JP4438402B2 - Dephosphorization method - Google Patents

Dephosphorization method Download PDF

Info

Publication number
JP4438402B2
JP4438402B2 JP2003425073A JP2003425073A JP4438402B2 JP 4438402 B2 JP4438402 B2 JP 4438402B2 JP 2003425073 A JP2003425073 A JP 2003425073A JP 2003425073 A JP2003425073 A JP 2003425073A JP 4438402 B2 JP4438402 B2 JP 4438402B2
Authority
JP
Japan
Prior art keywords
reaction tank
water
fluidized bed
raw water
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003425073A
Other languages
Japanese (ja)
Other versions
JP2005177679A (en
Inventor
昭男 大山
一郎 住田
隆滋 砂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2003425073A priority Critical patent/JP4438402B2/en
Publication of JP2005177679A publication Critical patent/JP2005177679A/en
Application granted granted Critical
Publication of JP4438402B2 publication Critical patent/JP4438402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は脱リン方法に係り、特に、下水、農業集落排水等の生活排水処理水等のリン含有排水中のリンを、流動床式晶析脱リン反応によりリン酸カルシウムとして効率的に除去する脱リン方法に関する。   The present invention relates to a dephosphorization method, and in particular, dephosphorization that efficiently removes phosphorus in phosphorus-containing wastewater such as sewage and domestic wastewater treated water such as agricultural settlement wastewater as calcium phosphate by fluidized bed crystallization dephosphorization reaction. Regarding the method.

下水、農業集落排水等の生活排水処理水等のリン含有排水からリンを除去する方法としては、生物処理法、凝集沈殿法、吸着法、晶析法等が知られているが、最終生成物のリサイクル性が高く、生物処理法や凝集沈殿法と比較して、系外に排出されるリン含有物の容積が最も小さく、しかも含液分(付着液分)の少ない晶析による脱リン方法が注目されている。晶析法は、原水にカルシウム化合物を添加して種晶の固定床又は流動床に通水することにより、原水中のリンを例えば次の反応によりリン酸カルシウムの結晶として除去する方法である(特公平2−33435号公報)。
5Ca2++3HPO 2-+4OH→Ca(OH)(PO+3H
Biological treatment methods, coagulation-precipitation methods, adsorption methods, crystallization methods, etc. are known as methods for removing phosphorus from wastewater-containing wastewater such as sewage and domestic wastewater treatment water, but the final product Dephosphorization method by crystallization, which has a high recyclability, and has the smallest volume of phosphorus-containing material discharged out of the system and less liquid content (adhered liquid content) compared to biological treatment methods and coagulation sedimentation methods Is attracting attention. The crystallization method is a method of removing phosphorus in the raw water as, for example, calcium phosphate crystals by the following reaction by adding a calcium compound to the raw water and passing it through a fixed bed or a fluidized bed of seed crystals. 2-333435).
5Ca 2+ + 3HPO 4 2− + 4OH → Ca 5 (OH) (PO 4 ) 3 + 3H 2 O

このような晶析法に用いられる種晶としては、従来、骨炭やリン鉱石を主成分としたものが用いられていたが、骨炭やリン鉱石は粒径に大きなばらつきがあるため、結晶種として用いる際には、予め粒径をそろえ、また、表面を洗浄する必要があり、その分製造工程を多く必要とし、製造コストが増大するという問題がある。また、リン鉱石は、産出地により化学組成や物理特性が異なるため安定した脱リン効果を得られず、しかも、国内では殆ど産出されず、将来的に枯渇するおそれがある。一方、骨炭はそれ自体コストが高く、種晶の製造コストが高くなるという問題がある。   As seed crystals used in such a crystallization method, those mainly composed of bone charcoal and phosphorus ore have been used, but since bone charcoal and phosphorus ore vary greatly in particle size, When used, it is necessary to prepare the particle diameters in advance and to clean the surface, which requires a large number of manufacturing steps and increases the manufacturing cost. In addition, phosphate ore cannot obtain a stable dephosphorization effect due to differences in chemical composition and physical properties depending on the place of origin, and is hardly produced in Japan and may be depleted in the future. On the other hand, bone charcoal itself has a high cost, and there is a problem that the production cost of seed crystals becomes high.

このような問題がなく、粒径が均一で容易かつ安価に入手可能で、脱リン性能の安定した種晶として、本出願人は先に炭酸カルシウム表面にリン酸カルシウムを析出させて得た種晶を提案した(特開2003−181469号公報)。この種晶であれば、
・流通段階である程度粒径が揃えられた炭酸カルシウムの表面にリン酸カルシウムを析出させるため、粒径をそろえることができる。
・炭酸カルシウムは、それ自体安価で、かつ、将来的にも国内で容易に入手できるため、種晶のコストを低減できる(例えば、リン鉱石等の従来の種晶の1/10以下にコストを低減することができる。)。
・化学組成や物理特性にばらつきが生じることもなく、安定した脱リン効果を得ることができる。
・脱リンに用いた種晶は、リン系肥料として有効利用することができる。
といった優れた効果を得ることができ、脱リン効率の向上、処理コストの低減に有効である。
特公平2−33435号公報 特開2003−181469号公報
As a seed crystal having no such problem, having a uniform particle size, readily available at low cost, and having stable dephosphorization performance, the present applicant previously obtained a seed crystal obtained by precipitating calcium phosphate on the surface of calcium carbonate. Proposed (Japanese Patent Laid-Open No. 2003-181469). If this seed crystal,
-Since calcium phosphate is precipitated on the surface of calcium carbonate having a certain particle size at the distribution stage, the particle size can be made uniform.
Calcium carbonate is inexpensive in itself and can be easily obtained in the future in the future, so that the cost of seed crystals can be reduced (for example, the cost can be reduced to 1/10 or less of conventional seed crystals such as phosphate ore). Can be reduced).
-A stable dephosphorization effect can be obtained without causing variations in chemical composition and physical properties.
-The seed crystals used for dephosphorization can be used effectively as phosphorus fertilizers.
It is effective for improving the dephosphorization efficiency and reducing the processing cost.
Japanese Patent Publication No. 2-3334 JP 2003-181469 A

前述の如く、晶析脱リン法には、種晶の固定床を用いる固定床式晶析法と、種晶の流動床を用いる流動床式晶析法とがあるが、このうち、固定床式晶析法では処理能力が低く、通水SVとしてSV2h-1以下での処理しかできない上に、浮遊物で固定床が閉塞するため定期的に固定床の逆洗が必要であり、逆洗排水の処理の問題がある。これに対して、流動床式晶析法ではこのような問題はないが、反応槽の小型化のために処理速度をより一層高めること、また、放流規制に十分に対応できるように、リン除去率をより一層向上させることが望まれている。 As described above, the crystallization dephosphorization method includes a fixed bed type crystallization method using a fixed bed of seed crystals and a fluidized bed type crystallization method using a fluidized bed of seed crystals. In the method of crystal crystallization, the treatment capacity is low, and it can only be treated with SV2h -1 or less as a water flow SV. Moreover, since the fixed bed is clogged with floating substances, it is necessary to periodically backwash the fixed bed. There is a problem of wastewater treatment. In contrast, the fluidized bed crystallization method does not have such a problem, but removes phosphorus so that the processing speed can be further increased in order to reduce the size of the reaction tank and that it can fully meet the discharge regulation. It is desired to further improve the rate.

従って、本発明は、リン含有排水中のリンを流動床式晶析法で除去する脱リン方法であって、高い処理速度でリンを低濃度にまで除去することが可能な脱リン方法を提供することを目的とする。   Accordingly, the present invention provides a dephosphorization method for removing phosphorus in phosphorus-containing wastewater by a fluidized bed crystallization method, and capable of removing phosphorus to a low concentration at a high treatment rate. The purpose is to do.

本発明の脱リン方法は、炭酸カルシウムの表面にリン酸カルシウムを析出させてなる種晶を充填した反応槽に、リン酸を含む原水を上向流で通水して、該反応槽内に該種晶の流動床を形成し、カルシウム化合物及び/又はアルカリ剤の添加により該反応槽内で原水中のリンをリン酸カルシウム結晶として除去する脱リン方法において、該反応槽に、両端が開口した筒を、該筒の軸方向を上下方向とし、かつ該筒の少なくとも下部が前記流動床内に位置するように設けると共に、該筒内に下向流を形成させるための下降流形成手段を設け、前記種晶の粒径を0.2〜0.5mmの範囲とし、該反応槽内の原水の通水LVを20〜25m/h、該反応槽内の原水の通水SVを5〜10h-1、該反応槽内への流入水のリン濃度(T−P)を6mg/L以下とすることにより、リン濃度(T−P)1mg/L以下の処理水を得ることを特徴とする。 In the dephosphorization method of the present invention, raw water containing phosphoric acid is passed in an upward flow through a reaction tank filled with seed crystals formed by precipitating calcium phosphate on the surface of calcium carbonate, and the seed is introduced into the reaction tank. In the dephosphorization method of forming a fluidized bed of crystals and removing phosphorus in raw water as calcium phosphate crystals in the reaction tank by adding a calcium compound and / or an alkali agent, a cylinder having both ends opened in the reaction tank, The cylinder is provided so that the axial direction of the cylinder is the vertical direction, and at least the lower part of the cylinder is positioned in the fluidized bed, and downflow forming means is provided for forming a downward flow in the cylinder. The crystal grain size is in the range of 0.2 to 0.5 mm, the raw water flow LV in the reaction tank is 20 to 25 m / h, the raw water flow SV in the reaction tank is 5 to 10 h −1 , The phosphorus concentration (TP) of the inflow water into the reaction tank was 6 mg / By setting it to L or less, treated water having a phosphorus concentration (TP) of 1 mg / L or less is obtained.

本発明によれば、原水をLV20〜25m/hという高速で処理することが可能であるため、従来法に比べて反応槽を格段に小型化することができ、また、処理水量に対する反応槽の数を低減することができる。例えば、従来の流動床式晶析法の原水LVは一般に15m/h程度であるため、処理水量1800m/dに1基の反応槽を必要としていたが、本発明により原水LVを25m/hに上げることにより、処理水量3000m/dに対して1基の反応槽で足りるようになる。 According to the present invention, since raw water can be processed at a high speed of LV 20 to 25 m / h, the reaction vessel can be remarkably reduced in size compared to the conventional method, and the reaction vessel can be used with respect to the amount of treated water. The number can be reduced. For example, since the raw water LV of the conventional fluidized bed crystallization method is generally about 15 m / h, one reaction tank is required for the amount of treated water of 1800 m 3 / d. By increasing the pressure to 1, the reaction tank is sufficient for the treated water amount of 3000 m 3 / d.

流動床式晶析法において、このように原水LVを上げると、種晶が反応槽から流出してしまうおそれがあるが、本発明では種晶として、真比重2.7程度の炭酸カルシウムを母体とするものを用い、かつ粒径を0.2〜0.5mmと若干大きくすることにより、流動床の展開率を抑え、高LVでの種晶の流出を防止する。   In the fluidized bed crystallization method, when the raw water LV is raised in this way, the seed crystal may flow out of the reaction vessel. In the present invention, calcium carbonate having a true specific gravity of about 2.7 is used as the parent crystal. And by slightly increasing the particle size to 0.2 to 0.5 mm, the expansion rate of the fluidized bed is suppressed and the seed crystals are prevented from flowing out at a high LV.

また、種晶の粒径を大きくすると種晶の比表面積が小さくなり、原水との接触効率が低下して脱リン反応速度が低下する。このため、本発明では、反応槽内に塔内循環用の筒を設けることにより、原水SVを5〜10h-1と比較的低くし、晶析反応速度の向上と均一化を図る。 Further, when the seed crystal particle size is increased, the specific surface area of the seed crystal is decreased, the contact efficiency with the raw water is decreased, and the dephosphorization reaction rate is decreased. For this reason, in this invention, by providing the cylinder for tower | column circulation in a reaction tank, raw water SV is made comparatively low with 5-10h < -1 >, and the crystallization reaction rate is improved and made uniform.

そして、本発明では、このように種晶の粒径と原水LV及びSVを制御すると共に、反応槽への流入水のT−Pを3〜5mg/Lに制御することにより、T−P1mg/L以下の高水質処理水を得る。   And in this invention, while controlling the particle diameter of seed crystals and raw water LV and SV in this way, TP of the inflow water to a reaction tank is controlled to 3-5 mg / L, so that TP 1 mg / L L or less high quality treated water is obtained.

なお、本発明では、反応槽内循環用に水中撹拌機等の下向流形成手段を設けるが、前述の如く、処理速度の高速化で反応槽の小型化を図ることができるため、この下向流形成手段についても小型化が可能である。   In the present invention, a downward flow forming means such as an underwater stirrer is provided for circulation in the reaction tank. As described above, the reaction tank can be downsized by increasing the processing speed. The counterflow forming means can also be reduced in size.

なお、流動床式晶析法による脱リン処理では、種晶を展開させて流動床を形成するために、処理水の一部を反応槽に上向流で循環させることが行われるが、本発明においてもこの処理水の循環を行っても良い。ただし、原水のみで十分な流動床を形成することができる場合には、処理水の循環は必ずしも必要とされない。   In the dephosphorization process using a fluidized bed crystallization method, in order to develop seed crystals and form a fluidized bed, a part of the treated water is circulated in the reaction tank in an upward flow. In the invention, the treated water may be circulated. However, in the case where a sufficient fluidized bed can be formed with only raw water, circulation of treated water is not necessarily required.

本発明において、種晶の充填量は反応槽容積に対して、20〜40体積%であり、流動床の種晶展開率(種晶の充填高さに対する流動床の高さの割合(%))は200〜220%であることが好ましい。   In the present invention, the seed crystal filling amount is 20 to 40% by volume with respect to the reaction vessel volume, and the fluidized bed seed crystal development rate (ratio of fluid bed height to seed crystal filling height (%) ) Is preferably 200 to 220%.

また、反応槽にカルシウム化合物及び/又はアルカリ剤を注入する場合にあっては、反応槽の複数箇所でカルシウム化合物及び/又はアルカリ剤を注入することにより、晶析反応速度の向上及び均一化を図ることが好ましい。   In addition, when the calcium compound and / or alkali agent is injected into the reaction vessel, the crystallization reaction rate is improved and uniformized by injecting the calcium compound and / or alkali agent at a plurality of locations in the reaction vessel. It is preferable to plan.

本発明によれば、反応槽内で均一かつ効率的な晶析反応を行って、リン含有排水中のリンを高い処理速度で、低濃度にまで除去することができる。   According to the present invention, a uniform and efficient crystallization reaction can be performed in a reaction tank, and phosphorus in phosphorus-containing waste water can be removed at a high treatment rate to a low concentration.

以下に図面を参照して本発明の脱リン方法の実施の形態を詳細に説明する。   Hereinafter, embodiments of the dephosphorization method of the present invention will be described in detail with reference to the drawings.

図1は本発明の脱リン方法の実施の形態を示す脱リン装置の系統図である。   FIG. 1 is a system diagram of a dephosphorization apparatus showing an embodiment of the dephosphorization method of the present invention.

なお、以下においてはカルシウム化合物として水酸化カルシウム(Ca(OH))を用いた場合を例示するが、本発明で用いるカルシウム化合物はCa(OH)に限定されるものではなく、塩化カルシウム等の他のカルシウム化合物を用いることもできる。ただし、アルカリ剤としての機能を兼用できることから、カルシウム化合物としてはCa(OH)を用いることが望ましい。 In the following, the case where calcium hydroxide (Ca (OH) 2 ) is used as the calcium compound is exemplified, but the calcium compound used in the present invention is not limited to Ca (OH) 2 , such as calcium chloride. Other calcium compounds can also be used. However, it is desirable to use Ca (OH) 2 as the calcium compound because it can also function as an alkaline agent.

図1の方法では、配管11から原水槽1に導入される下水2次処理水等の原水(リン含有排水)を、原水ポンプ1Pにより配管12,13を経て、配管16からの循環水と共に、反応槽2に槽下部から導入する。   In the method of FIG. 1, raw water (phosphorus-containing wastewater) such as sewage secondary treated water introduced from the pipe 11 to the raw water tank 1 is passed through the pipes 12 and 13 by the raw water pump 1P, along with the circulating water from the pipe 16. It introduce | transduces into the reaction tank 2 from the tank lower part.

この反応槽2は槽下部に導入口を有し、槽上部に処理水の排出口を有し、槽内に種晶の流動床Fが形成されたものである。   This reaction tank 2 has an inlet at the lower part of the tank, an outlet for treated water at the upper part of the tank, and a seed crystal fluidized bed F is formed in the tank.

反応槽2の下部には、この流動床Fに対し、配管13から導入された液を均一に流入させるためのストレーナ8が設けられており、また、反応槽2内には、両端が開口した筒(以下「ドラフトチューブ」と称す。)9が、その軸方向を上下方向とし、かつドラフトチューブ9の少なくとも下部が流動床F内に位置するように設けられている。そして、このドラフトチューブ9内の上部にドラフトチューブ9内に下向流を形成させるための下降流形成手段としての水中撹拌機10が設けられている。   A strainer 8 is provided in the lower part of the reaction tank 2 to allow the liquid introduced from the pipe 13 to uniformly flow into the fluidized bed F. Both ends of the reaction tank 2 are open. A cylinder (hereinafter referred to as “draft tube”) 9 is provided such that its axial direction is the vertical direction, and at least the lower part of the draft tube 9 is located in the fluidized bed F. An underwater stirrer 10 as a downflow forming means for forming a downward flow in the draft tube 9 is provided in the upper portion of the draft tube 9.

また、反応槽2の流動床F内には、Ca(OH)貯槽3からのCa(OH)をポンプ3Pを有する配管14を経て供給する配管14A,14Bが挿入されている。この配管14A,14Bには、複数の供給口を設け、Ca(OH)を流動床F内の複数箇所に均一に供給することができるように構成することが好ましい。なお、このCa(OH)貯槽3のCa(OH)は、取り扱い上、消石灰粉を水に溶解させた5〜10重量%濃度程度の水溶液を用いるのが好ましい。 Further, the reaction vessel 2 in the fluidized bed F, Ca (OH) pipe 14A supplies via a pipe 14 having a pump 3P of Ca (OH) 2 from 2 reservoir 3, 14B are inserted. The pipes 14A and 14B are preferably provided with a plurality of supply ports so that Ca (OH) 2 can be uniformly supplied to a plurality of locations in the fluidized bed F. Incidentally, Ca (OH) 2 in the Ca (OH) 2 storage tank 3, handling, it is preferable to use an aqueous solution of about 5 to 10 wt% concentration of the slaked lime powder was dissolved in water.

このような反応槽2の下部に配管13より導入された液は、反応槽2内を上向流で流れる間に流動床F内で晶析反応を起こし、液中のリンがリン酸カルシウムとして除去される。このようにして晶析脱リン処理され、反応槽2の上部に達した水の一部は水中撹拌機10によりドラフトチューブ9内を下向流で流れ、再び流動床F内を上昇して槽内を循環し、残部は配管15より抜き出される。抜き出された処理水の一部は、循環水槽4を経て循環ポンプ4Pを有する配管16及び13より反応槽2の下部に循環され、残部は配管17より中和槽5に送給される。   The liquid introduced into the lower part of the reaction tank 2 through the pipe 13 causes a crystallization reaction in the fluidized bed F while flowing upward in the reaction tank 2, and phosphorus in the liquid is removed as calcium phosphate. The In this way, part of the water that has been crystallized and dephosphorized and reached the upper part of the reaction tank 2 flows downward in the draft tube 9 by the underwater stirrer 10 and then rises again in the fluidized bed F to reach the tank. It circulates inside, and the remainder is extracted from the pipe 15. Part of the extracted treated water is circulated through the circulating water tank 4 to the lower part of the reaction tank 2 through the pipes 16 and 13 having the circulation pump 4P, and the remainder is fed to the neutralization tank 5 through the pipe 17.

この反応槽2内での晶析反応は、pH9〜11、特にpH9.5〜10.5で行うのが好ましく、反応槽2内のpHがこの範囲となるようにCa(OH)供給配管14A,14Bの流量が反応槽2に設けられたpH計(図示せず)に連動して制御される。 The crystallization reaction in the reaction tank 2 is preferably performed at pH 9 to 11, particularly pH 9.5 to 10.5, and the Ca (OH) 2 supply pipe so that the pH in the reaction tank 2 falls within this range. The flow rates of 14A and 14B are controlled in conjunction with a pH meter (not shown) provided in the reaction tank 2.

また、カルシウムイオン量は、除去するリンに対して3〜6重量倍程度であることが好ましく、従って、上記pH範囲内において、このようなカルシウムイオン量となるようにCa(OH)添加量を制御する。 The amount of calcium ions is preferably about 3 to 6 times the weight of phosphorus to be removed. Therefore, the amount of Ca (OH) 2 added so that the amount of calcium ions is within the above pH range. To control.

中和槽5には、HSO貯槽6のHSO水溶液がポンプ6Pを有する配管18より添加され、循環水槽4からの流入水がpH中性に中和された後、処理水槽7を経て配管19より系外へ排出される。なお、中和用の酸はHSOに何ら限定されず、HCl等の他の鉱酸であっても良い。 To the neutralization tank 5, the H 2 SO 4 aqueous solution of the H 2 SO 4 storage tank 6 is added from a pipe 18 having a pump 6P, and the inflow water from the circulation water tank 4 is neutralized to pH neutral, and then the treated water tank. 7 and discharged from the pipe 19 to the outside of the system. The neutralizing acid is not limited to H 2 SO 4 , and may be other mineral acids such as HCl.

本発明において、反応槽2内に流動床Fを形成する種晶としては、特開2003−181469号公報に記載されるような方法で、炭酸カルシウムの表面にリン酸カルシウムを析出させたものを用いる。この種晶の粒径は0.2〜0.5mmの範囲とする。種晶の粒径が0.2mm未満では、高LVの通水により種晶が反応槽2から流出するおそれがあり、0.5mmを超えると、比表面積が小さくなり過ぎて反応効率が低下すると共に、反応槽内の上向流で種晶を展開させて、良好な流動床Fを形成し得なくなる。   In the present invention, as a seed crystal for forming the fluidized bed F in the reaction tank 2, a crystal in which calcium phosphate is precipitated on the surface of calcium carbonate by a method as described in JP-A No. 2003-181469 is used. The seed crystal has a particle size in the range of 0.2 to 0.5 mm. If the seed crystal particle size is less than 0.2 mm, the seed crystal may flow out of the reaction vessel 2 due to high LV water flow, and if it exceeds 0.5 mm, the specific surface area becomes too small and the reaction efficiency decreases. At the same time, the seed crystal is developed by the upward flow in the reaction tank, and a good fluidized bed F cannot be formed.

従って、本発明では、粒径が0.2〜0.5mmの範囲で粒度のそろった炭酸カルシウムの表面に2〜3mg−P/g−CaCO程度にリン酸カルシウムを析出させた種晶を用い、適宜種晶の補充及び引き抜きを行って、反応槽内の種晶の粒径が0.2〜0.5mmの範囲となるように処理を行う。 Therefore, in the present invention, a seed crystal in which calcium phosphate is precipitated to about 2-3 mg-P / g-CaCO 3 on the surface of calcium carbonate having a uniform particle size in the range of 0.2 to 0.5 mm is used. The seed crystal is appropriately replenished and pulled out, and the seed crystal in the reaction vessel is treated so that the particle size is in the range of 0.2 to 0.5 mm.

また、種晶の充填率は、反応槽内の原水LVによっても異なるが、反応槽容積に対して25〜40体積%とし、流動床Fの種晶展開率が200〜220%(即ち、図1において、種晶の充填高さHに対して流動床Fの高さHがH=(2〜2.2)×H)となるように処理を行うことが好ましい。種晶の充填率が上記範囲よりも少ないと、反応槽の脱リン性能が低下し、多いと十分に種晶を展開させて良好な流動床を形成し得ず、また、反応槽2からの種晶の流出のおそれもある。また、流動床の種晶の展開率が上記範囲よりも低いと、液と種晶との接触効率に優れた流動床を形成し得ず、高いと反応効率が低下し、また、反応槽2からの種晶の流出のおそれがあり、好ましくない。 Further, the filling rate of the seed crystals varies depending on the raw water LV in the reaction tank, but it is 25 to 40% by volume with respect to the reaction tank volume, and the seed crystal development rate of the fluidized bed F is 200 to 220% (ie, FIG. in 1, it is preferable to perform processing so that the height H 2 of the fluidized bed F against seed filling height H 1 is H = (2~2.2) × H 1 ). When the filling rate of the seed crystals is less than the above range, the dephosphorization performance of the reaction tank is lowered. When the filling rate is large, the seed crystals cannot be sufficiently developed to form a good fluidized bed. There is also a risk of seed crystals flowing out. Further, if the development rate of the seed bed in the fluidized bed is lower than the above range, a fluidized bed excellent in contact efficiency between the liquid and the seed crystal cannot be formed, and if it is high, the reaction efficiency is lowered. There is a possibility that seed crystals may flow out of the base.

また、本発明においては、反応槽2内の原水の通水LV及びSVをそれぞれ
LV=20〜25m/h
SV=5〜10h-1
とする。
Further, in the present invention, the flow of raw water LV and SV in the reaction tank 2 is LV = 20 to 25 m / h, respectively.
SV = 5-10h -1
And

原水の通水LVが20m/h未満であると、粒径の大きい種晶を十分に展開させることができず、良好な流動床を形成し得ない。流入水のLVが25m/hを超えると粒径の小さい種晶展開率220%、更には250%を超えて展開し、反応槽2から流出してしまう。従って、原水の通水LVは20〜25m/hとする。   When the flow rate LV of raw water is less than 20 m / h, seed crystals having a large particle size cannot be sufficiently developed, and a good fluidized bed cannot be formed. When the LV of the influent water exceeds 25 m / h, the seed crystal develops with a small grain size of 220%, further exceeds 250%, and flows out of the reaction tank 2. Therefore, the flow rate LV of the raw water is 20 to 25 m / h.

また、原水の通水SVが5h-1未満では、必要とされる種晶充填量が多く不経済である。原水の通水SVが10h-1を超えると処理水T−P濃度が不安定になり、特に、水温が10℃以下の場合脱リン性能が低下し、処理水T−P濃度が1mg/Lを超えるようになるため好ましくない。従って、原水の通水SVは水温にもよるが、水温が10℃以下の場合にはSVを低く、例えば5〜7h-1程度とすることが好ましい。 In addition, if the raw water flow SV is less than 5 h −1 , the required seed crystal filling amount is large and uneconomical. When the raw water passing SV exceeds 10 h −1 , the treated water TP concentration becomes unstable. In particular, when the water temperature is 10 ° C. or lower, the dephosphorization performance is lowered, and the treated water TP concentration is 1 mg / L. It is not preferable because it exceeds the range. Accordingly, the flow rate SV of the raw water depends on the water temperature, but when the water temperature is 10 ° C. or lower, the SV is preferably low, for example, about 5 to 7 h −1 .

また、反応槽2の流入水(即ち、配管13から反応槽2に流入する水(図1において、原水循環水との合計))のT−P濃度が6mg/Lを超えると、本発明の通水条件では、T−P濃度1mg/L以下の処理水を得ることが困難となる。従って、流入水のT−P濃度は6mg/L以下の範囲とする。   In addition, when the TP concentration of the inflowing water in the reaction tank 2 (that is, the water flowing into the reaction tank 2 from the pipe 13 (total with the raw water circulating water in FIG. 1)) exceeds 6 mg / L, the present invention Under the water flow conditions, it becomes difficult to obtain treated water having a TP concentration of 1 mg / L or less. Therefore, the TP concentration of the influent water is set to a range of 6 mg / L or less.

この反応槽2への流入水のT−P濃度は、循環水量を調整することにより調整することができるが、本発明において、処理水の循環は必ずしも必要とされず、原水の通水のみで、反応槽2内に種晶を十分に展開させて流動床Fを形成することができるのであれば、処理水の循環は行わなくても良い。通常の場合、処理水の30〜50%程度を循環することにより、原水と循環水とを合計した反応槽2の流入水の通水LVを20〜25m/h、SVを5〜10h−1とすることが処理水T−P濃度を1mg/L以下にするために必要である。 The TP concentration of the inflow water to the reaction tank 2 can be adjusted by adjusting the amount of circulating water. However, in the present invention, the circulation of the treated water is not necessarily required, and only the raw water is passed. If the seed bed can be sufficiently developed in the reaction tank 2 to form the fluidized bed F, the treatment water need not be circulated. Usually, about 30 to 50% of the treated water is circulated, so that the inflow water LV of the reaction tank 2 summed with the raw water and the circulating water is 20 to 25 m / h, and the SV is 5 to 10 h −1. It is necessary to make the treated water TP concentration 1 mg / L or less.

なお、本発明において、反応槽内の水温は9℃以上であれば特に制限はない。   In the present invention, the water temperature in the reaction vessel is not particularly limited as long as it is 9 ° C. or higher.

本発明では、上記処理条件を組み合せて採用することにより、リン濃度数mg/L程度のリン含有排水を効率的に処理して迅速にT−P濃度1mg/L以下の低濃度にまでリンを除去することができる。そして、リンを、肥料として有効利用可能な、粒径のばらつきの少ないリン酸カルシウム結晶として、高い回収率で回収することができる。   In the present invention, by adopting a combination of the above treatment conditions, phosphorus-containing wastewater having a phosphorus concentration of several mg / L can be efficiently treated to quickly reduce phosphorus to a low concentration of TP concentration of 1 mg / L or less. Can be removed. Then, phosphorus can be recovered at a high recovery rate as calcium phosphate crystals with little variation in particle size, which can be effectively used as a fertilizer.

なお、図1に示す方法は、本発明の実施の形態の一例であって、本発明はその要旨を超えない限り、何ら図示の方法に限定されるものではない。   The method shown in FIG. 1 is an example of an embodiment of the present invention, and the present invention is not limited to the illustrated method as long as the gist of the present invention is not exceeded.

例えば、原水は、反応槽に導入する前にpH調整槽でCa(OH)を添加してpH調整した後反応槽に導入しても良い。また、前述の如く、処理水の循環は必ずしも必要とされず、そのまま中和後、系外に排出しても良い。 For example, the raw water may be introduced into the reaction tank after the pH is adjusted by adding Ca (OH) 2 in the pH adjustment tank before being introduced into the reaction tank. Further, as described above, the circulation of the treated water is not necessarily required, and may be discharged out of the system after neutralization as it is.

以下に実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1
図1に示す脱リン装置(反応槽の槽径750mm)により下水二次処理水(平均PO−P濃度:5mg/L)を下記条件で処理した。カルシウム化合物としては消石灰(特級品)の5重量%水溶液を用いた。
処理水量:260m/d
反応槽内原水LV:25m/h
反応槽内原水SV:10h-1
循環水量:処理水の0%(処理水循環行わず)
反応槽の流入水LV:25m/h
反応槽の流入水SV:10h−1
反応槽流入水のT−P濃度:4〜5mg/L
種晶:表面にリン酸カルシウムを約3mg−P/g−CaCO析出させた粒径
0.25〜0.4mmのもの
種晶充填率:反応槽容積の40体積%
流動床の種晶展開率:200〜220%
pH:10〜10.5
CaCO添加量:25mg−Ca/L
水温:11〜13℃
Example 1
Sewage secondary treated water (average PO 4 -P concentration: 5 mg / L) was treated under the following conditions by a dephosphorization apparatus (reaction tank diameter 750 mm) shown in FIG. As the calcium compound, a 5% by weight aqueous solution of slaked lime (special grade) was used.
Treated water volume: 260 m 3 / d
Raw water LV in reaction tank: 25 m / h
Raw water in reaction tank SV: 10 h -1
Circulating water volume: 0% of treated water (without treated water circulation)
Inflow water LV of reaction tank: 25 m / h
Inflow water SV of reaction tank: 10h -1
TP concentration of inflow water of reaction tank: 4 to 5 mg / L
Seed crystal: particle diameter of about 3 mg-P / g-CaCO 3 precipitated calcium phosphate on the surface
0.25-0.4 mm seed crystal filling rate: 40% by volume of reaction vessel volume
Seed development rate of fluidized bed: 200-220%
pH: 10 to 10.5
CaCO 3 addition amount: 25 mg-Ca / L
Water temperature: 11-13 ° C

その結果、T−P:0.9〜0.95mg/L,PO−P:0.2〜0.4mg/Lの処理水を安定に得ることができた。 As a result, treated water with TP: 0.9 to 0.95 mg / L and PO 4 -P: 0.2 to 0.4 mg / L could be stably obtained.

本発明の脱リン方法は、下水、農業集落排水等の生活排水処理等で排出されるリン含有排水の脱リン処理に好適である。   The dephosphorization method of the present invention is suitable for dephosphorization treatment of phosphorus-containing wastewater discharged in domestic wastewater treatment such as sewage and agricultural settlement wastewater.

本発明の脱リン方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the dephosphorization method of this invention.

符号の説明Explanation of symbols

1 原水槽
2 反応槽
3 Ca(OH)貯槽
4 循環水槽
5 中和槽
6 HSO貯槽
7 処理水槽
8 ストレーナ
9 ドラフトチューブ
10 水中撹拌機
F 流動床
1 raw water tank 2 reactor 3 Ca (OH) 2 storage tank 4 circulation water tank 5 neutralization tank 6 H 2 SO 4 tank 7 treatment water tank 8 strainer 9 draft tube 10 water stirrer F fluidized bed

Claims (5)

炭酸カルシウムの表面にリン酸カルシウムを析出させてなる種晶を充填した反応槽に、リン酸を含む原水を上向流で通水して、該反応槽内に該種晶の流動床を形成し、カルシウム化合物及び/又はアルカリ剤の添加により該反応槽内で原水中のリンをリン酸カルシウム結晶として除去する脱リン方法において、
該反応槽に、両端が開口した筒を、該筒の軸方向を上下方向とし、かつ該筒の少なくとも下部が前記流動床内に位置するように設けると共に、該筒内に下向流を形成させるための下降流形成手段を設け、
前記種晶の粒径を0.2〜0.5mmの範囲とし、
該反応槽内の原水の通水LVを20〜25m/h、該反応槽内の原水の通水SVを5〜10h-1、該反応槽内への流入水のリン濃度(T−P)を6mg/L以下とすることにより、リン濃度(T−P)1mg/L以下の処理水を得ることを特徴とする脱リン方法。
Raw water containing phosphoric acid is passed upwardly into a reaction tank filled with seed crystals formed by depositing calcium phosphate on the surface of calcium carbonate to form a fluidized bed of the seed crystals in the reaction tank, In the dephosphorization method of removing phosphorus in raw water as calcium phosphate crystals in the reaction vessel by adding a calcium compound and / or an alkali agent,
The reaction vessel is provided with a cylinder open at both ends so that the axial direction of the cylinder is the vertical direction and at least the lower part of the cylinder is located in the fluidized bed, and a downward flow is formed in the cylinder. Providing a downward flow forming means for
The seed crystal grain size is in the range of 0.2 to 0.5 mm,
The raw water flow LV in the reaction tank is 20 to 25 m / h, the raw water flow SV in the reaction tank is 5 to 10 h −1 , and the phosphorus concentration of inflow water into the reaction tank (TP) A dephosphorization method characterized in that treated water having a phosphorus concentration (TP) of 1 mg / L or less is obtained by adjusting the concentration to 6 mg / L or less.
請求項1において、該反応槽から流出する処理水の一部を該反応槽に上向流で循環させることを特徴とする脱リン方法。   The dephosphorization method according to claim 1, wherein a part of the treated water flowing out of the reaction tank is circulated in the reaction tank in an upward flow. 請求項1又は2において、前記種晶の充填量が前記反応槽容積に対して、25〜40体積%であることを特徴とする脱リン方法。   3. The dephosphorization method according to claim 1, wherein a filling amount of the seed crystal is 25 to 40% by volume with respect to the reaction tank volume. 請求項1ないし3のいずれか1項において、前記流動床の種晶展開率が200〜220%であることを特徴とする脱リン方法。   The dephosphorization method according to any one of claims 1 to 3, wherein a seed crystal development rate of the fluidized bed is 200 to 220%. 請求項1ないし4のいずれか1項において、該反応槽にカルシウム化合物及び/又はアルカリ剤を注入する方法であって、該反応槽の複数箇所で該カルシウム化合物及び/又はアルカリ剤を注入することを特徴とする脱リン方法。   The method according to any one of claims 1 to 4, wherein the calcium compound and / or the alkali agent is injected into the reaction vessel, and the calcium compound and / or the alkali agent is injected at a plurality of locations in the reaction vessel. A dephosphorization method.
JP2003425073A 2003-12-22 2003-12-22 Dephosphorization method Expired - Fee Related JP4438402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003425073A JP4438402B2 (en) 2003-12-22 2003-12-22 Dephosphorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003425073A JP4438402B2 (en) 2003-12-22 2003-12-22 Dephosphorization method

Publications (2)

Publication Number Publication Date
JP2005177679A JP2005177679A (en) 2005-07-07
JP4438402B2 true JP4438402B2 (en) 2010-03-24

Family

ID=34785066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003425073A Expired - Fee Related JP4438402B2 (en) 2003-12-22 2003-12-22 Dephosphorization method

Country Status (1)

Country Link
JP (1) JP4438402B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014039924A (en) * 2012-07-24 2014-03-06 Daikin Ind Ltd Method for treating aqueous solution containing phosphoric acid ions
JP6442033B1 (en) * 2017-12-15 2018-12-19 三井E&S環境エンジニアリング株式会社 Operation method of phosphorus recovery equipment
JP6830055B2 (en) * 2017-12-15 2021-02-17 三井E&S環境エンジニアリング株式会社 Phosphorus recovery device

Also Published As

Publication number Publication date
JP2005177679A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP3350364B2 (en) Wastewater treatment method and wastewater treatment device
CN111675354B (en) Method for treating circulating sewage of power plant by using electrochemical crystallization granulation system
EP2683659A1 (en) Reactor for precipitating solutes from wastewater and associated methods
JP4519485B2 (en) Phosphorus recovery method and apparatus
TWI429600B (en) A denitrification treatment method and a denitrification treatment apparatus
JP4438402B2 (en) Dephosphorization method
JP4685224B2 (en) Waste water treatment method and waste water treatment equipment
JPH11267665A (en) Dephosphorizing device
JPH0256955B2 (en)
JP5997059B2 (en) Anaerobic treatment method and anaerobic treatment apparatus for organic wastewater
JP4568391B2 (en) Fluidized bed crystallization reactor
JPH04141293A (en) Dephosphorization apparatus
JP4374825B2 (en) Crystalline dephosphorization method
JP2014138935A (en) Device for recovering phosphorus from phosphorus-containing water
JPH08155485A (en) Anaerobic treatment method
JP3921922B2 (en) Dephosphorization method
JP6548937B2 (en) Waste water treatment method and waste water treatment apparatus
JP2007038165A (en) Crystallizer and cristallizing method
JP3726429B2 (en) Dephosphorization device
JP2001198582A (en) Dephosphorizing device
JP2001276888A (en) Drain treating device
JP7444643B2 (en) Water treatment equipment and water treatment method
JP3271556B2 (en) Dephosphorization device
JPH11244871A (en) Treatment of manganese-containing water and device therefor
JP2002307077A (en) Method and apparatus for crystallization dephosphorization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4438402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees