JP4019212B2 - How to recover phosphorus from sludge - Google Patents

How to recover phosphorus from sludge Download PDF

Info

Publication number
JP4019212B2
JP4019212B2 JP2002343631A JP2002343631A JP4019212B2 JP 4019212 B2 JP4019212 B2 JP 4019212B2 JP 2002343631 A JP2002343631 A JP 2002343631A JP 2002343631 A JP2002343631 A JP 2002343631A JP 4019212 B2 JP4019212 B2 JP 4019212B2
Authority
JP
Japan
Prior art keywords
sludge
phosphorus
reaction
wet
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002343631A
Other languages
Japanese (ja)
Other versions
JP2004174377A (en
Inventor
英一 堀田
豊 世良
昌輝 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2002343631A priority Critical patent/JP4019212B2/en
Publication of JP2004174377A publication Critical patent/JP2004174377A/en
Application granted granted Critical
Publication of JP4019212B2 publication Critical patent/JP4019212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、リンを含有する各種汚泥からリンを効率的に回収するとともに、汚泥の減量化、改質および無機凝集剤の有効利用も行える方法に関するものである。
【0002】
【従来の技術】
リンの回収方法として、生物学的処理法(嫌気・好気法、フォストリップ法)、凝集剤添加法、晶析法(MAP法、アパタイト法等)、吸着法等が知られており、実施設の実績のある技術もある。しかしながら、これらの方法は排水中に溶解しているリンに対しては有効であるが、汚泥等の浮遊(懸濁)物質の中に含まれているリンはほとんど回収できない。水処理設備等にて排水から除去されたリンは少なからず汚泥中に移行するので、汚泥処理なしにはリン回収は完結しない。
【0003】
特許文献1には、嫌気工程と好気工程を有する嫌気好気法により有機性汚泥を生物学的に脱リンするに当たり、好気工程に続く活性汚泥の沈殿工程から嫌気工程に戻される汚泥の一部、または好気工程から引き抜いた汚泥をオゾン酸化により可溶化した後、リン酸イオンと沈殿生成反応を起こす金属イオンを添加してリンを回収し、リン除去後の可溶化汚泥を嫌気性工程へ送る、有機性汚泥のリン除去回収方法が提案されている。しかしながら、特許文献1のようなオゾン酸化では汚泥からのリン溶出量が少なく、また処理汚泥は再利用し難く生物処理系に戻しているため無機物が処理系内に徐々に蓄積していく問題がある。
【0004】
【特許文献1】
特開平9−94596号公報。
【0005】
【発明が解決しようとする課題】
本発明は、リンを含有する各種汚泥からリンを効率的に回収することができるとともに、汚泥の減量化と改質および無機凝集剤の有効利用も行える方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明は、生物処理工程から発生する余剰汚泥等に含まれるリンを湿式反応法で、また凝集処理工程から発生する凝集汚泥等に含まれているリンを還元反応法でそれぞれ溶出させた後、それらの分離液の混合物からリン化合物を結晶化することによって、汚泥中のリンを回収する方法に関する。
【0007】
すなわち、本発明による汚泥からのリン回収方法は、生物処理工程から発生する余剰汚泥等を湿式反応装置を用いて処理し、また凝集処理工程から発生する凝集汚泥等を還元反応装置を用いて処理してこれら汚泥に含まれているリンをそれぞれ溶出させ、得られた溶出液からリン化合物を結晶化するリン回収方法であって、湿式反応装置において反応温度が150〜180℃で、圧力がゲージ圧で1Mpa未満、処理時間が30〜60分、酸素供給率が汚泥全酸化に必要な理論酸素量の1〜10%である条件で汚泥を処理することを特徴とする。
【0008】
湿式反応装置において、温度ほ好ましくは150〜180℃、圧力は好ましくは1Mpa未満、処理時間は好ましくは30〜60分であり、酸素不足の条件にて汚泥を処理して汚泥中のリンを溶出させることが好ましい。
【0009】
湿式反応装置において、温度の保持に水蒸気を用いることが好ましい。
【0010】
還元反応装置において、好ましい還元剤は、硫化水素、硫化ナトリウム等の硫化物である。
【0011】
還元反応装置において、還元剤の添加量は、凝集汚泥に含まれている金属量に対しモル比で好ましくは1〜3である。
【0012】
リン化合物製造装置において、結晶化でのpH域は好ましくは7.5〜10である。
【0013】
湿式反応装置から排出される脱水汚泥の量を原料汚泥の約半分程度にし、且つ脱水汚泥含水率を薬剤注入なしで65%以下にすることが好ましい。
【0014】
還元反応装置から排出される濃縮汚泥を強酸で処理し、生じた処理物を酸化して、汚泥から凝集剤を回収することもできる。
【0015】
本発明の実施例を図1に、湿式反応装置のフローを図2に、還元反応装置のフローを図3に、リン化合物製造装置のフローを図4にそれぞれ示す。
【0016】
本発明は、凝集系汚泥とその他汚泥とを分けてリンを溶出させることによって、回収率の向上(効率化)を図っている。従って、施設全体でのリン回収率から見ると、生物処理方式では、標準脱窒素法、高負荷脱窒素法および膜分離高負荷脱窒素法が良く、前凝集処理を行う浄化槽汚泥対応型脱窒素法は好ましくはない。このことは、本発明に限られたものではなく、他のリン回収方法でも同じである。
【0017】
(1)湿式反応装置について
湿式反応装置とは、湿式酸化処理と熱処理の両特性を利用したものであり、反応温度が150〜180℃で、圧力がゲージ圧で1Mpa未満、処理時間が30〜60分、酸素供給率が汚泥全酸化に必要な理論酸素量の1〜10%である条件で、余剰汚泥等の各種汚泥を処理するための装置である。すなわち、湿式反応装置は酸素供給量を制御して酸化を抑え可溶化を重視したものであり、これによってある程度の汚泥減量化が行えると同時に、汚泥中に含まれているリンの一部を溶出させることもできる。
【0018】
なお、酸化性ガス(空気、高濃度酸素ガス、酸素ガス等)の供給量を少なくすることで、反応系内でのS/A(kg-steam/kg-dry gas)を高い値に設定しても乾式反応とはならず、安全である。また、本技術の装置内圧力をゲージ圧力1Mpa未満にすることで、本技術には高圧ガス保安法の適用がない。
【0019】
湿式反応装置は、図2に示すように、基本的には湿式酸化装置とほぼ同様な構成であり、処理条件は異なるものの処理原理は同じである。本技術と湿式酸化技術の主な処理条件および処理効果の比較を表1に示す。同表から分かるように、本技術は汚泥の減量化、改質およびリン溶出率の点では比較技術(湿式酸化法)に比べ劣るものの、これらをある程度は行うことができる。従って、本技術は汚泥の減量化と改質を行えるとともに、余剰汚泥等の各種汚泥(ただし凝集剤混入汚泥は除く)等からのリン回収の前処理として有効な方法である。
【0020】
湿式反応装置において、温度の保持に水蒸気を用いることが好ましい。
【0021】
【表1】

Figure 0004019212
【0022】
(2)還元反応装置について
還元反応装置は、凝集汚泥に硫化ナトリウムや硫化水素等の硫化物を還元剤として添加して、pH4〜6、酸化還元電位(以下ORPと略記する)−230mV以下の条件で汚泥を所定時間還元反応させ、凝集汚泥中のリンを液相に溶出させる装置である。
【0023】
還元反応装置において、還元剤の添加量は凝集汚泥に含まれている無機凝縮剤由来の金属量に対しモル比で好ましくは1〜3である。
【0024】
本装置による反応の原理は、下記の反応式の通りである。反応式は鉄系の凝集汚泥に硫化ナトリウムを添加した場合のものであるが、アルミニウム系の凝集汚泥に硫化水素を添加しても同様な反応が進行する。
【0025】
2FePO + 3Na S → 2FeS↓ + 2Na PO + S
【0026】
生成した硫化物は微細粒子であり沈降分離に長時間を要するので、遠心分離機等で機械的分離した方がより良い。分離濃縮した硫化物汚泥は、硫酸または塩酸を添加することによって、次に示す反応式に従って硫酸第一鉄や塩化第一鉄、および硫化水素を生成する。
【0027】
FeS + H SO → FeSO + H S↑
FeS + 2HCl → FeCl + H S↑
【0028】
生成された硫酸第一鉄や塩化第一鉄は、オゾンや過酸化水素水等の酸化剤で酸化処理して硫酸第二鉄や塩化第二鉄に変換し、凝集処理工程の凝集剤として再利用できる。
【0029】
(3)リン化合物製造装置について
本装置は、水中に溶解しているリン酸イオンをカルシウム系やマグネシウム系等の薬剤と反応させてリン化合物を生成させ、リンを回収するものである。回収リン含有物は肥料等の原料として利用したり、湿式反応装置から排出される脱水汚泥に混合して堆肥成分として利用される。
【0030】
本技術の原理は、次に示す反応式の通りである。
【0031】
3Ca(OH) + 2H PO → Ca (PO + 6H
Na PO + NH Cl + Mg(OH) + 6H
→ MgNH PO ・6H O + NaCl + 2NaOH
【0032】
本技術ではpH域がリン回収率に大きく影響し、適正なpH域は7.5〜10であり、より好ましくは8.5〜9である。また、水中にアンモニア性窒素が共存している場合は生物処理の窒素負荷を低減できるマグネシウム系化合物の使用が好ましく、アンモニア性窒素濃度が高くなるに伴いリン回収率は高くなる。従って、汚泥等の湿式反応装置から得られた分離液にはアンモニア性窒素が高濃度で含まれているので、この分離液と還元反応装置から得られた分離液を混合し、この混合液にマグネシウム系薬剤を添加することによるリンを効率的に回収することができる。
【0033】
【発明の実施の形態】
本発明の詳細な実施の形態を図2、図3および図4に基づいて説明する。
【0034】
(1)湿式反応装置によるリン溶出工程
湿式反応方法とは、反応温度が150〜180℃で、圧力がゲージ圧で1Mpa未満、処理時間が30〜60分、酸素供給率が汚泥全酸化に必要な理論酸素量の1〜10%である条件で、余剰汚泥等の各種汚泥を処理する方法である。
【0035】
図2において、生物処理系等から排出される余剰汚泥(但し、無機凝集剤が混入した汚泥は除く)等は汚泥貯留槽に蓄えられ、処理液のpH調整やスケール防止の為に槽内pHが設定値(8〜10の範囲)になるようにpH調整剤が自動的に添加される。pH調整剤としては一般に水酸化ナトリウムが用いられる。
【0036】
未処理の汚泥は、供給ポンプにより圧力1Mpa未満で熱交換器に送られる。
熱交換器で未処理汚泥は湿式反応処理汚泥との熱交換により昇温された後、反応塔へ送られる。本工程は通常は連続的に行われる。
【0037】
反応塔では、汚泥は、底部からボイラーによる水蒸気の吹き込みによって所定の温度まで温められると同時に、底部からコンプレッサーによる空気または高濃度酸素ガスの吹き込みによって塔内で撹拌されながら所定時間湿式反応され、この結果、可溶化による減量化と脱水性向上等の改質が行われるだけでなく、汚泥中に含まれる窒素やリン等の一部が液側に移行(すなわち溶出)される。
【0038】
湿式反応法はCOD(Cr)除去率を極めて低くしているため、反応熱が少なく設定反応温度が維持できないので、汚泥を水蒸気で加熱する。水蒸気は熱交換効率を考慮すると、反応塔へ直接供給する方が好ましい。また、水蒸気の供給量は反応塔出口に設置された温度センサーによって温度が設定値になるよう自動的に調節される。
【0039】
酸素源は通常空気を用いるが、全体ガス量を少なくしたい場合や、反応温度180℃において酸素供給量を少し増したい場合もあり、このような場合には、PSA(Pressure Swing Adosorption)方式等の高濃度酸素ガス製造装置により製造した高濃度酸素ガスを用いてもよい。高濃度酸素ガスの酸素濃度は22〜75%であり、好ましくは50〜60%である。高濃度酸素ガスを用いる場合には、▲1▼空気に比べガス供給量が少なくなるので、反応圧力が低くても反応に適したガス液比の状態が得られる、▲2▼反応圧力が1Mpa未満と低いためガス量を少なくして配管内流速を低くする、▲3▼酸素分圧が高いので反応速度を向上させることができる。▲4▼湿式反応装置から排出されるガス量が少なくなる、等の利点が得られる。
【0040】
湿式反応後の処理汚泥は上記熱交換器を経た後圧力調節弁によって減圧され、処理汚泥貯留槽に送られ、ここで気液分離され、分離された反応排ガスは槽頂から脱臭設備へ送られる。他方、残った反応処理液は槽底から供給ポンプにより脱水機へ供給され、脱水により生じた分離液は図1に示す混合槽に送られる。他方、脱水された汚泥は堆肥化設備へ送られ、堆肥の成分として緑農地等に有効利用される。
【0041】
また、処理汚泥を脱水することにより、含水率を薬剤注入なしで65%以下にした脱水汚泥を得ることができ、これをごみ焼却施設の助燃材等として利用することもできる。
【0042】
(2)還元反応装置によるリン溶出工程
図3において、凝集処理系等から排出される凝集汚泥等は汚泥貯留槽に蓄えれられ、この槽から供給ポンプにより定量的に還元槽へ供給される。本工程は、連続式でも回分(バッチ)式でもよいが、通常は連続式で行われる。
【0043】
還元槽では、硫化ナトリウムまたは硫化水素等の還元剤が凝集汚泥の流入量に応じて定量添加されている。還元剤の添加量は、凝集汚泥中に含まれている鉄やアルミニウム等の金属[M]含有量に対し、還元剤が硫化物である場合、[S]/[M]モル比で1.0〜3.0倍量、より好ましくは1.2〜2.0倍量である。通常、この添加量で凝集汚泥のORP値は−230mV以下となるが、その値にならない場合には、還元剤を余分に添加してORP値−230mV以下の還元域条件下にて反応を行うことが好ましい。
【0044】
還元剤添加に伴い還元槽内のpHが変動し反応速度に影響がでてくることもあることから、pHが設定された所定値になるよう自動的に中和剤が還元槽内に直接注入されるようになっている。
【0045】
還元槽の滞留時間30〜60分で、凝集汚泥中のリンの約90%以上がリン酸態リンとして液側に溶出し、凝集汚泥中の金属は水溶性の硫化物となって還元槽内に懸濁している。なお、本還元反応は数分にて行われるが、還元槽の滞留時間は30〜60分と長くしている。これは、反応の安定化と次の固液分離操作への貯留を兼ねるためである。
【0046】
還元槽内に懸濁している硫化物は、微粒子であるため沈降速度が遅い。従って、高速処理を図るには、高分子凝集剤等を用いて重力沈降式の固液分離を行うか、遠心分離機等を用いて機械式の固液分離を行うことが望ましい。こうして分離された分離液は図1に示す混合槽へ送られ、湿式反応装置からの分離液と合流され撹拌混合される。
【0047】
一方、分離された濃縮汚泥は図1に示す溶解槽へポンプ等で送られる。溶解槽の濃縮汚泥には希硫酸や希塩酸等の酸が添加され、硫化物は硫酸塩や塩化物に変換される。この時、硫化水素が発生するので、溶解槽から出る排ガスは上記還元槽に吹き込んで循環利用できるようにしておく方が好ましい。
【0048】
硫酸塩や塩化物の溶液は、オゾンや過酸化水素水等によって酸化処理されて、上記凝集処理工程の無機凝集剤として循環利用される。あるいは、凝集処理工程をフェントン酸化方式とし、その酸化処理を凝集処理と同時に行うようにした方がより好ましい。得られた溶液を添加剤として用いることもできる。
【0049】
また、汚泥の資源化としてこれを固形燃料助剤として用いることを考えた場合、含水率を薬剤注入なしで65%以下にした脱水汚泥を得ることもできるが、酸化処理後の溶解液を上記湿式反応装置の処理汚泥貯留槽に移送し、撹拌混合して含水率50%以下の脱水汚泥を製造することが好ましい。この場合、湿式反応処理によって溶出させたリンのほとんどは反応して脱水汚泥側に移行するため、リンの回収率は低下する。
【0050】
(3)リン化合物製造装置によるリン回収工程
図4において、図1に示す混合槽から来る分離液は、供給ポンプにより晶析槽の反応部に供給される。本工程は通常は連続式に行われる。
【0051】
反応部では、マグネシウム系化合物やカルシウム系化合物などの晶析剤が所定量注入され、必要に応じて所定のpHになるよう水酸化ナトリウム等の中和剤の添加によりpH調整が行われる。
【0052】
晶析槽内の分離液をブロワーからの空気により撹拌混合することにより、生成した微細な結晶を槽内で循環流動させて適度な粒度まで成長させる。
【0053】
成長したリン含有結晶を含む液は、晶析槽の分離部で水と結晶に沈殿分離され、分離水は晶析槽上部から生物処理系へ送られる。一方、結晶は槽下部に堆積され定期的に引き抜かれ、ドラムスクリーン等の簡単な分離装置で固形物と含有水に分離される。晶析剤としてカルシウム系化合物を用いる場合は、分離装置に遠心分離機を用いる方が好ましい。
【0054】
分離された水は生物処理系へ送られ、結晶固形物はホッパへ送られ、水切りや乾燥が行われる。こうして製造された含水率10〜20%の乾燥結晶は極めて有効な肥料などとして緑農地等に利用される。
【0055】
【実施例】
水酸化ナトリウムを添加してpHを8.5に調整したし尿処理汚泥の余剰汚泥を対象に、外熱型オートクレーブ装置(内容量750ml)を用いて、図2のフローに従って各反応温度における湿式反応処理(圧力1MPa、時間60分)を行った。その結果を表2に示す。同表より、試料の有機物量があまり減少しないにも拘らず、減量化率(SS除去率)、可溶化率(VSS除去率)ともに反応温度の上昇に伴って高くなる傾向が認められる。また、汚泥中のリン成分溶出率(液側移行率)は27〜32%であった。さらに、脱水汚泥の含水率は薬剤注入なしでも61〜65%程度(未処理の汚泥では薬剤注入にても含水率75%程度)であり、剥離性も良い状態であったことから、良好な汚泥の改質が行われていることが認められる。
【0056】
【表2】
Figure 0004019212
【0057】
一方、し尿処理汚泥の鉄系凝集汚泥を対象に、容量2リットルの還元槽を用いて、図3のフローに従って還元反応を行った。その結果を表3に示す。なお、還元剤は市販の硫化ナトリウムを溶解し約20%溶液を調製して用いた。同表より、還元剤添加量が[S]/[Fe]モル比で1.3倍以上であれば93%程度、1.75倍以上であれば95%程度の高いリン溶出率が得られることが判る。
【0058】
【表3】
Figure 0004019212
【0059】
図4に従って、余剰汚泥等を温度170℃で湿式反応処理後の分離液4リットルと、鉄系凝集汚泥をモル比1.75以上(例えば1.8)で還元反応処理後の分離液1リットルを混合撹拌し、この混合液を供給ポンプによって定量的に容量0.2リットルの晶析槽に供給した。混合液中のリン酸形態のリンの濃度は146mg/リットルであった。同時に晶析槽へ晶析剤として30%水酸化マグネシウム溶液を[Mg]/[P]モル比が1.5以上(例えば1.6)になるよう添加した。晶析槽ではpHを9前後になるよう25%水酸化ナトリウム溶液を添加し、リン酸マグネシウムアンモニウムを製造した。その結果、処理水のリン濃度は6.3mg/リットルであり、分離液からのリン回収率は95%と極めて高い値であった。
【0060】
溶解槽で得られた硫化鉄は還元されてほとんどが硫化第一鉄となっていた。これに、希硫酸を添加すると、容易に硫酸第一鉄が製造できた。また、硫化水素も発生した。
【0061】
【発明の効果】
以上述べたように、本発明方法により、リンを含有する各種汚泥からリンを効率的に回収することができるとともに、汚泥の減量化、改質および無機凝集剤の有効利用も達成することができる。より詳しくは、本発明によれば以下に示す効果が得られる。
【0062】
▲1▼汚泥中のリン成分を容易に、しかも効率良く回収することができる。
【0063】
▲2▼回収されたリン化合物は粒状で、含水率が20%程度のため、ハンドリングが容易である。
【0064】
▲3▼回収されたリン化合物は、衛生的で、重金属などを含まなく安全であり、高純度と付加価値の高いものであることから、肥料原料等として利用用途が大幅に広がる。
【0065】
▲4▼リン溶出後の凝集汚泥に強酸を添加することによって、無機凝集剤が容易に製造できることから、これを凝集処理工程へ戻し循環使用できる。したがって、凝集処理系から排出される汚泥量は、皆無に等しい。
【0066】
▲5▼生物処理系から排出される全汚泥量の50%程度を減量化できる。
【0067】
▲6▼生物処理系から排出される汚泥の改質が行えるため、脱水汚泥の含水率を薬剤注入なしでも約65%にでき、堆肥化等の水分調整に要する熱量を大きく低減できる。また、この脱水汚泥を助燃材として問題なく使用できる。
【図面の簡単な説明】
【図1】本発明の実施例を示すフローシートである。
【図2】湿式反応工程を示すフローシートである。
【図3】還元リン溶出工程を示すフローシートである。
【図4】リン化合物製造工程を示すフローシートである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method capable of efficiently recovering phosphorus from various types of sludge containing phosphorus, and reducing sludge, modifying it, and effectively using an inorganic flocculant.
[0002]
[Prior art]
Biological treatment methods (anaerobic / aerobic method, fostrip method), flocculant addition method, crystallization method (MAP method, apatite method, etc.), adsorption method, etc. are known as phosphorus recovery methods. Some facilities have a proven track record. However, these methods are effective for phosphorus dissolved in waste water, but phosphorus contained in suspended (suspended) substances such as sludge can hardly be recovered. Phosphorus removed from wastewater in water treatment facilities and the like is transferred to sludge in a small amount, and phosphorus recovery cannot be completed without sludge treatment.
[0003]
In patent document 1, in biological dephosphorization of organic sludge by the anaerobic aerobic method which has an anaerobic process and an aerobic process, the sludge returned to the anaerobic process from the precipitation process of the activated sludge following an aerobic process is described. Some or some of the sludge extracted from the aerobic process is solubilized by ozone oxidation, then phosphate ions and metal ions that cause precipitation reaction are added to recover phosphorus, and the solubilized sludge after phosphorus removal is anaerobic There has been proposed a method for removing and recovering organic sludge that is sent to the process. However, in ozone oxidation like patent document 1, there is little phosphorus elution amount from sludge, and since the treated sludge is difficult to reuse and returned to the biological treatment system, there is a problem that inorganic substances gradually accumulate in the treatment system. is there.
[0004]
[Patent Document 1]
JP-A-9-94596.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a method capable of efficiently recovering phosphorus from various types of sludge containing phosphorus and also capable of reducing and modifying the sludge and effectively using an inorganic flocculant.
[0006]
[Means for Solving the Problems]
The present invention elutes phosphorus contained in surplus sludge and the like generated from the biological treatment process by a wet reaction method, and phosphorus contained in coagulated sludge and the like generated from the coagulation treatment process by a reduction reaction method, respectively. The present invention relates to a method for recovering phosphorus in sludge by crystallizing a phosphorus compound from a mixture of the separated liquids.
[0007]
That is, the method for recovering phosphorus from sludge according to the present invention treats excess sludge and the like generated from the biological treatment process using a wet reactor, and treats the aggregated sludge and the like generated from the agglomeration process using a reduction reactor. In this method, phosphorus contained in the sludge is eluted, and a phosphorus compound is crystallized from the obtained eluate , wherein the reaction temperature is 150 to 180 ° C. and the pressure is gauged in a wet reactor. The sludge is treated under the conditions that the pressure is less than 1 Mpa, the treatment time is 30 to 60 minutes, and the oxygen supply rate is 1 to 10% of the theoretical oxygen amount necessary for the total oxidation of the sludge .
[0008]
In a wet reactor, the temperature is preferably 150 to 180 ° C., the pressure is preferably less than 1 Mpa, the treatment time is preferably 30 to 60 minutes, and the sludge is treated under oxygen-deficient conditions to elute phosphorus in the sludge. It is preferable to make it.
[0009]
In the wet reactor, it is preferable to use water vapor to maintain the temperature.
[0010]
In the reduction reaction apparatus, preferred reducing agents are sulfides such as hydrogen sulfide and sodium sulfide.
[0011]
In the reduction reaction apparatus, the amount of the reducing agent added is preferably 1 to 3 in terms of molar ratio to the amount of metal contained in the aggregated sludge.
[0012]
In the phosphorus compound production apparatus, the pH range for crystallization is preferably 7.5 to 10.
[0013]
It is preferable that the amount of dewatered sludge discharged from the wet reactor is about half that of the raw material sludge, and the water content of the dehydrated sludge is 65% or less without chemical injection.
[0014]
The concentrated sludge discharged from the reduction reaction apparatus can be treated with a strong acid, the resulting treatment can be oxidized, and the flocculant can be recovered from the sludge.
[0015]
FIG. 1 shows an embodiment of the present invention, FIG. 2 shows a flow of a wet reaction apparatus, FIG. 3 shows a flow of a reduction reaction apparatus, and FIG. 4 shows a flow of a phosphorus compound production apparatus.
[0016]
The present invention aims to improve the recovery rate (efficiency) by separating the agglomerated sludge from other sludge and eluting phosphorus. Therefore, from the viewpoint of phosphorus recovery rate in the entire facility, the standard denitrification method, high load denitrogenation method and membrane separation high load denitrogenation method are good in biological treatment methods, and septic tank sludge compatible denitrification that performs pre-flocculation treatment. The method is not preferred. This is not limited to the present invention, and the same applies to other phosphorus recovery methods.
[0017]
(1) About wet reactor The wet reactor uses both wet oxidation and heat treatment characteristics, the reaction temperature is 150 to 180 ° C, the pressure is less than 1 Mpa in gauge pressure, and the treatment time is 30 to 30 minutes. It is an apparatus for treating various sludges such as excess sludge under the condition that the oxygen supply rate is 1 to 10% of the theoretical oxygen amount required for sludge total oxidation for 60 minutes. In other words, the wet reactor is designed to control the oxygen supply rate to suppress oxidation and attach importance to solubilization, which can reduce sludge to some extent and at the same time elute some of the phosphorus contained in the sludge. It can also be made.
[0018]
By reducing the supply of oxidizing gas (air, high-concentration oxygen gas, oxygen gas, etc.), the S / A (kg-steam / kg-dry gas) in the reaction system is set to a high value. However, it does not become a dry reaction and is safe. Moreover, the high pressure gas safety method is not applied to the present technology by setting the internal pressure of the present technology to a gauge pressure of less than 1 Mpa.
[0019]
As shown in FIG. 2, the wet reaction apparatus has basically the same configuration as the wet oxidation apparatus, and the processing principle is the same although the processing conditions are different. Table 1 shows a comparison of main processing conditions and processing effects of the present technology and the wet oxidation technology. As can be seen from the table, the present technology is inferior to the comparative technology (wet oxidation method) in terms of sludge reduction, reforming, and phosphorus elution rate, but these can be performed to some extent. Therefore, this technology can reduce and modify sludge and is an effective method for pretreatment of phosphorus recovery from various sludges such as surplus sludge (excluding sludge mixed with flocculant).
[0020]
In the wet reactor, it is preferable to use water vapor to maintain the temperature.
[0021]
[Table 1]
Figure 0004019212
[0022]
(2) About the reduction reaction apparatus The reduction reaction apparatus adds a sulfide such as sodium sulfide or hydrogen sulfide to the coagulated sludge as a reducing agent, and has a pH of 4 to 6 and an oxidation-reduction potential (hereinafter abbreviated as ORP) -230 mV or less. It is an apparatus that causes sludge to undergo a reduction reaction for a predetermined time under conditions, and to elute phosphorus in the coagulated sludge into a liquid phase.
[0023]
In the reduction reaction apparatus, the addition amount of the reducing agent is preferably 1 to 3 in terms of a molar ratio with respect to the amount of metal derived from the inorganic condensing agent contained in the coagulated sludge.
[0024]
The principle of reaction by this apparatus is as shown in the following reaction formula. The reaction formula is that when sodium sulfide is added to iron-based coagulated sludge, but the same reaction proceeds even when hydrogen sulfide is added to aluminum-based coagulated sludge.
[0025]
2FePO 4 + 3Na 2 S → 2FeS ↓ + 2Na 3 PO 4 + S
[0026]
Since the produced sulfide is fine particles and requires a long time for sedimentation separation, it is better to perform mechanical separation with a centrifugal separator or the like. The separated and concentrated sulfide sludge generates ferrous sulfate, ferrous chloride, and hydrogen sulfide according to the following reaction formula by adding sulfuric acid or hydrochloric acid.
[0027]
FeS + H 2 SO 4 → FeSO 4 + H 2 S ↑
FeS + 2HCl → FeCl 2 + H 2 S ↑
[0028]
The produced ferrous sulfate and ferrous chloride are oxidized with an oxidizing agent such as ozone or hydrogen peroxide solution to convert to ferric sulfate or ferric chloride, and are reused as an aggregating agent in the aggregating process. Available.
[0029]
(3) Phosphorus compound production apparatus This apparatus reacts phosphate ions dissolved in water with a chemical such as calcium or magnesium to produce a phosphorus compound, and collects phosphorus. The recovered phosphorus-containing material is used as a raw material such as fertilizer, or mixed with dehydrated sludge discharged from a wet reactor and used as a compost component.
[0030]
The principle of this technology is as shown in the following reaction formula.
[0031]
3Ca (OH) 2 + 2H 3 PO 4 → Ca 3 (PO 4 ) 2 + 6H 2 O
Na 3 PO 4 + NH 4 Cl + Mg (OH) 2 + 6H 2 0
→ MgNH 4 PO 4 · 6H 2 O + NaCl + 2NaOH
[0032]
In the present technology, the pH range greatly affects the phosphorus recovery rate, and the proper pH range is 7.5 to 10, more preferably 8.5 to 9. Moreover, when ammoniacal nitrogen coexists in water, it is preferable to use a magnesium compound that can reduce the nitrogen load of biological treatment, and the phosphorus recovery rate increases as the ammoniacal nitrogen concentration increases. Therefore, since the separation liquid obtained from the wet reaction apparatus such as sludge contains ammonia nitrogen at a high concentration, the separation liquid and the separation liquid obtained from the reduction reaction apparatus are mixed, and this mixture liquid is mixed. Phosphorus can be efficiently recovered by adding a magnesium-based drug.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
A detailed embodiment of the present invention will be described based on FIG. 2, FIG. 3, and FIG.
[0034]
(1) Phosphorus elution process by wet reactor The wet reaction method is a reaction temperature of 150 to 180 ° C., a pressure of less than 1 Mpa in gauge pressure, a treatment time of 30 to 60 minutes, and an oxygen supply rate required for total sludge oxidation This is a method of treating various sludges such as excess sludge under the condition of 1 to 10% of the theoretical amount of oxygen.
[0035]
In FIG. 2, surplus sludge (excluding sludge mixed with inorganic flocculant) discharged from biological treatment systems, etc. is stored in a sludge storage tank, and the tank pH is used to adjust the pH of the treatment liquid and prevent scales. The pH adjuster is automatically added so that becomes a set value (range of 8 to 10). As a pH adjuster, sodium hydroxide is generally used.
[0036]
Untreated sludge is sent to the heat exchanger by a supply pump at a pressure of less than 1 Mpa.
In the heat exchanger, the untreated sludge is heated by heat exchange with the wet reaction-treated sludge and then sent to the reaction tower. This step is usually performed continuously.
[0037]
In the reaction tower, the sludge is heated to a predetermined temperature from the bottom by blowing steam with a boiler, and at the same time, the sludge is wet-reacted for a predetermined time while being stirred in the tower by blowing air or high-concentration oxygen gas from the bottom. As a result, not only reforming such as weight reduction by solubilization and improvement of dewaterability is performed, but also part of nitrogen, phosphorus, etc. contained in the sludge is transferred (ie, eluted) to the liquid side.
[0038]
Since the wet reaction method has an extremely low COD (Cr) removal rate, the reaction heat is small and the set reaction temperature cannot be maintained, so the sludge is heated with steam. In consideration of heat exchange efficiency, it is preferable to supply steam directly to the reaction tower. In addition, the amount of steam supplied is automatically adjusted so that the temperature becomes a set value by a temperature sensor installed at the outlet of the reaction tower.
[0039]
Usually, air is used as the oxygen source, but there are cases where it is desired to reduce the total gas amount or to increase the oxygen supply amount slightly at a reaction temperature of 180 ° C. In such a case, a PSA (Pressure Swing Adosorption) method, etc. You may use the high concentration oxygen gas manufactured with the high concentration oxygen gas manufacturing apparatus. The oxygen concentration of the high-concentration oxygen gas is 22 to 75%, preferably 50 to 60%. When high-concentration oxygen gas is used, (1) since the gas supply amount is smaller than that of air, a gas-liquid ratio suitable for the reaction can be obtained even when the reaction pressure is low. (2) The reaction pressure is 1 MPa. Since the flow rate in the pipe is lowered by reducing the amount of gas because it is low, the reaction rate can be improved. (4) Advantages such as a reduction in the amount of gas discharged from the wet reactor can be obtained.
[0040]
The treated sludge after the wet reaction is reduced in pressure by the pressure control valve after passing through the heat exchanger, sent to the treated sludge storage tank, where it is gas-liquid separated, and the separated reaction exhaust gas is sent from the tank top to the deodorization equipment. . On the other hand, the remaining reaction processing liquid is supplied from the bottom of the tank to the dehydrator by a supply pump, and the separation liquid generated by the dehydration is sent to the mixing tank shown in FIG. On the other hand, the dewatered sludge is sent to a composting facility and is effectively used as a compost component in green farmland.
[0041]
Further, by dehydrating the treated sludge, dehydrated sludge having a water content of 65% or less can be obtained without injecting chemicals, and this can also be used as a combustion aid for a waste incineration facility.
[0042]
(2) Phosphorus elution process by reduction reaction apparatus In FIG. 3, the coagulated sludge discharged from the coagulation treatment system or the like is stored in a sludge storage tank, and quantitatively supplied from this tank to the reduction tank. This step may be continuous or batch (batch), but is usually performed continuously.
[0043]
In the reducing tank, a reducing agent such as sodium sulfide or hydrogen sulfide is quantitatively added according to the inflow amount of the coagulated sludge. When the reducing agent is a sulfide with respect to the metal [M] content such as iron or aluminum contained in the coagulated sludge, the amount of the reducing agent added is 1. in terms of [S] / [M] molar ratio. The amount is 0 to 3.0 times, more preferably 1.2 to 2.0 times. Normally, the ORP value of the coagulated sludge becomes −230 mV or less with this addition amount. However, when the value does not reach that value, an extra reducing agent is added and the reaction is carried out under the conditions of the reducing zone where the ORP value is −230 mV or less. It is preferable.
[0044]
Since the pH in the reducing tank fluctuates with the addition of the reducing agent and the reaction rate may be affected, the neutralizing agent is automatically injected directly into the reducing tank so that the pH becomes a predetermined value. It has come to be.
[0045]
About 90% or more of the phosphorus in the coagulated sludge elutes to the liquid side as phosphate phosphorus in the reduction tank residence time of 30 to 60 minutes, and the metal in the coagulated sludge becomes water-soluble sulfide in the reduction tank. It is suspended in. In addition, although this reduction reaction is performed in several minutes, the residence time of a reduction tank is extended with 30 to 60 minutes. This is because it serves both as stabilization of the reaction and storage for the next solid-liquid separation operation.
[0046]
Since the sulfide suspended in the reduction tank is a fine particle, the sedimentation speed is slow. Therefore, in order to achieve high-speed processing, it is desirable to perform gravity sedimentation solid-liquid separation using a polymer flocculant or the like, or mechanical solid-liquid separation using a centrifuge or the like. The separated liquid thus separated is sent to the mixing tank shown in FIG. 1, where it is combined with the separated liquid from the wet reactor and stirred and mixed.
[0047]
On the other hand, the separated concentrated sludge is sent to the dissolution tank shown in FIG. Acids such as dilute sulfuric acid and dilute hydrochloric acid are added to the concentrated sludge in the dissolution tank, and the sulfide is converted into sulfate and chloride. At this time, since hydrogen sulfide is generated, it is preferable that the exhaust gas discharged from the dissolution tank is blown into the reduction tank so that it can be circulated.
[0048]
The sulfate or chloride solution is oxidized by ozone, hydrogen peroxide, or the like, and recycled as an inorganic flocculant in the agglomeration process. Alternatively, it is more preferable that the coagulation treatment step is a Fenton oxidation method and the oxidation treatment is performed simultaneously with the coagulation treatment. The obtained solution can also be used as an additive.
[0049]
Moreover, when considering using this as a solid fuel auxiliary agent as a sludge resource, it is possible to obtain dehydrated sludge having a water content of 65% or less without chemical injection. It is preferable to transfer to a treated sludge storage tank of a wet reactor and mix by stirring to produce dehydrated sludge having a water content of 50% or less. In this case, most of the phosphorus eluted by the wet reaction treatment reacts and moves to the dewatered sludge side, so that the phosphorus recovery rate decreases.
[0050]
(3) Phosphorus recovery process by phosphorus compound production apparatus In FIG. 4, the separation liquid coming from the mixing tank shown in FIG. 1 is supplied to the reaction part of the crystallization tank by the supply pump. This step is usually performed continuously.
[0051]
In the reaction part, a predetermined amount of a crystallization agent such as a magnesium-based compound or a calcium-based compound is injected, and pH adjustment is performed by adding a neutralizing agent such as sodium hydroxide as necessary to obtain a predetermined pH.
[0052]
The separated liquid in the crystallization tank is stirred and mixed with the air from the blower, whereby the generated fine crystals are circulated and flown in the tank to grow to an appropriate particle size.
[0053]
The liquid containing the grown phosphorus-containing crystals is precipitated and separated into water and crystals in the separation part of the crystallization tank, and the separated water is sent from the upper part of the crystallization tank to the biological treatment system. On the other hand, the crystals are deposited at the bottom of the tank and are periodically extracted, and separated into solids and contained water by a simple separation device such as a drum screen. When a calcium compound is used as the crystallizing agent, it is preferable to use a centrifuge for the separation device.
[0054]
The separated water is sent to a biological treatment system, and the crystalline solid is sent to a hopper for draining and drying. The dried crystals having a water content of 10 to 20% thus produced are used for green farmland and the like as extremely effective fertilizers.
[0055]
【Example】
2. Wet reaction at each reaction temperature according to the flow of FIG. 2 using an externally heated autoclave device (internal volume 750 ml) for surplus sludge of urine-treated sludge whose pH was adjusted to 8.5 by adding sodium hydroxide The treatment (pressure 1 MPa, time 60 minutes) was performed. The results are shown in Table 2. From the table, it can be seen that both the reduction rate (SS removal rate) and the solubilization rate (VSS removal rate) tend to increase as the reaction temperature increases although the amount of organic matter in the sample does not decrease so much. Moreover, the phosphorus component elution rate (liquid side transfer rate) in sludge was 27 to 32%. Furthermore, the moisture content of the dewatered sludge is about 61 to 65% without chemical injection (the moisture content is about 75% even with chemical injection for untreated sludge), and the releasability was also good. It is recognized that sludge is being reformed.
[0056]
[Table 2]
Figure 0004019212
[0057]
On the other hand, a reduction reaction was performed according to the flow of FIG. 3 using a reduction tank having a capacity of 2 liters for iron-based agglomerated sludge of human waste treatment sludge. The results are shown in Table 3. As the reducing agent, a commercially available sodium sulfide was dissolved to prepare an approximately 20% solution. From the table, a high phosphorus elution rate of about 93% is obtained when the reducing agent addition amount is 1.3 times or more in the [S] / [Fe] molar ratio and about 1.75 times or more. I understand that.
[0058]
[Table 3]
Figure 0004019212
[0059]
According to FIG. 4, 4 liters of the separated liquid after the wet reaction treatment at a temperature of 170 ° C. and 1 liter of the separated liquid after the reduction reaction treatment of iron-based coagulated sludge at a molar ratio of 1.75 or more (for example, 1.8). Were mixed and stirred, and this mixed solution was quantitatively supplied to a crystallization tank having a capacity of 0.2 liter by a supply pump. The concentration of phosphoric acid form phosphorus in the mixture was 146 mg / liter. At the same time, a 30% magnesium hydroxide solution was added to the crystallization tank as a crystallization agent so that the [Mg] / [P] molar ratio was 1.5 or more (for example, 1.6). In the crystallization tank, a 25% sodium hydroxide solution was added so that the pH was around 9, and magnesium ammonium phosphate was produced. As a result, the phosphorus concentration of the treated water was 6.3 mg / liter, and the phosphorus recovery rate from the separated liquid was an extremely high value of 95%.
[0060]
Most of the iron sulfide obtained in the dissolution tank was reduced to ferrous sulfide. When dilute sulfuric acid was added thereto, ferrous sulfate could be easily produced. Hydrogen sulfide was also generated.
[0061]
【The invention's effect】
As described above, according to the method of the present invention, phosphorus can be efficiently recovered from various sludges containing phosphorus, and sludge reduction, reforming, and effective use of inorganic flocculants can be achieved. . More specifically, according to the present invention, the following effects can be obtained.
[0062]
(1) The phosphorus component in the sludge can be recovered easily and efficiently.
[0063]
(2) Since the recovered phosphorus compound is granular and has a water content of about 20%, handling is easy.
[0064]
(3) The recovered phosphorus compounds are sanitary, safe and free of heavy metals, and have high purity and high added value. Therefore, their use is greatly expanded as fertilizer raw materials.
[0065]
(4) By adding a strong acid to the coagulated sludge after elution of phosphorus, an inorganic coagulant can be easily produced, so that it can be recycled and used for the coagulation treatment step. Accordingly, the amount of sludge discharged from the coagulation treatment system is equal to none.
[0066]
(5) About 50% of the total sludge discharged from the biological treatment system can be reduced.
[0067]
(6) Since the sludge discharged from the biological treatment system can be modified, the water content of the dewatered sludge can be reduced to about 65% even without chemical injection, and the amount of heat required for moisture adjustment such as composting can be greatly reduced. Moreover, this dehydrated sludge can be used without any problem as a combustion aid.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing an embodiment of the present invention.
FIG. 2 is a flow sheet showing a wet reaction process.
FIG. 3 is a flow sheet showing a reducing phosphorus elution step.
FIG. 4 is a flow sheet showing a phosphorus compound production process.

Claims (7)

生物処理工程から発生する余剰汚泥等を湿式反応装置を用いて処理し、また凝集処理工程から発生する凝集汚泥等を還元反応装置を用いて処理してこれら汚泥に含まれているリンをそれぞれ溶出させ、得られた溶出液からリン化合物を結晶化するリン回収方法であって、湿式反応装置において反応温度が150〜180℃で、圧力がゲージ圧で1Mpa未満、処理時間が30〜60分、酸素供給率が汚泥全酸化に必要な理論酸素量の1〜10%である条件で汚泥を処理することを特徴とする汚泥からのリン回収方法。The excess sludge generated from the biological treatment process is treated using a wet reactor, and the sludge generated from the coagulation process is treated using a reduction reactor to elute phosphorus contained in the sludge. A phosphorus recovery method for crystallizing a phosphorus compound from the obtained eluate, wherein the reaction temperature is 150 to 180 ° C. in a wet reactor, the pressure is less than 1 Mpa in gauge pressure, the treatment time is 30 to 60 minutes, A method for recovering phosphorus from sludge, characterized in that the sludge is treated under the condition that the oxygen supply rate is 1 to 10% of the theoretical oxygen amount necessary for total oxidation of sludge . 湿式反応装置において、温度の保持に水蒸気を用いることを特徴とする請求項に記載の汚泥からのリン回収方法。In the wet reactor, phosphorus recovery method from sludge according to claim 1, characterized by using the water vapor to the holding temperature. 還元反応装置において、還元剤が硫化物であることを特徴とする請求項1または2に記載の汚泥からのリン回収方法。The method for recovering phosphorus from sludge according to claim 1 or 2 , wherein the reducing agent is a sulfide in the reduction reaction apparatus. 還元反応装置において、還元剤の添加量が、凝集汚泥に含まれている金属量に対しモル比で1〜3であることを特徴とする請求項1〜のいずれかに記載の汚泥からのリン回収方法。In the reduction reactor, the addition amount of the reducing agent, from sludge according to any one of claims 1 to 3, characterized in that 1 to 3 in a molar ratio to the metal amount contained in agglomerated sludge Phosphorus recovery method. リン化合物製造装置において、結晶化でのpH域が7.5〜10であることを特徴とする請求項1〜のいずれかに記載の汚泥からのリン回収方法。The method for recovering phosphorus from sludge according to any one of claims 1 to 4 , wherein a pH range in crystallization is 7.5 to 10 in the phosphorus compound production apparatus. 湿式反応装置から排出される脱水汚泥の量を原料汚泥の約半分程度にし、且つ脱水汚泥含水率を薬剤注入なしで65%以下にすることを特徴とする請求範囲第1〜のいずれかに記載の汚泥からのリン回収方法。The amount of dewatered sludge discharged from the wet reactor is about half that of the raw material sludge, and the water content of the dewatered sludge is 65% or less without chemical injection, according to any one of claims 1 to 5. A method for recovering phosphorus from the described sludge. 還元反応装置から排出される濃縮汚泥を強酸で処理し、生じた処理物を酸化して、汚泥から凝集剤を回収することを特徴とする請求範囲第1〜のいずれかに記載の汚泥からのリン回収方法。From the sludge according to any one of claims 1 to 6 , wherein the concentrated sludge discharged from the reduction reaction apparatus is treated with a strong acid, the resulting treatment is oxidized, and the flocculant is recovered from the sludge. Of phosphorus recovery.
JP2002343631A 2002-11-27 2002-11-27 How to recover phosphorus from sludge Expired - Fee Related JP4019212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343631A JP4019212B2 (en) 2002-11-27 2002-11-27 How to recover phosphorus from sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343631A JP4019212B2 (en) 2002-11-27 2002-11-27 How to recover phosphorus from sludge

Publications (2)

Publication Number Publication Date
JP2004174377A JP2004174377A (en) 2004-06-24
JP4019212B2 true JP4019212B2 (en) 2007-12-12

Family

ID=32705370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343631A Expired - Fee Related JP4019212B2 (en) 2002-11-27 2002-11-27 How to recover phosphorus from sludge

Country Status (1)

Country Link
JP (1) JP4019212B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330039A (en) * 2003-05-06 2004-11-25 Ngk Insulators Ltd Recovery method of phosphorus and coagulant
JP2007260551A (en) * 2006-03-28 2007-10-11 Ihi Corp Organic waste treatment apparatus and method
JP5001594B2 (en) * 2006-06-28 2012-08-15 一般財団法人電力中央研究所 Biomass fuel manufacturing method and biomass fuel system using the same
CN106865938B (en) * 2017-03-31 2020-06-09 彭丽 Treatment method for catalytic wet oxidation of sludge
CN112094035A (en) * 2020-08-28 2020-12-18 中国冶金科工股份有限公司 Movable sludge treatment system

Also Published As

Publication number Publication date
JP2004174377A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
Egle et al. Overview and description of technologies for recovering phosphorus from municipal wastewater
Saidou et al. Struvite precipitation by the dissolved CO2 degasification technique: Impact of the airflow rate and pH
WO2005049511A1 (en) Method of formation/recovery of magnesium ammonium phosphate and apparatus therefor
CA2382813C (en) Process for recovery of nutrients from wastewater effluent
CN103145262B (en) Method and system of sewage treatment and resource recovery
CN111763103A (en) Process for preparing calcium magnesium ammonium phosphate from desulfurization wastewater, landfill leachate and phosphorus-containing wastewater
CN105084589A (en) Treatment method and system for wet magnesium desulphurization wastewater
Ulu et al. Ammonia removal from wastewater by air stripping and recovery struvite and calcium sulphate precipitations from anesthetic gases manufacturing wastewater
WO2019125293A1 (en) Chemical processing of struvite
JP6376951B2 (en) Phosphorus recovery equipment and phosphorus recovery method
JP5128735B2 (en) Recovery and reuse of phosphorus and flocculant in wastewater
Kalyuzhnyi et al. Integrated mechanical, biological and physico-chemical treatment of liquid manure streams
Ha et al. Enhanced struvite (MgNH4PO4· 6H2O) granulation and separation from synthetic wastewater using fluidized-bed crystallization (FBC) technology
JP4019212B2 (en) How to recover phosphorus from sludge
JP4642635B2 (en) High concentration organic waste liquid treatment method and apparatus
JP2013119081A (en) Treatment method and treatment apparatus for phosphorus-containing wastewater
JP5997145B2 (en) Method and apparatus for treating organic wastewater and organic sludge
JP4656848B2 (en) Sludge treatment method
JP3844347B2 (en) Method and apparatus for removing and recovering phosphorus from organic wastewater
JP2002205077A (en) Method and apparatus for treating organic sewage
JP4871384B2 (en) Treatment equipment for phosphorus-containing wastewater
JP4368159B2 (en) Method for treating wastewater containing phosphate
JPH0416238B2 (en)
JP2003300095A (en) Method and apparatus for sewage treatment
Vanotti et al. Technology for recovery of phosphorus from animal wastewater through calcium phosphate precipitation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees