JPH06154767A - Method for treating fluorine-containing drain - Google Patents

Method for treating fluorine-containing drain

Info

Publication number
JPH06154767A
JPH06154767A JP31870092A JP31870092A JPH06154767A JP H06154767 A JPH06154767 A JP H06154767A JP 31870092 A JP31870092 A JP 31870092A JP 31870092 A JP31870092 A JP 31870092A JP H06154767 A JPH06154767 A JP H06154767A
Authority
JP
Japan
Prior art keywords
fluorine
liter
wastewater
concentration
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31870092A
Other languages
Japanese (ja)
Inventor
Toshiaki Matsuoka
俊昭 松岡
Yuji Fujita
雄治 藤田
Yukio Higuchi
幸男 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Kasei Kogyo Co Ltd
Original Assignee
Fuji Kasei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Kasei Kogyo Co Ltd filed Critical Fuji Kasei Kogyo Co Ltd
Priority to JP31870092A priority Critical patent/JPH06154767A/en
Publication of JPH06154767A publication Critical patent/JPH06154767A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To provide a treatment method for fluorine-containing drain in which fluorine in the fluorine containing drain can be removed down to a low concentration, the amount of using chemicals can be reduced and also the amount of generating formed sludge can be reduced. CONSTITUTION:A calcium compound and aluminum ions are added to fluorine- containing drain in a reaction tank to make the pH of liquid to the range of 6-8, and fluorine ions in the drain are made insoluble in the form of calcium fluoride, and the solid-liquid separation is carried out. Also a part of formed concentrated sludge is returned to the reaction tank and sludge circulation is carried out to increase the concentration of formed calcium fluoride and also the concentration of formed aluminum hydroxide and the removing efficiency of fluorine from the fluorine containing drain is enhanced by the seed crystal effect of formed calcium fluoride and the coprecipitation effect of formed aluminum hydroxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フッ素含有排水、例え
ば製鉄所の循環水、金属表面処理工場、半導体製造工
場、プリント基板製造工場、セラミックス製造工場、ス
テンレス製造工場等から排出されるフッ素含有排水の処
理方法に関する。
FIELD OF THE INVENTION The present invention relates to fluorine-containing wastewater, for example, circulating water in a steel mill, metal surface treatment factory, semiconductor manufacturing factory, printed circuit board manufacturing factory, ceramics manufacturing factory, stainless steel manufacturing factory, etc. Regarding the treatment method of waste water.

【0002】[0002]

【従来の技術】従来、フッ素含有排水を処理する方法と
して、フッ素含有排水に、カルシウム化合物、アルミニ
ウム化合物等の1種又はそれ以上を加えて排水中のフッ
素イオンを不溶化させた後、固液分離して排水中からフ
ッ素を除去する方法が知られている。
2. Description of the Related Art Conventionally, as a method for treating fluorine-containing wastewater, one or more kinds of calcium compounds, aluminum compounds, etc. are added to the fluorine-containing wastewater to insolubilize the fluorine ions in the wastewater, and then solid-liquid separation is performed. Then, a method of removing fluorine from the wastewater is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記し
た従来の方法には、薬品使用量が多く、またスラッジの
生成量が多いという問題があった。更に従来の凝集分離
法による1段処理法では排水中のフッ素濃度を約8mg/
リットル以下まで処理することは困難であった。
However, the above-mentioned conventional methods have a problem that a large amount of chemicals is used and a large amount of sludge is produced. Furthermore, in the conventional one-step treatment method using the coagulation separation method, the concentration of fluorine in the wastewater is about 8 mg /
It was difficult to process to less than 1 liter.

【0004】本発明は前記した従来のフッ素含有排水の
処理方法の問題を解消し、従来法に比較して、フッ素含
有排水中のフッ素を低濃度まで除去することができ、薬
品使用量を少なくすることができ、そして生成スラッジ
の発生量を少なくすることができるフッ素含有排水の処
理方法を提供することにある。
The present invention solves the above-mentioned problems of the conventional method for treating fluorine-containing wastewater, can remove fluorine in the fluorine-containing wastewater to a low concentration, and reduces the amount of chemicals used, as compared with the conventional method. And to provide a method for treating fluorine-containing wastewater, which can reduce the amount of generated sludge.

【0005】[0005]

【課題を解決するための手段】本発明に従えば、前記課
題は、反応槽中においてフッ素含有排水にカルシウム化
合物及びアルミニウムイオンを添加して液のpHを6〜8
として排水中のフッ素イオンをフッ化カルシウムの形で
不溶化させて固液分離すると共に、生成した濃縮汚泥の
一部を反応槽へ返送して汚泥循環することによって生成
フッ化カルシウム濃度及び生成水酸化アルミニウム濃度
を濃縮し、かつ、その生成フッ化カルシウムの種晶効果
及び生成水酸化アルミニウムの共沈効果により、フッ素
含有排水からのフッ素の除去効率を向上させることによ
って解決される。
According to the present invention, the above-mentioned problems are solved by adding a calcium compound and aluminum ions to fluorine-containing wastewater in a reaction tank to adjust the pH of the liquid to 6-8.
As a result, the fluoride ions in the wastewater are insolubilized in the form of calcium fluoride for solid-liquid separation, and a part of the generated concentrated sludge is returned to the reaction tank and circulated in the sludge to generate the calcium fluoride concentration and the hydroxylation. This is solved by concentrating the aluminum concentration and improving the efficiency of removing fluorine from the fluorine-containing wastewater by the seed crystal effect of the produced calcium fluoride and the coprecipitation effect of the produced aluminum hydroxide.

【0006】本発明に従えば、適当な反応槽(又は排水
処理槽)中に処理すべきフッ素含有排水を連続又は間欠
的に導入し、これにカルシウム化合物を添加して液のpH
を6〜8に調整する。この際、本発明では、硫酸アルミ
ニウム、ポリ塩化アルミニウムなどのアルミニウムイオ
ンを添加して生成した水酸化アルミニウムと生成フッ化
カルシウムとの共沈効果を利用する。このアルミニウム
イオンの添加形態には特に限定はないが、通常水溶液の
形で使用することができる。アルミニウムイオンを使用
する場合のアルミニウムイオンの使用量には特に限定は
ないが、好ましくは生成CaF2モル濃度に対し0.11〜1.1
倍量、更に好ましくは0.22〜0.46倍量である。この使用
量が少ないと、共沈効果によるフッ素処理効率アップは
期待できず、逆に多過ぎるとアルミニウムイオンの薬品
使用量が増大するため好ましくない。
According to the present invention, the fluorine-containing wastewater to be treated is continuously or intermittently introduced into a suitable reaction tank (or wastewater treatment tank), to which a calcium compound is added to add pH to the solution.
To 6-8. At this time, the present invention utilizes the coprecipitation effect of aluminum hydroxide produced by adding aluminum ions such as aluminum sulfate and polyaluminum chloride and produced calcium fluoride. The form of addition of this aluminum ion is not particularly limited, but it can be usually used in the form of an aqueous solution. There is no particular limitation on the amount of aluminum ions used when using aluminum ions, but preferably 0.11 to 1.1 with respect to the produced CaF 2 molar concentration.
The amount is double, more preferably 0.22-0.46. If the amount used is too small, the fluorine treatment efficiency cannot be expected to increase due to the coprecipitation effect. On the contrary, if the amount is too large, the amount of aluminum ion used will increase, which is not preferable.

【0007】本発明に従えば、処理すべきフッ素含有排
水に水酸化カルシウム(又は石灰乳)及び硫酸アルミニ
ウムを添加して液のpHを6〜8、好ましくは 6.5〜 7.5
に調整して排水中のフッ素イオンをフッ化カルシウム
(CaF2)として、また、アルミニウムイオンを水酸化ア
ルミニウムとして沈澱させる。
According to the present invention, calcium hydroxide (or lime milk) and aluminum sulfate are added to the fluorine-containing wastewater to be treated so that the pH of the liquid is 6 to 8, preferably 6.5 to 7.5.
The fluoride ion in the wastewater is precipitated as calcium fluoride (CaF 2 ) and the aluminum ion is precipitated as aluminum hydroxide.

【0008】本発明に従えば、沈澱したフッ化カルシウ
ム及び水酸化アルミニウムを含む固形分は、例えば沈降
槽で通常の方法を用いて固液分離することができる。こ
のような方法としては、例えばクラリファイヤーやシッ
クナーなどがある。
According to the present invention, the precipitated solids containing calcium fluoride and aluminum hydroxide can be subjected to solid-liquid separation using a conventional method, for example, in a settling tank. Examples of such a method include a clarifier and thickener.

【0009】このようにして凝集処理して生成した濃縮
汚泥は、例えばクラリファイヤー又はシックナーなどを
用いて固液分離すると共に、その一部を反応槽へ返送し
て反応槽でのフッ化カルシウム濃度を 100mg/リットル以
上、好ましくは 200mg/リットル以上にする。このように、
本発明に従ってフッ化カルシウムの一部を反応槽へ返送
することにより、その種晶効果及び共沈効果によって一
つの沈降槽でのフッ素の除去率が大幅に増大し、処理水
中のフッ素濃度を8mg/リットル以下(例えば 1.6〜7.6mg
/リットル)まで処理することができる。
The concentrated sludge thus produced by the coagulation treatment is subjected to solid-liquid separation by using, for example, a clarifier or thickener, and a part of it is returned to the reaction tank and the calcium fluoride concentration in the reaction tank is increased. Is 100 mg / liter or more, preferably 200 mg / liter or more. in this way,
By returning a part of calcium fluoride to the reaction tank according to the present invention, the removal rate of fluorine in one settling tank is significantly increased by the seed crystal effect and the coprecipitation effect, and the fluorine concentration in the treated water is 8 mg. / Liter or less (eg 1.6 to 7.6 mg
/ Liter) can be processed.

【0010】[0010]

【実施例】以下、実施例に従って、本発明を更に詳しく
説明するが、本発明の範囲をこれらの実施例に限定する
ものでないことはいうまでもない。
EXAMPLES The present invention will be described in more detail below with reference to Examples, but it goes without saying that the scope of the present invention is not limited to these Examples.

【0011】例1 表1に示すような性状の鉄鋼プラントからのフッ素含有
排水、即ち、脱水排水、鋳造冷却排水、転炉集塵排水及
び圧延排水を処理対象水としてフッ素除去処理を行っ
た。
Example 1 Fluorine removal treatment was carried out by using fluorine-containing wastewater from a steel plant having the properties shown in Table 1, that is, dehydration wastewater, casting cooling wastewater, converter dust collection wastewater and rolling wastewater as treatment water.

【0012】 表 1 ──────────────────────────── サンプル pH フッ素含量(mg/リットル) ──────────────────────────── 脱水排水 6.30 1.0 鋳造冷却排水 6.60 25.4 転炉集塵排水 8.67 63.0 圧延排水 6.75 0.3 ──────────────────────────── Table 1 ──────────────────────────── Sample pH Fluorine content (mg / liter) ──────── ──────────────────── Dewatering drainage 6.30 1.0 Casting cooling drainage 6.60 25.4 Converter dust collection drainage 8.67 63.0 Rolling drainage 6.75 0.3 ────────── ──────────────────

【0013】処理対象排水として上記各排水を以下の比
に混合したものを用いた。 脱水排水 : 960 m3/D 鋳造冷却排水 : 1,200 m3/D 転炉集塵排水 : 1,200 m3/D 圧延排水 : 2,400 m3/D この処理対象水中のフッ素含量は 18.7 mg/リットルであっ
た。
As the wastewater to be treated, a mixture of the above respective wastewater in the following ratio was used. Dehydration wastewater: 960 m 3 / D Casting cooling wastewater: 1,200 m 3 / D Converter dust collection wastewater: 1,200 m 3 / D Rolling wastewater: 2,400 m 3 / D The fluorine content in this treated water is 18.7 mg / liter. It was

【0014】反応槽に市水 200mlを入れ、これにAl2(SO
4)3 2,190mg /リットル〔Al(OH)3 として 1,000mg/リットル相
当〕を添加し、更に5%Ca(OH)2 にて液のpHを7とし、
常温で15分間攪拌後、これをFKフロック−D(強アニ
オン系高分子凝集剤)にて凝集処理した。処理水中のフ
ッ素含量は0.01mg/リットル以下であった。
200 ml of city water was put into the reaction tank, and Al 2 (SO
4 ) 3 2,190 mg / liter (equivalent to 1,000 mg / liter as Al (OH) 3 ) was added, and the pH of the solution was adjusted to 7 with 5% Ca (OH) 2 .
After stirring at room temperature for 15 minutes, this was coagulated with FK Flock-D (strong anionic polymer coagulant). The fluorine content in the treated water was 0.01 mg / liter or less.

【0015】次に、上記凝集処理の濃縮汚泥70ml全量を
前記処理対象水200ml(F=18.7mg/リットル)に投入し、こ
れにAl2(SO4)3 200mg /リットルを添加し、更に5%Ca(OH)
2 にて液のpHを7とし、常温で15分間攪拌後、FKフロ
ック−Dにて凝集処理した。得られた処理水のフッ素含
量は1.6 mg/リットルであった。この場合のフッ素除去率を
計算すると以下の通りである。
Next, 70 ml of the concentrated sludge obtained by the above coagulation treatment was put into 200 ml of the water to be treated (F = 18.7 mg / liter), and 200 mg / liter of Al 2 (SO 4 ) 3 was added to the treated water. % Ca (OH)
The pH of the solution was adjusted to 7 at 2, the mixture was stirred at room temperature for 15 minutes, and then subjected to coagulation treatment with FK Floc-D. The fluorine content of the obtained treated water was 1.6 mg / liter. The calculated fluorine removal rate in this case is as follows.

【0016】処理対象排水200ml(F=18.7mg/リットル)に
濃縮汚泥80ml(F=0.01mg/リットル以下)を投入した時の
液中のフッ素濃度は13.9mg/リットルとなるから、フッ素除
去率は下記計算式の通り88.5%である。 F除去率=〔 (13.9−1.6)/13.9〕× 100 = 88.5 %
[0016] When 80 ml of concentrated sludge (F = 0.01 mg / liter or less) is added to 200 ml of wastewater to be treated (F = 18.7 mg / liter), the fluorine concentration in the liquid is 13.9 mg / liter. Is 88.5% according to the following formula. F removal rate = [(13.9-1.6) /13.9] x 100 = 88.5%

【0017】例2 市水にNaF 108mg /リットル(CaF2として 100mg/リットル相
当)を溶解した液(F=48.8mg/リットル)200ml を反応槽
に入れ、これにAl2(SO4)3 2,190mg /リットル(Al(OH)3とし
て 1,000mg/リットル相当)を添加し、更に5%Ca(OH)2
てpHを7とし、常温で15分間攪拌後、FKフロック−D
にて凝集処理した。得られた処理水のフッ素含量は1.6
mg/リットルであった。
Example 2 200 ml of a solution (F = 48.8 mg / liter) obtained by dissolving NaF 108 mg / liter (corresponding to 100 mg / liter as CaF 2 ) in city water was placed in a reaction tank, and Al 2 (SO 4 ) 3 2,190 was added thereto. mg / liter (equivalent to 1,000 mg / liter as Al (OH) 3 ) was added, the pH was adjusted to 7 with 5% Ca (OH) 2 , and the mixture was stirred at room temperature for 15 minutes, then FK Floc-D
Was subjected to coagulation treatment. The fluorine content of the obtained treated water is 1.6.
It was mg / liter.

【0018】次に、上記凝集処理の濃縮汚泥70ml全量を
例1で用いた処理対象排水200ml(F=18.7mg/リットル)に
投入し、これにAl2(SO4)3 200mg /リットルを添加し、更に
5%Ca(OH)2 にて液のpHを7とし、常温で15分間攪拌
後、FKフロック−Dにて凝集処理した。得られた処理
水のフッ素含量は 2.3mg/リットルであった。この場合のフ
ッ素除去率を計算すると以下の通りである。
Then, 70 ml of the concentrated sludge of the above coagulation treatment was put into 200 ml of the wastewater to be treated (F = 18.7 mg / liter) used in Example 1, and 200 mg / liter of Al 2 (SO 4 ) 3 was added to this. Then, the pH of the solution was adjusted to 7 with 5% Ca (OH) 2 , stirred at room temperature for 15 minutes, and then subjected to aggregation treatment with FK Floc-D. The fluorine content of the obtained treated water was 2.3 mg / liter. The calculated fluorine removal rate in this case is as follows.

【0019】処理対象排水200ml(F=18.7mg/リットル)に
濃縮汚泥70ml(F= 1.6mg/リットル)を投入した時の液中
のフッ素濃度は14.3mg/リットルとなるから、フッ素除去率
は下記計算式の通り83.9%である。 F除去率=〔 (14.3−2.3)/14.3〕× 100 = 83.9 %
When 70 ml of concentrated sludge (F = 1.6 mg / liter) was added to 200 ml of wastewater to be treated (F = 18.7 mg / liter), the fluorine concentration in the liquid was 14.3 mg / liter. It is 83.9% according to the following formula. F removal rate = [(14.3-2.3) /14.3] x 100 = 83.9%

【0020】例3 市水にNaF215mg/リットル (CaF2 として200mg/リットル相当)を
溶解した液(F=101mg/リットル) 200mlを反応槽に入れ、
これにAl2(SO4)3 2,190mg/リットル(Al(OH)3として1,000mg/
リットル相当)を添加し、更に5%Ca(OH)2 にてpH7とし、
常温で15分間攪拌後、FKフロック−Dにて凝集処理し
た。得られた処理水のフッ素含有量は3.3mg/リットルであっ
た。
Example 3 200 ml of a solution (F = 101 mg / liter) in which 215 mg / liter of NaF (equivalent to 200 mg / liter of CaF 2 ) was dissolved in city water was placed in a reaction tank,
Al 2 (SO 4 ) 3 2,190 mg / liter (Al (OH) 3 1,000 mg / liter
(Equivalent to 1 liter) is added and the pH is adjusted to 7 with 5% Ca (OH) 2 .
After stirring at room temperature for 15 minutes, flocculation treatment was performed with FK Floc-D. The fluorine content of the obtained treated water was 3.3 mg / liter.

【0021】次に、上記凝集処理の濃縮汚泥70ml全量を
例1で用いた処理対象排水200ml(F=18.7mg/リットル)に投
入し、これにAl2(SO4)3 200mg/リットルを添加し、更に5%
Ca(OH)2 にて液のpHを7とし、常温で15分間攪拌後、F
Kフロック−Dにて凝集処理した。得られた処理水のフ
ッ素含量は4.7mg/リットルであった。この場合のフッ素除去
率を計算すると以下の通りである。
Next, 70 ml of the concentrated sludge of the above coagulation treatment was put into 200 ml of the wastewater to be treated (F = 18.7 mg / liter) used in Example 1, and 200 mg / liter of Al 2 (SO 4 ) 3 was added to this. And 5%
Adjust the pH of the solution to 7 with Ca (OH) 2 and stir at room temperature for 15 minutes, then
Aggregation treatment was performed with K-Floc-D. The fluorine content of the obtained treated water was 4.7 mg / liter. The calculated fluorine removal rate in this case is as follows.

【0022】処理対象排水200ml(F=18.7mg/リットル)に濃
縮汚泥70ml(F=3.3mg/リットル)を投入した時の液中のフ
ッ素濃度は14.7mg/リットル となるから、フッ素除去率は、
下記計算式の通り68.0%である。 F除去率=〔(14.7-4.7)/14.7〕× 100=68.0%
When 70 ml of concentrated sludge (F = 3.3 mg / liter) was added to 200 ml of wastewater to be treated (F = 18.7 mg / liter), the fluorine concentration in the liquid was 14.7 mg / liter, so the fluorine removal rate is ,
It is 68.0% according to the following formula. F removal rate = [(14.7-4.7) /14.7] x 100 = 68.0%

【0023】例4 市水にNaF 215mg /リットル(CaF2として 200mg/リットル相
当)を溶解した液(F=101mg/リットル)200ml を反応槽
に入れ、これにAl2(SO4)3 2,190mg /リットル(Al(OH)3とし
て 1,000mg/リットル相当)を添加し、更に5%Ca(OH)2
てpHを7とし、常温にて15分間攪拌後、FKフロック−
Dにて凝集処理した。得られた処理水中のフッ素含量は
3.3mg/リットルであった。
Example 4 200 ml of a solution (F = 101 mg / liter) in which 215 mg / liter of NaF (equivalent to 200 mg / liter as CaF 2 ) was dissolved in city water was placed in a reaction vessel, and Al 2 (SO 4 ) 3 2,190 mg was added to it. / Liter (equivalent to 1,000 mg / liter as Al (OH) 3 ) was added, the pH was adjusted to 7 with 5% Ca (OH) 2 , and the mixture was stirred at room temperature for 15 minutes, then FK floc-
Aggregation treatment was performed in D. The fluorine content in the obtained treated water is
It was 3.3 mg / liter.

【0024】次に、上記凝集処理の濃縮汚泥70ml全量を
例1で用いた処理対象排水200ml(F=18.7mg/リットル)に
投入し、これにAl2(SO4)3 50mg/リットルを添加し、更に5
%Ca(OH)2 にて液をpHを7とし、常温で15分間攪拌後、
FKフロック−Dにて凝集処理した。得られた処理水の
フッ素含量は 7.6mg/リットルであった。この場合のフッ素
除去率を計算すると以下の通りである。
Next, the total amount of 70 ml of the concentrated sludge obtained by the above coagulation treatment was added to 200 ml of the wastewater to be treated (F = 18.7 mg / liter) used in Example 1, to which Al 2 (SO 4 ) 3 50 mg / liter was added. And then 5
Adjust the pH to 7 with% Ca (OH) 2 and stir at room temperature for 15 minutes.
Aggregation treatment was performed with FK Floc-D. The fluorine content of the obtained treated water was 7.6 mg / liter. The calculated fluorine removal rate in this case is as follows.

【0025】処理対象排水200ml(F=18.7mg/リットル)に
濃縮汚泥70ml(F=3.3 mg/リットル)を投入した時の液中
のフッ素濃度は14.7mg/リットルとなるから、フッ素除去率
は以下の計算式の通り48.3%である。 F除去率=〔 (14.7−7.6)/14.7〕× 100 = 48.3 %
When the concentrated sludge (70 ml, F = 3.3 mg / liter) was added to the treated wastewater (200 ml, F = 18.7 mg / liter), the fluorine concentration in the liquid was 14.7 mg / liter. It is 48.3% according to the following formula. F removal rate = [(14.7-7.6) /14.7] x 100 = 48.3%

【0026】例5 市水にNaF 215mg /リットル(CaF2として 200mg/リットル相
当)を溶解した液(F=101mg/リットル)200ml を反応槽
に入れ、これにAl2(SO4)3 2,190mg /リットル(Al(OH)3とし
て 1,000mg/リットル相当)を添加し、更に5%Ca(OH)2
てpHを7とし、常温で15分間攪拌後、FKフロック−D
にて凝集処理した。得られた処理水のフッ素含量は 3.3
mg/リットルであった。
Example 5 200 ml of a solution (F = 101 mg / liter) in which 215 mg / liter of NaF (equivalent to 200 mg / liter as CaF 2 ) was dissolved in city water was placed in a reaction tank, and Al 2 (SO 4 ) 3 2,190 mg was added thereto. / Liter (equivalent to 1,000 mg / liter as Al (OH) 3 ) was added and the pH was adjusted to 7 with 5% Ca (OH) 2 and after stirring at room temperature for 15 minutes, FK Flock-D
Was subjected to coagulation treatment. The fluorine content of the resulting treated water is 3.3.
It was mg / liter.

【0027】次に、上記凝集処理の濃縮汚泥70ml全量を
例1で用いた処理対象排水200ml(F=18.7mg/リットル)に
投入し、これにAl2(SO4)3 100mg /リットルを添加し、更に
5%Ca(OH)2 にて液のpHを7とし、常温で15分間攪拌
後、FKフロック−Dにて凝集処理した。得られた処理
水のフッ素含量は 6.2mg/リットルであった。この場合のフ
ッ素除去率を計算すると以下の通りである。
Next, the total amount of 70 ml of the concentrated sludge obtained by the above coagulation treatment was added to 200 ml of the wastewater to be treated (F = 18.7 mg / liter) used in Example 1, to which Al 2 (SO 4 ) 3 100 mg / liter was added. Then, the pH of the solution was adjusted to 7 with 5% Ca (OH) 2 , stirred at room temperature for 15 minutes, and then subjected to aggregation treatment with FK Floc-D. The fluorine content of the obtained treated water was 6.2 mg / liter. The calculated fluorine removal rate in this case is as follows.

【0028】処理対象排水200ml(F=18.7mg/リットル)に
濃縮汚泥70ml(F= 3.3mg/リットル)を投入した時の液中
のフッ素濃度は14.7mg/リットルとなるから、フッ素除去率
は以下の計算式の通り57.8%である。 F除去率=〔 (14.7−6.2)/14.7〕× 100 = 57.8 %
When 70 ml of concentrated sludge (F = 3.3 mg / liter) was added to 200 ml of wastewater to be treated (F = 18.7 mg / liter), the fluorine concentration in the liquid was 14.7 mg / liter, so the fluorine removal rate was It is 57.8% according to the following formula. F removal rate = [(14.7-6.2) /14.7] x 100 = 57.8%

【0029】以上の結果をまとめると表2及び表3に示
す通りである。 表 2 ─────────────────────────────────── 原 水 処理水 F 濃 縮 汚 泥 F含量 F含量 除去率 CaF2(mg/リットル) Al(OH)3(mg/リットル) (mg/リットル) (mg/リットル) (%) ─────────────────────────────────── 0 1,000 18.7 1.6 88.5 100 1,000 18.7 2.3 83.9 200 1,000 18.7 4.7 68.0 ───────────────────────────────────
The above results are summarized in Tables 2 and 3. Table 2 ─────────────────────────────────── Raw water Treated water F Concentration Sludge F content F content Removal rate CaF 2 (mg / liter) Al (OH) 3 (mg / liter) (mg / liter) (mg / liter) (%) ─────────────────── ───────────────── 0 1,000 18.7 1.6 88.5 100 1,000 18.7 2.3 83.9 200 1,000 18.7 4.7 68.0 ────────────────── ─────────────────

【0030】 表 3 ──────────────────────────────────── Al2(SO4)3 原 水 処理水 F 添加量 濃 縮 汚 泥 F含量 F含量 除去率 (mg/リットル) CaF2(mg/リットル) Al(OH)3(mg/リットル) (mg/リットル) (mg/リットル) (%) ──────────────────────────────────── 50 200 1,000 18.7 7.6 48.3 100 200 1,000 18.7 6.2 57.8 200 200 1,000 18.7 4.7 68.0 ──────────────────────────────────── Table 3 ──────────────────────────────────── Al 2 (SO 4 ) 3 Raw water Treated water F addition amount Concentrated sludge F content F content Removal rate (mg / liter) CaF 2 (mg / liter) Al (OH) 3 (mg / liter) (mg / liter) (mg / liter) (%) ──────────────────────────────────── 50 200 1,000 18.7 7.6 48.3 100 200 1,000 18.7 6.2 57.8 200 200 1,000 18.7 4.7 68.0 ─────────────────────────────────────

【0031】上表より、濃縮汚泥中のCaF2含量が 200mg
/リットル以上存在すれば処理水フッ素濃度8mg/リットル以下
を満足することが明らかである。
From the above table, the CaF 2 content in the concentrated sludge was 200 mg.
It is clear that when the amount of the water is not less than 1 liter / liter, the treated water has a fluorine concentration of 8 mg / liter or less.

【0032】[0032]

【比較例】以下、従来の凝集処理法を比較例として示し
た。例6 反応槽に前記処理対象水 200ml (F=18.7mg/リットル)を入
れ、これにAl2(SO4)350mg/リットルを添加し、更に5%Ca
(OH)2 にて液のpHを7とし、常温で15分間攪拌後、FK
フロック−Dにて凝集処理した。得られた処理水のフッ
素含量は14.3mg/リットルであった。この場合のフッ素除去
率を計算すると以下の通りである。 F除去率 =〔(18.7−14.3)/ 18.7 〕× 100 = 2
3.5 %
[Comparative Example] The conventional aggregating treatment method is shown below as a comparative example. Example 6 200 ml of water to be treated (F = 18.7 mg / liter) was placed in a reaction tank, 50 mg / liter of Al 2 (SO 4 ) 3 was added thereto, and further 5% Ca was added.
Adjust the pH of the solution to 7 with (OH) 2 and stir at room temperature for 15 minutes, then FK
A flocculation treatment was performed with Flock-D. The fluorine content of the obtained treated water was 14.3 mg / liter. The calculated fluorine removal rate in this case is as follows. F removal rate = [(18.7-14.3) /18.7] x 100 = 2
3.5%

【0033】例7 反応槽に前記処理対象水 200ml (F=18.7mg/リットル)を入
れ、これにAl2(SO4)3100mg /リットルを添加し、更に5%C
a(OH)2 にて液のpHを7とし、常温で15分間攪拌後、F
Kフロック−Dにて凝集処理した。得られた処理水のフ
ッ素含量は11.4mg/リットルであった。この場合のフッ素除
去率を計算すると以下の通りである。 F除去率 =〔(18.7−11.4)/ 18.7 〕× 100 = 3
9.0 %
Example 7 200 ml of water to be treated (F = 18.7 mg / liter) was placed in a reaction tank, 100 mg / liter of Al 2 (SO 4 ) 3 was added thereto, and further 5% C
Adjust the pH of the solution to 7 with a (OH) 2 and stir at room temperature for 15 minutes.
Aggregation treatment was performed with K-Floc-D. The fluorine content of the obtained treated water was 11.4 mg / liter. The calculated fluorine removal rate in this case is as follows. F removal rate = [(18.7-11.4) /18.7] x 100 = 3
9.0%

【0034】例8 反応槽に前記処理対象水 200ml (F=18.7mg/リットル)を入
れ、これにAl2(SO4)3200mg /リットルを添加し、更に5%C
a(OH)2 にて液のpHを7とし、常温で15分間攪拌後、F
Kフロック−Dにて凝集処理した。得られた処理水のフ
ッ素含量は10.2mg/リットルであった。この場合のフッ素除
去率を計算すると以下の通りである。 F除去率 =〔(18.7−10.2)/ 18.7 〕× 100 = 4
5.5 % 以上の結果をまとめると表4に示す通りである。
Example 8 200 ml of the water to be treated (F = 18.7 mg / liter) was placed in a reaction tank, 200 mg / liter of Al 2 (SO 4 ) 3 was added thereto, and further 5% C
Adjust the pH of the solution to 7 with a (OH) 2 and stir at room temperature for 15 minutes.
Aggregation treatment was performed with K-Floc-D. The fluorine content of the obtained treated water was 10.2 mg / liter. The calculated fluorine removal rate in this case is as follows. F removal rate = [(18.7-10.2) /18.7] x 100 = 4
The results of 5.5% or more are summarized in Table 4.

【0035】 表 4 ─────────────────────────────── Al2(SO4)3 原 水 処理水 F 添加量 F含量 F含量 除去率 (mg/リットル) (mg/リットル) (mg/リットル) (%) ─────────────────────────────── 50 18.7 14.3 23.5 100 18.7 11.4 39.0 200 18.7 10.2 45.5 ─────────────────────────────── 以上のように、従来の凝集法ではAl2(SO4)3 添加量200m
g/リットルで処理水フッ素濃度8mg/リットル以下まで除去するこ
とができない。
Table 4 ─────────────────────────────── Al 2 (SO 4 ) 3 Raw water Treated water F addition amount F content F content Removal rate (mg / liter) (mg / liter) (mg / liter) (%) ─────────────────────────── ───── 50 18.7 14.3 23.5 100 18.7 11.4 39.0 200 18.7 10.2 45.5 ─────────────────────────────── In the conventional coagulation method, the amount of Al 2 (SO 4 ) 3 added was 200 m
It is not possible to remove treated water with a fluorine concentration of 8 mg / liter or less with g / liter.

【0036】[0036]

【発明の効果】本発明によれば、以上説明したように、
フッ素含有排水中のフッ素含量を従来の凝集処理法に比
べて、低濃度まで除去することができ、排水の処理のた
めの薬品使用量も少なく、かつ、生成スラッジの発生量
も少なくすることが可能となる。
According to the present invention, as described above,
Compared with the conventional coagulation treatment method, it is possible to remove the fluorine content in the fluorine-containing wastewater to a lower concentration, the amount of chemicals used for treating the wastewater is small, and the amount of generated sludge is also small. It will be possible.

【0037】更に、従来はフッ素の高度処理は、2段処
理を行なうことが一般的であったが、本発明によれば、
フッ素含有排水の1段での安定処理が可能となる。
Further, conventionally, the advanced treatment of fluorine was generally performed in two stages, but according to the present invention,
It enables stable treatment of fluorine-containing wastewater in one stage.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 反応槽中においてフッ素含有排水にカル
シウム化合物及びアルミニウムイオンを添加して液のpH
を6〜8として、排水中のフッ素イオンをフッ化カルシ
ウムの形で不溶化させて固液分離すると共に、生成した
濃縮汚泥の一部を反応槽へ返送して汚泥循環することに
よって生成フッ化カルシウム濃度及び生成水酸化アルミ
ニウム濃度を濃縮し、かつ、その生成フッ化カルシウム
の種晶効果及び生成水酸化アルミニウムの共沈効果によ
り、フッ素含有排水からのフッ素の除去効率を高めるこ
とを特徴とするフッ素含有排水の処理方法。
1. The pH of a liquid obtained by adding a calcium compound and aluminum ions to fluorine-containing wastewater in a reaction tank.
6-8, the fluoride ions in the waste water are insolubilized in the form of calcium fluoride for solid-liquid separation, and at the same time, a part of the produced concentrated sludge is returned to the reaction tank and circulated in the sludge to produce calcium fluoride. Concentration of concentration and produced aluminum hydroxide concentration, and by the seeding effect of the produced calcium fluoride and the coprecipitation effect of the produced aluminum hydroxide, the fluorine removal efficiency from the fluorine-containing wastewater is enhanced. Treatment method of contained wastewater.
JP31870092A 1992-11-27 1992-11-27 Method for treating fluorine-containing drain Pending JPH06154767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31870092A JPH06154767A (en) 1992-11-27 1992-11-27 Method for treating fluorine-containing drain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31870092A JPH06154767A (en) 1992-11-27 1992-11-27 Method for treating fluorine-containing drain

Publications (1)

Publication Number Publication Date
JPH06154767A true JPH06154767A (en) 1994-06-03

Family

ID=18102030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31870092A Pending JPH06154767A (en) 1992-11-27 1992-11-27 Method for treating fluorine-containing drain

Country Status (1)

Country Link
JP (1) JPH06154767A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1034166A (en) * 1996-07-22 1998-02-10 Japan Organo Co Ltd Apparatus for treating fluorine-containing waste water and method therefor
KR20030074424A (en) * 2002-03-13 2003-09-19 마츠시타 칸쿄쿠쵸 엔지니어링 가부시키가이샤 Method and apparatus for treating fluorine-containing waste water
CN104275145A (en) * 2014-10-10 2015-01-14 武汉钢铁(集团)公司 Preparation method of magnetic zirconium hydroxide adsorbent for absorbing fluorine ions
CN108314166A (en) * 2018-03-22 2018-07-24 昆山明宽环保节能科技有限公司 A kind of neutralization alkaline agent and neutralisation treatment technique for Removal of Phosphorus in Wastewater and fluoride waste
JP2021065832A (en) * 2019-10-23 2021-04-30 国立研究開発法人産業技術総合研究所 Harmful substance adsorbent containing aluminum silicate or aluminum hydrate, aluminum hydrate, method for producing aluminum silicate or aluminum hydrate, and method for removing harmful substance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1034166A (en) * 1996-07-22 1998-02-10 Japan Organo Co Ltd Apparatus for treating fluorine-containing waste water and method therefor
KR20030074424A (en) * 2002-03-13 2003-09-19 마츠시타 칸쿄쿠쵸 엔지니어링 가부시키가이샤 Method and apparatus for treating fluorine-containing waste water
CN104275145A (en) * 2014-10-10 2015-01-14 武汉钢铁(集团)公司 Preparation method of magnetic zirconium hydroxide adsorbent for absorbing fluorine ions
CN108314166A (en) * 2018-03-22 2018-07-24 昆山明宽环保节能科技有限公司 A kind of neutralization alkaline agent and neutralisation treatment technique for Removal of Phosphorus in Wastewater and fluoride waste
JP2021065832A (en) * 2019-10-23 2021-04-30 国立研究開発法人産業技術総合研究所 Harmful substance adsorbent containing aluminum silicate or aluminum hydrate, aluminum hydrate, method for producing aluminum silicate or aluminum hydrate, and method for removing harmful substance

Similar Documents

Publication Publication Date Title
JP4650384B2 (en) Treatment method for fluorine-containing wastewater
KR20000011702A (en) Fluoride Including Waste Water Processing Device and Method Capable of Processing Fluoride Including Waste Water to Have Low Concentration of Fluoride
JP5157040B2 (en) Method and apparatus for treating fluorine-containing wastewater
JPH06154767A (en) Method for treating fluorine-containing drain
JP4508600B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP3998345B2 (en) Treatment method for molybdenum-containing wastewater
JP3903591B2 (en) Treatment method for fluorine and phosphorus containing wastewater
JPH06114382A (en) Treatment of fluorine-containing waste water
JPH10202271A (en) Treatment of waste water containing fluorine, phosphoric acid and organic matter
JP3157347B2 (en) Treatment of wastewater containing fluorine compounds
JPH10230282A (en) Treatment of fluorine-containing waste water
JPH06134471A (en) Method for removing fluorine from waste water containing fluorine
JP2991588B2 (en) Method for dewatering sludge containing calcium compound
JP2010075928A (en) Treatment method and treatment device for fluorine-containing waste water
KR20060051767A (en) Treating method of drainage containing fluorine
US4228003A (en) Method of removing phosphates from waste water
JP2598456B2 (en) Treatment method for phosphate-containing water
KR19990077951A (en) Process for removing fluorine from desulfurization waste water of flue gas
JP2842384B2 (en) Treatment method for wastewater containing phosphoric acid and fluorine
KR19990080957A (en) Fluoride Removal Solution in Wastewater and Fluoride Removal Method Using the Same
JPH04150996A (en) Treatment of phosphate ion-containing waste water
KR20060012954A (en) Treatment method for fluorine-contained waste water
JPH05293474A (en) Treatment of drainage containing fluoride ion
JP3304400B2 (en) Treatment method for acidic fluorine-containing water
JPH1076275A (en) Wastewater treatment agent