sodium hydroxide solution, and subjected to suction filtration using No. 2 filter paper to obtain a cake and a filtrate. c
And separated into The water content of 410 g of the cake remaining on the filter paper was 72.2% by weight (solid content: 114 g) as measured by a moisture meter at 130 ° C./90 minutes. The cake remaining on the filter paper is reduced by 50% by weight in total weight and 12% by weight in solid content as compared with the case of Comparative Example 1.
The filtrate c could be returned to the mixing pond 1 of the water purification plant.

【0031】比較例4 実施例1で用いたと同様の沈殿スラッジ(アルミニウム
含有率がAl2O3換算で1.3重量%)2950gを投入
したビーカに、96%硫酸112gを添加して25℃で
120分間攪拌混合し、沈殿スラッジ中のアルミニウム
化合物と硫酸とを反応させた後、このビーカを一昼夜静
置し、上澄液と重力沈降させた酸性汚泥とに分離した。
重力沈降させた酸性汚泥1049gは強酸性であるた
め、水道水1500gを加えた後、10%石灰スラリー
を攪拌しつつ徐々に加えpH7に中和し、No.2濾紙を
用いて吸引濾過してケーキと濾液cとに分離した。濾紙
上に残ったケーキ643gの含水率は、水分計にて13
0℃/90分の条件で測定したところ、72.9重量%
であった(固形分は174g)。濾紙上に残ったケーキ
は、比較例1の場合に比較して、総重量では22重量%
減少したが、固形分では34重量%増加している。
Comparative Example 4 112 g of 96% sulfuric acid was added to a beaker charged with 2950 g of the same sludge (the aluminum content was 1.3% by weight in terms of Al 2 O 3 ) as in Example 1, and 25 ° C. After stirring and mixing for 120 minutes at room temperature to allow the aluminum compound in the settling sludge to react with sulfuric acid, the beaker was allowed to stand still all day and night to separate the supernatant from the gravity-sedimented acid sludge.
Since 1049 g of the acid sludge subjected to gravity sedimentation is strongly acidic, 1500 g of tap water is added, and then a 10% lime slurry is gradually added with stirring to neutralize the pH to 7, and filtered by suction using a No. 2 filter paper. Separated into cake and filtrate c. The water content of 643 g of the cake remaining on the filter paper was determined by a moisture meter to be 13%.
When measured under the condition of 0 ° C./90 minutes, 72.9% by weight was obtained.
(Solid content: 174 g). The cake remaining on the filter paper was 22% by weight in total weight compared to the case of Comparative Example 1.
Although decreased, the solid content increased by 34% by weight.

【0032】実施例5 実施例1〜4において、重力沈降させた酸性汚泥と濾液
bとを混合した後、20%苛性ソーダ水溶液を加えてp
H7に中和したスラリー液、比較例1のスラリー状の沈
殿スラッジ、及び比較例4において、酸性汚泥に水道水
を加えた後、10%石灰スラリーを徐々に加えpH7に
中和したスラリー液の各々を、0.37g分取し純水で
全量を15mlに希釈した(約40倍に希釈)。次い
で、孔径が0.45μmのメンブランフィルターにて吸
引濾過を行い、その濾過時間を比較した。その結果を下
記の表1に示す。
Example 5 In Examples 1 to 4, the acid sludge subjected to gravity sedimentation and the filtrate b were mixed, and a 20% aqueous solution of caustic soda was added.
After adding tap water to the acidic sludge in the slurry liquid neutralized to H7, the slurry-like settling sludge of Comparative Example 1, and Comparative Example 4, 10% lime slurry was gradually added to neutralize the pH of the slurry liquid to pH 7. 0.37 g of each was taken and diluted with pure water to a total volume of 15 ml (diluted about 40-fold). Next, suction filtration was performed using a membrane filter having a pore size of 0.45 μm, and the filtration times were compared. The results are shown in Table 1 below.

【表1】 表1から明らかな様に、実施例1〜4の濾過性は、現在
の浄水場で広く実施されている状態を再現した比較例1
の濾過性に比較して良好である。また、比較例4の濾過
性は、実施例1〜4の濾過性に遜色ないが、比較例4で
は、先に説明した様に、濾紙上に残ったケーキの固形分
が増加する。
[Table 1] As is clear from Table 1, the filterability of Examples 1 to 4 is Comparative Example 1 which reproduces a state widely practiced in a current water purification plant.
Is better than the filterability of Further, the filterability of Comparative Example 4 is not inferior to the filterability of Examples 1 to 4, but in Comparative Example 4, as described above, the solid content of the cake remaining on the filter paper increases.

【0033】実施例6 実施例1の再生凝集剤(主成分が硫酸アルミニウムから
成る再生凝集剤)と市販の硫酸アルミニウムから成る凝
集剤との凝集能力、及び実施例2の再生凝集剤(主成分
がポリ塩化アルミニウムから成る再生凝集剤)と市販の
ポリ塩化アルミニウムから成る凝集剤の凝集能力につい
て、ジャーテストを行い、その結果を下記表2に示し
た。このジャーテストでは、荒川水系の原水(濁度;1
0.3°、pH;7.4、水温25℃)を用い、再生凝
集剤及び市販の凝集剤の原水に対する添加量を、アルミ
ニウム成分の添加量がAl2O3換算で2.0mg/リット
ル(原水)となるように添加した。
Example 6 The aggregating ability of the regenerated coagulant of Example 1 (a regenerated coagulant mainly composed of aluminum sulfate) with a commercially available coagulant of aluminum sulfate, and the regenerated coagulant of Example 2 (main component) A jar test was conducted on the coagulating ability of a regenerated coagulant composed of polyaluminum chloride and a commercially available coagulant composed of polyaluminum chloride. In this jar test, raw water (turbidity: 1
0.3 °, pH; 7.4, water temperature 25 ° C.), and the added amount of the regenerated coagulant and the commercially available coagulant to the raw water was 2.0 mg / liter in terms of Al 2 O 3 when the aluminum component was added. (Raw water).

【表2】 表2から明らかな様に、実施例1及び実施例2の再生凝
集剤は、いずれも市販の凝集剤と同等以上の凝集効果を
呈するものである。
[Table 2] As is clear from Table 2, the regenerated flocculants of Example 1 and Example 2 all exhibit a flocculating effect equal to or higher than that of a commercially available flocculant.

【0034】[0034]

【発明の効果】本発明によれば、再生凝集剤中に回収さ
れるマンガンを可及的に減少し得るため、再生凝集剤を
循環使用することができる。しかも、原水を浄化する際
に発生したスラリー状の沈殿スラッジの脱水処理効率等
を向上でき、浄水処理システムから廃棄すべき汚泥の発
生量を、現在の浄水場で広く実施されている処理方法に
比較して減少できる。更に、浄水処理システムから廃棄
すべき汚泥中には、植物の発芽障害を引き起こすアルミ
ニウムが極めて少ないため、汚泥を園芸用土壌等として
有効活用できる。
According to the present invention, manganese recovered in the regenerated coagulant can be reduced as much as possible, and the regenerated coagulant can be recycled. In addition, the efficiency of dewatering treatment of slurry-like sediment sludge generated when purifying raw water can be improved, and the amount of sludge to be discarded from the water treatment system can be reduced to the treatment method widely used in current water treatment plants. Can be reduced in comparison. Furthermore, the sludge to be discarded from the water treatment system has very little aluminum that causes germination failure of plants, so that the sludge can be effectively used as horticultural soil and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る浄水処理システムの一例を説明す
るための略線図である。
FIG. 1 is a schematic diagram illustrating an example of a water purification system according to the present invention.

【図2】公知の浄水処理システムの一例を説明するため
の略線図である。
FIG. 2 is a schematic diagram illustrating an example of a known water purification treatment system.

【符号の説明】[Explanation of symbols]

1 混和池 2 フロック形成池 3 沈殿池 4 排泥池 5 ポンプ 6 第1シックナ(沈降分離処理手段) 7 酸混合槽 8 第2シックナ(溶解分離処理手段) 9 アルカリ反応槽(アルカリ反応分離手段) 10 濾過機(アルカリ反応分離手段) 11 反応槽(凝集剤再生手段) 12 第2加圧脱水機 13 中和槽 14 第1加圧脱水機 15 急速濾過池 16 滅菌槽 REFERENCE SIGNS LIST 1 mixing pond 2 floc forming pond 3 sedimentation pond 4 drainage pond 5 pump 6 first thickener (sedimentation separation processing means) 7 acid mixing tank 8 second thickener (dissolution separation processing means) 9 alkali reaction tank (alkali reaction separation means) DESCRIPTION OF SYMBOLS 10 Filtration machine (alkaline reaction separation means) 11 Reaction tank (coagulant regeneration means) 12 Second pressure dehydrator 13 Neutralization tank 14 First pressure dehydrator 15 Rapid filtration pond 16 Sterilization tank

フロントページの続き (72)発明者 有賀 茂美 長野県上伊那郡南箕輪村3685番地の2 大 明化学工業株式会社内 (72)発明者 佐野 伸一 長野県上伊那郡南箕輪村3685番地の2 大 明化学工業株式会社内 (72)発明者 田中 稔 長野県上伊那郡南箕輪村3685番地の2 大 明化学工業株式会社内 Fターム(参考) 4D015 BA15 BB05 CA14 DA02 DA35 DA39 EA32 FA02 FA03 FA15 FA16 FA23 FA28 4D038 AA01 AB61 BB18 4D059 AA06 AA11 BE15 BE31 BH04 CC10 DA32 DA33 4D062 BA15 BB05 CA14 DA02 DA35 DA39 EA32 FA02 FA03 FA15 FA16 FA23 FA28 Continuing from the front page (72) Inventor Shigemi Ariga 3865-3 Minami-Minawamura, Kamiina-gun, Nagano Prefecture Inside (72) Inventor Shinichi Sano 3865-3825 Minami-minowa-mura, Kamiina-gun, Nagano In-house (72) Inventor Minoru Tanaka 3385-2, Minamiminowa-mura, Kamiina-gun, Nagano Prefecture F-term (reference) 4D015 BA15 BB05 CA14 DA02 DA35 DA39 EA32 FA02 FA03 FA15 FA16 FA23 FA28 4D038 AA01 AB61 BB18 4D059 AA06 AA11 BE15 BE31 BH04 CC10 DA32 DA33 4D062 BA15 BB05 CA14 DA02 DA35 DA39 EA32 FA02 FA03 FA15 FA16 FA23 FA28

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 主成分がアルミニウム化合物から成る凝
集剤を原水に注入し、凝集処理を施して飲料用水等を供
給する浄水システムにおいて、 該原水を浄化する際に発生したスラリー状の沈殿スラッ
ジに塩酸又は硫酸を注入し、前記沈殿スラッジ中のアル
ミニウム化合物を溶解した溶液と濃縮汚泥とに分離する
溶解分離処理手段と、 前記溶解分離処理手段で分離された溶液にpH13以上
の強アルカリ性を呈するアルカリ化合物を注入し、前記
溶液をpH4.5〜6.5に調整することによってアル
ミニウム水和物を主成分とする析出物を析出し、前記析
出物と溶液とに分離するアルカリ反応分離手段と、 前記アルカリ反応分離手段で分離されたアルミニウム水
和物を主成分とする析出物を原料に用いて塩化アルミニ
ウム又は硫酸アルミニウムを主成分とする凝集剤を再生
する凝集剤再生手段と、 前記凝集剤生成手段で再生した凝集剤を、前記原水に注
入して凝集処理を施す再生凝集剤の注入手段と、 前記溶解分離処理手段で分離された濃縮汚泥と、前記ア
ルカリ反応分離手段で分離された溶液とに中和処理を施
すと共に、脱水処理を施す中和脱水処理手段とを具備す
ることを特徴とする浄水処理システム。
1. A water purification system in which a coagulant composed mainly of an aluminum compound is injected into raw water and subjected to coagulation treatment to supply drinking water and the like, wherein slurry-like sediment sludge generated when purifying the raw water is removed. Dissolving / separating means for injecting hydrochloric acid or sulfuric acid to separate a solution in which the aluminum compound in the settling sludge is dissolved and concentrated sludge; an alkali exhibiting a strong alkalinity of pH 13 or more to the solution separated by the dissolving / separating means An alkali reaction separation means for injecting a compound, adjusting the pH of the solution to 4.5 to 6.5 to precipitate a precipitate mainly composed of aluminum hydrate, and separating the precipitate and the solution; Aluminum chloride or aluminum sulfate using the precipitate containing aluminum hydrate as a main component separated by the alkali reaction separation means as a raw material A flocculant regenerating means for regenerating a flocculant having a main component as a main component; a flocculant regenerating means for injecting the flocculant regenerated by the flocculant generating means into the raw water to perform a flocculating treatment; A water purification treatment system comprising a neutralization and dehydration treatment means for performing a neutralization treatment on the concentrated sludge separated by the treatment means and the solution separated by the alkali reaction separation means and performing a dehydration treatment. .
【請求項2】 スラリー状の沈殿スラッジを濃縮スラッ
ジと水とに沈降分離し、分離した水を原水に戻すと共
に、前記濃縮スラッジを溶解分離処理手段に供給する沈
降分離処理手段が設けられている請求項1記載の浄水処
理システム。
2. A sedimentation separation means is provided for sedimenting and separating the slurry-like precipitation sludge into concentrated sludge and water, returning the separated water to raw water, and supplying the concentrated sludge to the dissolution separation treatment means. The water purification system according to claim 1.
【請求項3】 沈降分離処理手段で分離された濃縮スラ
ッジの一部に直接脱水処理を施す濃縮スラッジの脱水処
理手段が設けられている請求項2記載の浄水処理システ
ム。
3. The water purification system according to claim 2, further comprising dewatering means for dewatering the concentrated sludge for directly dewatering a part of the concentrated sludge separated by the sedimentation separation means.
【請求項4】 主成分がアルミニウム化合物から成る凝
集剤を原水に注入し、凝集処理を施して飲料用水等に供
給する浄水を得る際に、 該原水を浄化する際に発生したスラリー状の沈殿スラッ
ジに塩酸又は硫酸を注入し、前記沈殿スラッジ中のアル
ミニウム化合物を溶解した溶液と濃縮汚泥とに分離する
溶解分離処理を施し、 前記溶解分離処理で分離した溶液にpH13以上の強ア
ルカリ性を呈するアルカリ化合物を注入し前記溶液をp
H4.5〜6.5に調整して析出したアルミニウム水和
物を主成分とする析出物を、溶液と分離するアルカリ反
応分離処理を施した後、 前記アルカリ反応分離処理で分離したアルミニウム水和
物を主成分とする析出物を原料に用いて得た、塩化アル
ミニウム又は硫酸アルミニウムを主成分とする再生凝集
剤を、前記原水に注入して凝集処理を施すと共に、 前記溶解分離処理で分離された濃縮汚泥と、前記アルカ
リ反応分離処理で分離した溶液とを中和処理した後、脱
水処理を施すことを特徴とする浄水処理方法。
4. A slurry-like sediment generated when purifying the raw water when injecting a flocculant composed mainly of an aluminum compound into the raw water and performing a flocculation treatment to obtain purified water to be supplied to drinking water or the like. Hydrochloric acid or sulfuric acid is injected into the sludge, subjected to a dissolution separation treatment for separating into a solution in which the aluminum compound in the settling sludge is dissolved and a concentrated sludge, and an alkali exhibiting a strong alkalinity of pH 13 or more to the solution separated by the dissolution separation treatment. Inject compound and pour the solution
The aluminum hydrate separated by the alkali reaction separation treatment is subjected to an alkali reaction separation treatment for separating a precipitate containing aluminum hydrate as a main component, which has been adjusted to H 4.5 to 6.5, from the solution. A regenerated coagulant containing aluminum chloride or aluminum sulfate as a main component, obtained by using a precipitate containing a substance as a main component as a raw material, is poured into the raw water and subjected to a coagulation treatment, and is separated by the dissolution separation treatment. And a dewatering treatment after neutralizing the concentrated sludge and the solution separated by the alkali reaction separation treatment.
【請求項5】 スラリー状の沈殿スラッジを濃縮スラッ
ジと水とに沈降分離し、分離した水を原水に戻すと共
に、前記濃縮スラッジに溶解分離処理を施す請求項4記
載の浄水処理方法。
5. The water purification treatment method according to claim 4, wherein the slurry-like settling sludge is settled and separated into concentrated sludge and water, the separated water is returned to raw water, and the concentrated sludge is subjected to a dissolution separation treatment.
【請求項6】 沈降分離処理で分離された濃縮スラッジ
の一部に、直接脱水処理を施す請求項5記載の浄水処理
方法。
6. The water purification method according to claim 5, wherein a part of the concentrated sludge separated by the sedimentation treatment is directly subjected to a dehydration treatment.
JP2000379206A 2000-12-13 2000-12-13 Water purification system and water purification method Expired - Lifetime JP4468571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000379206A JP4468571B2 (en) 2000-12-13 2000-12-13 Water purification system and water purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000379206A JP4468571B2 (en) 2000-12-13 2000-12-13 Water purification system and water purification method

Publications (2)

Publication Number Publication Date
JP2002177963A true JP2002177963A (en) 2002-06-25
JP4468571B2 JP4468571B2 (en) 2010-05-26

Family

ID=18847631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000379206A Expired - Lifetime JP4468571B2 (en) 2000-12-13 2000-12-13 Water purification system and water purification method

Country Status (1)

Country Link
JP (1) JP4468571B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212507A (en) * 2005-02-02 2006-08-17 Ngk Insulators Ltd Recycling method of acid backwashing wastewater
JP2008023417A (en) * 2006-07-18 2008-02-07 Sumitomo Heavy Industries Environment Co Ltd Water purifying apparatus and water purifying method
JP2009160513A (en) * 2008-01-04 2009-07-23 Metawater Co Ltd Method for charging flocculant in water purification
JP2010222159A (en) * 2009-03-23 2010-10-07 Nikkei Sangyo Kk Processing method of aluminum hydroxide-containing solution
KR101281145B1 (en) 2012-11-15 2013-07-02 윤호석 A method for aluminium chloride from filtration plant sludge
CN103951150A (en) * 2014-05-19 2014-07-30 西南石油大学 Oily sludge treatment system
JP2014200745A (en) * 2013-04-05 2014-10-27 オルガノ株式会社 Method of treating fluorine-containing waste liquid and apparatus of fluorine-containing waste liquid
KR20160124387A (en) * 2015-04-17 2016-10-27 주식회사 신라엔텍 Process of preparation for recycling coagulant based on aluminium in waste purification sludge
WO2017017833A1 (en) * 2015-07-30 2017-02-02 Necファシリティーズ株式会社 Fluorine-containing wastewater treatment method and device therefor
CN114702114A (en) * 2022-04-12 2022-07-05 江西建衡环保科技有限公司 Aluminum ferric sulfate water purifying agent and preparation process thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528643B2 (en) * 2005-02-02 2010-08-18 メタウォーター株式会社 How to reuse acid backwash wastewater
JP2006212507A (en) * 2005-02-02 2006-08-17 Ngk Insulators Ltd Recycling method of acid backwashing wastewater
JP2008023417A (en) * 2006-07-18 2008-02-07 Sumitomo Heavy Industries Environment Co Ltd Water purifying apparatus and water purifying method
JP2009160513A (en) * 2008-01-04 2009-07-23 Metawater Co Ltd Method for charging flocculant in water purification
JP2010222159A (en) * 2009-03-23 2010-10-07 Nikkei Sangyo Kk Processing method of aluminum hydroxide-containing solution
KR101281145B1 (en) 2012-11-15 2013-07-02 윤호석 A method for aluminium chloride from filtration plant sludge
JP2014200745A (en) * 2013-04-05 2014-10-27 オルガノ株式会社 Method of treating fluorine-containing waste liquid and apparatus of fluorine-containing waste liquid
CN103951150A (en) * 2014-05-19 2014-07-30 西南石油大学 Oily sludge treatment system
KR20160124387A (en) * 2015-04-17 2016-10-27 주식회사 신라엔텍 Process of preparation for recycling coagulant based on aluminium in waste purification sludge
KR101689960B1 (en) * 2015-04-17 2017-01-03 주식회사 신라엔텍 Process of preparation for recycling coagulant based on aluminium in waste purification sludge
WO2017017833A1 (en) * 2015-07-30 2017-02-02 Necファシリティーズ株式会社 Fluorine-containing wastewater treatment method and device therefor
JPWO2017017833A1 (en) * 2015-07-30 2018-05-10 Necファシリティーズ株式会社 Fluorine-containing wastewater treatment method and apparatus
CN114702114A (en) * 2022-04-12 2022-07-05 江西建衡环保科技有限公司 Aluminum ferric sulfate water purifying agent and preparation process thereof
CN114702114B (en) * 2022-04-12 2023-09-01 江西建衡环保科技有限公司 Aluminum ferric sulfate water purifying agent and preparation process thereof

Also Published As

Publication number Publication date
JP4468571B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP4907950B2 (en) Method and apparatus for removing metal from waste water
CN102459096B (en) Method for recovering water and metals from plating wastewater resulting from washing
CN103813987A (en) Treatment of phosphate-containing wastewater with fluorosilicate and phosphate recovery
CN107176726A (en) Desulphurization for Coal-fired Power Plant waste water integrates defluorination method
JP4468571B2 (en) Water purification system and water purification method
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP6376951B2 (en) Phosphorus recovery equipment and phosphorus recovery method
JP5118572B2 (en) Sewage treatment method
JP4543481B2 (en) Method for treating water containing boron and fluorine
JPS59166290A (en) Method for removing harmful component in waste water of smoke scrubbing
JPS61101416A (en) Purification of saline water
JP2004299962A (en) Method for removing fluorine in gypsum
JP4468568B2 (en) Water treatment flocculant, method for producing the same, and water treatment method
US20040217062A1 (en) Method for removing metal from wastewater
CN117897359A (en) Method and system for generating calcium carbonate
JP3496773B2 (en) Advanced treatment method and apparatus for organic wastewater
JP2006263553A (en) Method for treating anionic organic material-containing waste water
JP3339352B2 (en) Sludge treatment method
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP4022909B2 (en) Method for treating copper-containing water
CN112062366A (en) Coal-fired power plant desulfurization wastewater comprehensive treatment system and method
CN105923707B (en) A kind of desulfurization wastewater vibration membrane processing method and processing device
JP6723058B2 (en) Water treatment method and water treatment system
JP4118495B2 (en) How to reuse mud
JP3864518B2 (en) Treatment method of aluminum-containing sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100225

R150 Certificate of patent or registration of utility model

Ref document number: 4468571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term