JP3632226B2 - Method for treating metal-containing wastewater - Google Patents

Method for treating metal-containing wastewater Download PDF

Info

Publication number
JP3632226B2
JP3632226B2 JP27773194A JP27773194A JP3632226B2 JP 3632226 B2 JP3632226 B2 JP 3632226B2 JP 27773194 A JP27773194 A JP 27773194A JP 27773194 A JP27773194 A JP 27773194A JP 3632226 B2 JP3632226 B2 JP 3632226B2
Authority
JP
Japan
Prior art keywords
sludge
tank
neutralization
metal
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27773194A
Other languages
Japanese (ja)
Other versions
JPH08132066A (en
Inventor
勇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP27773194A priority Critical patent/JP3632226B2/en
Publication of JPH08132066A publication Critical patent/JPH08132066A/en
Application granted granted Critical
Publication of JP3632226B2 publication Critical patent/JP3632226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【0001】
【産業上の利用分野】
本発明は金属含有排水の処理方法に係り、特に、金属含有排水にアルカリを添加して金属水酸化物を生成させ、処理水と汚泥とに固液分離することにより、不純物混入量の少ない高濃度汚泥を安価に得る方法に関する。
【0002】
【従来の技術及び先行技術】
近年、汚泥処分場の不足、処分場の環境問題等から、金属含有排水の処理で排出される汚泥の減容化及び汚泥回収が進められ、この目的に応じた改良技術として、特公昭61−156号公報に、シックナー排泥と排水中和用の水酸化ナトリウム(NaOH)又は消石灰(Ca(OH) )等のアルカリ剤を混合し、混合汚泥で排水の中和を行うことにより固形物濃度の高い汚泥を得、生成汚泥の減容化を図る方法(HDS法)が提案されている。この特公昭61−156号公報の方法の作用機構は、当該公報の記載、即ち、「本発明は中和剤をキャリヤーの表面に吸着させ…」、「中和剤の全部ではないが、大部分は殆ど即座にキャリヤーの粒子の表面に吸着…」旨の記載から、キャリヤー表面に重金属を析出させることにより固形物濃度の高い汚泥を得るものであると推察される。
【0003】
このような金属含有排水の処理において使用されるアルカリとしては、Ca(OH) 又はNaOHがあるが、酸洗廃水を主体とする金属含有排水の処理では、大量のアルカリが必要となるため、安価なCa(OH) が使用されている。
【0004】
ところで、汚泥中に鉄などの有価金属が含有されている場合、このような有価金属含有汚泥は金属原料として回収再利用される。この場合において、石膏などの不純物の汚泥中への混入は、回収価値を下げる要因となることから、これらの不純物の混入は避ける必要がある。
【0005】
【発明が解決しようとする課題】
アルカリとしてCa(OH) を使用して酸洗廃水を主体とする排水のような、遊離の無機酸を含む金属含有排水を処理すると、汚泥中の不純物となる石膏が生成する。また、同時に炭酸カルシウムも生成し、これがスケール化して配管を閉塞させるなどの不具合がある。
【0006】
例えば、特公昭55−19643号公報には、このような遊離の無機酸をアルカリ、具体的にはCa(OH) で予備中和することが記載されているが、この方法では石膏などの不純物が金属水酸化物汚泥中に混入し、金属の回収価値が低下する。
【0007】
Ca(OH) によるこのような問題を解決するものとして、酸化マグネシウム(MgO)又は水酸化マグネシウム(Mg(OH) )などのMg系アルカリを用いることも考えられるが、これらのMg系アルカリでは、排水を鉄などの重金属水酸化物の沈殿領域であるpH8以上とするためには、2時間前後の長い中和時間を必要とし、実用的ではない。
【0008】
本発明は上記従来の問題点を解決し、金属含有排水にアルカリを添加して金属水酸化物を生成させ、処理水と汚泥とに固液分離することにより、不純物混入量の少ない高濃度汚泥を安価に得ることができる方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の金属含有排水の処理方法は、遊離の無機酸を含有する金属含有排水にアルカリを添加して中和することにより金属水酸化物を生成させ、処理水と汚泥とに固液分離する方法において、前記排水にまずpH2.5〜3.5となるように酸化マグネシウム又は水酸化マグネシウムを添加して遊離の無機酸を予備中和し、次いで、Mg系アルカリ剤以外のアルカリとともに前記固液分離された汚泥の一部を添加して中和することを特徴とする。
【0010】
【作用】
HDS法の特徴はシックナー排泥の一部を循環して、これを中和槽へ返送し、中和槽へ添加するアルカリをこの返送汚泥と混合(以下、この混合物を「アルカリ汚泥」と称する場合がある。)して注入することにある。このように汚泥を返送して、アルカリ汚泥を添加することにより、得られる汚泥濃度は10重量%以上になるが、その原理は下記2つの反応によると考えられている。
【0011】
▲1▼ 汚泥とアルカリを混合して、得られるアルカリ汚泥では、アルカリは汚泥表面に吸着されているため、中和槽ではこのアルカリ汚泥表面に金属水酸化物が析出し、これにより含水率の高い三次元構造のゲル状とならず、二次元構造の水酸化物となる。
【0012】
▲2▼ 二次元構造の水酸化物汚泥はシックナーを経て返送され、アルカリと混合されるが、この時、例えば下式に示す脱水縮合反応が生じ、汚泥の結晶水が減少する。
【0013】
Fe(OH) ・nH O→FeOOH+(n+1)H
ところで、Fe3+のアルカリ汚泥との反応は、特公昭61−156号公報に記載されるようにpH3.5〜5.0で生起する。このFe3+とアルカリ汚泥との反応に当り、排水に添加された返送汚泥とアルカリのうち、返送汚泥はpH8以上であり、汚泥表面にはFe3+を析出させるためのアルカリは既に吸着されている。即ち、汚泥と同時に添加するアルカリは遊離の無機酸を中和するために使用される。従って、ここでは添加アルカリは単純な無機酸との中和反応であるため、重金属イオンの中和に比べ反応は迅速であり、反応性に劣るMg系アルカリでも十分な中和速度が得られる。
【0014】
本発明においては、このような原理に基き、反応性に劣るものの、単純な無機酸との中和には実用的な中和速度を得ることができるMg系アルカリ剤を無機酸の予備中和に用い、その後、反応性の高い、Mg系アルカリ剤以外のアルカリを添加して金属水酸化物を効率的に析出させることにより、汚泥中への不純物の混入やスケール生成の問題がなく、かつ、安価なMg系アルカリ剤の工業的な使用を可能とし、容易かつ低コストで効率的な処理を行って、有価金属濃度の高い汚泥を回収する。
【0015】
なお、本発明において、予備中和(以下「無機酸中和工程」と称する場合がある。)後、Mg系アルカリ剤以外のアルカリを添加して中和する工程(以下「金属中和工程」と称する場合がある。)としては、特に制限はないが、一般には、次の (I)〜(III) の工程を採用することができる。
【0016】
(I) 金属中和工程を2段中和とし、前段は後工程からの返送汚泥のみによる中和とし、後段はアルカリ汚泥による中和とする。
【0017】
(II) 金属中和工程を2段中和とし、前段は返送汚泥のみによる中和とし、後段はアルカリの直接添加による中和とする。
【0018】
(III) 金属中和工程を1段中和とし、アルカリ汚泥による中和とする。
【0019】
【実施例】
以下、図面を参照して本発明を詳細に説明する。
【0020】
図1は本発明の金属含有排水の処理方法の一実施例方法を示す系統図である。
【0021】
図1において、1は予備中和槽、2は第1中和槽、3は第2中和槽、4は凝集槽、5は沈殿槽、6は混合槽、7はMg(OH) 貯槽、8はCa(OH) 貯槽である。11〜23の各符号は配管を示す。V ,V ,V は自動弁であり、各々、予備中和槽1に設けられたpH計1A,第1中和槽2に設けられたpH計2A,第2中和槽3に設けられたpH計3Aに連動して開閉する。V は自動弁、Pはポンプである。
【0022】
即ち、本実施例の方法は、無機酸中和工程後の金属中和工程を前記(I) の工程で行うものであり、原水(遊離の無機酸を含有する金属含有排水)は、まず、配管11より予備中和槽1に導入され、この予備中和槽1内で、Mg(OH) 貯槽7内のMg(OH) 溶液が配管20より添加される。この予備中和槽1においては、系内のpH2.5〜3.5となるようにMg(OH) 溶液が添加されて、原水中の遊離の無機酸の中和が行われる。
【0023】
予備中和槽1の流出液は次いで配管12より第1中和槽2に導入され、後段の沈殿槽5で分離され、配管17,19,19Aを経て返送された汚泥が添加される。この第1中和槽2においては、系内のpHが3.5〜5、好ましくは4〜5となるように返送汚泥が添加され、汚泥表面へのFe3+の析出が行われる。
【0024】
なお、原水中の遊離の無機酸が少ない場合には、予備中和槽を省略しても良く、この場合、第1中和槽にMg(OH) を返送汚泥と同時に添加しても良い。
【0025】
第1中和槽2の流出液は次いで配管13より第2中和槽3に導入され、混合槽6内のアルカリ汚泥が配管22より添加される。即ち、後段の沈澱槽5の分離汚泥のうち、配管17,19,19Bを経て混合槽6に返送された汚泥は、配管21から添加されるCa(OH) 貯槽8のCa(OH) 懸濁液と混合されてアルカリ汚泥となり、このアルカリ汚泥が配管22より第2中和槽3に添加される。この第2中和槽3においては、系内のpHが8以上になるように、アルカリ汚泥のCa(OH) 量が調整され、主にFe3+以外の金属、例えば、Fe2+,Zn2+,Cr3+などの汚泥表面への析出が行われる。
【0026】
なお、ここで使用されるMg系アルカリ剤以外アルカリとしては、Ca(OH)の他、NaOH,NaCO等を用いることができる。また、混合槽6への返送汚泥量は、混合槽6に添加されるアルカリを吸着するのに十分な量であれば良く、例えば、第2中和槽3で析出する水酸化物の15〜40倍重量とされる。
【0027】
第2中和槽3の流出液は次いで配管14より凝集槽4に導入され、配管23よりポリマー(高分子凝集剤)が添加されて凝集処理される。このポリマーとしては、ポリアクリルアミド系ポリマーが2〜5mg/l程度添加される。
【0028】
凝集槽4の流出液は次いで配管15より沈殿槽5に導入されて固液分離される。分離された汚泥は配管17より抜き出され、一部は配管19より第1中和槽2及び混合槽6に返送され、残部は配管18より系外へ排出される。また、沈殿槽5の上澄水は配管16より処理水として系外へ排出される。
【0029】
この方法では、予備中和槽1で、遊離の無機酸がMg系アルカリ剤により予め中和される。この中和は、反応性の低いMg系アルカリ剤であっても速やかに進行し、しかも、Mg系アルカリ剤を用いる中和であるから、中和により、汚泥中の不純物やスケールとなる析出物を生じることはない。また、第1中和槽においては、比較的低pH領域で析出するFe3+の析出が、更に、第2中和槽においては、高pH領域で析出するFe3+以外の金属の析出が行われ、これにより、沈殿槽における固液分離で高水質処理水が得られると共に、高濃度で不純物の混入が少なく、有価金属濃度の高い高価値の汚泥を得ることができる。
【0030】
本実施例の方法においては、Mg系アルカリ剤を用いても、このMg系アルカリ剤の低反応性が問題となることはないため、中和槽、凝集槽、沈殿槽の各反応槽の滞留時間は10〜20分で効率的な処理を行える。なお、混合槽の滞留時間は3〜5分が適当である。
【0031】
このような本発明の金属含有排水の処理方法は、特に、遊離の無機酸を含む鉄含有排水の処理に極めて有効である。
【0032】
以下に具体的な実施例及び比較例を挙げて本発明をより詳細に説明する。
【0033】
実施例1
図1に示す方法に従って、下記水質の鉄鋼重金属含有廃水を原水として処理を行い、得られた汚泥の濃度及びこの汚泥を脱水して得られた脱水ケーキの成分組成を調べ、結果を表1に示した。
【0034】
原水水質
pH:1.8
T−Fe:1200mg/l
Fe3+ : 800mg/l
Zn2+ : 20mg/l
Ni2+ : 16mg/l
Cr3+ : 2.5mg/l
SO 2− :3800mg/l
Cl : 900mg/l
なお、原水流量は3リットル/hrとし、混合槽の滞留時間は3分、その他の各反応槽の滞留時間は10分とした。設定pHは予備中和槽pH3,第1中和槽pH4.2,第2中和槽pH8とし、ポリマーとしてはクリフロックPA−362(栗田工業(株)製)を3ppm添加した。汚泥濃度が安定した時点で汚泥返送量は第1中和槽へ350〜400ml/hr,第2中和槽へ150〜200ml/hrとした。また、予備中和槽へはMg(OH) 10重量%溶液を、混合槽へはCa(OH) 10重量%懸濁液を添加した。
【0035】
比較例1
予備中和槽にMg(OH) 10重量%溶液に代えて、Ca(OH) 10重量%懸濁液を添加したこと以外は実施例1と同様に行って、得られた汚泥の濃度及びこの汚泥を脱水して得られた脱水ケーキの成分組成を調べ、結果を表1に示した。
【0036】
実施例2
実施例1において、第2中和槽にはアルカリ汚泥を添加せずに、アルカリとして、Ca(OH) 10重量%溶液を直接添加したこと、即ち、混合槽を設けず、従って、混合槽への汚泥の返送も行わなかったこと以外は、同様に行って、得られた汚泥の濃度及びこの汚泥を脱水して得られた脱水ケーキの成分組成を調べ、結果を表1に示した。
【0037】
ただし、第1中和槽への汚泥返送量は350〜400ml/hrのままであるが、第2中和槽のpHは9に変えた。
【0038】
実施例3
実施例1において、第1中和槽を設けず、予備中和槽後はアルカリ汚泥による一段中和としたこと以外は同様に行って、得られた汚泥の濃度及びこの汚泥を脱水して得られた脱水ケーキの成分組成を調べ、結果を表1に示した。
【0039】
ただし、汚泥返送量は500〜600ml/hrと変えた。
【0040】
【表1】

Figure 0003632226
【0041】
表1より、本発明の方法によれば、汚泥濃度はわずかに低下するものの、不純物であるSO が少なく、回収対象となる鉄分の含有量が著しく高い汚泥を回収することができることが明らかである。
【0042】
【発明の効果】
以上詳述した通り、本発明の金属含有排水の処理方法によれば、石膏などの不純物の混入が少なく、しかも、回収対象金属濃度が著しく高い高濃度汚泥を、安価なアルカリ剤であるMg系アルカリ剤を用いて容易かつ効率的に回収することができる。
【0043】
従って、本発明の方法によれば、汚泥の減容化と共に、含有有価金属の効率的な有効再利用が図れ、工業的に極めて有利である。
【図面の簡単な説明】
【図1】本発明の金属含有排水の処理方法の一実施例方法を示す系統図である。
【符号の説明】
1 予備中和槽
2 第1中和槽
3 第2中和槽
4 凝集槽
5 沈殿槽
6 混合槽
7 Mg(OH) 貯槽
8 Ca(OH) 貯槽[0001]
[Industrial application fields]
The present invention relates to a method for treating metal-containing wastewater, and in particular, by adding an alkali to metal-containing wastewater to produce a metal hydroxide and separating it into treated water and sludge, the amount of impurities mixed is reduced. The present invention relates to a method for obtaining concentrated sludge at low cost.
[0002]
[Prior art and prior art]
In recent years, due to the shortage of sludge disposal sites and environmental issues at disposal sites, volume reduction and sludge recovery of sludge discharged from the treatment of metal-containing wastewater has been promoted. No. 156 is mixed with thickener waste mud and alkaline agent such as sodium hydroxide (NaOH) or slaked lime (Ca (OH) 2 ) for waste water neutralization, and neutralized waste water with mixed sludge A method (HDS method) for obtaining sludge having a high concentration and reducing the volume of produced sludge has been proposed. The working mechanism of the method of Japanese Patent Publication No. 61-156 is described in the publication, that is, “the present invention allows the neutralizing agent to be adsorbed on the surface of the carrier…”, “not all of the neutralizing agent, From the description that “the part is adsorbed on the surface of the carrier particles almost immediately”, it is presumed that heavy metal is deposited on the surface of the carrier to obtain sludge having a high solid concentration.
[0003]
As an alkali used in the treatment of such metal-containing wastewater, there is Ca (OH) 2 or NaOH, but in the treatment of metal-containing wastewater mainly composed of pickling wastewater, a large amount of alkali is required. Inexpensive Ca (OH) 2 is used.
[0004]
By the way, when valuable metals, such as iron, are contained in sludge, such valuable metal containing sludge is collect | recovered and reused as a metal raw material. In this case, mixing of impurities such as gypsum into the sludge is a factor that lowers the recovery value, so it is necessary to avoid mixing these impurities.
[0005]
[Problems to be solved by the invention]
When a metal-containing wastewater containing a free inorganic acid such as wastewater mainly composed of pickling wastewater using Ca (OH) 2 as an alkali is treated, gypsum that is an impurity in sludge is generated. At the same time, calcium carbonate is also produced, which causes problems such as scaling and blocking of the piping.
[0006]
For example, Japanese Patent Publication No. 55-19643 describes preliminarily neutralizing such a free inorganic acid with an alkali, specifically, Ca (OH) 2 . Impurities are mixed into the metal hydroxide sludge, which reduces the metal recovery value.
[0007]
In order to solve such problems caused by Ca (OH) 2 , Mg-based alkalis such as magnesium oxide (MgO) or magnesium hydroxide (Mg (OH) 2 ) may be used. Then, in order to set the waste water to pH 8 or higher, which is a precipitation region of heavy metal hydroxide such as iron, a long neutralization time of about 2 hours is required, which is not practical.
[0008]
The present invention solves the above-mentioned conventional problems, adds alkali to metal-containing wastewater to produce metal hydroxide, and separates into solid and liquid into treated water and sludge, so that high-concentration sludge with a small amount of impurities is contained. An object of the present invention is to provide a method that can be obtained at low cost.
[0009]
[Means for Solving the Problems]
In the method for treating metal-containing wastewater of the present invention, a metal hydroxide is generated by adding an alkali to a metal-containing wastewater containing a free inorganic acid to neutralize it, and it is solid-liquid separated into treated water and sludge. In the method, first, magnesium oxide or magnesium hydroxide is added to the waste water so as to have a pH of 2.5 to 3.5 to pre-neutralize free inorganic acid, and then the solid together with an alkali other than the Mg-based alkaline agent. A part of the liquid-separated sludge is added for neutralization.
[0010]
[Action]
The HDS method is characterized by circulating part of the thickener waste mud, returning it to the neutralization tank, and mixing the alkali added to the neutralization tank with this return sludge (hereinafter, this mixture is referred to as “alkaline sludge”). There is a case.) By returning the sludge in this way and adding the alkaline sludge, the obtained sludge concentration becomes 10% by weight or more, and the principle is considered to be based on the following two reactions.
[0011]
(1) In the alkali sludge obtained by mixing sludge and alkali, the alkali is adsorbed on the sludge surface, so in the neutralization tank, metal hydroxide is deposited on the surface of the alkali sludge, and the water content is thereby reduced. It is not a gel with a high three-dimensional structure, but a hydroxide with a two-dimensional structure.
[0012]
(2) The hydroxide sludge having a two-dimensional structure is returned through a thickener and mixed with alkali. At this time, for example, the dehydration condensation reaction shown in the following formula occurs, and the sludge crystallization water decreases.
[0013]
Fe (OH) 3 .nH 2 O → FeOOH + (n + 1) H 2 O
By the way, the reaction of Fe 3+ with alkaline sludge occurs at pH 3.5 to 5.0 as described in JP-B-61-156. Of the returned sludge and alkali added to the waste water during the reaction between Fe 3+ and alkaline sludge, the returned sludge has a pH of 8 or more, and the alkali for precipitating Fe 3+ is already adsorbed on the sludge surface. . That is, the alkali added simultaneously with the sludge is used to neutralize the free inorganic acid. Therefore, since the added alkali is a simple neutralization reaction with an inorganic acid here, the reaction is quicker than the neutralization of heavy metal ions, and a sufficient neutralization rate can be obtained even with an Mg-based alkali that is inferior in reactivity.
[0014]
In the present invention, based on such a principle, although the reactivity is inferior, Mg-based alkaline agent that can obtain a practical neutralization rate for neutralization with a simple inorganic acid is preliminarily neutralized with an inorganic acid. After that, by adding an alkali other than the Mg-based alkaline agent with high reactivity and efficiently precipitating the metal hydroxide, there is no problem of impurity contamination and scale generation in the sludge, and It enables industrial use of an inexpensive Mg-based alkaline agent, performs sludge with a high concentration of valuable metals by performing an easy, low-cost and efficient treatment.
[0015]
In the present invention, after preliminary neutralization (hereinafter sometimes referred to as “inorganic acid neutralization step”), a step of neutralizing by adding an alkali other than the Mg-based alkaline agent (hereinafter referred to as “metal neutralization step”). Is not particularly limited, but in general, the following steps (I) to (III) can be employed.
[0016]
(I) The metal neutralization process is a two-stage neutralization, the former stage is neutralized only by the return sludge from the subsequent process, and the latter stage is neutralized by the alkaline sludge.
[0017]
(II) The metal neutralization process is a two-stage neutralization, the first stage is neutralized only by return sludge, and the second stage is neutralized by direct addition of alkali.
[0018]
(III) The metal neutralization step is one-stage neutralization and neutralization with alkaline sludge.
[0019]
【Example】
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0020]
FIG. 1 is a system diagram showing an embodiment of a method for treating metal-containing wastewater according to the present invention.
[0021]
In FIG. 1, 1 is a preliminary neutralization tank, 2 is a first neutralization tank, 3 is a second neutralization tank, 4 is a coagulation tank, 5 is a precipitation tank, 6 is a mixing tank, and 7 is a Mg (OH) 2 storage tank. , 8 is a Ca (OH) 2 storage tank. Each code | symbol of 11-23 shows piping. V 1 , V 2 , and V 3 are automatic valves, and are respectively provided in a pH meter 1 A provided in the preliminary neutralization tank 1, a pH meter 2 A provided in the first neutralization tank 2, and a second neutralization tank 3. Opens and closes in conjunction with the provided pH meter 3A. V 4 is automatic valve, P is the pump.
[0022]
That is, in the method of this example, the metal neutralization step after the inorganic acid neutralization step is performed in the step (I), and raw water (metal-containing wastewater containing a free inorganic acid) It is introduced into the preliminary neutralization tank 1 from the pipe 11, and the Mg (OH) 2 solution in the Mg (OH) 2 storage tank 7 is added from the pipe 20 in the preliminary neutralization tank 1. In this preliminary neutralization tank 1, an Mg (OH) 2 solution is added so that the pH in the system is 2.5 to 3.5, and the free inorganic acid in the raw water is neutralized.
[0023]
The effluent from the preliminary neutralization tank 1 is then introduced into the first neutralization tank 2 through the pipe 12, separated in the subsequent settling tank 5, and sludge returned through the pipes 17, 19, 19A is added. In this 1st neutralization tank 2, return sludge is added so that pH in a system may be 3.5-5, Preferably it is 4-5, and precipitation of Fe3 + to a sludge surface is performed.
[0024]
In addition, when there are few free inorganic acids in raw | natural water, you may abbreviate | omit a pre-neutralization tank, In this case, you may add Mg (OH) 2 to a 1st neutralization tank simultaneously with return sludge. .
[0025]
The effluent from the first neutralization tank 2 is then introduced into the second neutralization tank 3 through the pipe 13, and the alkaline sludge in the mixing tank 6 is added through the pipe 22. That is, among the separation sludge subsequent sedimentation tank 5, the sludge that is returned to the mixing tank 6 through the piping 17,19,19B is, Ca of Ca (OH) 2 storage tank 8 which is added from the pipe 21 (OH) 2 The alkaline sludge is mixed with the suspension, and this alkaline sludge is added to the second neutralization tank 3 through the pipe 22. In the second neutralization tank 3, the amount of Ca (OH) 2 in the alkaline sludge is adjusted so that the pH in the system is 8 or more, and mainly metals other than Fe 3+ , such as Fe 2+ and Zn 2+ , Cr 3+ etc. are deposited on the sludge surface.
[0026]
In addition, as the alkali other than the Mg-based alkaline agent used here, NaOH, Na 2 CO 3 or the like can be used in addition to Ca (OH) 2 . Moreover, the amount of returned sludge to the mixing tank 6 should just be sufficient quantity to adsorb | suck the alkali added to the mixing tank 6, for example, 15-15 of the hydroxide which precipitates in the 2nd neutralization tank 3. The weight is 40 times.
[0027]
The effluent from the second neutralization tank 3 is then introduced into the agglomeration tank 4 through the pipe 14, and a polymer (polymer flocculant) is added through the pipe 23 to be agglomerated. As this polymer, about 2 to 5 mg / l of polyacrylamide polymer is added.
[0028]
The effluent from the coagulation tank 4 is then introduced into the precipitation tank 5 through the pipe 15 and separated into solid and liquid. The separated sludge is extracted from the pipe 17, a part is returned from the pipe 19 to the first neutralization tank 2 and the mixing tank 6, and the remaining part is discharged out of the system through the pipe 18. Moreover, the supernatant water of the sedimentation tank 5 is discharged out of the system as treated water from the pipe 16.
[0029]
In this method, the free inorganic acid is neutralized in advance by the Mg-based alkaline agent in the preliminary neutralization tank 1. This neutralization proceeds promptly even with a low-reactivity Mg-based alkaline agent, and since neutralization using the Mg-based alkaline agent, the neutralized precipitates that become impurities and scale in the sludge Will not cause. Further, in the first neutralization tank, precipitation of Fe 3+ precipitated in a relatively low pH region, and further, in the second neutralization tank, metal other than Fe 3+ deposited in a high pH region is precipitated. Thus, high-quality treated water can be obtained by solid-liquid separation in the precipitation tank, and high-value sludge with a high concentration and a low concentration of impurities and a high valuable metal concentration can be obtained.
[0030]
In the method of the present embodiment, even if an Mg-based alkaline agent is used, the low reactivity of the Mg-based alkaline agent does not become a problem. Time can be efficiently processed in 10 to 20 minutes. In addition, 3-5 minutes is suitable for the residence time of a mixing tank.
[0031]
Such a method for treating metal-containing wastewater of the present invention is particularly effective for treating iron-containing wastewater containing free inorganic acids.
[0032]
Hereinafter, the present invention will be described in more detail with reference to specific examples and comparative examples.
[0033]
Example 1
In accordance with the method shown in FIG. 1, the following waste water containing steel heavy metals is treated as raw water, the concentration of the obtained sludge and the component composition of the dehydrated cake obtained by dehydrating this sludge are examined, and the results are shown in Table 1. Indicated.
[0034]
Raw water quality pH: 1.8
T-Fe: 1200 mg / l
Fe 3+ : 800 mg / l
Zn 2+ : 20 mg / l
Ni 2+ : 16 mg / l
Cr 3+ : 2.5 mg / l
SO 4 2− : 3800 mg / l
Cl : 900 mg / l
The raw water flow rate was 3 liters / hr, the residence time in the mixing tank was 3 minutes, and the residence time in each of the other reaction tanks was 10 minutes. The set pH was set to pre-neutralization tank pH 3, first neutralization tank pH 4.2, and second neutralization tank pH 8, and 3 ppm of Cliff Rock PA-362 (manufactured by Kurita Kogyo Co., Ltd.) was added as the polymer. When the sludge concentration was stabilized, the sludge return amount was 350 to 400 ml / hr to the first neutralization tank and 150 to 200 ml / hr to the second neutralization tank. Further, a 10% by weight Mg (OH) 2 solution was added to the preliminary neutralization tank, and a 10% by weight Ca (OH) 2 suspension was added to the mixing tank.
[0035]
Comparative Example 1
The concentration of the obtained sludge was the same as in Example 1 except that a 10% by weight suspension of Ca (OH) 2 was added to the preneutralization tank instead of the 10% by weight Mg (OH) 2 solution. And the component composition of the dewatering cake obtained by dehydrating this sludge was investigated, and the results are shown in Table 1.
[0036]
Example 2
In Example 1, the alkali neutral sludge was not added to the second neutralization tank, and a 10% by weight Ca (OH) 2 solution was directly added as an alkali, that is, no mixing tank was provided. The same procedure was followed except that the sludge was not returned to the container. The concentration of the obtained sludge and the component composition of the dehydrated cake obtained by dehydrating this sludge were examined. The results are shown in Table 1.
[0037]
However, the amount of sludge returned to the first neutralization tank remained at 350 to 400 ml / hr, but the pH of the second neutralization tank was changed to 9.
[0038]
Example 3
In Example 1, the first neutralization tank was not provided, and after the preliminary neutralization tank, the same procedure was performed except that the neutralization with alkaline sludge was performed, and the obtained sludge concentration and this sludge were dehydrated. The component composition of the obtained dehydrated cake was examined, and the results are shown in Table 1.
[0039]
However, the sludge return amount was changed to 500 to 600 ml / hr.
[0040]
[Table 1]
Figure 0003632226
[0041]
From Table 1, it is clear that according to the method of the present invention, although the sludge concentration is slightly lowered, sludge with a small amount of SO 3 as an impurity and a remarkably high iron content can be recovered. is there.
[0042]
【The invention's effect】
As described in detail above, according to the method for treating metal-containing wastewater of the present invention, high-concentration sludge with a small amount of impurities such as gypsum and a remarkably high concentration of metal to be collected is used as an inexpensive alkaline agent, Mg-based. It can be easily and efficiently recovered using an alkaline agent.
[0043]
Therefore, according to the method of the present invention, the volume of sludge can be reduced and the contained valuable metals can be efficiently and effectively reused, which is extremely advantageous industrially.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment method of a method for treating metal-containing wastewater according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Preliminary neutralization tank 2 1st neutralization tank 3 2nd neutralization tank 4 Coagulation tank 5 Precipitation tank 6 Mixing tank 7 Mg (OH) 2 storage tank 8 Ca (OH) 2 storage tank

Claims (1)

遊離の無機酸を含有する金属含有排水にアルカリを添加して中和することにより金属水酸化物を生成させ、処理水と汚泥とに固液分離する方法において、
前記排水にまずpH2.5〜3.5となるように酸化マグネシウム又は水酸化マグネシウムを添加して遊離の無機酸を予備中和し、次いで、Mg系アルカリ剤以外のアルカリとともに前記固液分離された汚泥の一部を添加して中和することを特徴とする金属含有排水の処理方法。
In the method of producing a metal hydroxide by adding an alkali to a metal-containing wastewater containing a free inorganic acid and neutralizing it, and separating it into treated water and sludge,
First, magnesium oxide or magnesium hydroxide is added to the waste water so as to have a pH of 2.5 to 3.5 to pre-neutralize the free inorganic acid, and then the solid-liquid separation is performed together with an alkali other than the Mg-based alkaline agent. A method for treating metal-containing wastewater, wherein a portion of the sludge is added and neutralized.
JP27773194A 1994-11-11 1994-11-11 Method for treating metal-containing wastewater Expired - Fee Related JP3632226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27773194A JP3632226B2 (en) 1994-11-11 1994-11-11 Method for treating metal-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27773194A JP3632226B2 (en) 1994-11-11 1994-11-11 Method for treating metal-containing wastewater

Publications (2)

Publication Number Publication Date
JPH08132066A JPH08132066A (en) 1996-05-28
JP3632226B2 true JP3632226B2 (en) 2005-03-23

Family

ID=17587545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27773194A Expired - Fee Related JP3632226B2 (en) 1994-11-11 1994-11-11 Method for treating metal-containing wastewater

Country Status (1)

Country Link
JP (1) JP3632226B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004049952A (en) * 2002-07-16 2004-02-19 Ube Material Industries Ltd Treatment method for acidic wastewater
JP4589748B2 (en) * 2005-02-04 2010-12-01 新日本製鐵株式会社 Treatment of acidic waste liquid containing iron and chromium
JP5509927B2 (en) * 2010-03-01 2014-06-04 栗田工業株式会社 Metal-containing water treatment method and metal-containing water treatment apparatus
JP2023075535A (en) * 2021-11-19 2023-05-31 栗田工業株式会社 Apparatus for treating waste water
WO2024178487A1 (en) * 2023-03-01 2024-09-06 Barkh Mohsen Solid formulations for neutralizing acidic tailings ponds and methods of neutralizing acidic tailings ponds

Also Published As

Publication number Publication date
JPH08132066A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
US3956118A (en) Removal of phosphate from waste water
EP0518871B1 (en) Waste water treatment process using a recycle of high density sludge
JP2912226B2 (en) Wastewater treatment method
US6177015B1 (en) Process for reducing the concentration of dissolved metals and metalloids in an aqueous solution
WO1998055405A1 (en) A process for the treatment of effluent streams
JP3632226B2 (en) Method for treating metal-containing wastewater
USH1852H (en) Waste treatment of metal plating solutions
JP4543481B2 (en) Method for treating water containing boron and fluorine
JP3998345B2 (en) Treatment method for molybdenum-containing wastewater
JP2004050096A (en) Method for treating wastewater containing harmful substance without producing sludge, and chemical agent used therein
JP3942235B2 (en) Method for treating boron-containing water
JPH11235595A (en) Treatment of boron-containing waste water
CN108996752B (en) Method for recovering low-concentration nickel from nickel extraction waste water
JPH05337474A (en) Treatment of waste water containing heavy metal
JP4039820B2 (en) Wastewater treatment method
JP3186094B2 (en) Treatment method for wastewater containing heavy metals
JP2001232372A (en) Treatment process for water containing boron
JP2910346B2 (en) Treatment method for wastewater containing heavy metals
JPH10156391A (en) Treatment of phosphorus recovered from treated water of sewerage
JP3733452B2 (en) Waste disposal method
CN116282118B (en) Method for producing industrial calcium chloride by utilizing rare earth smelting high-salt wastewater
US5462671A (en) Method of removing heavy metals from solutions of amino-carboxylic acids for disposal purposes
KR0157198B1 (en) Two-stage treatment process of phosphoric acid and fluoric acid wastewater by sludge recycle
WO1994018126A1 (en) Process for removing heavy metal ions from water
JP3355719B2 (en) Treatment method for metal-containing wastewater

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees