KR19990080957A - Fluoride Removal Solution in Wastewater and Fluoride Removal Method Using the Same - Google Patents

Fluoride Removal Solution in Wastewater and Fluoride Removal Method Using the Same Download PDF

Info

Publication number
KR19990080957A
KR19990080957A KR1019980014576A KR19980014576A KR19990080957A KR 19990080957 A KR19990080957 A KR 19990080957A KR 1019980014576 A KR1019980014576 A KR 1019980014576A KR 19980014576 A KR19980014576 A KR 19980014576A KR 19990080957 A KR19990080957 A KR 19990080957A
Authority
KR
South Korea
Prior art keywords
solution
fluorine
wastewater
fluorine removal
cerium
Prior art date
Application number
KR1019980014576A
Other languages
Korean (ko)
Other versions
KR100349154B1 (en
Inventor
채종학
권민수
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019980014576A priority Critical patent/KR100349154B1/en
Publication of KR19990080957A publication Critical patent/KR19990080957A/en
Application granted granted Critical
Publication of KR100349154B1 publication Critical patent/KR100349154B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/583Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

본 발명은 폐수중 불소 제거 용액 및 이를 이용한 불소 제거 방법에 관한 것으로, 10%(w/v) 황산세륨용액, 20%(w/v) 황산제일철 용액 및 진한 황산을 100:25∼30:1.5∼2.5의 부피비로 혼합하여 이루어지는 불소 제거 용액 및The present invention relates to a fluorine removal solution in wastewater and a fluorine removal method using the same, wherein 10% (w / v) cerium sulfate solution, 20% (w / v) ferrous sulfate solution and concentrated sulfuric acid are 100: 25 to 30: 1.5. A fluorine removal solution formed by mixing at a volume ratio of ˜2.5 and

폐수에 상기 불소 제거 용액을 반응시켜 불화세륨을 생성하는 단계;Reacting the fluorine removal solution with waste water to produce cerium fluoride;

상기 불화세륨 함유 폐수에 응결제 및 수산화나트륨을 투입해서 pH 6.5-7.5로중화시켜 슬러리 상태로 공침시키는 단계;Adding a coagulant and sodium hydroxide to the cerium fluoride-containing wastewater and neutralizing the solution to pH 6.5-7.5 to co-precipitate to a slurry state;

상기 슬러리 공침물에 응집제를 사용하여 공침물을 응집시키는 단계; 및Agglomerating co-precipitates using a flocculant to the slurry co-precipitates; And

상기 침전된 슬러리와 상등액을 분리하고 최종 처리수를 배출하는 단계;로 이루어진 불소 제거방법이 제공된다.Separating the precipitated slurry and the supernatant and draining the final treated water is provided.

상기한 바에 따르면, 폐수중에 함유한 불소 이온을 단시간에 제거할 수 있고, 불소 제거 용액이 응고되지 않아 이송 배관이 막힐 염려가 없으며, 또한 pH를 6.5-7.5로 조정하기 때문에 역중화할 필요가 없어 처리 공정을 단축시킬 뿐만 아니라, 폐수처리중에 발생되는 슬러지양을 줄이며 처리수의 칼슘 경도가 낮아 재사용할 수 있다.According to the above, the fluorine ions contained in the waste water can be removed in a short time, the fluorine removal solution is not solidified, there is no fear of clogging the transfer pipe, and the pH is adjusted to 6.5-7.5, so there is no need to reverse neutralization. In addition to shortening the treatment process, the amount of sludge generated during wastewater treatment is reduced, and the calcium hardness of the treated water can be reused due to the low water treatment.

Description

폐수중 불소제거용액 및 이를 이용한 불소 제거 방법Fluoride Removal Solution in Wastewater and Fluoride Removal Method Using the Same

본 발명은 불소제거용액 및 폐수중에 함유된 불소 제거 방법에 관한 것으로, 보다 상세하게는 형석, 불산 및 불소 화합물을 사용하는 제조 공정에서 냉각수, 집진수 등의 폐수중에 함유한 환경 오염 성분인 불소를 세륨 이온을 이용하여 제거하는 방법에 관한 것이다.The present invention relates to a method for removing fluorine contained in a fluorine removal solution and waste water. More specifically, the present invention relates to fluorine which is an environmental pollutant contained in waste water such as cooling water and dust collection in a manufacturing process using fluorite, hydrofluoric acid and fluorine compounds. It is related with the method of removing using cerium ion.

종래에 형석, 불산 및 불소 화합물을 사용하는 철강 공업, 화학공업, 반도체 공업등에서 냉각수, 집진수 기타 발생하는 폐수중에는 다량의 불소 이온이 함유되어 있다. 특히 철강 제조 공업에서 제강 공정의 연속 주조 설비에 보온 및 윤활 목적으로 사용하는 주조 분말(Mold Power)와 슬라브 절단시에 사용하는 철 분말(Iron Power)에 불소가 함유되어 집진 설비와 슬라브 냉각시 발생하는 제강 폐수에 다량의 불소 이온이 혼입됨에 따라 폐수중에 함유된 불소를 수질 환경 보존법의 규제치인 15ppm이하로 제거하여 배출하여야 한다.Conventionally, a large amount of fluorine ions are contained in cooling water, dust collection, and other waste water generated in the steel industry, chemical industry, semiconductor industry, etc. using fluorite, hydrofluoric acid, and fluorine compounds. Particularly, in the steel manufacturing industry, fluorine is contained in the casting powder (Mold Power) used for thermal insulation and lubrication purposes and iron powder (Iron Power) used for slab cutting in the continuous casting equipment of the steelmaking process, and is generated during cooling of the dust collector and the slab. As a large amount of fluorine ions are mixed in steelmaking wastewater, the fluorine contained in the wastewater must be removed and discharged to less than 15 ppm, which is regulated by the Water Quality Preservation Act.

이와 같이 폐수중에 함유된 불소 이온을 제거하는 종래의 중화처리법을 도 1을 참조하여 설명하면, 조정조 (7)에서 황산(1)을 사용하여 pH를 2-3으로 조정하여 폐수를 약산성으로 조절한 후 중화조 (8)로 보낸다. 상기 중화조에 소석회용액(Lime Milk)(2)를 가해 pH를 9.5-10.5로 조정하여 약알칼리성으로 하여 폐수중에 함유된 불소 이온을 불화칼슘의 형태로 침전시킨다. 이 불화칼슘 침전물은 매우 미세하고 불안정하므로 응결제(폴리염화알루미늄)(4)를 일정량 첨가한 다음 응집조(9)로 보낸다. 이 응집조에 응집제(폴리아크릴아미드)(5)를 넣어 슬러지를 침강시키고 침전조(10)로 보내어 상등액과 슬러지를 분리함으로써 폐수중에 함유한 불소를 제거한다.As described above with reference to Fig. 1, the conventional neutralization treatment for removing fluorine ions contained in the wastewater is performed by adjusting the pH to 2-3 using sulfuric acid (1) in the adjusting tank (7). Then send to the neutralization tank 8. Lime milk (2) is added to the neutralization tank to adjust the pH to 9.5-10.5 to make the alkali slightly weak to precipitate fluorine ions contained in the waste water in the form of calcium fluoride. This calcium fluoride precipitate is very fine and unstable, so a certain amount of coagulant (polyaluminum chloride) 4 is added and then sent to the coagulation bath 9. A flocculant (polyacrylamide) 5 is put in this flocculation tank, the sludge is settled, it is sent to the precipitation tank 10, and the supernatant liquid and sludge are separated, and the fluorine contained in wastewater is removed.

상기 중화처리법에서는 사용하는 중화제인 소석회(3)이 용해도가 낮아 소석회수용액을 만들 때 과량의 용수가 사용되므로 일반적으로 소석회를 밀크 상태(Lime Milk)로 사용한다.In the neutralization treatment method, the slaked lime (3), which is a neutralizing agent used, has low solubility, so that excess water is used to make the slaked lime solution, so that the slaked lime is generally used in a milk state (Lime Milk).

그러나 이와 같은 밀크 상태의 소석회는 계속 교반하지 않으면 소석회용액 탱크(2)내에서 용해되지 않은 소석회가 탱크 하부에 응고되게 되므로, 이를 방지하기 위해서는 소석회용액 탱크(2)의 내부에 교반 장치를 설치하고 연속 교반하여야 하며, 중화조(7)내부 용액의 pH 상승 및 중화조의 수리등으로 인하여 소석회 용액의 이송을 지연시키거나 폐수처리를 잠시 중단할 때 이송 배관 내부에 소석회가 응고되어 이송 배관이 막히는 문제점이 있다.However, if the hydrated lime in such a milk state is not continuously stirred, undissolved hydrated lime in the slaked lime solution tank 2 will solidify in the lower part of the tank. To prevent this, install a stirring device inside the slaked lime solution tank 2. Continuous stirring, the neutralization tank (7) due to the rise of the pH of the solution and repair of the neutralization tank delayed the transfer of the lime solution or when the waste water treatment for a while, the lime is solidified inside the transfer pipe clogging the transfer pipe problem There is this.

또한 표 3에서 보듯이, 폐수중에 함유한 불소 이온과 소석회의 반응 속도가 느려서 2시간 이상 반응시키는 반면, 불소 제거율은 낮으며 소석회용액이 과다하게 부가되는 경우가 있다.In addition, as shown in Table 3, the reaction rate of fluorine ions contained in the wastewater and the slaked lime is slow to react for 2 hours or more, while the fluorine removal rate is low and the slaked lime solution may be excessively added.

또한 상기 소석회를 이용한 중화처리 방법의 처리수는 표 5 및 6에서 보듯이, 칼슘 경도가 높아 재사용이 불가능하여 폐기물 자원화 측면에서 문제가 되며 폐수 처리시간이 많이 소요되며 슬러지 발생량도 많은 등 다수의 문제점을 갖는다.In addition, as shown in Tables 5 and 6, the treated water of the neutralization method using slaked lime has a high calcium hardness and cannot be reused, which is a problem in terms of waste resources, waste water treatment time, and sludge generation. Has

이에 본 발명의 목적은 소석회를 사용하지 않고도 폐수중의 불소 이온을 효과적으로 제거할 수 있는 불소 제거액을 제공하고자 하는 것이다.Accordingly, an object of the present invention is to provide a fluorine removal liquid capable of effectively removing fluorine ions in wastewater without using slaked lime.

본 발명의 다른 목적은 상기 불소 제거 용액을 이용하여 처리 단계를 단축하면서 단시간에 불소를 제거할 수 있는 불소 제거 방법을 제공하고자 한다.Another object of the present invention is to provide a fluorine removal method capable of removing fluorine in a short time while shortening the treatment step using the fluorine removal solution.

도 1은 종래의 폐수중 불소 제거 처리 공정을 나타내는 도면.1 is a view showing a conventional fluorine removal treatment process in wastewater.

도 2는 본 발명의 폐수중 불소 제거 처리 공정을 나타내는 도면,2 is a view showing a fluorine removal treatment process in wastewater of the present invention,

도 3은 불소 제거 용액의 환원 시간 및 황산제일철 용액 사용량에 따른 불소 제거량을 나타내는 그래프,3 is a graph showing the amount of fluorine removal according to the reduction time of the fluorine removal solution and the amount of ferrous sulfate solution used;

도 4는 불소 제거 용액의 첨가량에 따른 불소 제거량을 나타내는 그래프,4 is a graph showing the amount of fluorine removal according to the amount of fluorine removal solution added;

도 5는 종래의 소석회를 이용한 반응 시간별 불소 제거량을 나타내는 그래프 및5 is a graph showing the amount of fluorine removal by reaction time using a conventional slaked lime and

도 6은 불소 제거 용액의 반응 시간별 불소 제거량을 나타내는 그래프이다.6 is a graph showing the amount of fluorine removal by reaction time of a fluorine removal solution.

*도면의 주요 부분에 대한 간단한 부호의 설명** Description of the simple symbols for the main parts of the drawings *

1... 황산 탱크 2... 소석회용액 저장 탱크(Lime Milk)1 ... sulfuric acid tank 2 ... slaked lime solution storage tank (Lime Milk)

3... 소석회 저장 탱크 4... 폴리염화알루미늄 탱크(PAC)3 ... slaked lime storage tank 4 ... aluminum polychloride tank (PAC)

5... 폴리아크릴아미드 탱크(PAA) 6... 폐수 수집조5 ... polyacrylamide tank (PAA) 6 ... wastewater collection tank

7... 조정조 8... 중화조7 ... adjustment tank 8 ... neutralization tank

9... 응집조 10... 침전조9 ... flocculation tank 10 ... precipitation tank

11... 역중화조 12... 샌드 필터(Sand Filter)11 ... Neutralization Tank 12 ... Sand Filter

13... 여과수 수집조 14... 탈수장치(Filter Presser)13 ... Filtrate Collector 14 ... Filter Presser

15... 슬러지케이크 수집조 16... 10% 황산세륨용액 탱크15 ... sludge cake collection tank 16 ... 10% cerium sulfate solution tank

17... 20% 황산제일철용액 탱크 18... 불소 제거용액 탱크17 ... 20% ferrous sulfate solution tank 18 ... fluorine removal solution tank

19... 20% 가성 소다 용액 탱크 20... 반응조19 ... 20% caustic soda solution tank 20 ... reactor

본 발명의 일견지에 의하면, 10%(w/v) 황산세륨용액, 20%(w/v) 황산제일철 용액 및 진한 황산을 100:25∼30:1.5∼2.5의 부피비로 혼합하여 이루어지는 폐수중 불소 제거 용액이 제공된다.According to one aspect of the present invention, a waste water obtained by mixing 10% (w / v) cerium sulfate solution, 20% (w / v) ferrous sulfate solution and concentrated sulfuric acid in a volume ratio of 100: 25 to 30: 1.5 to 2.5 Fluoride removal solution is provided.

본 발명의 제2 견지에 의하면,According to the second aspect of the present invention,

폐수에 상기 제1 견지의 불소 제거 용액을 반응시켜 불화세륨을 생성시키는 단계;Reacting the wastewater with the fluorine removal solution of the first aspect to produce cerium fluoride;

상기 불화세륨 생성물을 응결제 및 수산화나트륨을 투입해서 pH 6.5-7.5로 중화시켜 슬러리 상태로 공침시키는 단계;Neutralizing the cerium fluoride product with a coagulant and sodium hydroxide to pH 6.5-7.5 to co-precipitate in a slurry state;

상기 슬러리 공침물에 응집제를 사용하여 공침물을 응집시키는 단계; 및Agglomerating co-precipitates using a flocculant to the slurry co-precipitates; And

상기 침전된 슬러리와 상등액을 분리하여 최종 처리수를 배출하는 단계;로 이루어진 불소 제거 방법이 제공된다.Separation of the precipitated slurry and the supernatant to discharge the final treated water is provided.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명에서는 10%(w/v) 황산세륨용액, 20%(w/v) 황산제일철 용액 및 진한 황산을 100:25∼30:1.5∼2.5의 부피비로 혼합한 희석액을 불소 제거용액으로 사용한다.In the present invention, a diluent containing 10% (w / v) cerium sulfate solution, 20% (w / v) ferrous sulfate solution and concentrated sulfuric acid in a volume ratio of 100: 25 to 30: 1.5 to 2.5 is used as a fluorine removal solution. .

여기서 황산세륨과 황산제일철 산성 혼합용액은 폐수중에 함유한 불소 이온과 정량적으로 반응하며 반응시간이 짧고, 일단 반응한 불화세륨 침전물은 용해도가 낮아 물에 거의 용해하지 않는 잇점을 갖는다.Here, the cerium sulfate and ferrous sulfate acid mixed solution react quantitatively with the fluorine ions contained in the waste water and have a short reaction time, and once the reacted cerium fluoride precipitate has low solubility, it is almost insoluble in water.

이는 폐수중에 함유한 불소 이온은 3가 세륨 이온과 반응하여 불화세륨의 침전형으로 반응하므로 황산세륨과 황산제일철 용액을 가하여 세륨이 3가인 황산세륨(Ⅲ)을 만드는데 기인한 것으로 여겨지며, 그 반응식은 다음과 같다.Since fluorine ions contained in the waste water react with trivalent cerium ions to react as precipitates of cerium fluoride, it is believed to be due to the addition of cerium sulfate and ferrous sulfate solution to form cerium trivalent cerium sulfate (III). As follows.

2Ce(SO4)2+ 2FeSO4→ Ce2(SO4)3+ Fe2(SO4)3 2Ce (SO 4 ) 2 + 2FeSO 4 → Ce 2 (SO 4 ) 3 + Fe 2 (SO 4 ) 3

또한 상기 환원 반응은 산성에서 빠르기 때문에 황산을 첨가하여 액성을 산성으로 만들며, 폐수중에 함유한 불소 이온과 결합되어 있는 양이온을 수소 이온으로 치환시켜 세륨 이온과의 반응성을 향상시킨다. 그 반응식은 하기식(2)와 같다;In addition, since the reduction reaction is fast in acidity, sulfuric acid is added to make the liquid acid, and the cation bound with fluorine ions contained in the waste water is replaced with hydrogen ions to improve reactivity with cerium ions. The reaction formula is the following formula (2);

2NaF + H2SO4→ 2HF + Na2SO4 2NaF + H 2 SO 4 → 2HF + Na 2 SO 4

또한 상기 식(1)에서 Ce이온이 4가에서 3가로 환원된 황산세륨은 폐수중 불소 이온과 반응하여 난용성인 불화세륨의 침전형으로 생성되어 불소 이온을 제거하게 되는데, 그 반응식은 다음과 같다;In addition, in the formula (1), the cerium sulfate in which Ce ions are reduced from tetravalent to trivalent is reacted with fluorine ions in wastewater to form precipitates of poorly soluble cerium fluoride to remove fluorine ions. ;

Ce2(SO4)3+ 6HF → 2CeF3↓ + 3H2SO4 Ce 2 (SO 4 ) 3 + 6HF → 2CeF 3 ↓ + 3H 2 SO 4

상기 식(3)에서 생성된 황산은 후속 단계에서 NaOH와 반응하여 중화됨으로써 식(2)에서 생성물인 Na2SO4와 같은 용해수로 배출되게 된다.The sulfuric acid produced in the formula (3) is neutralized by reacting with NaOH in a subsequent step to be discharged into dissolved water such as Na 2 SO 4 as a product in the formula (2).

상기 10%(w/v) 황산세륨용액, 20%(w/v) 황산제일철 용액 및 진한 황산의 부피비는 100:25∼30:1.5∼2.5가 바람직한데, 이는 황산세륨에 대한 황산제일철의 부피가 25%미만이면, 도 3의 그래프에서 보듯이 반응성이 떨어져 효과적이지 못하고, 황산제일철을 30%를 초과하는 경우에는 비용 측면에서 경제적이지 않다.The volume ratio of the 10% (w / v) cerium sulfate solution, 20% (w / v) ferrous sulfate solution and concentrated sulfuric acid is preferably 100: 25 to 30: 1.5 to 2.5, which is the volume of ferrous sulfate to cerium sulfate. If less than 25%, as shown in the graph of Figure 3 is not effective because of poor reactivity, when the ferrous sulfate exceeds 30% is not economical in terms of cost.

이와 같이 제조된 희석액을 불소 제거용액으로 사용할 때 20분 이상 환원시켜 사용하는 것이 바람직하며, 또한 그 사용량은 제강 폐수 1ℓ에 불소가 통상 45-50ppm 함유된 점을 고려할 때, 3.5-5.0ml정도가 바람직하다. 환원 시간이 10분보다 작아도, 불소 제거에 큰 차이는 없으나, 20분 이상인 경우에는 폐수중에 함유한 불소 이온과 세륨 이온이 거의 반응하여 불화 세륨을 형성하여 여과수에 함유된 불소 이온의 데이터를 일정하게 얻을 수 있으므로 보다 바람직하다.When the dilution solution thus prepared is used as a fluorine removal solution, it is preferable to use the dilution solution for 20 minutes or more, and the amount of the dilution solution is about 3.5-5.0 ml, considering that 45 L of fluorine is usually contained in 1 L of steelmaking wastewater. desirable. Even if the reduction time is less than 10 minutes, there is no significant difference in fluorine removal, but if it is 20 minutes or more, the fluoride ions and cerium ions contained in the waste water are almost reacted to form cerium fluoride to keep the data of fluorine ions contained in the filtrate constant. It is more preferable because it can be obtained.

또한 사용량이 3.5ml 미만이면, 처리수중 불소 농도를 15ppm미만으로 제거할 수 없으며, 사용량이 5.0ml이상이면 불소 제거 효과는 우수하나 경제적이지 않다.In addition, if the amount is less than 3.5ml, the fluorine concentration in the treated water can not be removed to less than 15ppm, if the amount is more than 5.0ml fluorine removal effect is excellent but not economical.

여기에서 일부 미세한 불화세륨이 응집되지 않고 처리액으로 빠져나갈 위험을 방지하기 위하여, 응결제를 넣고 가성 소다를 가하여 pH를 6.5-7.5가 되도록 중화시켜 미세한 불화세륨을 슬러지 상태로 공침시킨다.In order to prevent the risk of some fine cerium fluoride from escaping into the treatment liquid without agglomeration, a coagulant is added and caustic soda is added to neutralize the pH to 6.5-7.5 to co-precipitate fine cerium fluoride in a sludge state.

본 명세서에서 유용한 응결제로는 폴리염화알루미늄(PAC)을 사용한다.Coagulants useful herein use polyaluminum chloride (PAC).

또한 가성 소다를 사용하여 pH를 6.5-7.5로 중화시키기 때문에 산성하에 응집되지 않은 불화세륨을 침전시킴과 동시에, 또한 종래의 소석회를 사용할 경우 거쳐야하는 역중화 단계를 단축하는 잇점이 있다.In addition, caustic soda is used to neutralize the pH to 6.5-7.5, thereby precipitating unaggregated cerium fluoride under acidity, and at the same time shortening the deneutralization step required when using conventional slaked lime.

이어서 응집제로 폴리아크릴아미드(PAA)를 사용하여 슬러지를 침강시킨다.The sludge is then precipitated using polyacrylamide (PAA) as the flocculant.

상기 슬러지를 침강시킨 다음 상등수는 샌드 필터를 통과시켜 미세한 불화세륨 침전물을 여과시킴으로써 수질환경보존법의 불소 규제치인 15ppm보다 현저히 낮은 처리수를 얻는다. 이 처리수는 소석회를 사용하지 않기 때문에 칼슘 경도가 낮아 필요하다면 재사용할 수 있다.After the sludge is settled, the supernatant is passed through a sand filter to filter out fine cerium fluoride deposits to obtain treated water which is significantly lower than 15 ppm, which is the fluoride regulation value of the water conservation method. Since this treated water does not use slaked lime, its calcium hardness is low and can be reused if necessary.

또한 상기 침전된 슬러지는 탈수장치를 거쳐 슬러지케이크를 수집하고 여과수는 배출하거나 폐수 수집조로 재순환시킨다.In addition, the precipitated sludge collects the sludge cake through the dehydration device and the filtered water is discharged or recycled to the wastewater collection tank.

이하, 본 발명의 실시예를 도면을 참조하여 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<실시예 1><Example 1>

본 발명의 불소 제거 용액을 이용한 불소 제거예Example of fluorine removal using fluorine removal solution of the present invention

먼저 10%(w/v)황산세륨용액(16)과 20%(w/v) 황산제일철 용액을 100:25 비로 혼합하고, 그 혼합용액 1250ml당 황산을 20ml를 가하여 불소 제거 용액을 제조하였다. 이 불소 제거 용액을 도 2에 나타낸 반응조 (20)에 넣고 제강 폐수(불소 이온 73ppm) 1ℓ당 6ml의 양으로 폐수중 함유된 불소 이온과 약 20분이상 반응시킨 다음 중화조(8)로 보냈다.First, a 10% (w / v) cerium sulfate solution 16 and a 20% (w / v) ferrous sulfate solution were mixed at a ratio of 100: 25, and 20 ml of sulfuric acid was added per 1250 ml of the mixed solution to prepare a fluorine removal solution. This fluorine removal solution was placed in the reactor 20 shown in FIG. 2 and reacted with the fluorine ions contained in the waste water for about 20 minutes or more in an amount of 6 ml per liter of steelmaking wastewater (73 ppm of fluorine ions), and then sent to the neutralization tank 8.

상기 중화조(8)에 폴리염화알루미늄(PAC)(4)를 100ppm정도 첨가한 다음 20% 가성 소다 용액(19)을 가하여 pH 6.5-7.5로 중화시킨 다음 응집조 (9)로 보냈다.About 100 ppm of polyaluminum chloride (PAC) (4) was added to the neutralization tank (8), 20% caustic soda solution (19) was added, neutralized to pH 6.5-7.5, and then sent to the coagulation tank (9).

상기 응집조(9)에서는 폴리아크릴아미드(5)를 5ppm정도 가하여 슬러지를 응집시키고 침전조(10)으로 보냈다.In the flocculation tank 9, about 5 ppm of polyacrylamide (5) was added to coagulate the sludge and sent to the precipitation tank (10).

상기 침전조(10)에서 슬러지와 상등수를 분리하고 상등수의 맑은 용액은 샌드 필터(Sand Filer)(12)를 통과시켜 미세여과하여 필요시 재사용하며, 슬러지는 여과 압축기(Filter Presser)(14)에서 탈수시켜 슬러지 케이크(15)로 만든 다음 매립하고 여과수는 반응조(20)으로 다시 보내어 재처리하였다.The sludge and the supernatant are separated from the sedimentation tank 10 and the clear solution of the supernatant is passed through a sand filter 12 to be microfiltered and reused when necessary, and the sludge is dewatered in a filter presser 14. After the sludge cake (15) was made and landfilled, the filtered water was sent back to the reactor 20 for reprocessing.

<실시예 2><Example 2>

불소제거용액의 환원 시간 및 황산제일철 용액의 사용량에 따른 불소 제거 효과Effect of Fluoride Removal by Reduction Time of Fluoride Removal Solution and Concentration of Ferrous Sulfate Solution

본 발명의 불소 제거 용액중 황산세륨 용액과 황산제일철 용액의 환원 반응을 살펴보기 위하여, 10%(w/v) 황산세륨 용액을 100ml씩 여러개 분취하고, 이 용액에 20%(w/v)황산제일철 용액을 표 1에 기재된 바와 같은 양을 첨가하고 진한 황산을 2ml씩 첨가하여 불소 제거 용액을 제조하였다. 상기 불소 제거 용액을 제강 공정에서 발생하는 제강폐수(불소 이온 73ppm함유)를 100ml씩 분취한 여러 용기에 각각 0.4ml씩 넣고 반응시키고 황산제일철 첨가량 및 환원시간에 따른 불소 제거량을 조사하였으며, 그 결과를 도 3에 도시하였다.In order to examine the reduction reaction of the cerium sulfate solution and the ferrous sulfate solution in the fluorine removal solution of the present invention, 100 ml of 10% (w / v) cerium sulfate solution was collected several times, and 20% (w / v) sulfuric acid was added to the solution. The ferrous iron solution was added in an amount as described in Table 1 and concentrated sulfuric acid was added in 2 ml to prepare a fluorine removal solution. 0.4 ml of steelmaking wastewater (containing 73 ppm of fluorine ions) generated in the steelmaking process was added to 0.4 ml each of the vessels, and the amount of fluoride removed according to the amount of ferrous sulfate and reduction time was investigated. 3 is shown.

황산제일철용액첨가량(ml)환원반응시간(분)Ferrous sulfate solution addition amount (ml) Reduction reaction time (min) 55 1010 1515 2020 2525 3030 3535 4040 1010 57.357.3 41.241.2 30.430.4 22.722.7 16.816.8 16.216.2 15.415.4 15.615.6 2020 55.655.6 41.341.3 29.529.5 21.221.2 15.915.9 15.215.2 15.815.8 15.415.4 3030 54.754.7 40.840.8 30.130.1 19.719.7 15.315.3 15.315.3 14.814.8 15.215.2 4040 54.954.9 40.040.0 28.628.6 19.719.7 15.615.6 15.215.2 15.715.7 15.015.0

(불소이온함량:ppm)(Fluorine ion content: ppm)

상기표 1에서 보듯이, 10% 황산세륨 용액 100ml에 20% 황산제일철 용액을 25ml이상 넣고 20분이상 반응시킬 때 황산 세륨의 Ce4+가 Ce3+이온으로 완전히 환원되어 불소를 최적으로 제거함을 알 수 있다.As shown in Table 1, when 100 ml of 10% cerium sulfate solution is added to 25 ml of 20% ferrous sulfate solution and reacted for 20 minutes or more, Ce 4+ of cerium sulfate is completely reduced to Ce 3+ ions to optimally remove fluorine. Able to know.

따라서 본 발명의 불소 제거 용액의 10%(w/v)황산세륨용액 대 20%(w/v)황산제일철 용액 대 진한 황산의 희석비율은 100:25∼30:2의 부피비가 적절하며 그 환원 시간은 20분 이상이 적절함을 알 수 있다.Therefore, a dilution ratio of 10% (w / v) cerium sulfate solution to 20% (w / v) ferric sulfate solution to concentrated sulfuric acid of the fluorine removal solution of the present invention is suitable for a volume ratio of 100: 25 to 30: 2. It can be seen that the time is more than 20 minutes.

<실시예 3><Example 3>

불소 제거 용액 첨가량에 따른 불소 제거 효과Fluoride Removal Effect According to the Addition of Fluoride Removal Solution

황산세륨과 황산제일철 산성 혼합용액의 최적 첨가량을 도출하기 위하여, 제강 공정에서 발생하는 제강 폐수(불소 이온 73ppm) 1000ml에 황산세륨과 황산제일철 산성 혼합 용액을 하기표 2에 나타낸 바와 같이 단계적으로 첨가한 다음 불소 제거량을 조사하고, 그 결과를 도 4에 도시하였다.In order to derive the optimal addition amount of the cerium sulfate and ferrous sulfate mixed solution, the mixed solution of cerium sulfate and ferrous sulfate acid was added stepwise to 1000 ml of steelmaking wastewater (73 ppm) produced in the steelmaking process as shown in Table 2 below. Next, the amount of fluorine removal was examined, and the result is shown in FIG.

불소제거용액 첨가량(ml)Fluoride removal solution added amount (ml) 3.03.0 3.53.5 4.04.0 4.54.5 5.05.0 5.55.5 6.06.0 6.56.5 처리수중 불소농도(ppm)Fluorine concentration in the treated water (ppm) 25.225.2 19.419.4 15.815.8 12.412.4 10.310.3 8.58.5 6.36.3 4.74.7 불소제거율(%)Fluoride Removal Rate (%) 65.565.5 73.473.4 78.478.4 83.083.0 85.985.9 88.488.4 91.491.4 93.693.6

상기표에서 보듯이, 제강폐수중 불소 이온이 73ppm으로 최대치로 함유된 경우 제강 폐수 1ℓ당 불소 제거 용액을 4.5∼6.0ml정도 첨가하는 것이 바람직하며, 따라서 일반적인 제강 폐수에서는 불소 이온이 45-50ppm 정도인 것을 감안할 때 불소 제거 용액은 3.5-5.0ml정도 첨가하는 것이 효과적인 것을 알 수 있다.As shown in the table above, when the maximum amount of fluorine ions in steelmaking wastewater is 73ppm, it is preferable to add about 4.5 to 6.0ml of fluorine removal solution per liter of steelmaking wastewater. Therefore, in general steelmaking wastewater, about 45-50 ppm In consideration of the fact that it is effective to add about 3.5-5.0 ml of fluorine removal solution.

따라서 제강 폐수 1000ml(73ppm)에 황산 세륨과 황산제일철 산성 혼합용액을 4.5ml이상 첨가하여 반응 처리한 여과수에서의 불소 이온 함량을 조사한 결과 수질 환경 보존법의 규제치인 15ppm이하로 불소 이온을 제거할 수 있었으며, 혼합용액을 6.0ml이상 가한 경우에는 불소 이온을 현저히 제거할 수 있었다.Therefore, the content of fluorine ions in the filtered filtrate by adding more than 4.5ml of cerium sulfate and ferrous sulfate acidic mixed solution to 1000ml (73ppm) of steelmaking wastewater was able to remove fluorine ions below 15ppm which is the regulation of water quality preservation method. When 6.0 ml or more of the mixed solution was added, fluorine ions were remarkably removed.

<비교예 1>Comparative Example 1

소석회를 이용한 반응시간별 불소 이온 제거량Fluorine ion removal by reaction time using slaked lime

재강폐수를 100ml씩 여러개 분취하여 종래의 처리 방법으로 폐수의 액성을 pH 2.0이 되도록 황산을 가한 후 소석회를 사용하여 pH 9.5-10.5로 약알칼리성이 되도록 중화하고 그 반응 시간을 하기표 3에 나타낸 바와 같이 단계적으로 변화시키면서 처리하였다.100 ml of re-wastewater was added several times, and sulfuric acid was added to the pH of the wastewater to pH 2.0 by the conventional treatment method, and then neutralized to weak alkaline to pH 9.5-10.5 using slaked lime and the reaction time is shown in Table 3 below. The treatment was carried out in stages.

그 여과수중에 함유한 불소 이온을 분석하여 반응시간에 따른 불소 제거율을 조사하고 그 결과를 하기표 3 및 도 5에 나타내었다.The fluorine ions contained in the filtrate were analyzed to investigate the fluorine removal rate according to the reaction time, and the results are shown in Table 3 and FIG. 5.

반응시간Reaction time 10분10 minutes 30분30 minutes 50분50 minutes 70분70 minutes 90분90 minutes 110분110 minutes 130분130 minutes 150분150 minutes 처리수중 불소농도(ppm)Fluorine concentration in the treated water (ppm) 23.323.3 16.316.3 14.714.7 13.213.2 12.512.5 10.810.8 8.68.6 8.88.8 불소 제거율(%)Fluoride Removal Rate (%) 68.168.1 77.777.7 79.979.9 81.981.9 82.982.9 85.285.2 88.288.2 87.987.9

상기표에서 보듯이, 불소 제거율은 150분 이상이 되어도 불소 제거율은 90%미만인 것으로 나타났다.As shown in the table, the fluorine removal rate was found to be less than 90% even if the fluorine removal rate was 150 minutes or more.

<실시예 4><Example 4>

불소 제거 용액의 반응속도Reaction Rate of Fluoride Removal Solution

불소 제거 용액의 반응 속도를 조사하기 위하여 제강공정에서 발생하는 제강 폐수(불소 이온 73ppm) 100ml에 황산세륨과 황산제일철 산성 혼합 용액 0.7ml를 첨가하고 반응 시간을 하기표 4에 나타낸 바와 같이 단계적으로 하여 반응시간에 따른 불소 제거량을 조사하고 그 결과를 하기표 4 및 도 6에 나타내었다.In order to investigate the reaction rate of the fluorine removal solution, 0.7 ml of cerium sulfate and ferrous sulfate acid mixed solution were added to 100 ml of steelmaking wastewater (73 ppm of fluoride ions) generated in the steelmaking process, and the reaction time was stepwise as shown in Table 4 below. The amount of fluorine removal according to the reaction time was investigated and the results are shown in Table 4 and FIG. 6.

반응시간Reaction time 5분5 minutes 10분10 minutes 20분20 minutes 30분30 minutes 40분40 minutes 50분50 minutes 60분60 minutes 70분70 minutes 처리수중 불소농도(ppm)Fluorine concentration in the treated water (ppm) 9.49.4 6.26.2 5.35.3 4.84.8 4.74.7 3.03.0 3.43.4 3.53.5 불소 제거율(%)Fluoride Removal Rate (%) 87.187.1 91.591.5 92.792.7 93.493.4 93.693.6 95.995.9 95.395.3 95.295.2

그 결과, 10분 정도만 반응시켜도 불소 제거율은 91%이상으로 우수하였다.As a result, the fluorine removal rate was 91% or more even when only 10 minutes were reacted.

<실시예 5>Example 5

슬러지 발생량Sludge Generation

중화조에서 생성되는 슬러지의 양을 조사하기 위하여, 제강폐수 1000ml를 2회 분취하고 여기에 불소 제거 용액(18)과 폴리염화알루미늄(4)를 넣고 20% 가성소다 용액(19)을 첨가하여 pH를 6.5-7.5가 되도록 중화시켜 미세한 불화세륨을 슬러지 상태로 공침시킨 실시예와 종래의 소석회를 이용한 제거방법으로 폐수처리한 비교예에서 각각 발생하는 슬러지량을 대비한 결과를 하기표 5에 나타내었다.In order to investigate the amount of sludge produced in the neutralization tank, take 1000 ml of steelmaking wastewater twice, add fluorine removal solution (18) and polyaluminum chloride (4), and add 20% caustic soda solution (19) to pH. Table 5 shows the results of comparing the amount of sludge generated in each of the examples in which the fine cerium fluoride was co-precipitated in the sludge state and the comparative example in which the wastewater was treated by the conventional removal method using slaked lime was neutralized to 6.5-7.5. .

종래 처리 방법Conventional processing method 본 발명의 처리 방법Treatment method of the present invention 저감율(%)Reduction rate (%) 제강폐수 1000ml처리시 슬러지 발생량(g)Sludge generation amount in steel treatment 1000ml 0.40320.4032 0.32150.3215 20.320.3

상기표에서 보듯이, 본 발명의 제거 방법으로 처리하여 발생한 슬러지의 양 은 종래의 소석회를 이용한 제거 방법으로 처리하여 발생한 슬러지의 양에 비하여 약 20%정도 적게 발생하는 것을 알 수 있다. 이는 소석회를 사용하지 않음으로써 슬러지로 배출되던 미반응 칼슘에 기인한 것으로 여겨진다.As shown in the above table, it can be seen that the amount of sludge generated by the treatment method of the present invention is generated by about 20% less than the amount of sludge generated by the treatment method using the conventional slaked lime. This is believed to be due to the unreacted calcium that was released to the sludge by not using slaked lime.

<실시예 6><Example 6>

칼슘 경도Calcium hardness

본 발명에 의한 제거 방법과 종래의 소석회를 이용한 제거 방법으로 처리시 폐수처리수중에 함유한 칼슘 경도를 비교시험하고 그 결과를 하기표 6에 나타내었다.In comparison with the removal method according to the present invention and the conventional removal method using slaked lime, the calcium hardness contained in the wastewater treated water was compared and tested, and the results are shown in Table 6 below.

제강폐수(처리전)Steelmaking Wastewater (Before Treatment) 종래 방법의 여과수Filtrate of the Conventional Method 본 발명의 여과수Filtrate of the Invention 칼슘 경도Calcium hardness 174174 683683 9797

그 결과 본 발명에 의해 불소 이온을 제거하는 경우가 종래 제거 방법에 비해 칼슘 경도가 현저하게 낮아, 처리전 폐수에 함유된 칼슘 경도의 저감 효과도 있음을 알 수 있다.As a result, it can be seen that when the fluorine ions are removed according to the present invention, the calcium hardness is significantly lower than that of the conventional removal method, and there is also an effect of reducing the calcium hardness contained in the wastewater before treatment.

상기한 바에 따르면, 폐수중에 함유한 불소 이온을 단시간에 제거할 수 있고, 소석회를 사용하지 않아 불소 제거 용액이 응고되지 않으므로 이송 배관이 막힐 염려가 없으며, 또한 가성 소다를 사용하여 pH를 6.5-7.5로 조정하기 때문에 역중화할 필요가 없어 처리 공정이 단축될 뿐만 아니라, 나아가 발생되는 슬러지양을 줄이고 처리수의 칼슘 경도가 낮아 재사용할 수 있다.According to the above, the fluorine ions contained in the waste water can be removed in a short time, and since the fluorine removal solution is not solidified by not using slaked lime, there is no fear of clogging the transfer pipe, and caustic soda is used to adjust the pH to 6.5-7.5. Because it does not need to reverse neutralization, the treatment process is not only shortened. Furthermore, the amount of sludge generated and the calcium hardness of the treated water can be reused.

Claims (5)

10%(w/v) 황산세륨용액, 20%(w/v) 황산제일철 용액 및 진한 황산을 100:25∼30:1.5∼2.5의 부피비로 혼합하여 이루어지는 폐수중 불소 제거 용액10% (w / v) cerium sulfate solution, 20% (w / v) ferrous sulfate solution and concentrated sulfuric acid in a volume ratio of 100: 25-30: 1.5-2.5 형석, 불산 및 불소 화합물을 사용하여 발생하는 냉각수, 집진수, 기타 발생 폐수에 함유한 다량의 불소 이온을 제거하는데 있어서,To remove large amounts of fluoride ions in cooling water, dust collection, and other generated wastewater generated using fluorspar, hydrofluoric acid, and fluorine compounds, 폐수에 제1항의 불소 제거 용액을 반응시켜 불화세륨을 생성시키는 단계;Reacting the fluorine removal solution of claim 1 with wastewater to produce cerium fluoride; 상기 불화세륨 생성물에 응결제 및 수산화나트륨을 투입해서 pH 6.5-7.5로 중화시키고 슬러리 상태로 공침시키는 단계;Adding a coagulant and sodium hydroxide to the cerium fluoride product to neutralize it to pH 6.5-7.5 and coprecipiting it into a slurry state; 상기 슬러리 공침물에 응집제를 사용하여 공침물을 응집시키는 단계; 및Agglomerating co-precipitates using a flocculant to the slurry co-precipitates; And 상기 침전된 슬러지와 상등액을 분리하여 최종 처리수를 배출하는 단계;로 이루어진 불소 제거방법And separating the precipitated sludge and the supernatant to discharge the final treated water. 제2항에 있어서, 상기 불산 제거 용액은 사용하기전에 20분 이상 환원시켜 사용함을 특징으로 하는 방법The method of claim 2, wherein the hydrofluoric acid removal solution is used after reducing for at least 20 minutes before use. 제2항에 있어서, 상기 불산 제거 용액은 제강 폐수 1000ml당 3.5∼5.0ml를 사용함을 특징으로 하는 방법The method of claim 2, wherein the hydrofluoric acid removal solution is characterized in that 3.5 to 5.0 ml per 1000 ml steelmaking wastewater is used. 제2항에 있어서, 상기 폐수에 불소 제거 용액을 반응시키는 시간은 10분이상임을 특징으로 하는 방법The method of claim 2, wherein the time for reacting the fluorine removal solution with the wastewater is 10 minutes or more.
KR1019980014576A 1998-04-23 1998-04-23 Composition for eliminating fluorine from wastewater and method for eliminating fluorine from wastewater using the same KR100349154B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980014576A KR100349154B1 (en) 1998-04-23 1998-04-23 Composition for eliminating fluorine from wastewater and method for eliminating fluorine from wastewater using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980014576A KR100349154B1 (en) 1998-04-23 1998-04-23 Composition for eliminating fluorine from wastewater and method for eliminating fluorine from wastewater using the same

Publications (2)

Publication Number Publication Date
KR19990080957A true KR19990080957A (en) 1999-11-15
KR100349154B1 KR100349154B1 (en) 2002-11-18

Family

ID=37488953

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980014576A KR100349154B1 (en) 1998-04-23 1998-04-23 Composition for eliminating fluorine from wastewater and method for eliminating fluorine from wastewater using the same

Country Status (1)

Country Link
KR (1) KR100349154B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406932B1 (en) * 1999-03-19 2003-11-21 주식회사 포스코 APPARATUS FOR AUTOMATIC CONTROLLING pH OF THICKENER DEDUSTING WATER
KR100778754B1 (en) * 2006-10-18 2007-11-29 주식회사 포스코 Method for chemical treatment of wastewater comprising cyanide compounds
CN114853109A (en) * 2022-07-07 2022-08-05 湖南大学 Deep defluorination medicament and preparation method and use method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101958079B1 (en) * 2017-04-10 2019-03-13 김상수 Waste water treatment method of removing fluorine and cyanides using rare metal
US20200156968A1 (en) * 2017-07-07 2020-05-21 Chemtreat, Inc Enhanced inorganic coagulants for wastewater treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406932B1 (en) * 1999-03-19 2003-11-21 주식회사 포스코 APPARATUS FOR AUTOMATIC CONTROLLING pH OF THICKENER DEDUSTING WATER
KR100778754B1 (en) * 2006-10-18 2007-11-29 주식회사 포스코 Method for chemical treatment of wastewater comprising cyanide compounds
CN114853109A (en) * 2022-07-07 2022-08-05 湖南大学 Deep defluorination medicament and preparation method and use method thereof

Also Published As

Publication number Publication date
KR100349154B1 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
KR100200021B1 (en) Method of treating waste water to remove harmful ion by coagulating sedimentation
JP5005225B2 (en) Treatment method of fluorine-containing waste liquid
JP6288217B1 (en) Method and apparatus for treating wastewater containing sulfuric acid, fluorine and heavy metal ions
KR100349154B1 (en) Composition for eliminating fluorine from wastewater and method for eliminating fluorine from wastewater using the same
JPH08197070A (en) Treatment of fluorine-containing water
JP4508600B2 (en) Method and apparatus for treating fluorine-containing wastewater
JPH1099817A (en) Treatment of extraction dust of cement manufacturing apparatus
JP3229277B2 (en) Wastewater treatment method
JP2006167631A (en) Treatment method and treatment equipment for fluorine-containing waste water including phosphoric acid
JPH0986925A (en) Production of alumina gel using surface-treatment waste water of aluminum material and production of crystalline aluminum hydroxide
KR100376528B1 (en) Wastewater treatment agent for treating fluorine, hexavalent chromium and wastewater treatment method using the same
JP3709156B2 (en) Treatment method for fluorine-containing wastewater
KR19990077951A (en) Process for removing fluorine from desulfurization waste water of flue gas
EP1493716A1 (en) Method of wastewater treatment
JPH10230282A (en) Treatment of fluorine-containing waste water
JP2010075928A (en) Treatment method and treatment device for fluorine-containing waste water
KR20080058077A (en) Method for treating wastewater including fluorine
KR100482204B1 (en) Waste water treatment agent and a method for treating waste water using it
KR101264596B1 (en) Method for removing fluorine from waste water by using blast furnace slag
KR20110075382A (en) Removal method of fluoride ion from the fluoride containing acidic wastewater
JP4524796B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP6807209B2 (en) Wastewater treatment method and treatment equipment containing chromium and phosphorus
JPS63256106A (en) Treatment of waste liquid of water-soluble coolant
JP2007190516A (en) Treatment method of fluorine-containing wastewater
JPWO2017017833A1 (en) Fluorine-containing wastewater treatment method and apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080801

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee