JP4815082B2 - Treatment method of iron-containing sulfuric acid solution - Google Patents

Treatment method of iron-containing sulfuric acid solution Download PDF

Info

Publication number
JP4815082B2
JP4815082B2 JP2001302377A JP2001302377A JP4815082B2 JP 4815082 B2 JP4815082 B2 JP 4815082B2 JP 2001302377 A JP2001302377 A JP 2001302377A JP 2001302377 A JP2001302377 A JP 2001302377A JP 4815082 B2 JP4815082 B2 JP 4815082B2
Authority
JP
Japan
Prior art keywords
iron
sulfuric acid
liter
solution
acid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001302377A
Other languages
Japanese (ja)
Other versions
JP2003104728A (en
Inventor
博也 森田
洋介 桂
敬 二ノ宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP2001302377A priority Critical patent/JP4815082B2/en
Publication of JP2003104728A publication Critical patent/JP2003104728A/en
Application granted granted Critical
Publication of JP4815082B2 publication Critical patent/JP4815082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属の表面処理工程から排出される含鉄廃硫酸を処理する方法に関するものである。
【0002】
【従来の技術】
上記のような含鉄廃硫酸の処理方法としては、従来から、アルカリを用いて中和処理し、水酸化物として鉄を回収する方法が知られている。また金属鉄を溶解して硫酸第一鉄結晶として鉄を回収する方法や、濃縮して硫酸第一鉄結晶と硫酸溶液として回収する方法も知られている。更にはイオン交換膜を用いて硫酸と硫酸第一鉄結晶を分離する方法も公知である。
【0003】
【発明が解決しようとする課題】
上記のような従来技術において、アルカリを用いた中和処理は、中和処理に必要な薬剤の処理コストが高いという欠点がある。また金属鉄を溶解して硫酸鉄結晶を得る方法は結晶の分離工程が必要であり、且つ飽和溶液を扱うので工程が煩雑となる。濃縮回収法は設備の維持費が高いという問題がある。更にイオン交換膜法においては回収される酸濃度が低く、硫酸鉄溶液の濃度としても低いという欠点がある。いずれの従来方法においても副産物として鉄化合物が排出される。
【0004】
本発明は、以上の従来方法に鑑み、含鉄廃硫酸を安価に処理し、廃水処理等に極めて有効なポリ硫酸第二鉄の製造原料を得、これからポリ硫酸第二鉄を製造することを課題とする。
【0005】
【課題を解決するための手段】
本発明によれば、含鉄廃硫酸溶液を主原料に、金属鉄とフレッシュ硫酸を副原料として硫酸第一鉄溶液を調製し、この調製溶液を酸化してポリ硫酸第二鉄溶液を製造することで上記含鉄廃硫酸溶液を処理できる。
【0006】
また含鉄廃硫酸溶液を濃縮した上で金属鉄を加えて硫酸第一鉄溶液を調製し、この調製溶液を酸化してポリ硫酸第二鉄溶液を製造することでも、上記含鉄廃硫酸溶液を有効に処理することができる。
【0007】
金属の表面処理工程から排出される含鉄廃硫酸の組成値は、トータル鉄濃度が40g/リットル〜120g/リットル、トータル硫酸濃度が120g/リットル〜300g/リットルであるものが一般的である。
【0008】
廃硫酸からの硫酸第一鉄溶液の調製に際して、フレッシュ硫酸を添加するか、廃硫酸を濃縮するかの選択は、一つには経済的な観点からなされる。現状においては廃硫酸のFe/SOのモル比が1.0〜1.5で、且つ廃硫酸の入手価格がゼロかマイナス(廃硫酸入手に際して処理費用を得る場合)であれば、濃縮工程を選択する方が経済的にメリットがある。
【0009】
上記調製溶液の酸化を亜硝酸ソーダの添加と酸素の流通とにより行うのが好適である。また含鉄廃硫酸溶液への金属鉄の添加に際して、60℃〜80℃の温度範囲の条件下で行えば一層好ましい。リンク・ザイデル則より80℃を越えると結晶の析出量が増え、配管の閉塞、ポンプへの負荷が大きくなる等の問題が生じるようになる。また60℃より低いと反応速度が遅くなり実用性に欠けるようになる。更に攪拌しながら硫酸第一鉄の調製を行うのがよい。
【0010】
【発明の実施の形態】
本発明の詳細を以下に説明する。なお当然ながら、以下の例は、本発明を例示するものであり、本発明の技術的範囲を限定するものではない。
【0011】
(例 1)
鉄線材の表面処理工程から排出された含鉄廃硫酸(2価鉄イオン85g/リットル、硫酸イオン248g/リットル、比重1.2)1リットルを溶解槽に入れ、これにフレッシュな75%硫酸163gと金属鉄(線材)81gを添加して、14時間攪拌したところ、金属鉄がほぼ全量溶けて、鉄イオン165g/リットル、硫酸イオン370g/リットル、比重1.45の液組成のもの(硫酸第一鉄溶液)が1.0リットル得られた(溶解液は反応中に一部水分が蒸発し最終液量が0.950リットルとなったので、水で液量調整を行った)。この溶解過程中の平均液温は65℃であった。
【0012】
得られた硫酸第一鉄溶液に亜硝酸ソーダ5gを加え酸素を4.22リットル/時間で流通させたところ、4時間後にトータルの鉄濃度160g/リットル、トータルの硫酸イオン383g/リットルのポリ硫酸第二鉄溶液を得た。
【0013】
(例 2)
例1と同じく、鉄線材の表面処理工程から排出された含鉄廃硫酸(2価鉄イオン85g/リットル、硫酸イオン248g/リットル、比重1.2)1リットルを溶解槽に入れ、先ず1.49倍まで濃縮し、2価鉄イオン127g/リットル、硫酸イオン370g/リットルの廃硫酸0.671リットルを得た。これに金属鉄(線材)26gを添加して、6時間攪拌したところ、金属鉄がほぼ全量溶けて、2価鉄イオン165g/リットル、硫酸イオン370g/リットルの硫酸第一鉄溶液0.671リットルが得られた。この溶解過程中の平均液温は65℃であった。
【0014】
得られた硫酸第一鉄溶液0.671リットルに亜硝酸ソーダ3.4gを加え酸素を2.83リットル/時間で流通させたところ、4時間後にトータルの鉄濃度160g/リットル、トータルの硫酸イオン359g/リットルのポリ硫酸第二鉄溶液を得た。
【0015】
(例 3)
出発材料として結晶(硫酸第一鉄)を使用する場合(従来法)と、液体を使用する場合(本発明)の酸化時間について実験した。
【0016】
硫酸第一鉄結晶(鉄19.5%、硫酸根34.1%)846gを水600ミリリットルに溶解し、これに75%硫酸109gを添加し、最終液量1.0リットルのスラリー溶液を調製した。液体としては、上記例1と同じく、鉄線材の表面処理工程から排出された含鉄廃硫酸(2価鉄イオン85g/リットル、硫酸イオン248g/リットル)を用いる。夫々の出発材料をポリ硫酸第二鉄溶液製造原料とする。これら出発原料から硫酸第一鉄溶液を得て、酸化処理したところ、酸化率は表1のようになった。
【0017】
【表1】

Figure 0004815082
【0018】
(例 4)
次に含鉄硫酸溶液に金属鉄を溶解する際の温度の影響について実験した。例1と同様に、例1の含鉄廃硫酸1リットルにフレッシュな75%硫酸163gと金属鉄(線材)81gを添加して、温度を変えて、所定時間経過後の各処理温度における溶解率を調べたところ、表2のようになった。
【0019】
【表2】
Figure 0004815082
【0020】
(例 5)
更に含鉄硫酸溶液に金属鉄を溶解する際の攪拌の影響について実験した。例1と同じ含鉄廃硫酸を約1.5倍に濃縮した調製液をそれぞれ1リットルずつ別の溶解槽に入れ、これらに夫々鉄線材38gを添加して、60℃の温度に保ちながら、一方の溶解槽では180rpmの攪拌速度で攪拌し、他方の溶解槽では攪拌せずに、鉄線材の溶解割合を調べたところ、表3のようになった。
【0021】
【表3】
Figure 0004815082
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating iron-containing waste sulfuric acid discharged from a metal surface treatment process.
[0002]
[Prior art]
As a method for treating iron-containing waste sulfuric acid as described above, a method of neutralizing with an alkali and recovering iron as a hydroxide is conventionally known. There are also known a method of dissolving iron metal as ferrous sulfate crystals and recovering iron as ferrous sulfate crystals and a sulfuric acid solution after concentration. Furthermore, a method of separating sulfuric acid and ferrous sulfate crystals using an ion exchange membrane is also known.
[0003]
[Problems to be solved by the invention]
In the prior art as described above, the neutralization treatment using an alkali has a drawback that the treatment cost of a chemical necessary for the neutralization treatment is high. In addition, a method for obtaining iron sulfate crystals by dissolving metallic iron requires a crystal separation step, and handles a saturated solution, which makes the steps complicated. The concentration recovery method has a problem that the maintenance cost of the equipment is high. Further, the ion exchange membrane method has a disadvantage that the acid concentration recovered is low and the concentration of the iron sulfate solution is also low. In any conventional method, iron compounds are discharged as a by-product.
[0004]
In view of the above-described conventional methods, the present invention treats iron-containing waste sulfuric acid at low cost, obtains a production raw material for polyferric sulfate that is extremely effective for wastewater treatment, and the like, and produces polyferric sulfate therefrom. And
[0005]
[Means for Solving the Problems]
According to the present invention, a ferrous sulfate solution is prepared using an iron-containing waste sulfuric acid solution as a main raw material and metallic iron and fresh sulfuric acid as auxiliary materials, and the prepared solution is oxidized to produce a polyferric sulfate solution. The above iron-containing waste sulfuric acid solution can be treated.
[0006]
In addition, the ferrous sulfate solution is concentrated, and then ferrous sulfate solution is prepared by adding metallic iron, and this prepared solution is oxidized to produce a polyferric sulfate solution. Can be processed.
[0007]
The composition values of the iron-containing waste sulfuric acid discharged from the metal surface treatment step are generally those having a total iron concentration of 40 g / liter to 120 g / liter and a total sulfuric acid concentration of 120 g / liter to 300 g / liter.
[0008]
In preparing the ferrous sulfate solution from the waste sulfuric acid, the choice between adding fresh sulfuric acid or concentrating the waste sulfuric acid is made from an economic point of view. At present, if the molar ratio of Fe / SO 4 of waste sulfuric acid is 1.0 to 1.5 and the acquisition price of waste sulfuric acid is zero or minus (when processing costs are obtained when obtaining waste sulfuric acid), the concentration step It is more economical to choose
[0009]
It is preferable to oxidize the prepared solution by adding sodium nitrite and circulating oxygen. Further, when adding metallic iron to the iron-containing waste sulfuric acid solution, it is more preferable to carry out under the temperature range of 60 ° C to 80 ° C. If the temperature exceeds 80 ° C. according to the Link-Seidel law, the amount of crystal deposition increases, and problems such as blockage of piping and an increase in load on the pump arise. On the other hand, when the temperature is lower than 60 ° C., the reaction rate becomes slow and the practicality is lacking. Further, it is preferable to prepare ferrous sulfate while stirring.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below. Of course, the following examples illustrate the present invention and do not limit the technical scope of the present invention.
[0011]
(Example 1)
1 liter of iron-containing waste sulfuric acid (divalent iron ion 85 g / liter, sulfate ion 248 g / liter, specific gravity 1.2) discharged from the surface treatment process of the iron wire is put in a dissolution tank, and 163 g of fresh 75% sulfuric acid is added to this. When 81 g of metallic iron (wire) was added and stirred for 14 hours, almost all of the metallic iron was dissolved, and had a liquid composition of iron ions 165 g / liter, sulfate ions 370 g / liter, and specific gravity 1.45 (first sulfuric acid (Iron solution) was obtained in an amount of 1.0 liter (the dissolved liquid was partially evaporated during the reaction to a final liquid volume of 0.950 liter, so the liquid volume was adjusted with water). The average liquid temperature during the dissolution process was 65 ° C.
[0012]
When 5 g of sodium nitrite was added to the obtained ferrous sulfate solution and oxygen was circulated at 4.22 liter / hour, polysulfuric acid having a total iron concentration of 160 g / liter and total sulfate ion of 383 g / liter was obtained after 4 hours. A ferric solution was obtained.
[0013]
(Example 2)
As in Example 1, 1 liter of iron-containing waste sulfuric acid (divalent iron ion 85 g / liter, sulfate ion 248 g / liter, specific gravity 1.2) discharged from the surface treatment process of the iron wire was placed in the dissolution tank. Concentration was doubled to obtain 0.671 liters of waste sulfuric acid having 127 g / liter of divalent iron ions and 370 g / liter of sulfate ions. When 26 g of metallic iron (wire) was added and stirred for 6 hours, almost all of the metallic iron was dissolved, and 0.671 liter of ferrous sulfate solution of 165 g / liter of divalent iron ions and 370 g / liter of sulfate ions. was gotten. The average liquid temperature during the dissolution process was 65 ° C.
[0014]
To 0.671 liter of the obtained ferrous sulfate solution, 3.4 g of sodium nitrite was added and oxygen was circulated at 2.83 liter / hour. After 4 hours, the total iron concentration was 160 g / liter and the total sulfate ion A 359 g / liter polyferric sulfate solution was obtained.
[0015]
(Example 3)
Experiments were conducted on oxidation times when crystals (ferrous sulfate) were used as a starting material (conventional method) and when liquids were used (invention).
[0016]
846 g of ferrous sulfate crystals (iron 19.5%, sulfate radical 34.1%) are dissolved in 600 ml of water, and 109 g of 75% sulfuric acid is added thereto to prepare a slurry solution having a final volume of 1.0 liter. did. As the liquid, as in Example 1, iron-containing waste sulfuric acid (divalent iron ions 85 g / liter, sulfate ions 248 g / liter) discharged from the surface treatment process of the iron wire is used. Each starting material is used as a raw material for producing a polyferric sulfate solution. When ferrous sulfate solutions were obtained from these starting materials and oxidized, the oxidation rates were as shown in Table 1.
[0017]
[Table 1]
Figure 0004815082
[0018]
(Example 4)
Next, it experimented about the influence of temperature at the time of melt | dissolving metallic iron in an iron-containing sulfuric acid solution. As in Example 1, 163 g of fresh 75% sulfuric acid and 81 g of metallic iron (wire material) were added to 1 liter of iron-containing waste sulfuric acid in Example 1, and the temperature was changed to determine the dissolution rate at each treatment temperature after a predetermined time. When examined, it became like Table 2.
[0019]
[Table 2]
Figure 0004815082
[0020]
(Example 5)
Furthermore, the influence of stirring when dissolving metallic iron in the iron-containing sulfuric acid solution was tested. Each of the prepared solutions obtained by concentrating the same iron-containing waste sulfuric acid as in Example 1 to about 1.5 times was put in a separate dissolution tank, and 38 g of iron wire was added to each of them, while maintaining the temperature at 60 ° C. When the dissolution rate of the iron wire material was examined without stirring in the other dissolution tank with stirring at 180 rpm in the dissolution tank of No. 3, it was as shown in Table 3.
[0021]
[Table 3]
Figure 0004815082

Claims (5)

含鉄硫酸溶液組成として、トータル鉄濃度40g/リットル〜120g/リットル、トータル硫酸濃度120g/リットル〜300g/リットルの溶液を用い、金属鉄とフレッシュ硫酸を副原料として硫酸第一鉄溶液を調製する第一工程と、
この溶液を酸化してポリ硫酸第二鉄溶液を製造する第二工程と
からなる含鉄硫酸溶液の処理方法。
A ferrous sulfate solution containing a total iron concentration of 40 g / liter to 120 g / liter and a total sulfuric acid concentration of 120 g / liter to 300 g / liter is used as the iron-containing sulfuric acid solution composition. One process,
A method for treating an iron-containing sulfuric acid solution comprising the second step of producing a polyferric sulfate solution by oxidizing this solution.
含鉄硫酸溶液組成として、トータル鉄濃度40g/リットル〜120g/リットル、トータル硫酸濃度120g/リットル〜300g/リットルの溶液を用い、これを濃縮し金属鉄を加えることで硫酸第一鉄溶液を調製する第一工程と、
この溶液を酸化してポリ硫酸第二鉄溶液を製造する第二工程と
からなる含鉄硫酸溶液の処理方法。
As the iron-containing sulfuric acid solution composition, a solution having a total iron concentration of 40 g / liter to 120 g / liter and a total sulfuric acid concentration of 120 g / liter to 300 g / liter is concentrated, and this is concentrated and a ferrous sulfate solution is prepared by adding metallic iron. The first step,
A method for treating an iron-containing sulfuric acid solution comprising the second step of producing a polyferric sulfate solution by oxidizing this solution.
上記第二工程における酸化を亜硝酸ソーダの添加と酸素の流通とにより行うことを特徴とする請求項1又は2に記載の含鉄硫酸溶液の処理方法。The method for treating an iron-containing sulfuric acid solution according to claim 1 or 2, wherein the oxidation in the second step is performed by adding sodium nitrite and circulating oxygen. 上記第一工程の金属鉄を溶解する条件として、60℃〜80℃の温度範囲で行うことを特徴とする請求項1又は2に記載の含鉄硫酸溶液の処理方法。The method for treating an iron-containing sulfuric acid solution according to claim 1 or 2, wherein the first step of dissolving the metallic iron is performed in a temperature range of 60 ° C to 80 ° C. 上記第一工程を攪拌しながら行うことを特徴とする請求項1又は2に記載の含鉄硫酸溶液の処理方法。The method for treating an iron-containing sulfuric acid solution according to claim 1 or 2, wherein the first step is performed with stirring.
JP2001302377A 2001-09-28 2001-09-28 Treatment method of iron-containing sulfuric acid solution Expired - Fee Related JP4815082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001302377A JP4815082B2 (en) 2001-09-28 2001-09-28 Treatment method of iron-containing sulfuric acid solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001302377A JP4815082B2 (en) 2001-09-28 2001-09-28 Treatment method of iron-containing sulfuric acid solution

Publications (2)

Publication Number Publication Date
JP2003104728A JP2003104728A (en) 2003-04-09
JP4815082B2 true JP4815082B2 (en) 2011-11-16

Family

ID=19122629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001302377A Expired - Fee Related JP4815082B2 (en) 2001-09-28 2001-09-28 Treatment method of iron-containing sulfuric acid solution

Country Status (1)

Country Link
JP (1) JP4815082B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472087B2 (en) * 2010-12-27 2014-04-16 八州家 三上 Polyferric sulfate ferric solution and method for producing the same
JP2021053580A (en) * 2019-09-30 2021-04-08 日鉄鉱業株式会社 High-concentration iron-based flocculant, and method for producing same
JP7333262B2 (en) * 2019-10-29 2023-08-24 日鉄鉱業株式会社 High-concentration iron-based flocculant and method for producing the same
KR102495070B1 (en) * 2020-12-18 2023-02-06 주식회사 포스코 Ferrous sulfate manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191541A (en) * 1989-01-20 1990-07-27 Sugita Seisen Kojo:Kk Oxidation of liquid and equipment thereof
JPH035327A (en) * 1989-05-31 1991-01-11 Kawasaki Steel Corp Method for refining ferrous sulfate
JPH07242426A (en) * 1994-03-04 1995-09-19 Hamada Juko Kk Production of high-purity iron sulfate from waste sulfuric acid pickling solution of stainless steel
JP3586557B2 (en) * 1998-04-02 2004-11-10 株式会社杉田製線 Method for efficiently producing ferric polysulfate
JP3586563B2 (en) * 1998-04-21 2004-11-10 株式会社杉田製線 Method for producing ferric polysulfate efficiently
JP4154052B2 (en) * 1998-12-24 2008-09-24 日鉄鉱業株式会社 Method for producing ferric sulfate solution

Also Published As

Publication number Publication date
JP2003104728A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
US9745193B2 (en) Method for removing iron in the manufacture of phosphoric acid
EP0234827A2 (en) Metal recovery process
JP5808131B2 (en) Process and recovery method for copper-containing acidic waste liquid and apparatus therefor
JP2008126104A (en) Method of treating arsenic-containing liquid
JPS60103028A (en) Treatment of iron or zinc-containing waste hydrochloric acid
JP4815082B2 (en) Treatment method of iron-containing sulfuric acid solution
CN112301220B (en) Method for reducing iron content in rare earth sulfate water leaching solution
SU1447273A3 (en) Method of producing manganese sulfate solution
JP4154052B2 (en) Method for producing ferric sulfate solution
US11008221B2 (en) Polyferric sulphate solution
JP2017178749A (en) Method for producing manganese sulfate aqueous solution and method for producing manganese oxide
JP3998345B2 (en) Treatment method for molybdenum-containing wastewater
CN116443833A (en) Recovery method for recovering multiple components from waste batteries
JPS5834195B2 (en) Method for removing arsenic and silicic acid contained in industrial wastewater
CN111039448B (en) Method for removing manganese impurities in acidic solution by ozone
JP2017136539A (en) Method for treating blast furnace drain water
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JPH07275609A (en) Production of ferrous inorganic coagulant
JP4180754B2 (en) Method for producing ferric sulfate solution
RU2213064C1 (en) Method of recovering ethylenediaminetetraacetic acid from spent washing solution in power station steam generators
JP5719320B2 (en) Zinc recovery method from galvanizing waste liquid
JP2004284833A (en) Iron oxide for ferrite raw material and its production method
JP3018020B2 (en) Purification method of iron chloride waste liquid containing chromium, etc.
JPS62127485A (en) Method for recovering iron oxide from waste liquor produced by pickling of steel with hydrochloric acid
TWI572565B (en) Treatment of copper - containing waste liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees