JP4374825B2 - Crystalline dephosphorization method - Google Patents

Crystalline dephosphorization method Download PDF

Info

Publication number
JP4374825B2
JP4374825B2 JP2002114880A JP2002114880A JP4374825B2 JP 4374825 B2 JP4374825 B2 JP 4374825B2 JP 2002114880 A JP2002114880 A JP 2002114880A JP 2002114880 A JP2002114880 A JP 2002114880A JP 4374825 B2 JP4374825 B2 JP 4374825B2
Authority
JP
Japan
Prior art keywords
phosphorus
containing water
crystallization tank
reaction crystallization
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002114880A
Other languages
Japanese (ja)
Other versions
JP2003305481A (en
Inventor
一郎 住田
昭男 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002114880A priority Critical patent/JP4374825B2/en
Publication of JP2003305481A publication Critical patent/JP2003305481A/en
Application granted granted Critical
Publication of JP4374825B2 publication Critical patent/JP4374825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水処理水等のリン含有水からリンを分離する晶析脱リン方法及び晶析脱リン装置に関し、更に詳しくは、リン酸カルシウムを含有するリン吸着剤を流動化させた流動床式の反応晶析槽内にリン含有水を供給し、リン含有水中のリンとリン吸着剤とを反応させることによりリン酸カルシウム化合物を析出させる晶析脱リン方法及び晶析脱リン装置に関する。
【0002】
【従来の技術】
近年、下水処理水等のリン含有水の脱リン装置としては、最終生成物のリサイクル性が高く、系外に排出されるリン含有物の容積が小さく、かつ、含液分(付着液分)が少ないという理由から、晶析脱リン装置が注目されている。
【0003】
実用化されている晶析脱リン装置としては、結晶種を固定した状態で用いる固定床式の晶析脱リン装置が多数を占めているが、処理速度を大きくとれないという問題点があるため、処理速度を大きくとれる流動床式の晶析脱リン装置を用いた晶析脱リンも行われている。
【0004】
この晶析脱リン装置としては、反応晶析槽内にリン含有水を導入し、反応晶析槽内に結晶種の流動床を形成させながらリン含有水を上向流通水させて、リン含有水中のリンと結晶種とを接触させ、リン含有水中のリンをリン酸カルシウム化合物として分離して脱リン処理し、反応晶析槽から脱リン処理された処理水を排出するよう構成されたものが知られている。
【0005】
このような装置を用いた晶析脱リン処理では、リン含有水のpH値を10程度の高い値に設定することにより、リン含有水の過飽和度を高くして反応時間を短縮すると共に、反応晶析槽内にカルシウムやアルカリ剤を供給して、晶析反応の際に結晶種の表面以外で生成されるリン酸カルシウムの微細結晶の析出を抑制することが行われている。
【0006】
この方法は、リン含有水のリン濃度が低い場合には有効だが、リン濃度が高いと微細結晶の析出量が増大し、処理水中に微細結晶が流出するおそれがあるため、反応晶析槽内で脱リン処理された処理水の一部をリン含有水の希釈に用いて、リン含有水のリン濃度を低下させることも行われている。
【0007】
【発明が解決しようとする課題】
ところが、リン含有水のリン濃度を十分低くするために循環させる処理水の流量を増大させると、反応晶析槽内のリン含有水のLV(線速度)が増大する。このため、結晶種の充填密度を高めて展開率を高めるべく、結晶種の添加量を増大させる必要があり、これらを十分に収容できるよう、反応晶析槽の体積を大きくする必要があった。そこで、線速度を抑制して反応晶析槽の体積を小さく抑えるべく反応晶析槽の断面積を大きくすると、反応晶析槽の設置面積が大きくなってしまう。このように、従来の晶析脱リン装置では、処理効率を高めようとすると装置が大型化してしまうという問題があった。
【0008】
そこで、本発明は、装置の小型化を図りつつ十分な脱リン処理を行える晶析脱リン方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記課題を解決するためになされた請求項1に係る晶析脱リン方法の発明は、結晶種の流動床が形成された反応晶析槽内にリン含有水を導入し、リン含有水中のリンと前記結晶種とを接触させて、リン含有水中のリンをリン酸カルシウム化合物として分離することにより、前記リン含有水を脱リン処理した処理水とする晶析脱リン方法であって、前記リン含有水を前記反応晶析槽の下部に備えられた導入口から前記結晶種の展開率が20〜200%となるように導入して上向流を形成させ、前記導入口から導入されたリン含有水を前記導入口の上方に設けられた前記反応晶析槽よりも径の小さな略円筒状のドラフト管及び当該ドラフト管内に設けられた循環流形成手段によって前記ドラフト管内で下向流を形成させて前記結晶種と共に前記リン含有水を前記反応晶析槽内で循環させることにより、前記リン含有水を脱リン処理させてなる処理水とすることを特徴とする晶析脱リン方法である。
【0010】
請求項1の発明によると、流動床を利用した晶析脱リン方法において、リン含有水を、導入口から導入し結晶種の展開率が20〜200%となるように上向流を形成させ、結晶種の流動床が形成された反応晶析槽内にリン含有水を導入すると共に、前記反応晶析槽内に設けられたドラフト管内のリン含有水を下向流となるように循環流形成手段で攪拌させて循環流を形成することにより、結晶種と共にリン含有水を反応晶析槽内で循環させることができるので、反応晶析槽内の結晶種とリン含有水との接触頻度を高めて、結晶種表面へのリン酸カルシウムの析出を促進でき、結晶種の展開率を低く抑えつつ脱リン処理効率を高くできる。このため、リン含有水を希釈するための処理水の流量を抑えることができ、反応晶析槽の容積を小さくできる。また、リン含有水中での結晶種の充填密度、即ち単位容積あたりの表面積を大きくできるので、反応晶析槽内の結晶種の量を抑えつつ結晶種表面での結晶析出の割合を高く維持でき、微細結晶の生成を更に抑えて十分な脱リン処理を行うことができる。
【0015】
【発明の実施の形態】
本発明に係る晶析脱リン方法の一実施形態について図面を参照して説明する。
最初に、本実施形態で使用される薬剤について説明する。
(1)本実施形態で用いられるカルシウム化合物及び/又はアルカリ剤とは、排水中のリンと反応して難溶解性のカルシウム塩を生成するものであり、代表的には、消石灰Ca(OH)2の消石灰乳が挙げられる。しかし、本発明で用いるカルシウム化合物は、同様な機能を奏すればCa(OH)2に限定されるものではなく、例えば塩化カルシウム等他のカルシウム化合物を用いることもできる。本発明の実施形態においては代表的な化合物としてCa(OH)2を例示して説明する。Ca(OH)2は、カルシウムイオン供給源としてだけでなくアルカリ剤としての機能を兼用できることから、カルシウム化合物としてはCa(OH)2を用いるのが望ましい。
(2)リン酸カルシウムが析出される担持体としては、例えば骨炭、リン酸カルシウム、リン鉱石などの天然鉱石や人工的に調整した脱リン材を用いることができる。担持体としては、粒径が0.1mm〜1mmのものを使用できるが、晶析反応速度と粉砕コストとの兼ね合いから0.15〜0.5mm程度であることが好ましい。すなわち、粒径が0.15mm未満では粉砕コストが高くなり、逆に、粒径が0.5mm以上では晶析反応速度が遅くなる。
【0016】
次に、本発明に係る晶析脱リン装置について図1を参照して説明する。
図1は、本発明に係る晶析脱リン装置の一実施形態を示す系統図である。
本発明に係る晶析脱リン装置は、原水供給部と、消石灰乳供給部と、晶析脱リン部と、処理水循環部とを主要部としている。
【0017】
原水供給部では、原水ピット2内に貯溜された下水処理水等のリン含有水(リン濃度(PO4−Pとして)は通常は1〜10mg/L)が、原水ポンプ2aで抜き出され、配管2bを介して流動床式の反応晶析槽1に供給されるようになっている。このとき、既に反応晶析槽1でリンを分離されて処理水槽4に貯溜された処理水が、循環水ポンプ4a1により配管4b1を介してリン含有水が流れる配管2bに供給され、リン含有水が希釈されて反応晶析槽1に供給されるようになっている。
【0018】
一方、消石灰乳供給部では、タンクローリー車からカルシウム化合物及び/又はアルカリ剤である消石灰乳が消石灰乳受入タンク3に受け入れられ、貯蔵されるようになっている。貯蔵された消石灰乳は、バルブV1を開として循環ラインを形成し、循環ポンプ3aを運転しながら配管3bを介して循環(攪拌)させることで消石灰乳受入タンク3内の消石灰濃度を均一にできるようになっている。また、消石灰乳供給部では、バルブV2を開とすることにより、循環ポンプ3aを運転しながら配管3b及び配管3cを介して流動床式の反応晶析槽1に消石灰乳を供給するようになっている。ここで、配管3cは、配管3から反応晶析槽1内に導入された消石灰乳の希釈液が、反応晶析槽1内を循環するリン含有水の水流に乗るよう設けられている。これにより、後記する反応晶析槽1内に設けられたドラフト管13内を流動するリン含有水と共に消石灰乳が攪拌されて、反応晶析槽1内に消石灰乳を速やかに分散させられる。
【0019】
このとき、消石灰乳は、反応晶析槽1に供給される前に、処理水槽4から希釈水ポンプ4a2の始動により配管4b2を介して供給される処理水により、配管3c内で5〜25倍に希釈され、流動床式の反応晶析槽1の流動床1aがpH=6〜11、好ましくは9.5〜10.5、Ca濃度=20〜100mg/L、好ましくは40〜60mg/Lに設定できるように自動制御されて供給されるようになっている。
【0020】
晶析脱リン部では、流動床式の反応晶析槽1内で、流動床1aを形成する結晶種とリン含有水とが接触することにより、リン含有水中のリンが除去されるようになっている。
【0021】
反応晶析槽1には、図2に示すように、処理水で希釈されたリン含有水を反応晶析槽1内に導入するための導入口11がその底板部に設けられており、反応晶析槽1内で脱リン処理された処理水を反応晶析槽1から排出するための排出口12が側壁上部に設けられている。この場合、排出口12の配設位置は、ドラフト管13を用いない場合に導入口11からリン含有水を導入して、反応晶析槽1内で上向流を形成した際の、リン含有水の流動界面の上方30cm以上、特に50cm以上の位置に設けられている。これにより、反応晶析槽1からの結晶種の流出を防止できる。
【0022】
また、反応晶析槽1内には、反応晶析槽1よりも径の小さな略円筒状のドラフト管13が設けられている。ドラフト管13の断面積は、反応晶析槽1の断面積の1/50〜1/2、好ましくは1/25〜1/4程度とすることが好ましい。
【0023】
さらに、反応晶析槽1には、反応晶析槽1内の液を攪拌するための攪拌機14(循環流形成手段)が設けられている。攪拌機14は、リン含有水を攪拌するための攪拌部分141が、反応晶析槽1内のリン含有水の流動界面よりも低く、静止界面よりも高い位置に位置し、かつ、ドラフト管13内に存するよう配設されている。
【0024】
このような構成の反応晶析槽1では、処理水で希釈されたリン含有水が導入口11から反応晶析槽1内に導入される。この場合、反応晶析槽1内に導入されるリン含有水の流量は、展開率が20〜200%となるようにすることが好ましい。このようにして反応晶析槽1内に導入されたリン含有水は、ディストリビュータ1cを通過して、5〜20m/hrの範囲の線速度LVで上向流を形成し、結晶種を流動化させて流動床1aを形成する。
【0025】
このように、リン含有水を反応晶析槽1内に導入するための導入口11を底板部に設け、反応晶析槽1内で脱リン処理された処理水を外部に排出するための排出口12を側壁上部に設けることにより、反応晶析槽1内のリン含有水に十分な上向流を与えられる。このため、粒径が大きな結晶種を用いた場合でも、反応晶析槽1の底部に結晶種が沈降するのを防止して、十分な流動床1aを形成できる。粒径の小さな結晶種は沈降しづらく、結晶種の展開率が大きくなるため、反応晶析槽を大きくする必要があるが、この装置によれば、粒径の大きな結晶種でも十分な流動床を形成できるので、結晶種の展開率を小さく抑えられ、反応晶析槽1の容積を小さくできる。
【0026】
また、反応晶析槽1内のリン含有水は、攪拌機14で攪拌されて、ドラフト管13内のリン含有水が下向き流を形成し、これに伴いドラフト管13外のリン含有水が上向き流を形成して、反応晶析槽1内のリン含有水が全体として図2に太矢印で示すように循環するようになっている。この場合、ドラフト管13内を下向流を形成して流動するリン含有水の流量は、導入口11から反応晶析槽1内に導入されるリン含有水の流量の2倍以上、特に4〜10倍以上とすることにより、反応晶析槽1内でのリン含有水中のリンと結晶種との接触頻度を高めて脱リン効率を高めるのに十分な循環流を反応晶析槽1内に形成できる。
【0027】
このように、反応晶析槽1内に配設された攪拌機14の攪拌部141で反応晶析槽1内のリン含有水を循環させることにより、リン含有水を結晶種と共に反応晶析槽1内で循環させることができ、反応晶析槽1内の結晶種とリン含有水との接触頻度を高めて、結晶種表面へのリン酸カルシウムの析出を促進でき、結晶種の展開率を低く抑えつつ脱リン処理効率を高くできる。これによりリン含有水中での結晶種の充填密度、即ち単位容積あたりの表面積を大きくでき、反応晶析槽1内の結晶種の量を少なくしつつ結晶種表面での結晶析出を割と高く維持でき、微細結晶の生成を更に抑えることができる。
【0028】
このようにして脱リン処理された処理水は、反応晶析槽1の側壁上部に設けられた排出口12から、配管1bを介して処理水循環部に供給される。
【0029】
処理水循環部では、流動床式の反応晶析槽1内でリンを分離されたリン含有水が配管1bを介して処理水として処理水槽4に貯溜され、処理水の1部は、後段のpH調整槽(不図示)でpH値を中和処理された後、河川に放流される。処理水の残りは、1部が循環水ポンプ4a1により配管4b1を介して反応晶析槽1の下部へ戻され、また1部が希釈水ポンプ4a2により配管4b2を介して配管3cへと消石灰乳を希釈するための希釈水として供給される。
【0030】
前記実施の形態では、リン含有水を導入するための導入口が反応晶析槽の下部に設けられ、反応晶析槽内で脱リン処理された処理水を外部に排出するための排出口が反応晶析槽の上部に設けられているため、反応晶析槽内のリン含有水に十分な上向流を与えることができ、沈降速度の大きな、例えば、粒径0.1mm以上のヒドロキシアパタイトからなる結晶種でも、反応晶析槽の底部に結晶種が沈降するのを防止して、十分な流動床を形成することができる。また、粒径の小さな結晶種は沈降性が悪く、結晶種の展開率が大きくなるため、反応晶析槽を大きくする必要があるが、この装置によれば、粒径の大きな結晶種でも十分な流動床を形成できるので、結晶種の展開率を小さく抑えられ、反応晶析槽の容積を小さくできる。
また、前記実施の形態では、反応晶析槽1内のリン含有水を循環させるための循環流形成手段として攪拌機14を用いた場合について説明したが、反応晶析槽1内のリン含有水を循環させることができるのであれば攪拌機14に限らず、例えば、水中ミキサーを用いることもできる。前記実施の形態では、反応晶析槽1内に一つのドラフト管13を設けた場合について説明したが、ドラフト管全体の断面積が反応晶析槽1の断面積の1/50〜1/2、特に1/25〜1/4程度の範囲内であれば、ドラフト管の本数は適宜変更して差し支えない。
【0031】
前記実施の形態では、反応晶析槽1の側壁の上部に単に排出口12を設けた場合について説明したが、反応晶析槽1内のリン含有水の流動界面と排出口12との間に整流板を設けて、反応晶析槽1から結晶種が流出するのを防止するようにしてもよい。結晶種表面が微生物により著しく汚染される場合には、次亜塩素酸ソーダを数ppm添加し、又は、オゾン処理して汚染を除去した後に、反応晶析槽1内に導入してもよい。前記実施の形態では、反応晶析槽1内から排出された処理水の一部を、リン含有水が流動する配管2b内に導入して、リン含有水を希釈したが、必ずしもリン含有水を希釈水する必要はない。反応晶析槽1内に設けられるドラフト管13の形状は任意であり、円筒形等に適宜設定できる。
【0032】
【実施例】
次に、本発明の実施例について、比較例と対比して説明する。
〔実施例〕
反応晶析槽1から排出された処理水を用いてリン含有水を希釈しないことを除いて、図1の晶析脱リン装置と同様の構成の晶析脱リン装置を用いて、以下の条件でリン含有水を脱リン処理した。
(1)反応晶析槽
直径75mm、高さ2000mmの円筒体
(2)ドラフト管
直径20mm、高さ600mmの円筒体
(3)結晶種
粒径0.15mm〜0.3mmのリン鉱石
(4)原水処理量
下水二次処理水(リン濃度(PO4−P)=4.5mgPO4−P/L)を、反応晶析槽内に導入し、展開率50%、上向流の線速度LV10m/hr、処理水基準の空塔速度SV=15hr-1となるようにした。
(5)攪拌条件
ドラフト管内の流量が15m3/hrとなるよう攪拌した。
(6)カルシウム化合物及び/又はアルカリ剤
消石灰のうちJIS規格の特号より微粒子のもので、目開きが150メッシュ(タイラー標準篩)の篩上残分が0.05%以下のものを水に分散し懸濁液(消石灰乳)として使用し、反応晶析槽内のリン含有水がpH=10となるよう反応晶析槽内に導入した。
【0033】
以上述べた実施例によると、脱リン塔11から排出される処理水の全リン濃度(T−P)は0.7mgP/Lと低い値に抑えられた。また、処理水中の全リン酸濃度(PO4−P)も0.2mgPO4−P/Lと低い値に抑えられた。
【0034】
〔比較例1〕
反応晶析槽にドラフト管及び攪拌機が設けられておらず、反応晶析槽1から排出された処理水を用いてリン含有水を希釈しないことを除いて、図1の晶析脱リン装置と同様の構成の晶析脱リン装置を用いて、以下の条件でリン含有水を脱リン処理した。
(1)反応晶析槽
直径75mm、高さ2000mmの円筒体
(2)結晶種
粒径0.15mm〜0.3mmのリン鉱石
(3)原水処理量
下水二次処理水(リン濃度(PO4−P)=4.5mgPO4−P/L)を、反応晶析槽内に、展開率50%、上向流の線速度LV10m/hr、処理水基準の空塔速度SV=15hr-1となるよう導入した。
(4)カルシウム化合物及び/又はアルカリ剤
消石灰のうちJIS規格の特号より微粒子のもので、目開きが150メッシュ(タイラー標準篩)の篩上残分が0.05%以下のものを水に分散し懸濁液(消石灰乳)として使用し、反応晶析槽内のリン含有水がpH=10となるよう反応晶析槽内に導入した。
【0035】
以上述べた比較例1によると、処理水中の全リン酸濃度(PO4−P)は0.2mgPO4−P/Lと低い値に抑えられたが、脱リン塔11から排出される処理水の全リン濃度(T−P)は1.2mgP/Lと高い値を示した。
【0036】
〔比較例2〕
反応晶析槽がドラフト管及び攪拌機を備えないことを除いて、図1の晶析脱リン装置と同様の構成の晶析脱リン装置を用いて、以下の条件でリン含有水を脱リン処理した。
(1)反応晶析槽
直径75mm、高さ2000mmの円筒体
(2)結晶種
粒径0.15mm〜0.3mmのリン鉱石
(3)原水処理量
下水二次処理水(リン濃度(PO4−P)=4.5mgPO4−P/L)を、反応晶析槽内に、展開率50%、上向流の線速度LV10m/hr、処理水基準の空塔速度SV=15hr-1となるよう導入した。
(4)カルシウム化合物及び/又はアルカリ剤
消石灰のうちJIS規格の特号より微粒子のもので、目開きが150メッシュ(タイラー標準篩)の篩上残分が0.05%以下のものを水に分散し懸濁液(消石灰乳)として使用し、反応晶析槽内のリン含有水がpH=10となるよう反応晶析槽内に導入した。
【0037】
以上述べた比較例2によると、処理水中の全リン酸濃度(PO4−P)は0.2mgPO4−P/Lと低い値に抑えられたが、脱リン塔11から排出される処理水の全リン濃度(T−P)は1.0mgP/Lと高い値を示した。
【0038】
このように、反応晶析槽内にドラフト管を設けると共に、攪拌機を用いて反応晶析槽内の液を攪拌することにより、リン含有水を処理水で希釈することなく、処理水の全リン濃度、全リン酸濃度を低い値に抑えることができた。
【0039】
【発明の効果】
以上説明した工程と作用からなる本発明によれば、以下の効果を奏する。
1.請求項1の発明によれば、流動床を利用した晶析脱リン方法において、循環流形成手段により、リン含有水を結晶種と共に反応晶析槽内で循環させるので、結晶種の展開率を低く抑えつつ脱リン処理効率を高くできるため、リン含有水を希釈するための処理水の流量を抑えられ、反応晶析槽の容積を小さくできる。また、反応晶析槽内の結晶種の量を抑えつつ結晶種表面での結晶析出の割合を高く維持でき、微細結晶の生成を更に抑えて十分な脱リン処理を行うことができる。
2.請求項2の発明によれば、流動床を利用した晶析脱リン装置において、結晶種、循環流形成手段により、リン含有水を結晶種と共に反応晶析槽内で循環させるので、結晶種の展開率を低く抑えつつ脱リン処理効率を高くできるため、リン含有水を希釈するための処理水の流量を抑えられ、反応晶析槽の容積を小さくできる。また、反応晶析槽内の結晶種の量を抑えつつ結晶種表面での結晶析出の割合を高く維持でき、微細結晶の生成を更に抑えて十分な脱リン処理を行うことができる。
3.請求項3の発明によれば、流動床を利用した晶析脱リン装置において、リン含有水を導入するための導入口が反応晶析槽の下部に設けられ、前記反応晶析槽内で脱リン処理された処理水を外部に排出するための排出口が前記反応晶析槽の上部に設けられているため、反応晶析槽内のリン含有水に十分な上向流を与えることができ、粒径結晶種が反応晶析槽の底部に沈降するのを防止して、十分な流動床を形成でき、結晶種の展開率を小さく抑えられ、反応晶析槽の容積を小さくできる。
【図面の簡単な説明】
【図1】本発明に係る晶析脱リン装置の一実施形態を示す系統図である。
【図2】同晶析脱リン装置を構成する反応晶析槽を説明する図である。
【符号の説明】
1 反応晶析槽
1a 流動床
11 導入口
12 排出口
13 ドラフト管
14 攪拌機(循環流形成手段)
3 消石灰乳受入タンク
3a 循環ポンプ
4 処理水槽
4a1 循環水ポンプ
4a2 希釈水ポンプ
V1,V2 バルブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crystallization dephosphorization method and a crystallization dephosphorization apparatus for separating phosphorus from phosphorus-containing water such as sewage treated water, and more specifically, a fluidized bed type fluidized phosphorus adsorbent containing calcium phosphate. The present invention relates to a crystallization dephosphorization method and a crystallization dephosphorization apparatus in which a calcium phosphate compound is precipitated by supplying phosphorus-containing water into a reaction crystallization tank and reacting phosphorus in the phosphorus-containing water with a phosphorus adsorbent.
[0002]
[Prior art]
In recent years, as a dephosphorization device for phosphorus-containing water such as sewage treated water, the recycle property of the final product is high, the volume of the phosphorus-containing material discharged out of the system is small, and the liquid content (attached liquid content) Crystalline dephosphorization equipment has been attracting attention because of its small amount.
[0003]
As the crystallization dephosphorization apparatus in practical use, the fixed bed type crystallization dephosphorization apparatus used in a state where the crystal seeds are fixed occupies many, but there is a problem that the processing speed cannot be increased. Further, crystallization dephosphorization using a fluidized bed type crystallization dephosphorization apparatus capable of increasing the processing speed is also performed.
[0004]
As this crystallization dephosphorization apparatus, phosphorus-containing water is introduced into the reaction crystallization tank, and the phosphorus-containing water is allowed to flow upward while forming a fluidized bed of crystal seeds in the reaction crystallization tank. It is known that phosphorus in water is brought into contact with crystal seeds, phosphorus in phosphorus-containing water is separated as a calcium phosphate compound, dephosphorized, and discharged from the reaction crystallization tank. It has been.
[0005]
In the crystallization and dephosphorization treatment using such an apparatus, the pH value of phosphorus-containing water is set to a high value of about 10, thereby increasing the supersaturation degree of phosphorus-containing water and reducing the reaction time. Calcium and alkaline agents are supplied into the crystallization tank to suppress the precipitation of fine crystals of calcium phosphate that are generated outside the surface of the crystal seeds during the crystallization reaction.
[0006]
This method is effective when the phosphorus concentration of the phosphorus-containing water is low. However, if the phosphorus concentration is high, the amount of fine crystals deposited increases and fine crystals may flow out into the treated water. In some cases, the phosphorus concentration of phosphorus-containing water is lowered by using a part of the treated water dephosphorized in step 1 for dilution of phosphorus-containing water.
[0007]
[Problems to be solved by the invention]
However, when the flow rate of the treated water to be circulated in order to sufficiently reduce the phosphorus concentration of the phosphorus-containing water, the LV (linear velocity) of the phosphorus-containing water in the reaction crystallization tank increases. For this reason, in order to increase the packing density of the crystal seeds and increase the expansion rate, it is necessary to increase the amount of the crystal seeds added, and it is necessary to increase the volume of the reaction crystallization tank so that these can be accommodated sufficiently. . Therefore, if the cross-sectional area of the reaction crystallization tank is increased in order to suppress the linear velocity to reduce the volume of the reaction crystallization tank, the installation area of the reaction crystallization tank increases. As described above, the conventional crystallization dephosphorization apparatus has a problem that the apparatus becomes large in order to increase the processing efficiency.
[0008]
Accordingly, an object of the present invention is to provide a crystallization dephosphorization method capable of performing sufficient dephosphorization while reducing the size of the apparatus.
[0009]
[Means for Solving the Problems]
The invention of the crystallization dephosphorization method according to claim 1, which has been made to solve the above problems, introduces phosphorus-containing water into a reaction crystallization tank in which a fluidized bed of crystal seeds is formed, And crystal seeds are contacted to separate phosphorus in phosphorus-containing water as a calcium phosphate compound, whereby the phosphorus-containing water is treated as a dephosphorized treated water, wherein the phosphorus-containing water the reactive crystallization inlet or we provided in the lower portion of vessel said crystal seed deployment rate to form an upward flow is introduced so as to be 20 to 200% of a phosphorus-containing introduced from the inlet port water, the downward flow in the draft tube by the circulating flow formation means provided in a small substantially cylindrical draft tube and the draft tube diameter than the previous SL reaction crystallization tank provided above the inlet Together with the crystal seeds By circulating the down-containing water in the reaction crystallization vessel, a crystal phosphorus removal method characterized by the treated water the phosphorus-containing water comprising by dephosphorization process.
[0010]
According to the first aspect of the present invention, in the crystallization dephosphorization method using a fluidized bed , an upward flow is formed so that phosphorus-containing water is introduced from the introduction port so that the expansion rate of the crystal seeds is 20 to 200%. is, together with introducing a phosphorus-containing water in the crystal species fluidized bed formed reaction crystallization vessel, a phosphorus-containing water of the draft tube disposed within said reaction crystallization vessel so as to downward flow By forming the circulation flow by stirring with the circulation flow forming means, it is possible to circulate the phosphorus-containing water together with the crystal seeds in the reaction crystallization tank, so that the crystal seeds in the reaction crystallization tank and the phosphorus-containing water By increasing the contact frequency, precipitation of calcium phosphate on the surface of the crystal seed can be promoted, and the dephosphorization efficiency can be increased while keeping the development rate of the crystal seed low. For this reason, the flow volume of the process water for diluting phosphorus containing water can be suppressed, and the volume of a reaction crystallization tank can be made small. Moreover, since the packing density of crystal seeds in phosphorus-containing water, that is, the surface area per unit volume can be increased, the ratio of crystal precipitation on the surface of the crystal seeds can be kept high while suppressing the amount of crystal seeds in the reaction crystallization tank. Further, it is possible to carry out sufficient dephosphorization treatment while further suppressing the formation of fine crystals.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a crystallization dephosphorization method according to the present invention will be described with reference to the drawings.
Initially, the chemical | medical agent used by this embodiment is demonstrated.
(1) The calcium compound and / or alkali agent used in the present embodiment is one that reacts with phosphorus in wastewater to form a hardly soluble calcium salt, typically slaked lime Ca (OH). 2 slaked lime milk. However, the calcium compound used in the present invention is not limited to Ca (OH) 2 as long as it has a similar function, and other calcium compounds such as calcium chloride can also be used. In the embodiment of the present invention, Ca (OH) 2 will be exemplified and described as a representative compound. Since Ca (OH) 2 can function not only as a calcium ion supply source but also as an alkali agent, it is desirable to use Ca (OH) 2 as the calcium compound.
(2) As a carrier on which calcium phosphate is deposited, natural ores such as bone charcoal, calcium phosphate, and phosphate ore, and artificially adjusted dephosphorization materials can be used. As the carrier, one having a particle diameter of 0.1 mm to 1 mm can be used, but is preferably about 0.15 to 0.5 mm in view of the balance between the crystallization reaction rate and the pulverization cost. That is, if the particle size is less than 0.15 mm, the pulverization cost is high. Conversely, if the particle size is 0.5 mm or more, the crystallization reaction rate is slow.
[0016]
Next, the crystallization dephosphorization apparatus according to the present invention will be described with reference to FIG.
FIG. 1 is a system diagram showing an embodiment of a crystallization dephosphorization apparatus according to the present invention.
The crystallization dephosphorization apparatus according to the present invention includes a raw water supply unit, a slaked lime milk supply unit, a crystallization dephosphorization unit, and a treated water circulation unit as main parts.
[0017]
In the raw water supply unit, phosphorus-containing water such as sewage treated water stored in the raw water pit 2 (phosphorus concentration (PO 4 -P) is usually 1 to 10 mg / L) is extracted by the raw water pump 2a, The fluidized bed type reaction crystallization tank 1 is supplied via a pipe 2b. At this time, the treated water already separated in the reaction crystallization tank 1 and stored in the treated water tank 4 is supplied to the pipe 2b through which the phosphorus-containing water flows through the pipe 4b1 by the circulating water pump 4a1, and the phosphorus-containing water. Is diluted and supplied to the reaction crystallization tank 1.
[0018]
On the other hand, in the slaked lime milk supply unit, slaked lime milk as a calcium compound and / or an alkaline agent is received from the tank lorry vehicle and stored in the slaked lime milk receiving tank 3. The stored slaked lime milk forms a circulation line by opening the valve V1, and circulates (stirs) through the pipe 3b while operating the circulation pump 3a, so that the slaked lime concentration in the slaked lime milk receiving tank 3 can be made uniform. It is like that. Further, in the slaked lime milk supply unit, by opening the valve V2, the slaked lime milk is supplied to the fluidized bed type reaction crystallization tank 1 through the pipe 3b and the pipe 3c while operating the circulation pump 3a. ing. Here, the pipe 3 c is provided so that the diluted solution of slaked lime milk introduced from the pipe 3 into the reaction crystallization tank 1 rides on the water flow of phosphorus-containing water circulating in the reaction crystallization tank 1. Thereby, the slaked lime milk is stirred together with the phosphorus-containing water flowing in the draft tube 13 provided in the reaction crystallization tank 1 described later, and the slaked lime milk is quickly dispersed in the reaction crystallization tank 1.
[0019]
At this time, before being supplied to the reaction crystallization tank 1, the slaked lime milk is 5 to 25 times in the pipe 3c by the treated water supplied from the treated water tank 4 through the pipe 4b2 by starting the dilution water pump 4a2. The fluidized bed 1a of the fluidized bed type reaction crystallization tank 1 has a pH of 6 to 11, preferably 9.5 to 10.5, and a Ca concentration of 20 to 100 mg / L, preferably 40 to 60 mg / L. It is designed to be automatically controlled so that it can be set.
[0020]
In the crystallization dephosphorization unit, the phosphorus in the phosphorus-containing water is removed by contacting the crystal seeds forming the fluidized bed 1a with the phosphorus-containing water in the fluidized bed type reaction crystallization tank 1. ing.
[0021]
As shown in FIG. 2, the reaction crystallization tank 1 is provided with an inlet 11 for introducing phosphorus-containing water diluted with treated water into the reaction crystallization tank 1 in its bottom plate portion. A discharge port 12 for discharging the treated water dephosphorized in the crystallization tank 1 from the reaction crystallization tank 1 is provided in the upper part of the side wall. In this case, the disposition position of the discharge port 12 is the phosphorus content when the phosphorus-containing water is introduced from the introduction port 11 and the upward flow is formed in the reaction crystallization tank 1 when the draft tube 13 is not used. It is provided at a position 30 cm or more above the water flow interface, particularly 50 cm or more. Thereby, the outflow of the crystal seeds from the reaction crystallization tank 1 can be prevented.
[0022]
In addition, a substantially cylindrical draft tube 13 having a smaller diameter than the reaction crystallization tank 1 is provided in the reaction crystallization tank 1. The sectional area of the draft tube 13 is preferably about 1/50 to 1/2, more preferably about 1/25 to 1/4 of the sectional area of the reaction crystallization tank 1.
[0023]
Further, the reaction crystallization tank 1 is provided with a stirrer 14 (circulation flow forming means) for stirring the liquid in the reaction crystallization tank 1. In the stirrer 14, the stirring portion 141 for stirring the phosphorus-containing water is located at a position lower than the flow interface of the phosphorus-containing water in the reaction crystallization tank 1 and higher than the stationary interface, and in the draft tube 13. It is arranged to exist.
[0024]
In the reaction crystallization tank 1 having such a configuration, phosphorus-containing water diluted with treated water is introduced into the reaction crystallization tank 1 from the introduction port 11. In this case, it is preferable that the flow rate of the phosphorus-containing water introduced into the reaction crystallization tank 1 is such that the development rate is 20 to 200%. The phosphorus-containing water thus introduced into the reaction crystallization tank 1 passes through the distributor 1c, forms an upward flow at a linear velocity LV in the range of 5 to 20 m / hr, and fluidizes the crystal seeds. To form the fluidized bed 1a.
[0025]
Thus, the inlet 11 for introducing phosphorus-containing water into the reaction crystallization tank 1 is provided in the bottom plate portion, and the waste water for discharging the treated water dephosphorized in the reaction crystallization tank 1 to the outside. By providing the outlet 12 in the upper part of the side wall, a sufficient upward flow can be given to the phosphorus-containing water in the reaction crystallization tank 1. For this reason, even when a crystal seed having a large particle size is used, it is possible to prevent the crystal seed from settling at the bottom of the reaction crystallization tank 1 and to form a sufficient fluidized bed 1a. Crystal seeds with a small particle size are difficult to settle and the rate of expansion of the crystal seeds increases, so it is necessary to increase the size of the reaction crystallization tank. Therefore, the rate of expansion of crystal seeds can be kept small, and the volume of the reaction crystallization tank 1 can be reduced.
[0026]
The phosphorus-containing water in the reaction crystallization tank 1 is stirred by the stirrer 14 so that the phosphorus-containing water in the draft tube 13 forms a downward flow, and the phosphorus-containing water outside the draft tube 13 flows upward along with this. The phosphorus-containing water in the reaction crystallization tank 1 is circulated as shown by the thick arrows in FIG. 2 as a whole. In this case, the flow rate of the phosphorus-containing water flowing in the draft tube 13 while forming a downward flow is at least twice the flow rate of the phosphorus-containing water introduced into the reaction crystallization tank 1 from the inlet 11, particularly 4 By setting it to -10 times or more, a sufficient circulation flow is provided in the reaction crystallization tank 1 to increase the contact frequency between phosphorus and crystal seeds in the phosphorus-containing water in the reaction crystallization tank 1 and increase the dephosphorization efficiency. Can be formed.
[0027]
Thus, by circulating the phosphorus-containing water in the reaction crystallization tank 1 by the stirring unit 141 of the stirrer 14 provided in the reaction crystallization tank 1, the phosphorus-containing water is crystallized together with the crystal seeds in the reaction crystallization tank 1. In the reaction crystallization tank 1, the frequency of contact between the crystal seeds in the reaction crystallization tank 1 and phosphorus-containing water can be increased, the precipitation of calcium phosphate on the crystal seed surface can be promoted, and the rate of expansion of the crystal seeds can be kept low. Dephosphorization efficiency can be increased. As a result, the packing density of the crystal seeds in the phosphorus-containing water, that is, the surface area per unit volume can be increased, and the crystal precipitation on the surface of the crystal seeds can be kept relatively high while reducing the amount of crystal seeds in the reaction crystallization tank 1. And the generation of fine crystals can be further suppressed.
[0028]
The treated water thus dephosphorized is supplied from the discharge port 12 provided in the upper portion of the side wall of the reaction crystallization tank 1 to the treated water circulation section via the pipe 1b.
[0029]
In the treated water circulation section, the phosphorus-containing water from which phosphorus has been separated in the fluidized bed type reaction crystallization tank 1 is stored in the treated water tank 4 as treated water via the pipe 1b, and a part of the treated water has a pH of the latter stage. After neutralizing the pH value in a regulating tank (not shown), it is discharged into a river. One part of the remaining treated water is returned to the lower part of the reaction crystallization tank 1 via the pipe 4b1 by the circulating water pump 4a1, and one part is slaked lime milk to the pipe 3c via the pipe 4b2 by the dilution water pump 4a2. It is supplied as dilution water for diluting.
[0030]
In the embodiment, an inlet for introducing phosphorus-containing water is provided in the lower part of the reaction crystallization tank, and an outlet for discharging treated water dephosphorized in the reaction crystallization tank to the outside. Since it is provided in the upper part of the reaction crystallization tank, it can give a sufficient upward flow to the phosphorus-containing water in the reaction crystallization tank, and has a high sedimentation rate, for example, a hydroxyapatite having a particle size of 0.1 mm or more. Even with the crystal seeds consisting of the above, it is possible to prevent the crystal seeds from settling at the bottom of the reaction crystallization tank and form a sufficient fluidized bed. In addition, crystal seeds with a small particle size have poor settling properties and the rate of expansion of the crystal seeds is large, so it is necessary to enlarge the reaction crystallization tank. Since a fluidized bed can be formed, the rate of expansion of crystal seeds can be kept small, and the volume of the reaction crystallization tank can be reduced.
Moreover, although the said embodiment demonstrated the case where the stirrer 14 was used as a circulation flow formation means for circulating the phosphorus containing water in the reaction crystallization tank 1, phosphorus containing water in the reaction crystallization tank 1 was used. As long as it can be circulated, not only the stirrer 14 but also, for example, an underwater mixer can be used. In the embodiment, the case where one draft tube 13 is provided in the reaction crystallization tank 1 has been described. However, the sectional area of the entire draft tube is 1/50 to 1/2 of the sectional area of the reaction crystallization tank 1. In particular, the number of draft tubes may be changed as appropriate within a range of about 1/25 to 1/4.
[0031]
In the above-described embodiment, the case where the discharge port 12 is simply provided on the upper portion of the side wall of the reaction crystallization tank 1 has been described. However, the phosphorus-containing water flow interface in the reaction crystallization tank 1 is disposed between the discharge port 12. A rectifying plate may be provided to prevent the crystal seeds from flowing out of the reaction crystallization tank 1. When the crystal seed surface is significantly contaminated by microorganisms, sodium hypochlorite may be added in several ppm, or may be introduced into the reaction crystallization tank 1 after removing the contamination by ozone treatment. In the embodiment, a part of the treated water discharged from the reaction crystallization tank 1 is introduced into the pipe 2b through which the phosphorus-containing water flows to dilute the phosphorus-containing water. There is no need to dilute water. The shape of the draft tube 13 provided in the reaction crystallization tank 1 is arbitrary, and can be appropriately set to a cylindrical shape or the like.
[0032]
【Example】
Next, examples of the present invention will be described in comparison with comparative examples.
〔Example〕
Except for not diluting the phosphorus-containing water using the treated water discharged from the reaction crystallization tank 1, using the crystallization dephosphorization apparatus having the same configuration as the crystallization dephosphorization apparatus of FIG. The phosphorus-containing water was subjected to dephosphorization treatment.
(1) Cylindrical body with reaction crystallization tank diameter of 75 mm and height of 2000 mm (2) Cylindrical body with draft tube diameter of 20 mm and height of 600 mm (3) Phosphorus ore with crystal seed size of 0.15 mm to 0.3 mm (4) the raw water throughput sewage secondary treatment water (phosphorus concentration (PO 4 -P) = 4.5mgPO 4 -P / L), were introduced into the reaction crystallization the tank, development rate of 50%, the linear velocity of the upward flow LV10m / Hr, the superficial velocity SV based on the treated water SV = 15 hr −1 .
(5) Stirring conditions Stirring was performed so that the flow rate in the draft tube was 15 m 3 / hr.
(6) Calcium compound and / or alkali agent slaked lime with fine particles from JIS standard special, with mesh opening of 150 mesh (Tyler standard sieve) and screen residue of 0.05% or less in water The dispersion was used as a suspension (slaked lime milk) and introduced into the reaction crystallization tank so that the phosphorus-containing water in the reaction crystallization tank had a pH = 10.
[0033]
According to the embodiment described above, the total phosphorus concentration (TP) of the treated water discharged from the dephosphorization tower 11 was suppressed to a low value of 0.7 mgP / L. In addition, the total phosphoric acid concentration (PO 4 -P) in the treated water was also suppressed to a low value of 0.2 mg PO 4 -P / L.
[0034]
[Comparative Example 1]
The crystallization dephosphorization apparatus of FIG. 1 is the same as that of FIG. 1 except that the reaction crystallization tank is not provided with a draft tube and a stirrer and the treated water discharged from the reaction crystallization tank 1 is not diluted. Phosphorus-containing water was dephosphorized under the following conditions using a crystallization dephosphorization apparatus having the same configuration.
(1) Reaction crystallization tank with a diameter of 75 mm and a cylinder with a height of 2000 mm (2) Phosphorus ore with a crystal seed size of 0.15 mm to 0.3 mm (3) Raw water treatment amount Sewage secondary treatment water (phosphorus concentration (PO 4 -P) = 4.5 mg PO 4 -P / L) in the reaction crystallization tank, with a development rate of 50%, an upward flow linear velocity LV 10 m / hr, and a superficial water velocity SV = 15 hr −1 Introduced to be.
(4) Calcium compound and / or alkali agent slaked lime that is finer than the JIS standard special name and has a mesh size of 150 mesh (Tyler standard sieve) and a screen residue of 0.05% or less in water The dispersion was used as a suspension (slaked lime milk) and introduced into the reaction crystallization tank so that the phosphorus-containing water in the reaction crystallization tank had a pH = 10.
[0035]
According to Comparative Example 1 described above, the total phosphoric acid concentration (PO 4 -P) in the treated water was suppressed to a low value of 0.2 mg PO 4 -P / L, but the treated water discharged from the dephosphorization tower 11 The total phosphorus concentration (TP) of was 1.2 mg P / L and showed a high value.
[0036]
[Comparative Example 2]
The phosphorus-containing water is dephosphorized under the following conditions using a crystallization dephosphorization apparatus having the same structure as the crystallization dephosphorization apparatus shown in FIG. 1 except that the reaction crystallization tank does not include a draft tube and a stirrer. did.
(1) Reaction crystallization tank with a diameter of 75 mm and a cylinder with a height of 2000 mm (2) Phosphorus ore with a crystal seed size of 0.15 mm to 0.3 mm (3) Raw water treatment amount Sewage secondary treatment water (phosphorus concentration (PO 4 -P) = 4.5 mg PO 4 -P / L) in the reaction crystallization tank, with a development rate of 50%, an upward flow linear velocity LV 10 m / hr, and a superficial water velocity SV = 15 hr −1 Introduced to be.
(4) Calcium compound and / or alkali agent slaked lime that is finer than the JIS standard special name and has a mesh size of 150 mesh (Tyler standard sieve) and a screen residue of 0.05% or less in water The dispersion was used as a suspension (slaked lime milk) and introduced into the reaction crystallization tank so that the phosphorus-containing water in the reaction crystallization tank had a pH = 10.
[0037]
According to Comparative Example 2 described above, the total phosphoric acid concentration (PO 4 -P) in the treated water was suppressed to a low value of 0.2 mg PO 4 -P / L, but treated water discharged from the dephosphorization tower 11. The total phosphorus concentration (TP) of was 1.0 mg P / L and showed a high value.
[0038]
In this way, a draft tube is provided in the reaction crystallization tank, and the liquid in the reaction crystallization tank is stirred using a stirrer, so that the phosphorous-containing water is diluted with the treated water without diluting the phosphorus in the treated water. Concentration and total phosphoric acid concentration could be suppressed to low values.
[0039]
【The invention's effect】
According to the present invention composed of the steps and actions described above, the following effects can be obtained.
1. According to the invention of claim 1, in the crystallization dephosphorization method using a fluidized bed, the circulating flow forming means circulates the phosphorus-containing water together with the crystal seeds in the reaction crystallization tank. Since the dephosphorization efficiency can be increased while keeping it low, the flow rate of the treatment water for diluting the phosphorus-containing water can be suppressed, and the volume of the reaction crystallization tank can be reduced. In addition, it is possible to maintain a high rate of crystal precipitation on the surface of the crystal seeds while suppressing the amount of crystal seeds in the reaction crystallization tank, and to further suppress the generation of fine crystals and perform sufficient dephosphorization treatment.
2. According to the invention of claim 2, in the crystallization dephosphorization apparatus using a fluidized bed, the phosphorous water is circulated in the reaction crystallization tank together with the crystal seeds by the crystal seed and circulation flow forming means. Since the dephosphorization efficiency can be increased while keeping the development rate low, the flow rate of the treatment water for diluting the phosphorus-containing water can be suppressed, and the volume of the reaction crystallization tank can be reduced. In addition, it is possible to maintain a high rate of crystal precipitation on the surface of the crystal seed while suppressing the amount of crystal seed in the reaction crystallization tank, and it is possible to perform sufficient dephosphorization treatment by further suppressing the formation of fine crystals.
3. According to the invention of claim 3, in the crystallization dephosphorization apparatus using a fluidized bed, an inlet for introducing phosphorus-containing water is provided in the lower part of the reaction crystallization tank, and the decrystallization is carried out in the reaction crystallization tank. Since the discharge port for discharging the treated water after the phosphorus treatment is provided at the upper part of the reaction crystallization tank, it is possible to give a sufficient upward flow to the phosphorus-containing water in the reaction crystallization tank. Further, it is possible to prevent the crystal grain seeds from being settled to the bottom of the reaction crystallization tank, to form a sufficient fluidized bed, to suppress the expansion rate of the crystal seeds, and to reduce the volume of the reaction crystallization tank.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a crystallization dephosphorization apparatus according to the present invention.
FIG. 2 is a diagram for explaining a reaction crystallization tank constituting the crystallization dephosphorization apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction crystallization tank 1a Fluidized bed 11 Inlet port 12 Outlet port 13 Draft pipe 14 Stirrer (circulation flow formation means)
3 Slaked lime milk receiving tank 3a Circulating pump 4 Treated water tank 4a1 Circulating water pump 4a2 Dilution water pump V1, V2 Valve

Claims (1)

結晶種の流動床が形成された反応晶析槽内にリン含有水を導入し、リン含有水中のリンと前記結晶種とを接触させて、リン含有水中のリンをリン酸カルシウム化合物として分離することにより、前記リン含有水を脱リン処理した処理水とする晶析脱リン方法であって、
前記リン含有水を前記反応晶析槽の下部に備えられた導入口から前記結晶種の展開率が20〜200%となるように導入して上向流を形成させ、
前記導入口から導入されたリン含有水を前記導入口の上方に設けられた前記反応晶析槽よりも径の小さな略円筒状のドラフト管及び当該ドラフト管内に設けられた循環流形成手段によって前記ドラフト管内で下向流を形成させて前記結晶種と共に前記リン含有水を前記反応晶析槽内で循環させることにより、前記リン含有水を脱リン処理させてなる処理水とする
ことを特徴とする晶析脱リン方法。
By introducing phosphorus-containing water into a reaction crystallization tank in which a fluidized bed of crystal seeds is formed, bringing phosphorus in the phosphorus-containing water into contact with the crystal seeds, and separating phosphorus in the phosphorus-containing water as a calcium phosphate compound. , A crystallization dephosphorization method in which the phosphorus-containing water is treated with dephosphorization,
Said phosphorous containing the reactive crystallization inlet or we provided in the bottom of the tank the water the crystalline species development rate was introduced so that 20 to 200% to form upflow,
A phosphorus-containing water introduced from the inlet port, a small substantially cylindrical draft tube and circulating flow formation means provided in the draft tube diameter than the previous SL reaction crystallization tank provided above the inlet By forming a downward flow in the draft pipe and circulating the phosphorus-containing water together with the crystal seeds in the reaction crystallization tank, the phosphorus-containing water is treated as dephosphorized. A characteristic crystallization dephosphorization method.
JP2002114880A 2002-04-17 2002-04-17 Crystalline dephosphorization method Expired - Fee Related JP4374825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002114880A JP4374825B2 (en) 2002-04-17 2002-04-17 Crystalline dephosphorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002114880A JP4374825B2 (en) 2002-04-17 2002-04-17 Crystalline dephosphorization method

Publications (2)

Publication Number Publication Date
JP2003305481A JP2003305481A (en) 2003-10-28
JP4374825B2 true JP4374825B2 (en) 2009-12-02

Family

ID=29396502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002114880A Expired - Fee Related JP4374825B2 (en) 2002-04-17 2002-04-17 Crystalline dephosphorization method

Country Status (1)

Country Link
JP (1) JP4374825B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3735624B2 (en) 2003-09-26 2006-01-18 Necビューテクノロジー株式会社 Projection display device
JP4565836B2 (en) * 2003-12-26 2010-10-20 三菱商事建材株式会社 Phosphorus remover
JP4892212B2 (en) * 2004-09-28 2012-03-07 三菱マテリアル株式会社 Reaction crystallizer
JP4591170B2 (en) * 2004-11-15 2010-12-01 パナソニック株式会社 Fluorine-containing water treatment equipment
JP5017814B2 (en) * 2005-08-04 2012-09-05 日本下水道事業団 Crystallization method
JP4565575B2 (en) * 2006-09-20 2010-10-20 オルガノ株式会社 Fluorine crystallization technology

Also Published As

Publication number Publication date
JP2003305481A (en) 2003-10-28

Similar Documents

Publication Publication Date Title
KR100988916B1 (en) Method of treating organic wastewater and sludge and treatment apparatus therefor
JP4892212B2 (en) Reaction crystallizer
US4389317A (en) Process for chemical reduction of the phosphate content of water
KR100198191B1 (en) Wastewater disposal apparatus and method
JP4216569B2 (en) Organic wastewater and sludge treatment method and treatment equipment
US6210589B1 (en) Process for removing fluoride from wastewater
JP4374825B2 (en) Crystalline dephosphorization method
JPH10113673A (en) Waste water treating device and method therefor
EP1435259A1 (en) Method and apparatus for removing ion present in solution by the crystallization method
JP3362276B2 (en) Wastewater treatment equipment
JP7206061B2 (en) Method for treating liquid to be treated
JP4417056B2 (en) Crystal recovery and transfer equipment
JPS60179190A (en) Dephosphorizing apparatus
JPH10323677A (en) Waste water treatment device
JP4774619B2 (en) Crystallization dephosphorization equipment
JP2004321992A (en) Phosphorus resource recovery apparatus
JP2003190707A (en) Method and apparatus for removing ions in liquid by crystallization method
JPH11300369A (en) Dephosphorizing device and dephosphorizing equipment
JP4385560B2 (en) Crystallization dephosphorization method and crystallization dephosphorization apparatus
JP2000301166A (en) Waste water treatment apparatus
JP4519965B2 (en) Crystallization dephosphorization apparatus and crystallization dephosphorization method
JP2007038165A (en) Crystallizer and cristallizing method
JP2000061473A (en) Method of removing phosphorus in sewage water
JP7301105B2 (en) Method for treating liquid to be treated and apparatus for treating liquid to be treated
JP2003117306A (en) Reaction crystallizing method and apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

R150 Certificate of patent or registration of utility model

Ref document number: 4374825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140918

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees