JP2006289299A - Phosphorus removal method - Google Patents

Phosphorus removal method Download PDF

Info

Publication number
JP2006289299A
JP2006289299A JP2005115763A JP2005115763A JP2006289299A JP 2006289299 A JP2006289299 A JP 2006289299A JP 2005115763 A JP2005115763 A JP 2005115763A JP 2005115763 A JP2005115763 A JP 2005115763A JP 2006289299 A JP2006289299 A JP 2006289299A
Authority
JP
Japan
Prior art keywords
dephosphorization
tower
dephosphorization tower
phosphate
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005115763A
Other languages
Japanese (ja)
Other versions
JP5124907B2 (en
Inventor
Takeshi Nakamura
中村  剛
Masahiro Fujii
正博 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2005115763A priority Critical patent/JP5124907B2/en
Publication of JP2006289299A publication Critical patent/JP2006289299A/en
Application granted granted Critical
Publication of JP5124907B2 publication Critical patent/JP5124907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphorus removal method which can efficiently remove phosphate ions in waste water containing phosphate ions, ammonium ions, magnesium ions, and calcium ions only by aerating the waste water, and recover the phosphate ions as solid particles of a phosphate crystal available as a slow-acting compound fertilizer. <P>SOLUTION: In the phosphorus removal method, the waste water containing phosphate ions, ammonium ions, magnesium ions, and calcium ions is fed into a phosphorus removal device having a prescribed structure. Aeration is carried out to cause decarboxylation, which increases pH to insolubilize the phosphate ions in the waste water as the phosphate crystal. The phosphate crystal is recovered as a solid particle. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、排水からリンを除去する方法に関するものであり、さらに詳細には高濃度のリン酸イオン、アンモニウムイオン、マグネシウムイオン及びカルシウムイオンを含む廃水に好適なリン除去方法に関するものである。   The present invention relates to a method for removing phosphorus from wastewater, and more particularly to a method for removing phosphorus suitable for wastewater containing high concentrations of phosphate ions, ammonium ions, magnesium ions and calcium ions.

近年、閉鎖性水域で富栄養化の一因子であるリン酸イオンの排出が問題になって久しい。特に畜舎より排出される廃水には、高濃度のリン酸イオン、アンモニウムイオン、マグネシウムイオン及びカルシウムイオンが含まれており、このような廃水をそのまま従来の生物学的廃水処理装置に導入した場合、生物学的に除去されるリン量の限界より、高濃度のリン酸イオンが排出されることになり、水域の富栄養化の原因となる。   In recent years, the discharge of phosphate ions, a factor of eutrophication in closed waters, has long been a problem. In particular, wastewater discharged from barns contains high concentrations of phosphate ions, ammonium ions, magnesium ions, and calcium ions. When such wastewater is introduced directly into a conventional biological wastewater treatment device, Higher concentrations of phosphate ions are excreted than the limit of the amount of phosphorus that can be biologically removed, causing eutrophication of the water area.

そのような高濃度のリン酸イオン、アンモニウムイオン、マグネシウムイオン及びカルシウムイオンを含有する畜舎廃水のリン除去方法として、嫌気性処理装置あるいは好気性処理装置の前段で曝気することにより、廃水中に溶け込んでいた炭酸を追い出し、pHを上昇させることにより、薬剤を一切添加せずに廃水中のリン酸イオンを不溶化させて除去する方法及び装置(例えば、特許文献1参照)が知られている。しかしながら、ここに記載されている畜舎汚水の前処理装置としては、畜産汚水の供給口とリン除去水の排出手段と畜舎汚水中の溶解性リンを不溶化させるために底部〜中部付近に設けられた空気噴出手段と不溶化によって生成したリン含有粒子の取出口を備えているものなら何でもよく、1槽型、2槽型が例示されているのみである。また、この方法ではpHを上昇させ、十分な不溶化反応を進行させるために2時間以上の時間を必要とし、さらに、生成したリン不溶化物はスラリー状となると考えられるため、廃水中に多量に含まれている汚泥との分離が十分にできないという問題があった。   As a method for removing phosphorus from livestock wastewater containing such high concentrations of phosphate ion, ammonium ion, magnesium ion and calcium ion, it dissolves in wastewater by aeration at the front stage of anaerobic treatment equipment or aerobic treatment equipment. There is known a method and an apparatus (see, for example, Patent Document 1) in which phosphate ions in wastewater are insolubilized and removed without adding any chemicals by expelling the carbonic acid produced and raising the pH. However, as a pretreatment device for livestock sewage described herein, it was provided in the vicinity of the bottom to the center in order to insolubilize the soluble phosphorus in the livestock sewage and the feed port of livestock sewage, the discharge means of phosphorus removal water Any one may be used as long as it has an air ejection means and an outlet for phosphorus-containing particles produced by insolubilization, and only one tank type and two tank types are illustrated. Further, in this method, it takes 2 hours or more in order to raise the pH and allow a sufficient insolubilization reaction to proceed. Furthermore, since the produced phosphorus insolubilized product is considered to be in a slurry state, it is contained in a large amount in waste water. There was a problem that it could not be sufficiently separated from the sludge.

一方、従来からリンの除去技術として、アルミニウム塩や鉄塩等の金属塩とリンを反応させる凝集分離法、リン鉱石や骨炭等の種晶にヒドロキシアパタイトの形でリンを析出させる晶析法(接触脱リン法)、アンモニア性窒素の存在下でリン酸マグネシウムアンモニウム(MAP)の形で析出させる造粒脱リン法(MAP法)(例えば、特許文献2、3参照)、微生物のリン過剰摂取作用を利用した生物学的脱リン法、活性アルミナ等のリン吸着剤に吸着除去する方法などがある。   On the other hand, as a conventional phosphorus removal technique, a coagulation separation method in which a metal salt such as an aluminum salt or an iron salt reacts with phosphorus, and a crystallization method in which phosphorus is precipitated in the form of hydroxyapatite on a seed crystal such as phosphorus ore or bone charcoal ( Catalytic dephosphorization method), granulated dephosphorization method (MAP method) for precipitation in the form of magnesium ammonium phosphate (MAP) in the presence of ammoniacal nitrogen (see, for example, Patent Documents 2 and 3), excessive intake of microorganisms by phosphorus There are a biological dephosphorization method utilizing the action and a method of adsorbing and removing to a phosphorus adsorbent such as activated alumina.

しかしながら、これらのリン除去技術は何れも多量の薬剤を必要とし、さらに凝集分離法においては多量の凝集汚泥が発生することになるという問題があった。
特開2001−179267号公報 特許第3537495号公報 特開平8−24875号公報
However, all of these phosphorus removal techniques require a large amount of chemicals, and further, there is a problem that a large amount of agglomerated sludge is generated in the aggregating and separating method.
JP 2001-179267 A Japanese Patent No. 3537495 JP-A-8-24875

本発明は、高濃度のリン酸イオン、アンモニウムイオン、マグネシウムイオン及びカルシウムイオンを含有する廃水から薬剤を添加することなく、効率よく短時間でリン酸イオンを不溶化、除去し、さらに得られたものが肥効を持続する緩効性の化成肥料として有効利用できるリン除去方法を提供することを目的とするものである。   The present invention is obtained by insolubilizing and removing phosphate ions efficiently and in a short time without adding chemicals from wastewater containing high concentrations of phosphate ions, ammonium ions, magnesium ions and calcium ions. An object of the present invention is to provide a phosphorus removal method that can be effectively used as a slow-acting chemical fertilizer that maintains fertilization effect.

本発明者は、このような課題を解決するために鋭意検討の結果、特定の構造を有する脱リン装置を用いることにより、廃水中に含まれるリン酸イオンを短時間で効率よく除去でき、汚泥混入の少ないリン酸塩結晶の固体粒子として、回収できるという事実を見出し、本発明に到達した。   As a result of intensive studies to solve such problems, the present inventor can efficiently remove phosphate ions contained in wastewater in a short time by using a dephosphorization device having a specific structure, and sludge. The present inventors have found the fact that it can be recovered as solid particles of phosphate crystals with little contamination and have reached the present invention.

すなわち、本発明は、リン酸イオン、アンモニウムイオン、マグネシウムイオン及びカルシウムイオンを含む廃水を、以下の(a)〜(c)を満たす脱リン装置に供給し、曝気を行って脱炭酸することによりpHを上昇させ、廃水中のリン酸イオンをリン酸塩結晶として不溶化させ、固体粒子として回収することを特徴とするリン除去方法を要旨とするものである。   That is, the present invention supplies waste water containing phosphate ions, ammonium ions, magnesium ions, and calcium ions to a dephosphorizer that satisfies the following (a) to (c), and performs aeration to decarboxylate the waste water. The gist of the present invention is a phosphorus removal method characterized by raising pH, insolubilizing phosphate ions in waste water as phosphate crystals, and collecting them as solid particles.

(a)リン酸塩結晶を生成するための脱リン塔、この脱リン塔内部に廃水を注入するための廃水注入管、曝気用気体吹き込み管、リン酸塩結晶の固体粒子を引き抜くための固体粒子払い出し管及び処理水流出管を備えている。   (A) Dephosphorization tower for producing phosphate crystals, waste water injection pipe for injecting waste water into the dephosphorization tower, aeration gas blowing pipe, solid for drawing out solid particles of phosphate crystals A particle discharge pipe and a treated water outflow pipe are provided.

(b)該脱リン塔は脱リン塔直胴部と、その下部に位置する脱リン塔円錐部と、脱リン塔直胴部の上部に位置する、脱リン塔直胴部より広径の脱リン塔沈殿部とから構成される。   (B) The dephosphorization tower has a dephosphorization tower straight body part, a dephosphorization tower cone part located in the lower part thereof, and a wider diameter than the dephosphorization tower straight body part located in the upper part of the dephosphorization tower straight body part. It consists of a dephosphorization tower precipitation part.

(c)該脱リン塔沈殿部内には、該脱リン塔沈殿部の傾斜部分と脱リン塔直胴部との交点でスリットを形成するように、円筒体が設けられており、さらに、脱リン塔内部に第二の円筒体を、その上端が該スリットの位置より高くなり、かつその下端が脱リン塔直胴部と脱リン塔円錐部の継ぎ目の位置より低くなるように立設している。   (C) A cylindrical body is provided in the dephosphorization tower sedimentation section so as to form a slit at the intersection of the sloped portion of the dephosphorization tower sedimentation section and the straight body section of the dephosphorization tower. A second cylindrical body is erected inside the phosphorus tower so that its upper end is higher than the position of the slit and its lower end is lower than the joint of the dephosphorization tower straight body part and the dephosphorization tower cone part. ing.

本発明によれば、薬剤を添加することなく、高濃度のリン酸イオン、アンモニウムイオン、マグネシウムイオン及びカルシウムイオンを含有する廃水からリン酸イオンを短時間で効率よく除去することができ、さらに除去されたリン酸イオンはリン酸塩結晶の固体粒子として回収することができる。回収されたリン酸塩結晶の固体粒子は、高品質の緩効性化成肥料として有効利用することができる。   According to the present invention, phosphate ions can be efficiently removed from wastewater containing high concentrations of phosphate ions, ammonium ions, magnesium ions and calcium ions in a short time without adding any chemicals. The phosphate ions can be recovered as solid particles of phosphate crystals. The collected solid particles of phosphate crystals can be effectively used as a high-quality slow-release chemical fertilizer.

本発明において対象となる廃水は、リン酸イオン、アンモニウムイオン、マグネシウムイオン及びカルシウムイオンを含有するものであり、特に高濃度のリン酸イオンが含まれるものが好適である。また、カリウムイオンをさらに含有するものであっても本発明の対象とする廃水に含まれる。このような廃水の代表例としては、畜舎より排出される廃水、いわゆる畜舎汚水が挙げられる。畜舎汚水とは、豚、牛、鶏、羊等の家畜を飼育する事業所にて、家畜を飼育する上で発生する汚水を意味し、具体的には家畜の糞尿混合物、糞尿混合物をストレーナーなどの固液分離装置にて分離した分離液、畜舎などの洗浄水、及びそれらの混合物を意味する。   The target wastewater in the present invention contains phosphate ions, ammonium ions, magnesium ions and calcium ions, and those containing a high concentration of phosphate ions are particularly suitable. Moreover, even if it further contains a potassium ion, it is contained in the wastewater which is the object of the present invention. A typical example of such waste water is waste water discharged from a barn, so-called barn sewage. Livestock sewage means sewage generated when raising livestock at establishments that raise livestock such as pigs, cattle, chickens, and sheep. Specifically, livestock manure mixture, manure mixture is strainer, etc. Means a separated liquid separated by a solid-liquid separation apparatus, washing water for barns, and a mixture thereof.

次に、本発明で用いられる脱リン装置について説明する。図1にその一例の概略図を示した。脱リン装置は、リン酸塩結晶を生成するための脱リン塔、この脱リン塔内部に廃水を注入するための廃水注入管7、曝気用気体吹き込み管8、リン酸塩結晶の固体粒子を引き抜くための固体粒子払い出し管9及び処理水流出管10を備えているものである。曝気用気体吹き込み管8は、脱リン塔の底部の最下部に設けるのが好ましい。また、処理水流出管10は、通常脱リン塔沈殿部3上部の外側に設置された流出トラフ11を介して脱リン塔と接続される。   Next, the dephosphorization apparatus used in the present invention will be described. FIG. 1 shows a schematic diagram of an example thereof. The dephosphorization apparatus includes a dephosphorization tower for producing phosphate crystals, a wastewater injection pipe 7 for injecting wastewater into the dephosphorization tower, an aeration gas blowing pipe 8, and solid particles of phosphate crystals. A solid particle discharge pipe 9 and a treated water outflow pipe 10 for drawing are provided. The aeration gas blowing tube 8 is preferably provided at the bottom of the bottom of the dephosphorization tower. Further, the treated water outflow pipe 10 is connected to the dephosphorization tower via an outflow trough 11 that is usually installed outside the upper part of the dephosphorization tower sedimentation section 3.

脱リン塔は、脱リン塔直胴部1とその下部の脱リン塔円錐部2及び脱リン塔沈殿部3とから構成され、脱リン塔直胴部1の上部には、円筒体4が設けられている。また、脱リン塔沈殿部3の傾斜部分と脱リン塔直胴部1との交点と円筒体4との間には、廃水とリン酸マグネシウムアンモニウムの固体粒子が流通可能なスリット5が形成されている。   The dephosphorization tower is composed of a dephosphorization tower straight body part 1, a dephosphorization tower cone part 2 and a dephosphorization tower precipitation part 3 at the lower part thereof, and a cylindrical body 4 is disposed at the upper part of the dephosphorization tower straight body part 1. Is provided. In addition, a slit 5 is formed between the inclined portion of the dephosphorization tower precipitation portion 3 and the cylindrical body 4 between the intersection of the dephosphorization tower straight body portion 1 and the cylindrical body 4 through which solid particles of waste water and magnesium ammonium phosphate can flow. ing.

脱リン塔沈殿部3の傾斜部分及び脱リン塔円錐部2の傾斜角としては、特に限定されるものではないが、固体粒子のスムーズな滑りを考慮すると、傾斜角45度以上が好ましく、さらに好ましくは60度以上が好ましい。   The inclination angle of the dephosphorization tower precipitation section 3 and the inclination angle of the dephosphorization tower cone section 2 are not particularly limited, but in consideration of smooth sliding of solid particles, an inclination angle of 45 degrees or more is preferable. 60 degrees or more is preferable.

上記の脱リン塔の内部には第二の円筒体6が立設されている。第二の円筒体6を立設する位置として、第二の円筒体6の上端を、スリット5上端より上部の位置に設置する必要がある。スリット5上端より下部に第二の円筒体6を設置した場合には、第二の円筒体6を上昇してきた曝気用気体がスリット5より流出し、脱リン塔沈殿部3における固体粒子の重力沈降を阻害する。また、第二の円筒体6の下端の位置については、脱リン塔直胴部1とその下部に位置する円錐部2の継ぎ目より下部に位置する必要がある。第二の円筒体6の下端から脱リン塔直胴部1とその下部に位置する円錐部2の継ぎ目までの距離と、脱リン塔直胴部1とその下部に位置する円錐部2の継ぎ目から円錐部2の最下部までの距離の比率(第二の円筒体下端から円錐部継ぎ目までの距離/円錐部継ぎ目から円錐部最下部までの距離)は、通常は0〜0.4の範囲となるように第二の円筒体6の下端の位置を設置することが好ましく、さらに0.05〜0.3の範囲が好ましく、0.07〜0.25の範囲が最も好ましい。   A second cylindrical body 6 is erected inside the dephosphorization tower. As a position where the second cylindrical body 6 is erected, it is necessary to install the upper end of the second cylindrical body 6 at a position above the upper end of the slit 5. When the second cylindrical body 6 is installed below the upper end of the slit 5, the aeration gas that has risen up the second cylindrical body 6 flows out of the slit 5, and the gravity of the solid particles in the dephosphorization tower precipitation unit 3. Inhibits sedimentation. Further, the position of the lower end of the second cylindrical body 6 needs to be located below the joint between the dephosphorization tower straight body portion 1 and the conical portion 2 located therebelow. The distance from the lower end of the second cylindrical body 6 to the joint of the dephosphorization tower straight body part 1 and the conical part 2 located below the dephosphorization tower straight body part 1 and the joint of the dephosphorization tower straight body part 1 and the conical part 2 located therebelow The ratio of the distance from the bottom of the cone 2 to the bottom of the cone 2 (distance from the bottom of the second cylinder to the cone seam / distance from the cone seam to the bottom of the cone) is usually in the range of 0 to 0.4. It is preferable to set the position of the lower end of the second cylindrical body 6 so as to be, more preferably in the range of 0.05 to 0.3, and most preferably in the range of 0.07 to 0.25.

また、第二の円筒体6の直径と脱リン塔直胴部1の直径の比率(第二の円筒体直径/直胴部直径)としては、通常は0.2〜0.8の範囲となるように設計することが好ましく、さらに0.3〜0.7の範囲が好ましく、0.4〜0.6の範囲が最も好ましい。   Moreover, as a ratio of the diameter of the second cylindrical body 6 and the diameter of the dephosphorization tower straight body part 1 (second cylindrical body diameter / straight body diameter), it is usually in the range of 0.2 to 0.8. It is preferable to design so that it may become, the range of 0.3-0.7 is further preferable, and the range of 0.4-0.6 is the most preferable.

脱リン塔高さ(直胴部1の高さ+沈殿部3の高さ)と脱リン塔直胴部1の直径との比率(脱リン塔高さ/脱リン塔直胴部直径)としては、通常は2〜7の範囲となるように設計することが好ましく、さらに2.5〜6の範囲が好ましく、3〜5の範囲が最も好ましい。   Dephosphorization tower height (height of straight body 1 + height of sedimentation part 3) and diameter of dephosphorization tower straight body 1 (dephosphorization tower height / dephosphorization tower straight body diameter) Is usually preferably designed to be in the range of 2-7, more preferably in the range of 2.5-6, and most preferably in the range of 3-5.

本発明においては、リン酸イオン、アンモニウムイオン、マグネシウムイオン及びカルシウムイオンを含む廃水を、廃水注入管7によって第二の円筒体6の内部に供給する。廃水供給量としては、脱リン塔反応部容積(直胴部1により形成される部分の容積+円筒体4により形成される部分の容積)での水滞留時間を通常は5〜90分の範囲に設定するのが好ましく、さらに10〜60分の範囲が好ましく、15〜40分の範囲が最も好ましい。   In the present invention, waste water containing phosphate ions, ammonium ions, magnesium ions and calcium ions is supplied into the second cylindrical body 6 through the waste water injection pipe 7. As the amount of waste water supplied, the water residence time in the dephosphorization column reaction part volume (volume of the part formed by the straight body part 1 + volume of the part formed by the cylindrical body 4) is usually in the range of 5 to 90 minutes Is preferably set to 10 to 60 minutes, and most preferably 15 to 40 minutes.

脱リン塔沈殿部3の内側と円筒体4の外側で形成される固体粒子の重力沈降部分の水面積負荷は廃水注入量に対して通常は5〜60m/m/日の範囲、好ましくは6〜50m/m/日の範囲、さらに好ましくは8〜40m/m/日の範囲とする。 The water area load of the gravity sedimentation portion of the solid particles formed inside the dephosphorization tower precipitation portion 3 and outside the cylindrical body 4 is usually in the range of 5 to 60 m 3 / m 2 / day, preferably with respect to the waste water injection amount Is in the range of 6 to 50 m 3 / m 2 / day, more preferably in the range of 8 to 40 m 3 / m 2 / day.

同上重力沈降部分の廃水注入量に対する水滞留時間は特に限定されるものではないが通常は5〜120分の範囲、好ましくは10〜90分の範囲、さらに好ましくは15〜60分の範囲とする。   Although the water residence time with respect to the waste water injection amount of the gravity sedimentation part is not particularly limited, it is usually in the range of 5 to 120 minutes, preferably in the range of 10 to 90 minutes, and more preferably in the range of 15 to 60 minutes. .

本発明においては、曝気用気体吹き込み管8から脱リン塔内に曝気用気体を吹き込む。曝気用気体としては、炭酸ガスの含有量が少ない気体であれば特に限定されないが、通常は空気を使用する。曝気用気体吹き込み管8より供給される風量は、脱リン塔直胴部1の断面積に対して、通常は5〜100m/m/時の範囲、好ましくは8〜70m/m/時の範囲、さらに好ましくは10〜40m/m/時の範囲とする。 In the present invention, aeration gas is blown into the dephosphorization tower from the aeration gas blowing tube 8. The aeration gas is not particularly limited as long as it has a low carbon dioxide content, but air is usually used. Air volume supplied from the aeration gas inlet tube 8, to the dephosphorization column cross-sectional area of the straight body portion 1, generally 5~100m 3 / m 2 / range of time, preferably 8~70m 3 / m 2 / Hour, more preferably 10 to 40 m 3 / m 2 / hour.

曝気により廃水中の炭酸が追い出され、その結果pHが上昇する。pHの上昇により廃水中の成分が次の反応を起こし、リン酸イオンがリン酸塩結晶として不溶化する。   Aeration expels carbonic acid in the wastewater, resulting in an increase in pH. As the pH rises, the components in the wastewater undergo the following reaction, and phosphate ions are insolubilized as phosphate crystals.

PO 3−+NH +Mg2++6HO→MgNHPO・6HO↓ (1)
PO 3−+K+Mg2++6HO→MgKPO・6HO↓ (2)
6PO 3−+10Ca2++2OH→Ca10(OH)(PO↓ (3)
生成するリン酸塩結晶としては、(1)の反応により、MgNHPO・6HO(リン酸マグネシウムアンモニウム)、(2)の反応により、MgKPO・6HO(リン酸マグネシウムカリウム)、(3)の反応により、Ca10(OH)(PO(リン酸カルシウムヒドロキシアパタイト)が主なものであるが、これ以外にも、種々のリン酸マグネシウム化合物、リン酸カルシウム化合物が生成する。
PO 4 3− + NH 4 + + Mg 2+ + 6H 2 O → MgNH 4 PO 4 .6H 2 O ↓ (1)
PO 4 3− + K + + Mg 2+ + 6H 2 O → MgKPO 4 · 6H 2 O ↓ (2)
6PO 4 3− + 10Ca 2+ + 2OH → Ca 10 (OH) 2 (PO 4 ) 6 ↓ (3)
The resulting phosphate crystals include MgNH 4 PO 4 .6H 2 O (magnesium ammonium phosphate) by reaction (1), and MgKPO 4 .6H 2 O (magnesium potassium phosphate) by reaction (2). By the reaction of (3), Ca 10 (OH) 2 (PO 4 ) 6 (calcium phosphate hydroxyapatite) is the main one, but besides this, various magnesium phosphate compounds and calcium phosphate compounds are produced.

生成したリン酸塩結晶は曝気により脱リン塔内を流動することにより成長し固体粒子が形成される。固体粒子は脱リン塔円錐部2に堆積し、1週間〜1ヶ月の間隔で固体粒子払い出し管9に接続された弁を開けることによって、脱リン塔外部に排出する。   The produced phosphate crystals grow by flowing in the dephosphorization tower by aeration, and solid particles are formed. The solid particles are deposited on the dephosphorization tower cone 2 and discharged outside the dephosphorization tower by opening a valve connected to the solid particle discharge pipe 9 at intervals of 1 week to 1 month.

一方、リンが除去された処理水は、流出トラフ11に設置されたVノッチを越流し、処理水流出管10に流入し、脱リン塔外に排出される。   On the other hand, the treated water from which phosphorus has been removed overflows the V notch installed in the outflow trough 11, flows into the treated water outflow pipe 10, and is discharged out of the dephosphorization tower.

本発明においては、廃水中に含有される成分がpHの上昇によって反応を生じ、リン酸塩結晶が生成するため、通常は脱リン装置内に薬剤を添加する必要はないものであるが、必要に応じて、アルカリ剤、マグネシウムイオンなどを添加しても構わない。   In the present invention, since the components contained in the wastewater react with an increase in pH to produce phosphate crystals, it is usually not necessary to add chemicals to the dephosphorization apparatus. Depending on the case, an alkali agent, magnesium ion, or the like may be added.

以上のようにして、本発明の脱リン装置により得られたリン酸塩結晶の固体粒子は、緩効性化成肥料として有効利用される。   As described above, the solid particles of phosphate crystals obtained by the dephosphorization apparatus of the present invention are effectively used as a slow release chemical fertilizer.

次に、本発明を実施例によって具体的に説明する。
実施例1
脱リン塔直胴部の直径150mm、脱リン塔沈殿部の直径300mm、脱リン塔直胴部と沈殿部及び下部円錐部を合わせた全高570mm、全容積16リットルであり、脱リン塔内部には脱リン塔直胴部と沈殿部傾斜部分との交点にスリットを形成するように円筒体を設置し、さらに該スリットより上部に上端が位置するように直径60mmの第二の円筒体を設置した脱リン装置にpH7.4、リン酸態リン94mg/リットル、アンモニア性窒素690mg/リットル、マグネシウムイオン44mg/リットル、カルシウムイオン97mg/リットル含まれた豚舎廃水を400リットル/日の流量で連続的に供給し、脱リン塔底部より530リットル/時で連続的に空気で曝気した。
Next, the present invention will be specifically described with reference to examples.
Example 1
The diameter of the dephosphorization tower straight body is 150 mm, the diameter of the dephosphorization tower precipitation part is 300 mm, the total height of the dephosphorization tower straight body part, the precipitation part, and the lower cone part is 570 mm, and the total volume is 16 liters. Installed a cylindrical body so that a slit is formed at the intersection of the straight body part of the dephosphorization tower and the inclined part of the sedimentation part, and a second cylindrical body with a diameter of 60 mm is installed so that the upper end is located above the slit. The piggery wastewater containing pH 7.4, phosphate phosphorus 94 mg / liter, ammonia nitrogen 690 mg / liter, magnesium ion 44 mg / liter, calcium ion 97 mg / liter in the dephosphorization apparatus continuously at a flow rate of 400 liter / day And aerated with air continuously at 530 liter / hour from the bottom of the dephosphorization tower.

脱リン塔内部のpHは8.4にまで上昇し、脱リン塔沈殿部の上部より流出した処理水中のリン酸態リン濃度は6.5mg/リットルにまで低下し、脱リン塔円錐部には、沈降性の良い白色固体粒子が得られた。この白色固体粒子には、リン酸マグネシウムアンモニウム(MgNHPO・6HO)等のリン酸塩結晶が含まれることが判明した。
比較例1
実施例1で用いた廃水と同じものを水滞留時間120分、曝気強度30m/m/時で円筒形曝気槽中で曝気し、次にドルトムント式沈殿槽で水面積負荷8m/m/日で沈降分離した。沈殿槽上澄み水中のリン酸態リン濃度は実施例1と同様に6.5mg/リットル付近まで低下したものの、沈殿槽底部に沈降したものはスラリー状汚泥であり、白色固体粒子は得られなかった。
The pH inside the dephosphorization tower rises to 8.4, and the concentration of phosphoric phosphorus in the treated water flowing out from the upper part of the dephosphorization tower precipitation section drops to 6.5 mg / liter, Produced white solid particles with good sedimentation. The white solid particles were found to contain phosphate crystals such as magnesium ammonium phosphate (MgNH 4 PO 4 .6H 2 O).
Comparative Example 1
The same waste water used in Example 1 was aerated in a cylindrical aeration tank with a water residence time of 120 minutes and an aeration intensity of 30 m 3 / m 2 / hour, and then a water area load of 8 m 3 / m in a Dortmund type precipitation tank. The sedimentation was separated at 2 / day. The phosphate phosphorus concentration in the supernatant water of the sedimentation tank was lowered to around 6.5 mg / liter as in Example 1, but what settled at the bottom of the sedimentation tank was slurry sludge, and no white solid particles were obtained. .

本発明の脱リン装置を示す概略図である。It is the schematic which shows the dephosphorization apparatus of this invention.

符号の説明Explanation of symbols

1 脱リン塔直胴部
2 脱リン塔円錐部
3 脱リン塔沈殿部
4 円筒体
5 スリット
6 第2円筒体
7 廃水注入管
8 曝気用気体吹き込み管
9 固体粒子払い出し管
10 処理水流出管
11 流出トラフ
DESCRIPTION OF SYMBOLS 1 Dephosphorization tower straight body part 2 Dephosphorization tower cone part 3 Dephosphorization tower precipitation part 4 Cylindrical body 5 Slit 6 2nd cylindrical body 7 Wastewater injection pipe 8 Aeration gas blowing pipe 9 Solid particle discharge pipe
10 treated water outflow pipe
11 Outflow trough

Claims (1)

リン酸イオン、アンモニウムイオン、マグネシウムイオン及びカルシウムイオンを含む廃水を、以下の(a)〜(c)を満たす脱リン装置に供給し、曝気を行って脱炭酸することによりpHを上昇させ、廃水中のリン酸イオンをリン酸塩結晶として不溶化させ、固体粒子として回収することを特徴とするリン除去方法。
(a)リン酸塩結晶を生成するための脱リン塔、この脱リン塔内部に廃水を注入するための廃水注入管、曝気用気体吹き込み管、リン酸塩結晶の固体粒子を引き抜くための固体粒子払い出し管及び処理水流出管を備えている。
(b)該脱リン塔は脱リン塔直胴部と、その下部に位置する脱リン塔円錐部と、脱リン塔直胴部の上部に位置する、脱リン塔直胴部より広径の脱リン塔沈殿部とから構成される。
(c)該脱リン塔沈殿部内には、該脱リン塔沈殿部の傾斜部分と脱リン塔直胴部との交点でスリットを形成するように、円筒体が設けられており、さらに、脱リン塔内部に第二の円筒体を、その上端が該スリットの位置より高くなり、かつその下端が脱リン塔直胴部と脱リン塔円錐部の継ぎ目の位置より低くなるように立設している。
Waste water containing phosphate ion, ammonium ion, magnesium ion and calcium ion is supplied to a dephosphorization apparatus satisfying the following (a) to (c), and the pH is raised by aeration and decarboxylation, and the waste water A method for removing phosphorus, characterized in that phosphate ions therein are insolubilized as phosphate crystals and recovered as solid particles.
(A) Dephosphorization tower for producing phosphate crystals, waste water injection pipe for injecting waste water into the dephosphorization tower, aeration gas blowing pipe, solid for drawing out solid particles of phosphate crystals A particle discharge pipe and a treated water outflow pipe are provided.
(B) The dephosphorization tower has a dephosphorization tower straight body part, a dephosphorization tower cone part located in the lower part thereof, and a wider diameter than the dephosphorization tower straight body part located in the upper part of the dephosphorization tower straight body part. It consists of a dephosphorization tower precipitation part.
(C) A cylindrical body is provided in the dephosphorization tower sedimentation section so as to form a slit at the intersection of the sloped portion of the dephosphorization tower sedimentation section and the straight body section of the dephosphorization tower. A second cylindrical body is erected inside the phosphorus tower so that its upper end is higher than the position of the slit and its lower end is lower than the joint of the dephosphorization tower straight body part and the dephosphorization tower cone part. ing.
JP2005115763A 2005-04-13 2005-04-13 Phosphorus removal method Active JP5124907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005115763A JP5124907B2 (en) 2005-04-13 2005-04-13 Phosphorus removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005115763A JP5124907B2 (en) 2005-04-13 2005-04-13 Phosphorus removal method

Publications (2)

Publication Number Publication Date
JP2006289299A true JP2006289299A (en) 2006-10-26
JP5124907B2 JP5124907B2 (en) 2013-01-23

Family

ID=37410475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115763A Active JP5124907B2 (en) 2005-04-13 2005-04-13 Phosphorus removal method

Country Status (1)

Country Link
JP (1) JP5124907B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104378A (en) * 2012-11-26 2014-06-09 Air Water Inc Effluent treatment apparatus
CN107285443A (en) * 2017-07-28 2017-10-24 安徽农业大学 A kind of phosphorus reclaims crystallization reactor
CN108751529A (en) * 2018-08-23 2018-11-06 广东正诚环境科技有限公司 It is a kind of to recycle integrated apparatus for sludge-digestion liquid and the phosphorus of sludge filtrate
CN111977764A (en) * 2020-08-24 2020-11-24 国投信开水环境投资有限公司 Composite phosphorus removal agent for sewage treatment and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136091A (en) * 1995-11-14 1997-05-27 Isao Somiya Wastewater treatment apparatus
JPH10249359A (en) * 1997-03-11 1998-09-22 Kitakiyuushiyuushi Phosphorus removing and recovering device utilizing seawater
JP2001179267A (en) * 1999-12-27 2001-07-03 Natl Inst Of Animal Industry Method and apparatus for pretreating barn sewage
JP2004305991A (en) * 2003-04-10 2004-11-04 Unitika Ltd Granulation dephosphorization apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136091A (en) * 1995-11-14 1997-05-27 Isao Somiya Wastewater treatment apparatus
JPH10249359A (en) * 1997-03-11 1998-09-22 Kitakiyuushiyuushi Phosphorus removing and recovering device utilizing seawater
JP2001179267A (en) * 1999-12-27 2001-07-03 Natl Inst Of Animal Industry Method and apparatus for pretreating barn sewage
JP2004305991A (en) * 2003-04-10 2004-11-04 Unitika Ltd Granulation dephosphorization apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104378A (en) * 2012-11-26 2014-06-09 Air Water Inc Effluent treatment apparatus
CN107285443A (en) * 2017-07-28 2017-10-24 安徽农业大学 A kind of phosphorus reclaims crystallization reactor
CN108751529A (en) * 2018-08-23 2018-11-06 广东正诚环境科技有限公司 It is a kind of to recycle integrated apparatus for sludge-digestion liquid and the phosphorus of sludge filtrate
CN111977764A (en) * 2020-08-24 2020-11-24 国投信开水环境投资有限公司 Composite phosphorus removal agent for sewage treatment and preparation method thereof
CN111977764B (en) * 2020-08-24 2022-07-29 国投信开水环境投资有限公司 Composite phosphorus removal agent for sewage treatment and preparation method thereof

Also Published As

Publication number Publication date
JP5124907B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
Durrant et al. Review of the feasibility of recovering phosphate from wastewater for use as a raw material by the phosphate industry
CN100491276C (en) Combined treatment process for high-concentration ammonia nitrogen waste water
EP1713732B1 (en) Fluidized bed wastewater treatment
EP2683659B1 (en) Reactor for precipitating solutes from wastewater and associated methods
WO2017194997A1 (en) Methods and apparatus for nutrient and water recovery from waste streams
JP4216569B2 (en) Organic wastewater and sludge treatment method and treatment equipment
JP5124907B2 (en) Phosphorus removal method
JP3441042B2 (en) Phosphorus removal and recovery equipment using seawater
Kalyuzhnyi et al. Integrated mechanical, biological and physico-chemical treatment of liquid manure streams
JP5952132B2 (en) Phosphorus removal and collection apparatus and phosphorus removal and collection method
KR101279771B1 (en) Phosphorus recovery apparatus and method thereof
KR101278475B1 (en) Sludge Treatment Facility Combining Swirl Flow Type Inorganic Sludge Selective Discharge Device and Bioreactor
JP2576679B2 (en) Dephosphorization device
CN101633524A (en) Process and device for removing and recycling phosphorus in waste water of livestock breeding
JP2007244994A (en) Treatment method of digestion sludge and treatment equipment
JP4439040B2 (en) Wastewater treatment equipment
JP2578136B2 (en) Wastewater treatment method and apparatus
KR101624257B1 (en) Phosphorus removal, recovery apparatus and method thereof
JP2000334474A (en) Method for removing phosphorus from waste water
JP2004321992A (en) Phosphorus resource recovery apparatus
JP2008183562A (en) Dephosphorization apparatus
KR200413348Y1 (en) Removal reactor of Ammonia , phosphorous and solid in wastewater
JP6407052B2 (en) Phosphorus recovery apparatus and phosphorus recovery method
JPH0824875A (en) Granulation dephosphorization device
JP2006122861A (en) Apparatus for treating organic waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120626

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5124907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250