JP3998345B2 - Treatment method for molybdenum-containing wastewater - Google Patents
Treatment method for molybdenum-containing wastewater Download PDFInfo
- Publication number
- JP3998345B2 JP3998345B2 JP29535898A JP29535898A JP3998345B2 JP 3998345 B2 JP3998345 B2 JP 3998345B2 JP 29535898 A JP29535898 A JP 29535898A JP 29535898 A JP29535898 A JP 29535898A JP 3998345 B2 JP3998345 B2 JP 3998345B2
- Authority
- JP
- Japan
- Prior art keywords
- molybdenum
- liter
- containing wastewater
- wastewater
- ferric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Removal Of Specific Substances (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、モリブデン含有排水、例えば金属表面処理工場、半導体製造工場、ステンレス製造工場、電子部品製造工場等から排出されるモリブデン含有排水を処理する方法に関する。
【0002】
【従来の技術】
従来、モリブデン含有排水を処理する方法として、モリブデン含有排水に第二鉄イオン又はアルミニウムイオンを添加し、アルカリ剤を加えて水酸化第二鉄又は水酸化アルミニウムを生成させた後、固液分離して排水中からモリブデンを除去する方法が知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、前記した従来の凝集分離法による1段処理法では処理排水中のモリブデン濃度を1.0mg/リットル以下に低減することは困難であった。一方、モリブデンの排水基準は、近い将来、0.7mg/リットル以下になることが予測される。この新排水基準のモリブデンに従ってモリブデン濃度を0.7mg/リットル以下にするためには、従来の凝集分離法で処理した排水に対して、更に、例えば処理排水を重金属キレート樹脂塔に通して、排水を2段処理することが必要となる。しかしながら、この2段処理方法には、設備コストが高く、又ランニングコストが高くなるという欠点がある。
【0004】
従って、本発明の目的は前記した従来のモリブデン含有排水の処理法の問題点を解消し、モリブデン含有排水中のモリブデンを従来法に比較して、1段処理で低濃度、特にモリブデンの将来の排水基準である0.7mg/リットル以下の濃度まで除去することができ、更に設備コストを安くすることができるモリブデン含有排水の処理方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明に従えば、前記課題は、モリブデン含有排水を処理するにあたり、反応槽において、モリブデン含有排水に第二鉄イオンを添加し、次いで酸又はアルカリ剤で排水のpHを4〜8として水酸化第二鉄を生成せしめ、生成した懸濁物質を固液分離すると共に、得られる汚泥の一部を反応槽へ返送して汚泥循環することによって、モリブデン含有排水からモリブデンを除去するモリブデン含有排水の処理方法によって、解決される。
【0006】
【発明の実施の形態】
本発明のモリブデン含有排水の処理方法について更に具体的に説明する。本発明では、処理すべきモリブデン含有排水を適当な反応槽中に、連続的又は間欠的に導入し、これに塩化第二鉄、硫酸第二鉄などの第二鉄イオンを添加し、また原排水液のpHに従って、塩酸、硫酸などの酸又は水酸化カルシウム、水酸化ナトリウムなどのアルカリ剤を添加して液のpHを4〜8、好ましくは4〜5に調整する。なお第二鉄イオンと酸又はアルカリ剤の添加順序はまず第二鉄イオンを添加し、次に酸又はアルカリを添加しなければならない。この順序が逆では処理pH4〜5に制御困難であり、モリブデンの処理性に影響するので好ましくない。
【0007】
このようにすると、排水中に水酸化第二鉄が生成される。本発明ではこのようにして生成した水酸化第二鉄の吸着又は共沈効果を利用して排水中のモリブデンを効率的に除去できる。本発明において使用する第二鉄イオンの使用量には特に限定はないが、好ましくは原排水中のモリブデン濃度に対して0.5〜1.0倍量(重量比)である。この使用量が少ないと、吸着或いは共沈効果によるモリブデン処理効率の増大効果が期待できないおそれがあり、逆に多過ぎると第二鉄イオンの薬品使用量が増大するので実用的でない。
【0008】
前記のように、本発明に従えば、処理すべきモリブデン含有排水に適当量の第二鉄イオン及び酸もしくはアルカリ剤を添加して液のpHを4〜8、好ましくは4〜5に調整して、水酸化第二鉄を生成せしめ、この生成した水酸化第二鉄に排水中のモリブデンを吸着沈殿せしめる。液のpHが4〜8の範囲外ではモリブデンの処理性が悪化するので好ましくないが、液のpH4〜8の範囲内では、生成塩化第二鉄の吸着又は共沈効果により処理排水中のモリブデン濃度を0.7mg/リットル以下までモリブデンを除去することができる。
【0009】
次に、本発明では、沈殿した水酸化第二鉄及びモリブデンを含む固形分を、例えばクラリファイヤーやシックナーなどの沈降槽で通常の方法で固液分離することができる。
【0010】
このようにして凝集処理により反応槽中で生成した汚泥は、例えばクラリファイヤー又はシックナーなどを用いて固液分離することができ、得られる濃縮汚泥はその一部を反応槽へ返送して反応槽でのSS(懸濁物質)濃度が1000mg/リットル以上、好ましくは3000mg/リットル以上になるようにする。このように、濃縮汚泥の一部を反応槽へ返送することにより、驚くべきことに、その吸着又は共沈効果によって一つの沈降槽でのモリブデンの除去率が大幅に増大し、処理水中のモリブデン濃度を0.7mg/リットル以下まで低減することができる。
【0011】
【実施例】
以下、実施例に従って、本発明を更に詳しく説明するが、本発明の範囲をこれらの実施例に限定するものではないことはいうまでもない。
【0012】
例1(実施例)
この例では、純水に(NH4)6 Mo7 O2437.5mg/リットル(モリブデン濃度21.6mg/リットル)を溶解した液を処理対象水とした。
容量0.5リットルの反応槽に市水200mlを入れ、これに塩化第二鉄溶液(FeCl3 4560mg/リットル)(注:Fe(OH)3 として3000mg/リットルに相当)を添加し、更に5%水酸化カルシウム水溶液にて液のpHを7とし、常温で10分攪拌した。得られた水酸化第二鉄を含む懸濁液に、FKフロック−D(富士化水工業(株)製 強アニオン系高分子凝集剤)を添加して凝集処理した。この凝集処理によって得られた濃縮汚泥100mlの全量を前記処理対象水200ml(モリブデン濃度21.6mg/リットル)に投入し、これに塩化第二鉄溶液(FeCl3 70mg/リットル)を添加し、更に5%水酸化カルシウム水溶液にて液のpHを7とし、常温で10分攪拌した。得られた水酸化第二鉄懸濁液に、FKフロック−Dを添加して凝集処理した。更にこの凝集汚泥を種汚泥として同様の操作を3回繰り返した。このようにして得られた3回目の処理水中のモリブデン含量はICP発光分光分析法で0.59mg/リットルであった。
【0013】
例2(実施例)
この例では、純水に(NH4)6 Mo7 O2430.9mg/リットル(モリブデン濃度17.8mg/リットル)を溶解した液を処理対象水とした。
例1で用いた反応槽に市水200mlを入れ、これに塩化第二鉄溶液(FeCl3 4560mg/リットル)(Fe(OH)3 として3000mg/リットル相当)を添加し、更に5%水酸化カルシウム水溶液で液のpHを5とし、常温で10分攪拌した。このようにして生成した水酸化第二鉄を含む処理懸濁液にFKフロック−Dを添加して凝集処理した。このようにして凝集処理して得られた濃縮汚泥100mlの全量を前記処理対象水200ml(モリブデン濃度17.8mg/リットル)に投入し、これに塩化第二鉄溶液(70mg/リットル)を添加し、更に5%水酸化カルシウム水溶液にて液のpHを5とし、常温で10分攪拌し、FKフロック−Dにて凝集処理した。更にこのようにして得られた凝集汚泥を種汚泥として同様の操作を3回繰り返した。得られた3回目の処理水中のモリブデン含量はICP発光分光分析法で0.40mg/リットルであった。
【0014】
例3(比較例)
例1(実施例)の比較例として従来法の凝集処理を行った。この例では純水に(NH4)6 Mo7 O2435.4mg/リットル(モリブデン濃度20.4mg/リットル)を溶解した液を処理対象水とした。この処理対象水200ml(モリブデン濃度20.4mg/リットル)に対して塩化第二鉄溶液(FeCl3 50mg/リットル又はFeCl3 100mg/リットル)を添加し、それぞれ、5%水酸化カルシウム水溶液にて液のpHを7とし、10分攪拌した。次にFKフロック−Dにて凝集処理し、各処理水中のモリブデン含量をICP発光分光分析法で分析した。結果を表1に示す。
【0015】
【表1】
【0016】
【発明の効果】
以上説明したように、本発明によれば、モリブデン含有排水中のモリブデン含量を従来の凝集処理に比べて、低濃度まで除去することができ、更に、ランニングコストも安く、汚泥発生量も少なくすることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating molybdenum-containing wastewater, for example, molybdenum-containing wastewater discharged from a metal surface treatment factory, a semiconductor manufacturing factory, a stainless steel manufacturing factory, an electronic component manufacturing factory, or the like.
[0002]
[Prior art]
Conventionally, as a method for treating molybdenum-containing wastewater, ferric ions or aluminum ions are added to molybdenum-containing wastewater, and an alkali agent is added to produce ferric hydroxide or aluminum hydroxide, followed by solid-liquid separation. A method for removing molybdenum from wastewater is known.
[0003]
[Problems to be solved by the invention]
However, it has been difficult to reduce the molybdenum concentration in the treated wastewater to 1.0 mg / liter or less by the above-described conventional one-stage treatment method using the coagulation separation method. On the other hand, the drainage standard for molybdenum is expected to be 0.7 mg / liter or less in the near future. In order to reduce the molybdenum concentration to 0.7 mg / liter or less according to this new wastewater standard molybdenum, the wastewater treated by the conventional coagulation separation method is further passed through, for example, a heavy metal chelate resin tower, Need to be processed in two stages. However, this two-stage processing method has the disadvantages of high equipment costs and high running costs.
[0004]
Therefore, the object of the present invention is to solve the problems of the conventional treatment method of molybdenum-containing wastewater as described above. Compared with the conventional method, molybdenum in wastewater containing molybdenum has a low concentration, particularly the future of molybdenum. An object of the present invention is to provide a method for treating molybdenum-containing wastewater that can be removed to a concentration of 0.7 mg / liter or less, which is a wastewater standard, and that can further reduce equipment costs.
[0005]
[Means for Solving the Problems]
According to the present invention, in the treatment of molybdenum-containing wastewater, the subject is to add ferric ions to the molybdenum-containing wastewater in a reaction tank, and then make the pH of the wastewater 4 to 8 with an acid or an alkali agent. The molybdenum-containing wastewater is removed from the molybdenum-containing wastewater by producing ferric iron, separating the generated suspended solids into solid and liquid, and returning a portion of the resulting sludge to the reaction tank and circulating the sludge. It is solved by the processing method.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The method for treating molybdenum-containing wastewater of the present invention will be described more specifically. In the present invention, the molybdenum-containing waste water to be treated is introduced continuously or intermittently into a suitable reaction tank, and ferric ions such as ferric chloride and ferric sulfate are added thereto. According to the pH of the effluent, an acid such as hydrochloric acid or sulfuric acid or an alkaline agent such as calcium hydroxide or sodium hydroxide is added to adjust the pH of the solution to 4 to 8, preferably 4 to 5. In addition, the order of addition of ferric ion and acid or alkali agent must first add ferric ion and then add acid or alkali. If this order is reversed, it is difficult to control the treatment pH to 4 to 5, which is not preferable because it affects the treatability of molybdenum.
[0007]
If it does in this way, ferric hydroxide will be generated in drainage. In the present invention, molybdenum in the wastewater can be efficiently removed by utilizing the adsorption or coprecipitation effect of the ferric hydroxide thus produced. Although there is no limitation in particular in the usage-amount of the ferric ion used in this invention, Preferably it is 0.5-1.0 times amount (weight ratio) with respect to the molybdenum concentration in raw | natural wastewater. If the amount used is small, the effect of increasing the molybdenum treatment efficiency due to the adsorption or coprecipitation effect may not be expected. On the other hand, if the amount is too large, the amount of ferric ion chemical used increases, which is not practical.
[0008]
As described above, according to the present invention, an appropriate amount of ferric ion and an acid or alkali agent are added to the molybdenum-containing wastewater to be treated to adjust the pH of the solution to 4-8, preferably 4-5. Then, ferric hydroxide is produced, and molybdenum in the waste water is adsorbed and precipitated on the produced ferric hydroxide. If the pH of the solution is outside the range of 4-8, the processability of molybdenum deteriorates, which is not preferable. However, if the pH of the solution is in the range of 4-8, molybdenum in the treated wastewater due to the adsorption or coprecipitation effect of the ferric chloride produced. Molybdenum can be removed to a concentration of 0.7 mg / liter or less.
[0009]
Next, in the present invention, the solid content containing precipitated ferric hydroxide and molybdenum can be solid-liquid separated by a usual method in a sedimentation tank such as a clarifier or thickener.
[0010]
The sludge produced in the reaction tank by the coagulation treatment in this way can be solid-liquid separated using, for example, a clarifier or thickener, and the resulting concentrated sludge is partially returned to the reaction tank. The SS (suspended substance) concentration in the solution is 1000 mg / liter or more, preferably 3000 mg / liter or more. Thus, by returning a part of the concentrated sludge to the reaction tank, surprisingly, the removal rate of molybdenum in one settling tank is greatly increased by the adsorption or coprecipitation effect, and the molybdenum in the treated water is increased. The concentration can be reduced to 0.7 mg / liter or less.
[0011]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in more detail according to an Example, it cannot be overemphasized that the scope of the present invention is not limited to these Examples.
[0012]
Example 1 (Example)
In this example, a solution obtained by dissolving 37.5 mg / liter (NH 4 ) 6 Mo 7 O 24 (molybdenum concentration 21.6 mg / liter) in pure water was used as water to be treated.
200 ml of city water was placed in a reaction vessel having a capacity of 0.5 liters, and a ferric chloride solution (FeCl 3 4560 mg / liter) (note: equivalent to 3000 mg / liter as Fe (OH) 3 ) was added thereto, and further 5 The pH of the solution was adjusted to 7 with a% calcium hydroxide aqueous solution, and the mixture was stirred at room temperature for 10 minutes. FK floc-D (a strong anionic polymer flocculant manufactured by Fujikasui Industry Co., Ltd.) was added to the resulting suspension containing ferric hydroxide for aggregation treatment. 100 ml of the concentrated sludge obtained by this coagulation treatment is put into 200 ml of the water to be treated (molybdenum concentration 21.6 mg / liter), and a ferric chloride solution (FeCl 3 70 mg / liter) is added thereto, and The solution was adjusted to pH 7 with a 5% calcium hydroxide aqueous solution and stirred at room temperature for 10 minutes. FK floc-D was added to the obtained ferric hydroxide suspension for aggregation treatment. Further, the same operation was repeated three times using this agglomerated sludge as seed sludge. The molybdenum content in the third treated water thus obtained was 0.59 mg / liter by ICP emission spectroscopy.
[0013]
Example 2 (Example)
In this example, a solution obtained by dissolving 30.9 mg / liter of (NH 4 ) 6 Mo 7 O 24 (molybdenum concentration 17.8 mg / liter) in pure water was used as water to be treated.
200 ml of city water was placed in the reaction tank used in Example 1, and a ferric chloride solution (FeCl 3 4560 mg / liter) (corresponding to 3000 mg / liter as Fe (OH) 3 ) was added thereto, and 5% calcium hydroxide was added. The solution was adjusted to pH 5 with an aqueous solution and stirred at room temperature for 10 minutes. FK floc-D was added to the treated suspension containing ferric hydroxide produced in this way, and agglomerated. The total amount of 100 ml of concentrated sludge obtained by the coagulation treatment in this manner is put into 200 ml of the water to be treated (molybdenum concentration 17.8 mg / liter), and a ferric chloride solution (70 mg / liter) is added thereto. Further, the pH of the solution was adjusted to 5 with a 5% calcium hydroxide aqueous solution, stirred at room temperature for 10 minutes, and agglomerated with FK Flock-D. Further, the same operation was repeated three times using the agglomerated sludge thus obtained as seed sludge. The molybdenum content in the third treated water obtained was 0.40 mg / liter by ICP emission spectroscopy.
[0014]
Example 3 (comparative example)
As a comparative example of Example 1 (Example), a conventional flocculation treatment was performed. In this example, (NH 4 ) 6 Mo 7 O 24 35.4 mg / liter (molybdenum concentration 20.4 mg / liter) dissolved in pure water was used as water to be treated. A ferric chloride solution (FeCl 3 50 mg / liter or FeCl 3 100 mg / liter) is added to 200 ml of this water to be treated (molybdenum concentration 20.4 mg / liter), and each is washed with a 5% calcium hydroxide aqueous solution. Was adjusted to pH 7 and stirred for 10 minutes. Next, coagulation treatment was performed with FK Flock-D, and the molybdenum content in each treated water was analyzed by ICP emission spectroscopy. The results are shown in Table 1.
[0015]
[Table 1]
[0016]
【The invention's effect】
As described above, according to the present invention, the molybdenum content in the molybdenum-containing wastewater can be removed to a lower concentration than in the conventional coagulation treatment, and the running cost is low and the amount of sludge generated is reduced. be able to.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29535898A JP3998345B2 (en) | 1998-10-16 | 1998-10-16 | Treatment method for molybdenum-containing wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29535898A JP3998345B2 (en) | 1998-10-16 | 1998-10-16 | Treatment method for molybdenum-containing wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000117265A JP2000117265A (en) | 2000-04-25 |
JP3998345B2 true JP3998345B2 (en) | 2007-10-24 |
Family
ID=17819595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29535898A Expired - Fee Related JP3998345B2 (en) | 1998-10-16 | 1998-10-16 | Treatment method for molybdenum-containing wastewater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3998345B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4591641B2 (en) * | 2000-12-05 | 2010-12-01 | Necファシリティーズ株式会社 | Method for coagulating and precipitating iron hydroxide in wastewater containing concentrated inorganic components |
KR100472289B1 (en) * | 2002-12-09 | 2005-03-10 | 주식회사동성산업 | Methods of preparing complex fertilizers using a metal component-containing spent acid solution and complex fertilizers prepared therefrom |
JP4505264B2 (en) * | 2004-06-07 | 2010-07-21 | ナガオ株式会社 | Treatment method for waste liquid containing molybdenum |
US8815184B2 (en) * | 2010-08-16 | 2014-08-26 | Chevron U.S.A. Inc. | Process for separating and recovering metals |
EP2447219A1 (en) | 2010-10-28 | 2012-05-02 | Recoval Belgium | Method for purifying waste water from a stainless steel slag treatment process |
JP6986226B2 (en) | 2017-12-27 | 2021-12-22 | 三菱マテリアル株式会社 | Wastewater treatment method |
JP6970917B2 (en) | 2017-12-27 | 2021-11-24 | 三菱マテリアル株式会社 | Wastewater treatment method |
CN114735846A (en) * | 2022-03-29 | 2022-07-12 | 信丰华锐钨钼新材料有限公司 | Method for deeply removing molybdenum in molybdenum-containing wastewater |
-
1998
- 1998-10-16 JP JP29535898A patent/JP3998345B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000117265A (en) | 2000-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110759532A (en) | High-salt concentrated water treatment process for producing iron phosphate by sodium method | |
JP3998345B2 (en) | Treatment method for molybdenum-containing wastewater | |
JP4863694B2 (en) | Method and apparatus for fluorinating chelating agent-containing water | |
JP5796703B2 (en) | Calcium fluoride recovery method and recovery apparatus | |
JP4351867B2 (en) | Fluorine or phosphorus-containing water treatment equipment | |
JP4572812B2 (en) | Fluorine-containing water treatment method | |
JP4508600B2 (en) | Method and apparatus for treating fluorine-containing wastewater | |
JPH0679286A (en) | Treatment of selenium-containing waste water | |
JP3642516B2 (en) | Method and apparatus for removing COD components in water | |
JP5693992B2 (en) | Method for recovering dissolved iron from wastewater containing various metal ions | |
JP3632226B2 (en) | Method for treating metal-containing wastewater | |
JP2003285078A (en) | Treatment method for arsenic-containing water | |
JPH06114382A (en) | Treatment of fluorine-containing waste water | |
JP2002079003A (en) | Inorganic flocculant using highly purified ferric salt and manufacturing method thereof and processing apparatus in water-purification processing | |
JPH0578105A (en) | Treatment of selenium-containing waste water | |
JP2010075928A (en) | Treatment method and treatment device for fluorine-containing waste water | |
JPH06154767A (en) | Method for treating fluorine-containing drain | |
JP4815082B2 (en) | Treatment method of iron-containing sulfuric acid solution | |
JP2000210680A (en) | Lead treatment of pigment containing waste water | |
JP2937438B2 (en) | Sludge dewatering method | |
JP2001321781A (en) | Method for treating heavy metal-containing wastewater | |
JPH09314182A (en) | Treatment process for selenium containing drain | |
JPH057879A (en) | Treatment of waste water containing heavy metal | |
JPH1076275A (en) | Wastewater treatment agent | |
JPH0128629B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051014 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070706 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070710 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070807 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100817 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110817 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120817 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130817 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130817 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130817 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130817 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130817 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |