JPS6331593A - Removal of phosphate ion in water - Google Patents

Removal of phosphate ion in water

Info

Publication number
JPS6331593A
JPS6331593A JP17524586A JP17524586A JPS6331593A JP S6331593 A JPS6331593 A JP S6331593A JP 17524586 A JP17524586 A JP 17524586A JP 17524586 A JP17524586 A JP 17524586A JP S6331593 A JPS6331593 A JP S6331593A
Authority
JP
Japan
Prior art keywords
water
treated
treated water
crystallization
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17524586A
Other languages
Japanese (ja)
Inventor
Hiroji Seki
廣二 関
Ikuo Kamigaichi
上垣内 郁夫
Takao Mineo
嶺尾 孝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ataka Kogyo KK
Ataka Construction and Engineering Co Ltd
Original Assignee
Ataka Kogyo KK
Ataka Construction and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ataka Kogyo KK, Ataka Construction and Engineering Co Ltd filed Critical Ataka Kogyo KK
Priority to JP17524586A priority Critical patent/JPS6331593A/en
Publication of JPS6331593A publication Critical patent/JPS6331593A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To efficiently remove a phosphate ion, by a method wherein a calcium ion is added to water to be treated containing the phosphate ion to adjust pH to a specific region before said water is passed through a precipitation layer. CONSTITUTION:Water to be treated is introduced into a pH control tank 2 through a raw water inflow pipe 1 and alkali is introduced into a pH control tank 2 from an alkali inflow pipe 5 by a pH controller 4a so that pH in the pH control tank 2 becomes constant. If necessary, a calcium agent is introduced into the pH control tank 2 through a calcium inflow pipe 6. Treated water subjected to pH control is led out from the pH control tank 2 through an outflow pipe 8 to be introduced into the upper part of a dephosphorization tank 8. When water to be treated passes through the dephosphorization tank 8 as a falling stream, a phosphate ion is precipitated and removed as apatite. By this method, stable high dephosphorizing capacity can be held.

Description

【発明の詳細な説明】 (発明の目的) (産業上の利用分野) 本発明は、水中のリン酸イオンを晶析によって除去する
水中リン酸イオンの除去方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Objective of the Invention) (Industrial Application Field) The present invention relates to a method for removing phosphate ions in water by removing phosphate ions in water by crystallization.

(従来の技術) 一般に人体排泄物あるいは洗剤には有機リン化合物ある
いは無改性リン酸塩が様々の状態で存在しているが、こ
れらは下、廃水中に排出される場合が多く、しかも通常
の下、廃水処理工程では十分に除去されることなく大部
分が無別リン酸イオンとして水中に残存する。そしてこ
のリン酸イオンは閉鎖水域の富栄養化をもたらし、水質
を汚濁して公害発生の原因となるので、このリン酸イオ
ンを除去するための3次処理(高度処理)が必要とされ
る。
(Prior art) Generally, organic phosphorus compounds or unmodified phosphates exist in various states in human excreta or detergents, but these are often discharged into wastewater, and moreover, they are usually Under these conditions, most of the phosphate ions remain in the water as free phosphate ions without being sufficiently removed in the wastewater treatment process. These phosphate ions cause eutrophication of closed water bodies, contaminate water quality, and cause pollution, so tertiary treatment (advanced treatment) is required to remove these phosphate ions.

従来、リン酸イオンの除去法としては金属塩あるいは消
石灰を用いた凝集沈殿法がよく知られている。これは水
中のリン酸イオンを金泥イオンあるいは消石灰と反応さ
せ難溶性塩を生成し、こ・れを沈殿分離する方法である
が、添加する薬品を多♀に必要とし、また発生する汚泥
の邑も多いため多額の処理費用を要する方法となってい
る。
Conventionally, a coagulation precipitation method using metal salts or slaked lime is well known as a method for removing phosphate ions. This is a method of reacting phosphate ions in water with gold mud ions or slaked lime to produce poorly soluble salts, which are then separated by precipitation. This method requires a large amount of processing cost.

このような従来法の欠点を解消し、簡甲な操作で効率よ
く水中のリン酸イオンを除去するためにヒドロキシアパ
タイトの晶析用↑を利用したいわゆる晶析脱リン法が知
られている。
A so-called crystallization dephosphorization method using ↑ for crystallization of hydroxyapatite is known in order to eliminate such drawbacks of the conventional method and efficiently remove phosphate ions from water with a simple operation.

この方法は被処理水にカルシウムイオン(Caz+)と
水酸イオン(OH−)を少吊加えることにより水中に溶
存するリン酸イオン(PO43−)をヒドロキシアパタ
イト(Ca5(POa) 30H)の微結晶として析出
させ、このヒドロ腓シアパタイトを含みかつ単なる沈降
では分離困難なコロイド状被処理水を品析材と直ちに接
触させることによりそのヒドロキシアパタイトの微結晶
を品析材に広く分布しているアパタイトの結晶に晶析さ
せリン酸イオンを順次除去しようとするものである。こ
の方法は多量の汚泥発生を伴わず9船の薬品添加で効率
よくリン酸イオンを除去できる有用な方法である。
This method involves adding a small amount of calcium ions (Caz+) and hydroxide ions (OH-) to the water to be treated, thereby converting phosphate ions (PO43-) dissolved in the water into microcrystals of hydroxyapatite (Ca5(POa) 30H). By immediately contacting the colloidal treated water, which contains hydrothylsiapatite and is difficult to separate by mere sedimentation, with the specimen material, the microcrystals of hydroxyapatite are separated from the apatite widely distributed in the specimen material. The aim is to sequentially remove phosphate ions by crystallizing them into crystals. This method is a useful method that can efficiently remove phosphate ions by adding nine vessels of chemicals without generating a large amount of sludge.

(発明が解決しようとする問題点) 上述のような晶析脱リン法において脱リン性能に影響を
及ぼす因子は、pH、アルカリ度、カルシウムイオン濃
度、水温等がよく知られているが、水温を制御するには
多量のエネルギーを消費することになるため、脱リン性
能の制御には主にpl+、アルカリ度、カルシウムイオ
ン濃度が操伯囚子として利用されている。
(Problems to be Solved by the Invention) Factors that affect dephosphorization performance in the crystallization dephosphorization method as described above are well known, such as pH, alkalinity, calcium ion concentration, and water temperature. Since a large amount of energy is consumed to control the dephosphorization performance, PL+, alkalinity, and calcium ion concentration are mainly used as control factors.

さて、従来脱リン性能を向上させるために被処理水のア
ルカリ度を何らかの方法で低下させて通水する方法が行
なわれているが、アパタイトの晶析反応は(1)式に示
すように、O1+イオン消費する。
Now, conventionally, in order to improve dephosphorization performance, a method has been used to lower the alkalinity of the water to be treated by some method before passing the water through the water, but the crystallization reaction of apatite is as shown in equation (1). Consumes O1+ ions.

5Ca 2+ + 3PO43−4叶−Ca5(PO4
) 3叶・・・・・・(1)一方こうした晶析脱リン法
は通常pH9,0かそれ以下の操作条件で行なわれるが
、被処理水中のアルカリ度が低い場合、pl+緩衝能力
が低いため、叶イオンの消費に伴い、急速にpH低下が
生じる。
5Ca 2+ + 3PO43-4 Kano-Ca5 (PO4
) 3. (1) On the other hand, such crystallization dephosphorization method is usually carried out under operating conditions of pH 9.0 or lower, but if the alkalinity of the water to be treated is low, the PL + buffering capacity is low. Therefore, as leaf ions are consumed, the pH rapidly decreases.

ところが、萌述したように、本反応はpHの影響を受け
るためpH低下が生じると途中で反応が進行しなくなる
ため、充分な脱リン性能が得られなくなる。
However, as mentioned above, this reaction is affected by pH, and if the pH decreases, the reaction will stop progressing, making it impossible to obtain sufficient dephosphorization performance.

骨炭を品析材に使用した場合、アルカリ分が骨炭中に存
在するため、通水初期はそれ程処理水のpH低下は認め
られないが、アルカリ度の低い被処理水を長期に通水し
ていると徐々にpH低下が進行し、それとともに処理水
のPO4−p 81度の上昇が認められ、長期間安定し
た処理性能を得られないという問題があった。
When bone char is used as a material for quality analysis, alkaline content exists in the bone char, so the pH of the treated water does not decrease significantly at the beginning of water flow, but if treated water with low alkalinity is passed for a long period of time, The pH gradually decreased, and at the same time, the PO4-p of the treated water increased by 81 degrees, causing the problem that stable treatment performance could not be obtained for a long period of time.

本発明は上述の問題に鑑みアルカリ度の低い被処理水に
おいて、処理水のpHの低下を防止し、骨炭を充填した
晶析層内全域を活性化することにより長期にわたり安定
した高度の脱リン性能を維持する方法を提供することを
目的とするものである。
In view of the above-mentioned problems, the present invention prevents a drop in the pH of treated water with low alkalinity and activates the entire area within the crystallization layer filled with bone char, thereby achieving a stable and high degree of dephosphorization over a long period of time. The purpose is to provide a method to maintain performance.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、リン酸イオンを含みかつアルカリ度が100
■/1以下の被処理水にカルシウムイオンを加えるとと
もにアルカリにより被処理水のpHを8.5〜9.5に
調整した後、この被処理水を骨炭を充填した晶析層に通
水してリン酸イオンを除去した処理水とし、この処理水
の一部を返送して被処理水とともにpl+調整工程と晶
析層を循環させることにより’2!lI’J水のpH低
下を防止し、晶析層内を活性化し処理水に残存するリン
酸イオンを除去するものである。
(Means for Solving the Problems) The present invention contains phosphate ions and has an alkalinity of 100%.
■After adding calcium ions to the water to be treated with a pH of 1 or less and adjusting the pH of the water to 8.5 to 9.5 with an alkali, the water to be treated is passed through a crystallization bed filled with bone char. By removing phosphate ions from the treated water, a portion of this treated water is returned and circulated through the PL+ adjustment process and the crystallization layer together with the treated water. This prevents the pH of lI'J water from decreasing, activates the inside of the crystallization layer, and removes phosphate ions remaining in the treated water.

晶析反応は被処理水と晶析層との反応が1段処理よりも
2段処理の方が脱リン効果が大となるが、晶析層のみで
処理水を循環させると、晶析反応によってpHが低下し
、晶析層の晶析能力が低下する。
In the crystallization reaction, the dephosphorization effect is greater in two-stage treatment than in one-stage reaction between the water to be treated and the crystallization layer, but when the treated water is circulated only through the crystallization layer, the crystallization reaction As a result, the pH decreases, and the crystallization ability of the crystallization layer decreases.

処理水の一部をpl+調整工程へ返送し被処理水ととも
にpHを調整して晶析層に通水することによりpHが低
下した処理水のpl+を再び8.5〜9.5に調整し、
晶析層におけるアパタイトの晶析を促進させることがで
きるゆ 本発明におけるカルシウムイオンの添加0は被処理水中
に含まれるカルシウムの原子数比が3対5の割合よりも
多くなるようにする。
A part of the treated water is returned to the PL+ adjustment process, the pH is adjusted together with the water to be treated, and the PL+ of the treated water whose pH has decreased is adjusted again to 8.5 to 9.5 by passing the water through the crystallization layer. ,
The addition of calcium ions in the present invention, which can promote the crystallization of apatite in the crystallization layer, is such that the atomic ratio of calcium contained in the water to be treated is greater than 3:5.

これは(1)式にも示したように晶析が進行するとリン
の除去と同時にカルシウムの除去が生じるためで、高度
にリンが除去されても最終の処理水中に40η/1以上
のカルシウムイオンを存在させることにより晶析層全体
での効率の低下を防止することができる。
This is because, as shown in equation (1), as crystallization progresses, calcium is removed at the same time as phosphorus is removed. By allowing the presence of , it is possible to prevent a decrease in efficiency in the entire crystallization layer.

また被処理水をアルカリでpH8,5〜95にコントロ
ールすることは(1)式にも示したようにカルシウムイ
オンと同様に水酸イオンが晶析反応を進行させるうえで
重要な因子となっているためであるが、従来の方法では
9.0以下の値が採用されている。これは90以上にす
ると炭酸カルシウムが生成しやすくなり、晶析層中のヒ
ドロキシアパタイト表面を′Fli覆して脱リン性能を
悪化させる恐れがあることと、凝集によるリンの除去が
生じ、リン酸カルシウムの汚泥が発生するためである。
In addition, controlling the pH of the water to be treated with an alkali to 8.5 to 95 means that hydroxide ions, like calcium ions, are an important factor in promoting the crystallization reaction, as shown in equation (1). However, in the conventional method, a value of 9.0 or less is adopted. If the value is 90 or more, calcium carbonate is likely to be generated, which may cover the hydroxyapatite surface in the crystallized layer and worsen the dephosphorization performance. This is because

しかし、被処理水中のアルカリ度が1100fIr#!
以下の場合、炭酸カルシウムの生成傾向は弱まり、p+
+は90以上にできる。またリンの凝集に関しては、リ
ン酸イオンが殆んど除去された処理水の一部を011調
整工程に返送して被処理水とともに循環することにより
pH調整工程でのリン濃度が低下し、pHを9.0以上
にしてもリンの凝集は生じにくい。
However, the alkalinity in the water to be treated is 1100fIr#!
In the following cases, the tendency to form calcium carbonate is weakened and p+
+ can be 90 or more. Regarding phosphorus aggregation, a part of the treated water from which most of the phosphate ions have been removed is returned to the 011 adjustment process and circulated together with the water to be treated, thereby reducing the phosphorus concentration in the pH adjustment process and increasing the pH. Even if it is set to 9.0 or more, phosphorus aggregation is unlikely to occur.

上述のような理由からアルカリ度の100m’J / 
f以下の被処理水の場合処理水を循環して被処理水と混
合しpHを8.5〜95に調整することにより処理水p
Hの低下を防止し晶析層仝休での脱リン性能を高めるこ
とができる。またこのとき炭酸カルシウムの生成による
骨炭の品析刊能低下もなく凝集によるリン酸カルシウム
汚泥の生成もないため長期間安定した脱リン性能を発圧
させることがでさろ。
For the reasons mentioned above, the alkalinity of 100 m'J/
In the case of treated water with pH below f, the treated water is circulated and mixed with the treated water to adjust the pH to 8.5 to 95.
It is possible to prevent a decrease in H and improve the dephosphorization performance during the crystallization layer suspension. In addition, at this time, there is no deterioration in the quality analysis ability of bone char due to the production of calcium carbonate, and no calcium phosphate sludge is produced due to coagulation, so it is possible to maintain stable dephosphorization performance over a long period of time.

また処理水の一部をpl+調整[程に返送して循環する
ことにより1vr述した効果とあり「、波9U理水と晶
析層の接触回数が増加することにより高い脱リン性能を
維持することができる。
In addition, by returning a portion of the treated water to PL+ adjustment and circulating it, the effect described above can be achieved by increasing the number of contacts between the wave 9U water and the crystallization layer, thereby maintaining high dephosphorization performance. be able to.

また返送される処理水の返送置部らp++調整I[程と
晶析層を12i環する循環水量は、処理水の流出組部ち
被処理水の流入最の05倍〜3倍が適当である。
In addition, it is appropriate that the amount of circulating water that circulates through the return section of the treated water and the crystallization layer should be 05 to 3 times the maximum amount of water that flows into the outflow section of the treated water and the inflow of the treated water. be.

処理水の返送量が処理水の流出口の0.5(”以下にな
ると、処理水の循環による前述の2つの効果(pl+の
低下防止と晶析層との接触回数の増加)が小さく、処理
成績として認められなくなり循環しない場合と同程度の
処理水となってしまう。
When the amount of treated water returned is less than 0.5" at the outlet of the treated water, the two effects mentioned above (preventing a drop in PL+ and increasing the number of contacts with the crystallization layer) due to circulation of the treated water are small. The treated water will not be recognized as a treatment result, and the treated water will be at the same level as if it were not circulated.

また処理水の返送量が処理水の流出]の3倍以上になる
と、今度は処理水の循環による前j出の2つの効果が0
.5〜3倍の場合と差が小さくなり、脱リン性能が低下
づるということはないが、処理成績に大きな寄与がなく
循環水量を増やす分だけ余分なエネルギーを消費するこ
とになる。
In addition, if the amount of returned treated water becomes three times or more than the amount of treated water flowing out, the two effects mentioned above due to the circulation of treated water will become zero.
.. The difference is smaller than in the case of 5 to 3 times, and the dephosphorization performance does not deteriorate, but it does not contribute much to the treatment results and extra energy is consumed by increasing the amount of circulating water.

以上の叩出により処理水の循環水量は流入水11の05
〜3 +8が適当となる。
Due to the above-mentioned beating, the amount of circulating water for treated water is 05 of inflow water 11
~3+8 is appropriate.

次に本発明の実施態様を第1図について説明する。被処
理水は原水流入管1を通じて、pH調整槽2に導入され
る。pH調!2漕2は撹ff II 3によって8合さ
れており、pH電電性4よってptE整槽整向2内Hが
測定され、調整シ14aにその信号が送られる。調整3
14aは1)11調整槽2内が一定pHになるようにア
ルカリ流入管5を通じてpl+調整(n2内にアルカリ
を導入させる。また、必要に応じてカルシウム剤がカル
シウム流入管6を通じてpH調整槽2内に゛」7人され
ろ。このようにしてカルシウムか添加され、pHを調整
された被処理水はnH調整(告2から流出管7を通じて
η出され、脱リン槽8の上部に)、・7人される。被処
理水は説リン槽8を下向流で通過する間に被処理水中の
リン酸イオンは脱リン槽8の骨炭を充填した固定床より
なる晶析層9に1g触してアバタイ1−とじで晶析除去
され、処理水流出管10を通じて導出されろ。処理水の
一部は処理水流出管10に接続された循環水管11を通
じて循環ポンプ12によりpH調整冶2に返送されて循
環ツる。
Next, an embodiment of the present invention will be described with reference to FIG. The water to be treated is introduced into a pH adjustment tank 2 through a raw water inflow pipe 1 . pH tone! The two tanks 2 are mixed together by the stirrer ff II 3, and the H inside the ptE tank alignment 2 is measured by the pH conductivity 4, and the signal is sent to the adjustment switch 14a. Adjustment 3
14a is 1) pl+ adjustment (introducing alkali into n2 through the alkali inflow pipe 5) so that the inside of the adjustment tank 2 has a constant pH.Also, if necessary, a calcium agent is added to the pH adjustment tank 2 through the calcium inflow pipe 6. In this way, calcium is added and the pH of the water to be treated is adjusted to nH (it is discharged from the tank 2 through the outflow pipe 7 and placed in the upper part of the dephosphorization tank 8). - 7 people are treated.While the water to be treated passes through the phosphorus tank 8 in a downward flow, 1g of phosphate ions in the water to be treated are transferred to the crystallization layer 9, which is a fixed bed filled with bone char, in the dephosphorization tank 8. The treated water is crystallized and removed by the abutment 1 and then led out through the treated water outflow pipe 10. A part of the treated water is passed through the circulating water pipe 11 connected to the treated water outflow pipe 10 and sent to the pH adjustment tank 2 by the circulation pump 12. It will be sent back and circulated.

(実施例) 直径50 mm 、高さ2000 tnmのアクリルカ
ラムに晶析層として粒径005〜1.0mm1.:″A
整した骨炭(Jでに6ケ月脱リン実験を行なっていたも
の)を2f!、充填した。別にpl+調整槽を設け、i
f”i F灰によって1)119.2にコン1へ[I−
ルした。消石灰を開用したの【まアルカリの添加とカル
シウムの添加を同時に17なうためである。戒灰埋水の
流量は961/日で、pH調整漕の流出水を前記カラム
に下向流で通して晶析(を通過させ処理水は一部をpH
調整槽に返送して循I潰した。循環水量は96り7日と
した。
(Example) An acrylic column with a diameter of 50 mm and a height of 2000 tnm was coated with a particle size of 0.05 to 1.0 mm as a crystallization layer. :″A
2F of prepared bone charcoal (which was subjected to 6 months of dephosphorization experiment at J)! , filled. A separate pl + adjustment tank is provided, i
f”i by F Ash 1) to Con 1 at 119.2 [I-
I did it. The reason why slaked lime was used was to add alkali and calcium at the same time. The flow rate of the ash burial water is 961/day, and the effluent from the pH adjustment tank is passed through the column in a downward flow for crystallization.
It was returned to the adjustment tank and crushed. The amount of circulating water was 96 days and 7 days.

その結果を第2図に示す。彼処理水のアルカリ度30〜
40Rg/ j! 、 PO4−P  3.5〜4.2
R’l/1で、処理水PO4−pは最初的0.9■/l
であったが、徐々に低下し、約0.3R’l/1となっ
た。
The results are shown in FIG. Alkalinity of treated water is 30~
40Rg/j! , PO4-P 3.5-4.2
At R'l/1, the treated water PO4-p is initially 0.9■/l
However, it gradually decreased to about 0.3 R'l/1.

pHは 8.0力\ら 84に」−臂した。The pH was 8.0 to 84.

比較例1 処理水の循環を行なわず、それ以外の条件はすべて実流
例と同様に行なった。
Comparative Example 1 The treated water was not circulated, and all other conditions were the same as in the actual flow example.

結果は第2図に示すように最初処理水 po4− pは約1.0■/1だったものが徐々に増加
し、約1.4η/1になった。pHは、8.0から 7
7に低下している。
As shown in Fig. 2, the po4-p of the treated water was initially about 1.0 η/1, but gradually increased to about 1.4η/1. pH is 8.0 to 7
It has fallen to 7.

比較例2 処理水の一部をpH調整槽に返送せずカラムの手前(第
1図の流出管7)に返送して循環させ、それ以外の条件
はすべて実施例と同様に行なった。
Comparative Example 2 A portion of the treated water was not returned to the pH adjustment tank, but was returned to the front of the column (outflow pipe 7 in FIG. 1) and circulated, and all other conditions were the same as in Examples.

結果は第2図に示すように、処理水の po4− pは最初的10η/1であったが、85日後
、約0.8η/1となったものの実施例の結果にははる
かに及ばない。
As shown in Figure 2, the po4-p of the treated water was initially 10η/1, but after 85 days it was about 0.8η/1, which was far below the results of the example. .

(発明の効果) 本発明によれば、処理水pl+の低下が復元され晶析層
との晶析反応が促進されるから、長期間安定した高い脱
リン性能を保持させることができる。
(Effects of the Invention) According to the present invention, since the decrease in treated water pl+ is restored and the crystallization reaction with the crystallization layer is promoted, stable and high dephosphorization performance can be maintained for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の一実施例を示す二[稈説明図、
第2図は処理水のPO4−P並にpHの杼口変化を示す
図表である。 9・・晶析層。
FIG. 1 shows an embodiment of the method of the present invention.
FIG. 2 is a chart showing changes in PO4-P and pH of the treated water. 9...Crystallization layer.

Claims (2)

【特許請求の範囲】[Claims] (1)リン酸イオンを含みかつアルカリ度が100mg
/l以下の被処理水にカルシウムイオンを加えるととも
にアルカリにより被処理水のpHを8.5〜9.5に調
整した後、この被処理水を骨炭を充填した晶析層に通水
してリン酸イオンを除去した処理水とし、この処理水の
一部を返送して被処理水とともにpH調整工程と晶析層
を循環させ処理水に残存したリン酸イオンをさらに除去
することを特徴とする水中リン酸イオンの除去方法。
(1) Contains phosphate ions and has an alkalinity of 100mg
After adding calcium ions to the water to be treated of less than /l and adjusting the pH of the water to be treated to 8.5 to 9.5 with an alkali, the water to be treated is passed through a crystallization bed filled with bone char. The process is characterized in that the treated water is treated with phosphate ions removed, and a part of this treated water is returned and circulated together with the water to be treated through a pH adjustment process and a crystallization layer to further remove the phosphate ions remaining in the treated water. How to remove phosphate ions in water.
(2)返送される処理水の返送量は、処理水の流出量の
0.5倍〜3倍であることを特徴とする特許請求の範囲
第1項記載の水中リン酸イオンの除去方法。
(2) The method for removing phosphate ions in water according to claim 1, wherein the amount of returned treated water is 0.5 to 3 times the amount of outflowed treated water.
JP17524586A 1986-07-25 1986-07-25 Removal of phosphate ion in water Pending JPS6331593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17524586A JPS6331593A (en) 1986-07-25 1986-07-25 Removal of phosphate ion in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17524586A JPS6331593A (en) 1986-07-25 1986-07-25 Removal of phosphate ion in water

Publications (1)

Publication Number Publication Date
JPS6331593A true JPS6331593A (en) 1988-02-10

Family

ID=15992797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17524586A Pending JPS6331593A (en) 1986-07-25 1986-07-25 Removal of phosphate ion in water

Country Status (1)

Country Link
JP (1) JPS6331593A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258284A (en) * 1989-03-03 1990-10-19 Fuji Xerox Co Ltd Ink recording method
US5976673A (en) * 1996-02-15 1999-11-02 Canon Kabushiki Kaisha Ink-jet printing cloth, ink-jet printing process and print
US6203888B1 (en) 1996-02-15 2001-03-20 Canon Kabushiki Kaisha Ink-jet printing cloth, ink-jet printing process and print
JP2005246249A (en) * 2004-03-04 2005-09-15 Ebara Corp Method for recovering phosphorus and its apparatus
US7954921B2 (en) 2004-05-30 2011-06-07 Kornit Digital Technologies Ltd. Digital printing apparatus
JP2013184110A (en) * 2012-03-07 2013-09-19 Mitsui Zosen Environment Engineering Corp Device for recovering phosphorus from phosphorus-containing water
JP2016002543A (en) * 2014-06-19 2016-01-12 水ing株式会社 Phosphorus recovery apparatus and method
US9550374B1 (en) 2007-06-27 2017-01-24 Cafepress Inc. System and method for improved digital printing on textiles
US9611401B2 (en) 2009-08-10 2017-04-04 Kornit Digital Ltd. Inkjet compositions and processes for stretchable substrates
US9616683B2 (en) 2010-08-10 2017-04-11 Kornit Digital Ltd. Formaldehyde-free inkjet compositions and processes
US11098214B2 (en) 2016-10-31 2021-08-24 Kornit Digital Ltd. Dye-sublimation inkjet printing for textile
US11447648B2 (en) 2004-05-30 2022-09-20 Kornit Digital Ltd. Process and system for printing images on absorptive surfaces
US11629265B2 (en) 2017-10-22 2023-04-18 Kornit Digital Ltd. Low-friction images by inkjet printing

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258284A (en) * 1989-03-03 1990-10-19 Fuji Xerox Co Ltd Ink recording method
US5976673A (en) * 1996-02-15 1999-11-02 Canon Kabushiki Kaisha Ink-jet printing cloth, ink-jet printing process and print
US6203888B1 (en) 1996-02-15 2001-03-20 Canon Kabushiki Kaisha Ink-jet printing cloth, ink-jet printing process and print
JP2005246249A (en) * 2004-03-04 2005-09-15 Ebara Corp Method for recovering phosphorus and its apparatus
JP4519485B2 (en) * 2004-03-04 2010-08-04 荏原エンジニアリングサービス株式会社 Phosphorus recovery method and apparatus
US7954921B2 (en) 2004-05-30 2011-06-07 Kornit Digital Technologies Ltd. Digital printing apparatus
US11447648B2 (en) 2004-05-30 2022-09-20 Kornit Digital Ltd. Process and system for printing images on absorptive surfaces
US9550374B1 (en) 2007-06-27 2017-01-24 Cafepress Inc. System and method for improved digital printing on textiles
US9611401B2 (en) 2009-08-10 2017-04-04 Kornit Digital Ltd. Inkjet compositions and processes for stretchable substrates
US10472533B2 (en) 2009-08-10 2019-11-12 Kornit Digital Ltd. Inkjet compositions and processes for stretchable substrates
US11021627B2 (en) 2009-08-10 2021-06-01 Kornit Digital Ltd. Inkjet compositions and processes for stretchable substrates
US11898048B2 (en) 2009-08-10 2024-02-13 Kornit Digital Ltd. Inkjet compositions and processes for stretchable substrates
US9616683B2 (en) 2010-08-10 2017-04-11 Kornit Digital Ltd. Formaldehyde-free inkjet compositions and processes
JP2013184110A (en) * 2012-03-07 2013-09-19 Mitsui Zosen Environment Engineering Corp Device for recovering phosphorus from phosphorus-containing water
JP2016002543A (en) * 2014-06-19 2016-01-12 水ing株式会社 Phosphorus recovery apparatus and method
US11098214B2 (en) 2016-10-31 2021-08-24 Kornit Digital Ltd. Dye-sublimation inkjet printing for textile
US11629265B2 (en) 2017-10-22 2023-04-18 Kornit Digital Ltd. Low-friction images by inkjet printing

Similar Documents

Publication Publication Date Title
US4917802A (en) Method for treating waste water
JPS6331593A (en) Removal of phosphate ion in water
JP5157040B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP3977757B2 (en) Dephosphorization method of waste water
JP3903591B2 (en) Treatment method for fluorine and phosphorus containing wastewater
JPS60179190A (en) Dephosphorizing apparatus
JP3077174B2 (en) Treatment method for fluoride-containing liquid
JPH04141293A (en) Dephosphorization apparatus
JP4337303B2 (en) How to remove sulfate ions
JPS6097090A (en) Treatment of water containing fluoride ion and sulfate ion
US4228003A (en) Method of removing phosphates from waste water
JP3921922B2 (en) Dephosphorization method
JPH0130554B2 (en)
JPH08141591A (en) Treatment of organic waste water
JPS61271087A (en) Treatment of waste water containing phosphate
JPH11277072A (en) Method and apparatus for treating waste water containing fluorine
JP2007021292A (en) Method for treating waste water containing phosphoric acid and zinc
JPS59169595A (en) Water disposal
JPH09308889A (en) Dephosphorizing apparatus
JP2002273456A (en) Dephosphorizing method and device therefor
JPS59156488A (en) Artificial dephosphorizing agent and dephosphorization
JPH0251678B2 (en)
JPS6229115B2 (en)
JPS632237B2 (en)
JPS61141996A (en) Treatment of waste water