JPH11277072A - Method and apparatus for treating waste water containing fluorine - Google Patents

Method and apparatus for treating waste water containing fluorine

Info

Publication number
JPH11277072A
JPH11277072A JP9992598A JP9992598A JPH11277072A JP H11277072 A JPH11277072 A JP H11277072A JP 9992598 A JP9992598 A JP 9992598A JP 9992598 A JP9992598 A JP 9992598A JP H11277072 A JPH11277072 A JP H11277072A
Authority
JP
Japan
Prior art keywords
fluorine
containing wastewater
waste water
added
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9992598A
Other languages
Japanese (ja)
Other versions
JP3918294B2 (en
Inventor
Satoshi Yo
敏 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP09992598A priority Critical patent/JP3918294B2/en
Publication of JPH11277072A publication Critical patent/JPH11277072A/en
Application granted granted Critical
Publication of JP3918294B2 publication Critical patent/JP3918294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable efficient treatment by a method in which the total amount of a calcium compound to be added into the total amount of waste water containing fluorine is added into part of the waste water to be reacted, the rest of the waste water is added stepwise into the obtained reaction liquid, and after the reaction, solid-liquid separation is done. SOLUTION: Part of waste water containing fluorine is introduced into the first reactor. The total amount of a calcium compound to be added into the total drainage is added, as required together with a pH adjusting agent, into the first reactor, agitation is done, and a CaF2 deposition reaction is carried out. The reaction liquid to be obtained is supplied to the second reactor, part of the rest of the waste water is introduced into the second reactor, agitation is done, and the CaF2 deposition reaction is carried out. The reaction liquid to be obtained is supplied to the third reactor, the rest of the waste water is introduced into the third reactor, agitation is done, and the CaF2 deposition reaction is carried out similarly. The reaction liquid to be obtained is sent to a solid-liquid separator to be separated into treated water and sludge by a similar method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子産業等におい
て排出される弗素含有排水の処理方法及び装置、詳しく
は弗化カルシウム析出反応を利用して弗素含有排水から
の弗素分の除去を可能とする弗素含有排水処理方法及び
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for treating fluorine-containing wastewater discharged in the electronics industry and the like, and more particularly, to the removal of fluorine from the fluorine-containing wastewater by utilizing a calcium fluoride precipitation reaction. Fluorine-containing wastewater treatment method and apparatus.

【0002】[0002]

【従来の技術】半導体や液晶基板等の製造分野やその関
連分野等の電子産業、金属表面加工処理産業などでは、
多量のエッチング剤が使用される。このエッチング剤と
して、弗化水素或いは弗化水素及び弗化アンモニウムを
主成分とするエッチング剤が主に使用されている。弗化
水素を主成分とするエッチング剤は、弗素をHFとして
例えば0.9%程度含み、大量に使用される。一方、弗
化水素及び弗化アンモニウムを主成分とするエッチング
剤(バッファード弗酸)は、使用量が少ないものの、弗
素をHFとして例えば7%程度含む。エッチング処理工
程からは、これらのエッチング剤がほぼそのまま流出す
ることが多く、高濃度弗素含有排水(処理工程排水)と
なる。一方、エッチング途中や終了時には、これらのエ
ッチング剤で処理された材料を大量の洗浄水で洗浄する
ため、かかる洗浄工程からは、大量の低濃度弗素含有排
水(洗浄工程排水)が排出される。このため、例えば、
半導体や液晶基板製造工程においては、小流量の弗素濃
度500〜10000mg/L(リットル)の高濃度弗
素含有排水と大流量の弗素濃度10〜50mg/Lの低
濃度弗素含有排水が排出されるのが一般的である。最も
一般的には、これらの両排水を混合し、弗素濃度100
〜200mg/L程度の弗素含有排水となるのが通常で
あるが、弗素濃度は各工場で相当に異なってくるので、
上記弗素濃度に限られない。
2. Description of the Related Art In the fields of manufacturing semiconductors and liquid crystal substrates and related fields, such as the electronics industry and the metal surface processing industry,
Large amounts of etchant are used. As this etching agent, an etching agent mainly containing hydrogen fluoride or hydrogen fluoride and ammonium fluoride is mainly used. The etching agent containing hydrogen fluoride as a main component contains fluorine in an amount of, for example, about 0.9% as HF and is used in a large amount. On the other hand, the etching agent (buffered hydrofluoric acid) containing hydrogen fluoride and ammonium fluoride as main components contains fluorine, for example, in an amount of about 7% as HF although the amount used is small. In many cases, these etching agents flow out of the etching process almost as they are, resulting in high-concentration fluorine-containing wastewater (treatment process wastewater). On the other hand, during the etching or at the end of the etching, since the material treated with these etching agents is washed with a large amount of washing water, a large amount of low-concentration fluorine-containing wastewater (washing process wastewater) is discharged from this washing step. Thus, for example,
In a semiconductor or liquid crystal substrate manufacturing process, a small flow of high-concentration fluorine-containing wastewater having a fluorine concentration of 500 to 10,000 mg / L (liter) and a large flow of low-concentration fluorine-containing wastewater having a fluorine concentration of 10 to 50 mg / L are discharged. Is common. Most commonly, these two wastewaters are mixed and the fluorine concentration is 100
It is usually about 200 mg / L of fluorine-containing wastewater, but since the concentration of fluorine varies considerably at each plant,
It is not limited to the above fluorine concentration.

【0003】上述のように、電子産業等において排出さ
れる高濃度弗素含有排水や低濃度弗素含有排水又はそれ
らの混合排水である弗素含有排水中にはエッチング剤と
して使われている弗酸等の形で弗素分が含まれている
が、弗素の放流基準は15mg/L以下とされており、
多くの自治体において更に厳しい上乗せ基準が設けられ
ており、その基準値が1〜8mg/L以下となっている
自治体も多い。
As described above, high-concentration fluorine-containing wastewater or low-concentration fluorine-containing wastewater discharged in the electronic industry or the like, or fluorine-containing wastewater that is a mixed wastewater thereof, contains hydrofluoric acid or the like used as an etching agent. Contains fluorine in the form, but the standard for releasing fluorine is 15 mg / L or less.
Many municipalities have stricter additional standards, and many municipalities have standard values of 1 to 8 mg / L or less.

【0004】これらの弗素含有排水を処理する従来の方
法としては、弗素含有排水に、例えば、塩化カルシウム
や消石灰〔Ca(OH)2 〕等のカルシウムイオンを発
生する物質(以下、「カルシウム化合物」と称する)を
添加し、弗化カルシウムとして晶析させてから固液分離
して弗素分を除去する方法が基本である。弗化カルシウ
ム晶析の反応式は、以下の通りである。 Ca2+ + 2F- = CaF2
As a conventional method for treating such fluorine-containing wastewater, a substance which generates calcium ions such as calcium chloride and slaked lime [Ca (OH) 2 ] (hereinafter referred to as “calcium compound”) is used as the fluorine-containing wastewater. Crystallization as calcium fluoride, followed by solid-liquid separation to remove fluorine. The reaction formula of calcium fluoride crystallization is as follows. Ca 2+ + 2F = CaF 2

【0005】[0005]

【発明が解決しようとする課題】低濃度弗素含有排水
は、上述の様な理由から弗素濃度が低いのは勿論である
が、一般的な電子産業工場から通常排出される高濃度弗
素含有排水と低濃度弗素含有排水との混合排水もその弗
素濃度が低濃度弗素含有排水に近い弗素濃度になること
が多い。そのため、このような弗素含有排水からの弗素
分除去の効率を悪くしている。CaF2 の20℃での溶
解度積Kspは、Ksp=〔Ca2+〕〔F-2 =3.
45×10-11 の式で表される。しかし、実際の排水で
は、カルシウム化合物の添加により〔Ca2+〕と
〔F- 2 の積が溶解度積に達し、また、これを多少越
えても、CaF2 が析出することは無く、常に準安定な
過飽和状態として溶液に存在する。そのため、過剰なカ
ルシウムイオン(カルシウム化合物)を投入してCaF
2 の過飽和状態を破壊すると共に、大過剰のポリ塩化ア
ルミニウム(PAC)等の無機凝集剤を添加し弗素を吸
着・共沈することにより処理水の水質を確保している
が、短時間で効率良く処理することは困難で、また、薬
品の無駄遣い、汚泥処理量の増加、処理水中への高濃度
のカルシウムイオンの残存、設備投資の増加等の問題点
を抱えている。また、上記の溶解度積の式から分かるよ
うに、F- イオン濃度が低下すればするほど、CaF2
の過飽和状態を破壊するために投入するCa2+イオンの
量は2乗の関係で増加し、低濃度のF- イオン(例え
ば、20〜30mgF- /L)を除去するためには、反
応槽内の排水を非常に高いCa2+イオン濃度(例えば、
1000mgCa2+/L以上)にしないと、F- イオン
をCaF2 析出物として除去することはできず、また、
このようにCa2+イオン濃度を高濃度にして弗素含有排
水を処理して得られる処理水はスケール発生の問題を伴
う。
The low-concentration fluorine-containing wastewater, of course, has a low fluorine concentration for the above-described reasons. However, the high-concentration fluorine-containing wastewater normally discharged from a general electronic industry factory is used. Wastewater mixed with low-concentration fluorine-containing wastewater often has a fluorine concentration close to low-concentration fluorine-containing wastewater. Therefore, the efficiency of removing fluorine from such fluorine-containing wastewater is deteriorated. The solubility product Ksp of CaF 2 at 20 ° C. is Ksp = [Ca 2+ ] [F ] 2 = 3.
It is represented by the formula of 45 × 10 −11 . However, in the actual wastewater, the product of [Ca 2+ ] and [F ] 2 reaches the solubility product due to the addition of the calcium compound, and even if the product slightly exceeds this, CaF 2 does not precipitate, and Present in solution as a metastable supersaturated state. Therefore, an excessive amount of calcium ions (calcium compound) is added to CaF
In addition to destroying the supersaturated state of 2, the water quality of the treated water is secured by adding a large excess of an inorganic coagulant such as polyaluminum chloride (PAC) and adsorbing and coprecipitating fluorine, It is difficult to treat well, and there are problems such as waste of chemicals, increase in sludge treatment amount, high concentration of calcium ions remaining in treated water, and increase in equipment investment. Also, as can be seen from the above solubility product equation, the lower the F - ion concentration, the more CaF 2
The amount of Ca 2+ ions supplied to destroy the supersaturated state of the gas increases in a square relation, and in order to remove low-concentration F ions (for example, 20 to 30 mgF / L), a reaction tank is required. Wastewater in the very high Ca 2+ ion concentration (for example,
If not more than 1000 mg Ca 2+ / L), F ions cannot be removed as CaF 2 precipitates,
In this way, the treated water obtained by treating the fluorine-containing wastewater with a high Ca 2+ ion concentration involves a problem of scale generation.

【0006】このような問題を解決するため、本出願人
は、先に、原水としての弗素含有排水を分割した一部
に、全排水に添加すべきカルシウムイオン(カルシウム
化合物)の全量を添加(注入)し、得られる反応液を残
りの大部分の弗素含有排水中に混合し、該反応液中に生
成したCaF2 の晶出物を種晶として用い、全排水から
弗素分を除去する所謂「原水分注方法」を提案した(特
開平6−312190号公報)。この方法により、多く
の弗素含有排水に対応できるようになった。
[0006] In order to solve such a problem, the applicant of the present invention first added the entire amount of calcium ions (calcium compound) to be added to the entire wastewater to a part of the fluorine-containing wastewater as raw water divided ( injection), and the resulting reaction solution was mixed into the fluorine-containing waste water remaining majority, with crystallized substances CaF 2 produced in the reaction mixture as seed crystals, to remove the fluorine content from the total water discharge so-called A "raw water injection method" was proposed (Japanese Patent Laid-Open No. 6-312190). With this method, it has become possible to cope with a large amount of fluorine-containing wastewater.

【0007】上述した様に、溶解度積式Ksp=〔Ca
2+〕〔F- 2 から分かるように、〔F- 〕は2乗で寄
与するため、〔Ca2+〕に比べてCaF2 の晶析反応に
及ぼす影響が格段に大きいが、現実にはこの弗化物イオ
ン濃度(〔F- 〕)を変えることができないため、原水
分注方法のように種晶を生成するための分割した一部の
原水(弗素含有排水)水量を減らせば種晶生成段階での
〔Ca2+〕を上げることができ、確実に種晶を形成させ
ることができる。問題は、種晶形成を確実とするため
に、該一部の原水水量を減らせばそれだけその中のF-
イオンの絶対量も減少し、生成する種晶の絶対量が減る
ことである。図3に示されるように種晶の量が足りない
と、残余の弗素含有排水の処理を効率的にできなくなる
ことがある。図3は、種晶の必要量を調べるために弗素
分としてNaFを含む模擬排水を用いて行なった実験の
結果を示すもので、種晶(予め弗化物イオン含有水にカ
ルシウムイオンを添加して得られたCaF2 析出物を用
いた)の濃度と処理水のF-イオン濃度の関係を示すグ
ラフを表す図である。詰まり、弗素含有排水中の弗素濃
度が非常に低い場合や各種の妨害イオン類等の妨害物が
共存する場合、上述のように原水分注方法に従って弗素
含有排水の一部に排水全量に添加すべきカルシウムイオ
ン(カルシウム化合物)の全量を添加しても、種晶の絶
対量を多くしようとして該一部の排水量を増やすと種晶
が生成しなかったり、または、種晶形成を確実とするた
めに、該一部の原水水量を減らすと生成した種晶の数が
足りなかったりすることがあるので、弗素含有排水処理
が困難になる場合がある。
As described above, the solubility product equation Ksp = [Ca
2+] [F -] As can be seen from 2, [F -] in order to contribute with the square, but is much greater effect on the crystallization reaction of CaF 2 as compared with [Ca 2+], in reality the fluoride ion concentration ([F -]) can not be changed, seed Reducing raw water (fluorine-containing waste water) water of the divided portion to produce a seed as raw water Note how [Ca 2+ ] in the production stage can be increased, and a seed crystal can be reliably formed. Problem, in order to ensure the seed formation, the correspondingly therein Reducing the raw water of said portion F -
The absolute amount of ions also decreases, and the absolute amount of seed crystals formed decreases. As shown in FIG. 3, if the amount of the seed crystal is insufficient, it may not be possible to efficiently treat the residual fluorine-containing wastewater. FIG. 3 shows the results of an experiment conducted using a simulated wastewater containing NaF as a fluorine component in order to examine the required amount of seed crystals. Seed crystals (calcium ions were added to fluoride ion-containing water in advance and water was added). FIG. 3 is a graph showing a relationship between the concentration of the obtained CaF 2 precipitate (using the obtained CaF 2 precipitate) and the F ion concentration of treated water. If clogging occurs and the fluorine concentration in the fluorine-containing wastewater is extremely low, or if interfering substances such as various interfering ions coexist, a part of the fluorine-containing wastewater is added to the entire wastewater according to the raw water injection method as described above. Even if the entire amount of calcium ions (calcium compound) to be added is added, if the amount of drainage is increased to increase the absolute amount of the seed crystal, no seed crystal is formed or the seed crystal is formed. In addition, if the amount of the raw water is partially reduced, the number of generated seed crystals may be insufficient, which may make it difficult to treat the fluorine-containing wastewater.

【0008】本発明は、かかる場合にも対応することが
できる弗素含有排水の効率的な処理方法及び装置を提供
することを目的とするものである。
An object of the present invention is to provide a method and an apparatus for efficiently treating fluorine-containing wastewater which can cope with such a case.

【0009】[0009]

【課題を解決するための手段】本発明者は上記目的を達
成すべく種々の検討を行った結果、特に低濃度弗素含有
排水等の弗素含有排水における種晶形成の確実性と種晶
の絶対量の上述の矛盾を以下の方法で解決することがで
きることを見出した。詰まり、弗素含有排水の一部に排
水全量に添加すべきカルシウム化合物の全量を添加、反
応させて種晶としてCaF2 の結晶を造るが、この場合
の該一部の弗素含有排水の量は種晶が確実に生成できる
量まで減らす。生成した種晶の量は残りの弗素含有排水
の全部に混合すると足りなくなるかも知れないが、この
問題は残余の弗素含有排水を更に分割することにより解
決できることが分かった。即ち、生成した種晶の量が充
分に足りる程度の量の残余排水の一部を該種晶を含む反
応液と混合し反応させると、該反応液中に残存するCa
2+イオンと主として該一部の残余排水に含まれるF-
オンとの析出反応を該種晶が促進するので、得られる反
応液中に含まれる種晶の量が最初の種晶の量より多くな
ることが分かった。そこで、この反応液を該反応液中に
含まれる種晶の量が充分に足りる程度の量の残余排水の
他の一部と混合し反応させる。このように段階的に種晶
を生成させ残余排水と反応させていくと、種晶量が増え
るにつれて、添加できる排水量も増えていき、最終的に
残余の排水の全部を効果的に処理することができる。
As a result of various studies to achieve the above object, the present inventor has found that certainty of formation of seed crystals and absolute absoluteness of seed crystals particularly in fluorine-containing wastewater such as low-concentration fluorine-containing wastewater. It has been found that the above mentioned discrepancies in quantity can be resolved in the following way. Clogging, a part of the fluorine-containing wastewater is added with the entire amount of the calcium compound to be added to the total amount of the wastewater and reacted to produce CaF 2 crystals as seed crystals. In this case, the amount of the fluorine-containing wastewater is partially Reduce to an amount where crystals can be reliably formed. Although the amount of seed crystals formed may be insufficient when mixed with all of the remaining fluorine-containing wastewater, it has been found that this problem can be solved by further dividing the remaining fluorine-containing wastewater. That is, when a part of the residual waste water having an amount sufficient to generate the seed crystal is mixed with the reaction solution containing the seed crystal and reacted, Ca remaining in the reaction solution is obtained.
Since the seed crystal promotes a precipitation reaction between 2+ ions and F ion mainly contained in the part of the residual waste water, the amount of the seed crystal contained in the obtained reaction solution is larger than the amount of the initial seed crystal. It turned out to be more. Therefore, this reaction solution is mixed with another portion of the residual waste water in an amount sufficient to contain the seed crystals contained in the reaction solution and reacted. When seed crystals are generated in a stepwise manner and reacted with residual wastewater, the amount of wastewater that can be added increases as the amount of seed crystals increases, and eventually all of the remaining wastewater is effectively treated. Can be.

【0010】即ち、本発明は、弗素含有排水にカルシウ
ム化合物を添加して排水中の弗素分を弗化カルシウムと
して除去するに当たり、弗素含有排水全量に添加すべき
カルシウム化合物の全量を前記弗素含有排水の一部に添
加、反応させ、得られる反応液に残余の大部分の弗素含
有排水を段階的に添加、反応させた後、固液分離を行う
ことを特徴とする弗素含有排水の処理方法を提供するも
のである。
That is, according to the present invention, when a calcium compound is added to a fluorine-containing wastewater to remove the fluorine content in the wastewater as calcium fluoride, the total amount of the calcium compound to be added to the total fluorine-containing wastewater is the same as the fluorine-containing wastewater. Of the fluorine-containing wastewater, characterized in that solid-liquid separation is performed after stepwise adding and reacting the remaining most of the fluorine-containing wastewater to the obtained reaction solution and reacting. To provide.

【0011】即ち、生成したばかりのCaF2 (ゾル状
のCaF2 )を含む反応液をそのまま順次段階的に残余
の弗素含有排水に供給して、ゾル状のCaF2 の表面で
残存Ca2+イオンと残余の弗素含有排水中のF- イオン
とのCaF2 晶出反応を効率的に進めて、安定した弗素
含有排水の処理を行うのである。
That is, the reaction solution containing freshly produced CaF 2 (sol-like CaF 2 ) is supplied to the remaining fluorine-containing wastewater sequentially and stepwise as it is, so that the remaining Ca 2+ remains on the surface of the sol-like CaF 2. F in the ion and residual fluorine-containing waste water - the CaF 2 crystallization reaction between ions proceed efficiently, it is performed a process of stable fluorine-containing waste water.

【0012】本発明の方法は、回分式に実施することも
できるし、図1や図2のように一連の反応槽を設け、連
続式に実施することもできる。連続式では、例えば、図
1に示す様に弗素含有排水の分割分と同じ数の反応槽を
設置し、最初の反応槽に少量の弗素含有排水と全部のカ
ルシウム化合物を添加、混合し、得られる反応液を順次
各反応槽へ送り、それぞれの反応槽において各反応槽に
分配された弗素化合物含有排水と混合し、反応させるこ
とができる。しかし、このような方法では、装置が複雑
になり、大きなスペースを要することになり、また、二
段目以降の反応槽は、その前の段の反応槽からの反応液
中に含まれるCaF2 を種晶として用いているのであ
り、各反応槽を完全に隔離する必要がないので、図2に
示す様に一つの弗素含有排水処理装置の内部を仕切り板
により分断し、各仕切られた空間をそれぞれ一つの反応
槽として弗素含有排水を処理するのが好ましく、こうす
れば非常に簡易且つコンパクトな弗素含有排水処理装置
を作ることができる。
The method of the present invention can be carried out batchwise, or can be carried out continuously by providing a series of reaction tanks as shown in FIGS. In the continuous method, for example, as shown in FIG. 1, the same number of reactors as the divided portion of the fluorine-containing wastewater are installed, and a small amount of the fluorine-containing wastewater and all the calcium compounds are added to the first reaction tank, mixed, and obtained. The reaction solution thus obtained is sequentially sent to each reaction tank, and in each reaction tank, it can be mixed and reacted with the fluorine compound-containing wastewater distributed to each reaction tank. However, in such a method, the apparatus becomes complicated and a large space is required. In addition, the second and subsequent reaction tanks contain CaF 2 contained in the reaction solution from the previous reaction tank. Is used as a seed crystal, and it is not necessary to completely isolate each reaction tank. Therefore, as shown in FIG. 2, the inside of one fluorine-containing wastewater treatment apparatus is divided by a partition plate, and each partitioned space is separated. Is preferably used as a single reaction tank for treating fluorine-containing wastewater, so that a very simple and compact fluorine-containing wastewater treatment apparatus can be manufactured.

【0013】即ち、本発明の方法は、弗素含有排水処理
装置内部を仕切り板により分断し、各段の仕切り空間に
供給する弗素含有排水の水量が順次増えるように弗素含
有排水を各段の仕切り空間に供給すると共に、その一段
目の仕切り空間の弗素含有排水に排水全量に添加すべき
カルシウム化合物の全量を添加、反応させる工程
(1)、得られる反応液を次の段の仕切り空間の弗素含
有排水に添加、反応させる工程(2)、得られる反応液
を更に次の段の仕切り空間の弗素化合物含有排水に添
加、反応させる工程(3)、必要に応じて、必要な回数
だけ更に次の段の仕切り空間において工程(3)と同様
の工程を繰り返した後、固液分離を行う方式で実施する
のが好ましい。なお、各段の仕切り空間に弗素含有排水
を均等に供給しても良いことは勿論である。
That is, according to the method of the present invention, the inside of the fluorine-containing wastewater treatment apparatus is divided by a partition plate, and the fluorine-containing wastewater is divided into the respective stages so that the amount of the fluorine-containing wastewater supplied to the partition space of each stage increases sequentially. Step (1) of supplying the total amount of the calcium compound to be added to the total amount of the wastewater to the fluorine-containing wastewater in the first-stage partition space and reacting the resultant reaction solution with the fluorine in the next-stage partition space. Step (2) of adding and reacting to the wastewater containing water, and step (3) of adding and reacting the obtained reaction solution to the wastewater containing the fluorine compound in the partition space of the next stage. It is preferable to perform the solid-liquid separation after repeating the same step as the step (3) in the partition space of the above step. It is needless to say that the fluorine-containing wastewater may be evenly supplied to the partition space of each stage.

【0014】また、本発明は、弗素含有排水処理装置内
部を仕切り板により少なくとも三段に分断して、各段の
仕切り空間を各反応槽として形成すると共に前段の反応
槽からの反応液を次段の反応槽に送供する構成とし、そ
の一段目の仕切り空間の反応槽に弗素含有排水全量に添
加すべきカルシウム化合物の全量を添加するカルシウム
化合物添加手段を設けると共に各反応槽に弗素含有排水
を分割して供給する排水供給手段を設けたことを特徴と
する弗素含有排水の処理装置をも提供するものである。
Further, according to the present invention, the interior of the fluorine-containing wastewater treatment apparatus is divided into at least three stages by a partition plate to form a partition space for each stage as each reaction tank, and the reaction solution from the preceding reaction tank is supplied to the next stage. The first tank is provided with calcium compound adding means for adding the total amount of calcium compound to be added to the total amount of fluorine-containing wastewater in the reaction tank in the first partition space, and the fluorine-containing wastewater is supplied to each reaction tank. Another object of the present invention is to provide an apparatus for treating fluorine-containing wastewater, which is provided with wastewater supply means for dividing and supplying wastewater.

【0015】全弗素含有排水に対する一段目の反応槽で
の排水分配率は、妨害物の有無などによっても変わって
くるが、原則的に弗素含有排水の弗化物イオン濃度
(〔F-〕)に依存しており、排水の弗化物イオン濃度
が低ければ低いほど、弗素含有排水分配率をどんどん下
げる必要がある。例えば、弗化物イオン濃度が50mg
/L(リットル)以上の場合、一段目の反応槽で排水分
配率を約1/25〜約1/5にするのが望ましく、弗化
物イオン濃度が50mg/L未満の場合、一段目の反応
槽での排水分配率を約1/200〜約1/20にするの
が望ましい。また、図3から分かるように、CaF2
晶の存在量も残余の弗素含有排水の処理効果に極めて大
きな影響を及ぼす。模擬排水の場合、種晶として10m
g/L以上のCaF2 が必要であったが、実際の弗素含
有排水の場合、妨害物等の影響によりケース・バイ・ケ
ースで異なるが、一般的に約10mg/L〜約200m
g/Lの範囲内のCaF2 量が必要である。従って、二
段目以降の各反応槽において種晶となるCaF2 の添加
量がケース・バイ・ケースで10〜200mg/Lの範
囲内の所定値以上になるように、弗素含有排水の分配率
を考慮すればよい。
The - ([F]) [0015] Drainage distribution ratio of the reaction vessel of the first stage to the total fluorine-containing waste water is varies also depending on the presence or absence of obstructions, principle of fluorine-containing wastewater fluoride ion concentration The lower the fluoride ion concentration in the wastewater, the more the fluorine-containing wastewater distribution rate needs to be reduced. For example, when the fluoride ion concentration is 50 mg
/ L (liter) or more, it is desirable to make the drainage distribution ratio in the first-stage reaction tank about 1/25 to about 1/5, and when the fluoride ion concentration is less than 50 mg / L, the first-stage reaction tank It is desirable that the drainage distribution ratio in the tank be about 1/200 to about 1/20. Further, as can be seen from FIG. 3, the amount of the CaF 2 seed crystal has a very large effect on the treatment effect of the remaining fluorine-containing wastewater. In case of simulated drainage, 10m as seed crystal
g / L or more of CaF 2 was necessary, but in the case of actual fluorine-containing wastewater, it varies from case to case due to the influence of obstacles and the like, but generally from about 10 mg / L to about 200 m
An amount of CaF 2 in the range of g / L is required. Thus, as the added amount of CaF 2 as a seed in each reaction vessel subsequent second stage is equal to or greater than a predetermined value in a range of 10 to 200 mg / L on a case-by-case, the distribution ratio of the fluorine-containing waste water Should be considered.

【0016】なお、特にカルシウム化合物を添加する段
階でCaF2 種晶を形成する助剤として適当な弗素化合
物を添加すればCaF2 種晶の数を増やすのに効果的で
ある場合もあるが、本発明の方法では弗素化合物の添加
を必要としない場合が多い。このような弗素化合物とし
ては、弗化ナトリウム、弗化アンモニウム、弗化カルシ
ウム等が好適で、珪弗酸塩は析出を妨害する逆作用を生
じることがあるため使用しない方が良い。なお、弗素化
合物の添加は、連続的に行なっても良いが、間歇的に行
なったり、或いは、CaF2 種晶の量(弗素含有排水の
流量と弗素濃度から計算できる)に応じて又は処理水の
弗素濃度を監視して弗素化合物の添加を制御してもよ
い。
In some cases, it is effective to increase the number of CaF 2 seed crystals by adding a suitable fluorine compound as an auxiliary for forming CaF 2 seed crystals, particularly at the stage of adding the calcium compound. In many cases, the method of the present invention does not require the addition of a fluorine compound. As such a fluorine compound, sodium fluoride, ammonium fluoride, calcium fluoride and the like are preferable, and silicate is not preferably used because it may cause an adverse effect of hindering precipitation. The addition of the fluorine compound may be performed continuously, but may be performed intermittently or in accordance with the amount of the CaF 2 seed crystal (which can be calculated from the flow rate of the fluorine-containing wastewater and the fluorine concentration) or the treated water. May be controlled by monitoring the fluorine concentration of the compound.

【0017】カルシウム化合物としては、塩化カルシウ
ム〔CaCl2 〕、消石灰〔Ca(OH)2 〕、炭酸カ
ルシウム〔CaCO3 〕等を用いることができる。カル
シウム化合物の添加量は、弗素濃度と排水流量によるフ
ィードフォワード制御でもよいが、カルシウムイオンモ
ニターを用いて処理後の排水中のカルシウムイオン濃度
によるフィードバック制御を行なうのがより好ましい。
As the calcium compound, calcium chloride [CaCl 2 ], slaked lime [Ca (OH) 2 ], calcium carbonate [CaCO 3 ] and the like can be used. The addition amount of the calcium compound may be feed-forward control based on the fluorine concentration and the flow rate of the waste water, but it is more preferable to perform feedback control based on the calcium ion concentration in the treated waste water using a calcium ion monitor.

【0018】カルシウムの添加量は原水(弗素含有排
水)の成分や処理水の要求水質により異なるが、一般的
には最終処理水の残留カルシウム濃度として200〜8
00mg/Lになるような過剰量である。これが200
mg/L未満では、処理水水質が悪くなる傾向があり、
800mg/Lを越えると経済性やスケール発生等の観
点から好ましく無い。
The amount of calcium to be added varies depending on the components of raw water (fluorine-containing wastewater) and the required quality of treated water.
It is an excessive amount so as to become 00 mg / L. This is 200
If the amount is less than mg / L, the quality of the treated water tends to deteriorate,
If it exceeds 800 mg / L, it is not preferable from the viewpoint of economy and scale generation.

【0019】また、処理水のpHは4以上であればCa
2 の再溶解も殆ど無く基本的に問題が無いが、最終反
応槽の処理水pHは4〜12、好ましくは4〜8の範囲
になることが望ましい。
If the pH of the treated water is 4 or more, Ca
Although there is almost no re-dissolution of F 2 and basically no problem, the pH of the treated water in the final reaction tank is desirably in the range of 4 to 12, preferably 4 to 8.

【0020】固液分離に供する全反応液は、直接的に膜
分離等の方法で固液分離してもよく、或いは、凝集剤を
用い、必要に応じてpH調整剤を添加してpH調整しつ
つ、凝集反応槽でCaF2 析出物を凝集反応させた後、
必要に応じて沈降槽(凝集反応槽を沈降槽としても用
い、沈降槽を省いてもよい)で沈降させて、上澄み処理
水と沈澱スラリーに分け、固液分離してもよい。また、
沈降槽の代わりに膜分離装置を使用してもよい。従っ
て、固液分離の手段として、必要に応じて、凝集沈澱処
理、凝集処理と膜分離の組み合わせ又は凝集処理を省略
して単に膜分離を行なってもよい。膜分離装置として
は、例えば、逆浸透膜、限外濾過膜、精密濾過膜等を使
用したものを挙げることができる。
The whole reaction solution to be subjected to solid-liquid separation may be directly subjected to solid-liquid separation by a method such as membrane separation, or a pH adjusting agent may be added by using a flocculant and, if necessary, adding a pH adjusting agent. While performing a coagulation reaction of CaF 2 precipitates in the coagulation reaction tank,
If necessary, the mixture may be settled in a sedimentation tank (the coagulation reaction tank may be used as a sedimentation tank, or the sedimentation tank may be omitted), separated into supernatant treated water and a precipitate slurry, and subjected to solid-liquid separation. Also,
A membrane separation device may be used instead of the settling tank. Therefore, as a means for solid-liquid separation, if necessary, the membrane separation may be performed simply by omitting the aggregation-precipitation treatment, the combination of the aggregation treatment and the membrane separation, or the aggregation treatment. Examples of the membrane separation device include those using a reverse osmosis membrane, an ultrafiltration membrane, a microfiltration membrane, and the like.

【0021】凝集剤としては、ポリ塩化アルミニウム
(PAC)や硫酸バンド等のアルミニウム系凝集剤、塩
化第二鉄等の鉄系凝集剤等を用いることができる。ま
た、多くの場合は凝集助剤として有機高分子凝集剤を併
用して、効果的な固液分離を図る。凝集剤の使用は、固
液分離の促進だけでなく、共沈効果による弗化物イオン
(F- )の一層の除去を図るためでもある。
As the coagulant, an aluminum coagulant such as polyaluminum chloride (PAC) or a sulfuric acid band, and an iron coagulant such as ferric chloride can be used. In many cases, an organic polymer flocculant is used in combination as a flocculant to achieve effective solid-liquid separation. The use of the flocculant is intended not only to promote solid-liquid separation, but also to further remove fluoride ions (F ) by a coprecipitation effect.

【0022】直接膜分離により固液分離して得た汚泥の
一部を直接的に一連の反応槽の何れか一つ以上に返送供
給することも、種晶量を増やすことができるので、所望
の処理を行うのに効果的である。ポリ塩化アルミニウム
(PAC)や硫酸バンド等のアルミニウム系の凝集剤を
用いた場合は、固液分離後の固形分を含む汚泥の少なく
とも一部を水酸化ナトリウムや水酸化カリウム等のアル
カリで処理し、アルミフロックを溶解させてから、例え
ば静置により固液分離を行い、上澄みの液体分を凝集反
応槽に返送添加して凝集剤として再利用すると共に、残
存沈澱スラリーを一連の反応槽の何れか一つ以上に返送
供給することも、種晶量を増やすことができるので、所
望の処理を行うのに効果的である。消石灰をカルシウム
化合物として使用する場合、その消石灰の一部又は全部
を上記汚泥を溶解するアルカリ剤として使用し、アルミ
フロック溶解後に得られる残存沈澱スラリーを一連の反
応槽の何れか一つ以上に返送供給するのが好ましい。
It is also possible to directly return a part of the sludge obtained by solid-liquid separation by direct membrane separation to one or more of a series of reaction tanks, because the amount of seed crystals can be increased. It is effective to perform the processing of. When an aluminum-based flocculant such as polyaluminum chloride (PAC) or a sulfuric acid band is used, at least a part of the sludge containing solids after solid-liquid separation is treated with an alkali such as sodium hydroxide or potassium hydroxide. After dissolving the aluminum floc, solid-liquid separation is performed, for example, by standing, and the supernatant liquid is returned to the coagulation reaction tank and reused as a coagulant. Returning to one or more of them is also effective for performing a desired treatment because the amount of seed crystals can be increased. When slaked lime is used as a calcium compound, part or all of the slaked lime is used as an alkali agent for dissolving the above-mentioned sludge, and the residual precipitate slurry obtained after dissolving the aluminum floc is returned to one or more of a series of reaction tanks. Preferably, it is supplied.

【0023】本発明の方法は、本発明者が特願平9−4
6927号において提案している弗素含有排水の処理方
法と組み合わせて実施することもできる。即ち、例え
ば、弗素含有排水を上述したような小流量の高濃度弗素
含有排水と大流量の低濃度弗素含有排水とに分別し、排
水全量に添加すべきカルシウム化合物の全量を高濃度弗
素含有排水の一部又は全部に添加、反応させ、得られる
反応液に残余の大部分の弗素含有排水を段階的に添加、
反応させた後、固液分離を行う方法を採ることもできる
(「高濃度弗素含有排水の一部」にカルシウム化合物の
全量を添加する場合は、残余の高濃度弗素含有排水を先
に使うのが、種晶量を容易に増やせるので好ましいのは
当然である)。この方法によれば、前述の溶解度積から
分かるように、F- イオン濃度が高い高濃度弗素含有排
水は、高濃度弗素含有排水と低濃度弗素含有排水との混
合排水に比べてCaF2 の晶析が著しく起こり易く、し
かも、高濃度弗素含有排水の一部又は全部に全排水に添
加すべきカルシウム化合物の全量を添加し、Ca2+イオ
ン濃度も高めてCaF2 析出反応を促進せしめるので、
種晶の形成がより確実且つ充分となる。
The method of the present invention is disclosed in Japanese Patent Application No. 9-4 / 1993.
It can also be carried out in combination with the method for treating fluorine-containing wastewater proposed in No. 6927. That is, for example, the fluorine-containing wastewater is separated into the small-flow high-concentration fluorine-containing wastewater and the large-flow low-concentration fluorine-containing wastewater as described above, and the entire amount of the calcium compound to be added to the entire wastewater is discharged. To a part or the whole of the reaction solution, and the remaining most fluorine-containing wastewater is added stepwise to the obtained reaction solution.
After the reaction, a solid-liquid separation method can be adopted. (When adding the entire amount of calcium compound to "part of the high-concentration fluorine-containing wastewater," use the remaining high-concentration fluorine-containing wastewater first. However, it is naturally preferable because the amount of seed crystals can be easily increased.) According to this method, as can be seen from the solubility product of the above, F - ion concentration is higher the high-concentration fluorine-containing waste water of crystallization CaF 2 as compared to the mixed waste water with high concentration fluorine-containing waste water and the low-concentration fluorine-containing waste water analysis occurs remarkably easy, moreover, was added the total amount of the high concentration of fluorine-containing calcium compound to be added to all the waste water in a part or all of the waste water, since allowed to promote CaF 2 precipitation reaction also enhanced Ca 2+ ion concentration,
Seed crystal formation is more reliable and sufficient.

【0024】[0024]

【発明の実施の形態】次に、図1と図2を参照しつつ、
本発明の実施の形態を具体的に説明するが、本発明がこ
れらに限定されるものでないことは言うまでも無い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, referring to FIGS.
Embodiments of the present invention will be specifically described, but it goes without saying that the present invention is not limited to these.

【0025】図1は、本発明による弗素含有排水の処理
方法の一例を表したフロー図である。一段目反応槽に原
水として弗素含有排水の一部を流入させる。反応槽の容
量は、後段になるに従って、大きくするのが好ましい。
また、全排水に添加すべきカルシウム化合物の全量と共
に必要に応じてpH調整剤を一段目反応槽に加え、攪拌
して、CaF2 析出反応を行なう。一段目反応槽では、
全排水に添加すべきカルシウム化合物の全量が添加され
るので、排水中のCa2+イオン濃度が極めて高くなり、
また、排水量が確実にCaF2 析出が生じる様な少量な
のでCaF2 は速やかに析出する。なお、CaF2 生成
反応においては、pHが4以上になれば、pHはCaF
2 析出反応に殆ど悪影響しないので、一段目反応槽のp
Hは必要に応じて4〜12の範囲内に調整すれば良く、
安定性の点では5〜12の範囲内にpH調整するのが好
ましい。なお、pHが4より低くなるとCaF2 析出物
の再溶解が起こることもあり、CaF2 析出反応が円滑
に進まないことがある。
FIG. 1 is a flow chart showing an example of a method for treating fluorine-containing wastewater according to the present invention. A part of the fluorine-containing wastewater is introduced into the first-stage reaction tank as raw water. It is preferable to increase the capacity of the reaction tank in a later stage.
Further, a pH adjuster is added to the first-stage reaction tank, if necessary, together with the total amount of the calcium compound to be added to the entire wastewater, and the mixture is stirred to perform a CaF 2 precipitation reaction. In the first stage reaction tank,
Since the entire amount of calcium compounds to be added to the entire wastewater is added, the Ca2 + ion concentration in the wastewater becomes extremely high,
Further, CaF 2 is quickly precipitated because wastewater is surely small amounts, such as CaF 2 precipitation occurs. In the CaF 2 generation reaction, if the pH becomes 4 or more, the pH becomes CaF 2
(2) Since there is almost no adverse effect on the precipitation reaction, p
H may be adjusted within the range of 4 to 12 as necessary.
In terms of stability, it is preferable to adjust the pH within the range of 5 to 12. If the pH is lower than 4, the CaF 2 precipitate may be redissolved, and the CaF 2 precipitation reaction may not proceed smoothly.

【0026】得られる反応液を一段目反応槽から二段目
反応槽に供給すると共に、残余の弗素含有排水の一部を
二段目反応槽へ流入させ、攪拌して、CaF2 析出反応
を行なう。二段目反応槽では、一段目反応槽からの反応
液中に含まれるCaF2 が種晶として働き、該反応液に
残存するカルシウム化合物と二段目反応槽へ流入した排
水中の弗素分が反応し、CaF2 が新たに形成されるの
で、次の三段目反応槽へ送られる種晶の量が増加する。
The obtained reaction solution is supplied from the first-stage reaction tank to the second-stage reaction tank, and a part of the remaining fluorine-containing wastewater is caused to flow into the second-stage reaction tank and stirred to carry out the CaF 2 precipitation reaction. Do. In the second-stage reaction tank, CaF 2 contained in the reaction solution from the first-stage reaction tank acts as a seed crystal, and the calcium compound remaining in the reaction solution and the fluorine content in the wastewater flowing into the second-stage reaction tank are reduced. As a result, CaF 2 is newly formed, so that the amount of seed crystals sent to the next third-stage reaction tank increases.

【0027】得られる反応液を二段目反応槽から三段目
反応槽に供給すると共に、残余の弗素含有排水を三段目
反応槽へ流入させ、攪拌して、同様にCaF2 析出反応
を行なう。図1の処理装置は、三つの反応槽を有する
が、4以上の反応槽としても良いことは勿論で、弗素含
有排水の弗素濃度や妨害物濃度等を勘案して、適当な反
応槽数を決めれば良い。
[0027] with the resultant reaction liquid is supplied to the third stage reaction vessel from the second stage reactor, the fluorine-containing wastewater residual flows towards the third stage reactor, stirred, similarly CaF 2 precipitation reaction Do. Although the treatment apparatus of FIG. 1 has three reaction tanks, four or more reaction tanks may be used, and an appropriate number of reaction tanks may be determined in consideration of the concentration of fluorine and the concentration of interfering substances in the fluorine-containing wastewater. Just decide.

【0028】二段目以降の反応槽中の排水pHの調整
は、必要に応じて、例えば、該排水pHが4〜12、好
ましくは4〜8の範囲内、更に好ましくはほぼ中性にな
るように一段目反応槽に予め過剰量のpH調整剤を添加
するようにしても、二段目以降の反応槽にpH調整剤を
添加して改めてpH調整するようにしても、一段目と二
段目反応槽にpH調整剤を添加して三段目反応槽へのp
H調整剤の添加を省くようにしても、いずれでもよい
が、具体的には、排水の安定性、設備の問題、使用する
薬品によって適宜に決めればよい。
The pH of the waste water in the second and subsequent reaction tanks is adjusted, if necessary, for example, so that the pH of the waste water is in the range of 4 to 12, preferably 4 to 8, and more preferably substantially neutral. Thus, an excessive amount of the pH adjuster may be added to the first-stage reaction tank in advance, or the pH may be adjusted again by adding the pH adjuster to the second and subsequent reaction tanks. Add a pH adjuster to the third-stage reaction tank and add p
The addition of the H adjuster may be omitted, but any method may be used. Specifically, it may be determined appropriately depending on the stability of drainage, problems with equipment, and the chemical used.

【0029】CaF2 の生成反応はイオン反応なので、
本質的にはこの反応は瞬間的に進行するが、析出反応は
上記の溶解度積や妨害因子などの影響を強く受ける。か
かる観点から、各段目反応槽での滞留時間は長い方が良
いのは勿論であるが、実際上は5〜45分程度とすれば
充分である。特に、二段目以降の反応槽での滞留時間
は、CaF2 の析出をできるだけ完全に行なわせる見地
から、長めにするのが好ましい。
Since the reaction for producing CaF 2 is an ionic reaction,
Essentially, this reaction proceeds instantaneously, but the precipitation reaction is strongly affected by the above-mentioned solubility product and interfering factors. From this viewpoint, it is of course better that the residence time in each stage reaction tank is longer, but in practice, it is sufficient to set the residence time to about 5 to 45 minutes. In particular, the residence time in the second and subsequent reaction tanks is preferably set to be longer from the viewpoint that CaF 2 is deposited as completely as possible.

【0030】得られる反応液を三段目反応槽から固液分
離装置に送り、前述したような方法により固液分離を行
い、処理水と汚泥に分ける。図示されていないが、汚泥
又は汚泥に由来する残存沈澱スラリーの一部を少なくと
も1以上の反応槽に返送供給し、該スラリー中に含まれ
るCaF2 を種晶として利用することができる。
The obtained reaction solution is sent from the third-stage reaction tank to a solid-liquid separation device, where it is subjected to solid-liquid separation by the method described above, and is separated into treated water and sludge. Although not shown, sludge or a part of the residual sediment slurry derived from sludge is returned to at least one or more reaction tanks, and CaF 2 contained in the slurry can be used as a seed crystal.

【0031】図2は、本発明による弗素含有排水の処理
方法の他の一例を表したフロー図且つ本発明の弗素含有
排水の処理装置の構成の概略図である。図1と異なり、
図2では、弗素含有排水処理装置内部を仕切り板により
五段に分断して、好ましくは供給される弗素含有排水の
量が順次増えるような各段の仕切り空間を各反応槽とし
て形成し、その一段目の仕切り空間(反応槽)に添加す
べきカルシウム化合物の全量を添加する様なカルシウム
化合物添加手段を設けたことを特徴とする。隣の仕切り
空間(反応槽)との間の液流通は、仕切り板の適当な箇
所に開口を設けてもよく、また、オーバーフロー方式と
してもよい。図2の弗素含有排水の処理装置を用いた本
発明の方法の実施形態は、図1の場合の実施形態と実質
的に同じなので、その説明を省略する。
FIG. 2 is a flow chart showing another example of the method for treating fluorine-containing wastewater according to the present invention, and is a schematic view of the structure of a fluorine-containing wastewater treatment apparatus according to the present invention. Unlike FIG. 1,
In FIG. 2, the inside of the fluorine-containing wastewater treatment device is divided into five stages by a partition plate, and a partition space of each stage is preferably formed as each reaction tank so that the amount of the supplied fluorine-containing wastewater is sequentially increased. It is characterized in that a calcium compound adding means for adding the whole amount of the calcium compound to be added to the first-stage partition space (reaction tank) is provided. For the flow of liquid between the adjacent partition space (reaction tank), an opening may be provided at an appropriate position of the partition plate, or an overflow method may be used. The embodiment of the method of the present invention using the apparatus for treating fluorine-containing waste water of FIG. 2 is substantially the same as the embodiment of FIG. 1, and thus the description thereof is omitted.

【0032】上述のような本発明の方法により排出され
る固形分(沈澱汚泥又はそれに由来する残存沈澱スラリ
ー)は、常法に従ってCaF2 の回収処理等の処理に付
される。回収CaF2 は、弗化水素酸製造用原料として
再利用することもできる。
The solid matter (precipitated sludge or residual sediment slurry derived therefrom) discharged by the method of the present invention as described above is subjected to a treatment such as a recovery treatment of CaF 2 according to a conventional method. The recovered CaF 2 can be reused as a raw material for producing hydrofluoric acid.

【0033】[0033]

【実施例】以下、実施例により本発明を詳細に説明する
が、本発明がこの実施例に限定されるもので無いことは
言うまでも無い。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples, but it goes without saying that the present invention is not limited to these Examples.

【0034】実施例1 弗化ナトリウムを純水に溶解して調製した弗化物イオン
濃度20mg/Lの原水(模擬排水)1L(リットル)
の中から10ml(ミリリットル)を1Lのビーカに移
し、1Lの原水全量に対しカルシウムイオン濃度が約3
00mg/Lになるように30重量%の塩化カルシウム
水溶液を3ml添加してからマグネチックスターラーに
より10分間撹拌した。10分間毎に反応液容量合計が
約30ml、約100ml、約300ml、そして約1
000mlとなるようにマグネチックスターラーで撹拌
しながら原水を小分けして添加した。得られた反応液を
固液分離せずに直接弗素電極法でその弗化物イオン濃度
を測定した。また、該反応液のカルシウムイオン濃度は
滴定法で測定した。処理結果を表1に示す。
Example 1 1 L (liter) of raw water (simulated waste water) having a fluoride ion concentration of 20 mg / L prepared by dissolving sodium fluoride in pure water
Transfer 10 ml (milliliter) from the mixture into a 1 L beaker, and adjust the calcium ion concentration to about 3
3 ml of a 30% by weight aqueous solution of calcium chloride was added so that the concentration became 00 mg / L, and the mixture was stirred with a magnetic stirrer for 10 minutes. Every 10 minutes, the total volume of the reaction solution is about 30 ml, about 100 ml, about 300 ml, and about 1 ml.
Raw water was added in small portions while stirring with a magnetic stirrer so that the volume became 000 ml. The fluoride ion concentration of the obtained reaction solution was measured by a direct fluorine electrode method without solid-liquid separation. The calcium ion concentration of the reaction solution was measured by a titration method. Table 1 shows the processing results.

【0035】比較例1及び2 また、比較のため、原水を2分割する所謂原水分注方法
によるテストも行った。即ち、比較例1では、弗化ナト
リウムを純水に溶解して調製した弗化物イオン濃度20
mg/Lの原水1Lの中から10mlを1Lのビーカー
に移し、1Lの原水全量に対しカルシウムイオン濃度が
約300mg/Lになるように30重量%の塩化カルシ
ウム水溶液を3ml添加してからマグネチックスターラ
ーにより撹拌し、25分後に残りの原水を添加し、更に
25分間攪拌、反応させた。この処理結果も表1に示
す。また、比較例2では、同様の原水1Lの中から10
0mlを1Lのビーカーに移し、以後、比較例1と同様
のテストを行った。この処理結果も表1に示す。なお、
実施例1及び比較例1と2は、操作手順以外の条件をで
きるだけ同一とすべく同時に並行して行った。
Comparative Examples 1 and 2 In addition, for comparison, a test was performed by a so-called raw water injection method in which raw water was divided into two parts. That is, in Comparative Example 1, a fluoride ion concentration of 20 prepared by dissolving sodium fluoride in pure water was used.
10 ml of 1 mg / L of raw water is transferred to a 1 L beaker, and 3 ml of a 30% by weight calcium chloride aqueous solution is added so that the calcium ion concentration becomes about 300 mg / L with respect to the total amount of 1 L of raw water. After stirring with a stirrer, 25 minutes later, the remaining raw water was added, and the mixture was further stirred and reacted for 25 minutes. Table 1 also shows the processing results. In Comparative Example 2, 10 L of the same raw water 1 L was used.
0 ml was transferred to a 1 L beaker, and the same test as in Comparative Example 1 was performed thereafter. Table 1 also shows the processing results. In addition,
Example 1 and Comparative Examples 1 and 2 were performed simultaneously in parallel to make the conditions other than the operating procedure as identical as possible.

【0036】[0036]

【表1】 ─────────────────────────────────── F- 濃度(mg/L) Ca2+濃度(mg/L) 分注率 ─────────────────────────────────── 実施例1 12 290 比較例1 20.1 306 1/100 比較例2 19.8 303 1/10 ───────────────────────────────────Table 1 ─────────────────────────────────── F - concentration (mg / L) Ca 2+ Concentration (mg / L) Dispensing rate ─────────────────────────────────── Example 1 12 290 Comparison Example 1 20.1 306 1/100 Comparative Example 2 19.8 303 1/10 ────

【0037】表1の結果から分かるように、原水を2分
割する従来の原水分注方法による比較例1と2と比べる
と、本発明の方法による実施例1では最終反応液のF-
イオン濃度がかなり低く、CaF2 の晶析反応がそれだ
け充分に進行したことを示しており、固液分離して得ら
れる処理水の水質もそれだけ良くなることが分かる。
As can be seen from the results shown in Table 1, in comparison with Comparative Examples 1 and 2 according to the conventional raw water injection method in which raw water is divided into two parts, in Example 1 according to the method of the present invention, F − of the final reaction solution was obtained.
The ion concentration is considerably low, indicating that the crystallization reaction of CaF 2 has proceeded sufficiently, and it can be seen that the quality of treated water obtained by solid-liquid separation also improves accordingly.

【0038】[0038]

【発明の効果】本発明によれば、先ず種晶形成が確実な
量である様な弗素含有排水の一部に排水全量に添加すべ
きカルシウム化合物の全量を添加する。こうすることに
より、CaF2 の溶解度積を大きく上回る〔Ca2+〕×
〔F- 2 の値で確実にCaF2 種晶を形成させること
ができる。得られる反応液に残余の弗素含有排水の一部
を加え、先に生成した該種晶を利用して反応させること
により、確実にCaF2種晶の量を増やすことができ
る。更に、得られる反応液を残余の弗素含有排水の全量
又は一部を加えて、増加した種晶を利用して反応させる
ことにより、より確実にCaF2 を析出させることがで
きる。本発明の方法では、必要に応じた回数だけ反応液
と残余の弗素含有排水との反応操作を繰り返すが、種晶
の増加に伴って、次の段の反応に供する弗素含有排水の
量を増やすことができる。このようにして得られる最終
反応液を固液分離して得られる処理水は、水質のより良
いものとなる。
According to the present invention, first, the whole amount of the calcium compound to be added to the total amount of the wastewater is added to a part of the fluorine-containing wastewater whose seed crystal formation is a certain amount. By doing so, [Ca 2+ ] × greatly exceeds the solubility product of CaF 2
A CaF 2 seed crystal can be reliably formed at the value of [F ] 2 . By adding a part of the remaining fluorine-containing wastewater to the obtained reaction solution and reacting by using the seed crystal previously generated, the amount of CaF 2 seed crystal can be surely increased. Further, by adding the whole or a part of the remaining fluorine-containing wastewater to the obtained reaction solution and reacting using the increased seed crystals, CaF 2 can be more reliably precipitated. In the method of the present invention, the reaction operation between the reaction solution and the remaining fluorine-containing wastewater is repeated as many times as necessary, but as the number of seed crystals increases, the amount of fluorine-containing wastewater to be supplied to the next-stage reaction is increased. be able to. The treated water obtained by solid-liquid separation of the final reaction solution thus obtained has better water quality.

【0039】このような本発明の方法を実施する装置と
して図2に示すような本発明の弗素含有排水処理装置を
用いれば、装置自体が簡易で、大きなスペースを要する
ことも無い。即ち、二段目以降の反応槽は、その前の段
の反応槽からの反応液中に含まれるCaF2 を種晶とし
て用いており、各反応槽を完全に隔離する必要がないの
で、図2に示す様に一つの弗素含有排水処理装置の内部
を仕切り板により分断し、各仕切られた空間をそれぞれ
一つの反応槽として弗素含有排水を処理する様に弗素含
有排水処理装置を構成するのが好都合である。
If the fluorine-containing wastewater treatment apparatus of the present invention as shown in FIG. 2 is used as an apparatus for carrying out the method of the present invention, the apparatus itself is simple and does not require a large space. That is, the second and subsequent reaction vessels use CaF 2 contained in the reaction solution from the preceding reaction vessel as a seed crystal, and it is not necessary to completely isolate each reaction vessel. As shown in FIG. 2, a fluorine-containing wastewater treatment apparatus is configured so that the inside of one fluorine-containing wastewater treatment apparatus is divided by a partition plate, and each partitioned space is treated as one reaction tank to treat the fluorine-containing wastewater. Is convenient.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明による弗素含有排水の処理方法
の一例を表したフロー図である。
FIG. 1 is a flow chart showing an example of a method for treating fluorine-containing wastewater according to the present invention.

【図2】図2は、本発明による弗素含有排水の処理方法
の他の一例を表したフロー図且つ本発明の弗素含有排水
処理装置の構成の概略図である。
FIG. 2 is a flow chart showing another example of the method for treating fluorine-containing wastewater according to the present invention, and is a schematic diagram of the configuration of a fluorine-containing wastewater treatment apparatus of the present invention.

【図3】図3は、種晶の必要量を調べるために模擬排水
を用いて行なった実験の結果を示すもので、種晶の濃度
と処理水のF- イオン濃度の関係を示すグラフを表す図
である。
FIG. 3 shows the results of an experiment conducted using simulated drainage to check the required amount of seed crystals, and is a graph showing the relationship between the concentration of seed crystals and the F - ion concentration of treated water. FIG.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 弗素含有排水にカルシウム化合物を添加
して排水中の弗素分を弗化カルシウムとして除去するに
当たり、弗素含有排水全量に添加すべきカルシウム化合
物の全量を前記弗素含有排水の一部に添加、反応させ、
得られる反応液に残余の大部分の弗素含有排水を段階的
に添加、反応させた後、固液分離を行うことを特徴とす
る弗素含有排水の処理方法。
When a calcium compound is added to a fluorine-containing waste water to remove fluorine content in the waste water as calcium fluoride, the whole amount of the calcium compound to be added to the whole fluorine-containing waste water is included in a part of the fluorine-containing waste water. Add, react,
A method for treating fluorine-containing wastewater, which comprises adding a large part of the remaining fluorine-containing wastewater to the obtained reaction solution in a stepwise manner, and then performing solid-liquid separation.
【請求項2】 弗素含有排水処理装置内部を仕切り板に
より分断し、各段の仕切り空間に供給する弗素含有排水
の水量が順次増えるように弗素含有排水を各段の仕切り
空間に供給すると共に、その一段目の仕切り空間の弗素
含有排水に排水全量に添加すべきカルシウム化合物の全
量を添加、反応させる工程(1)、得られる反応液を次
の段の仕切り空間の弗素含有排水に添加、反応させる工
程(2)、得られる反応液を更に次の段の仕切り空間の
弗素化合物含有排水に添加、反応させる工程(3)、必
要に応じて、必要な回数だけ更に次の段の仕切り空間に
おいて工程(3)と同様の工程を繰り返した後、固液分
離を行うことを特徴とする請求項1に記載の弗素含有排
水の処理方法。
2. A fluorine-containing wastewater treatment device is divided by a partition plate, and fluorine-containing wastewater is supplied to each stage partition space so that the amount of fluorine-containing wastewater supplied to each stage partition space increases sequentially. Step (1) of adding and reacting the entire amount of the calcium compound to be added to the total amount of the wastewater to the fluorine-containing wastewater in the first-stage partition space, and adding the resulting reaction solution to the fluorine-containing wastewater in the next-stage partition space; (2), adding the resulting reaction solution to the fluorine-containing wastewater in the next-stage partition space, and reacting (3), if necessary, in the next-stage partition space as many times as necessary. The method for treating a fluorine-containing wastewater according to claim 1, wherein the solid-liquid separation is performed after repeating the same step as the step (3).
【請求項3】 弗素含有排水処理装置内部を仕切り板に
より少なくとも三段に分断して、各段の仕切り空間を各
反応槽として形成すると共に前段の反応槽からの反応液
を次段の反応槽に送供する構成とし、その一段目の仕切
り空間の反応槽に弗素含有排水全量に添加すべきカルシ
ウム化合物の全量を添加するカルシウム化合物添加手段
を設けると共に各反応槽に弗素含有排水を分割して供給
する排水供給手段を設けたことを特徴とする弗素含有排
水の処理装置。
3. The fluorine-containing wastewater treatment apparatus is divided into at least three stages by a partition plate to form a partition space for each stage as each reaction tank, and the reaction solution from the preceding reaction tank to the next reaction tank. And a means for adding the total amount of calcium compound to be added to the total amount of fluorine-containing wastewater is provided in the reaction tank in the first partition space, and the fluorine-containing wastewater is divided and supplied to each reaction tank. A fluorine-containing wastewater treatment apparatus, comprising:
JP09992598A 1998-03-30 1998-03-30 Method and apparatus for treating fluorine-containing wastewater Expired - Fee Related JP3918294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09992598A JP3918294B2 (en) 1998-03-30 1998-03-30 Method and apparatus for treating fluorine-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09992598A JP3918294B2 (en) 1998-03-30 1998-03-30 Method and apparatus for treating fluorine-containing wastewater

Publications (2)

Publication Number Publication Date
JPH11277072A true JPH11277072A (en) 1999-10-12
JP3918294B2 JP3918294B2 (en) 2007-05-23

Family

ID=14260347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09992598A Expired - Fee Related JP3918294B2 (en) 1998-03-30 1998-03-30 Method and apparatus for treating fluorine-containing wastewater

Country Status (1)

Country Link
JP (1) JP3918294B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190967A (en) * 2001-12-25 2003-07-08 Kurita Water Ind Ltd Crystallization and dephosphorization method and apparatus
JP2004261640A (en) * 2003-02-12 2004-09-24 Nippon Chem Ind Co Ltd Dephosphorization method for waste water
JP2008119572A (en) * 2006-11-09 2008-05-29 Toyohashi Univ Of Technology Treatment method and its arrangement of halogen compound
JP2018134625A (en) * 2017-03-31 2018-08-30 メタウォーター株式会社 Waste water treatment system
CN112156631A (en) * 2020-10-10 2021-01-01 北京石晶光电科技股份有限公司 Artificial crystal plate corrosion volatile liquid treatment device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190967A (en) * 2001-12-25 2003-07-08 Kurita Water Ind Ltd Crystallization and dephosphorization method and apparatus
JP2004261640A (en) * 2003-02-12 2004-09-24 Nippon Chem Ind Co Ltd Dephosphorization method for waste water
KR101031160B1 (en) * 2003-02-12 2011-04-27 니폰 가가쿠 고교 가부시키가이샤 Method for removing phosphorus in wastewater
JP2008119572A (en) * 2006-11-09 2008-05-29 Toyohashi Univ Of Technology Treatment method and its arrangement of halogen compound
JP2018134625A (en) * 2017-03-31 2018-08-30 メタウォーター株式会社 Waste water treatment system
CN112156631A (en) * 2020-10-10 2021-01-01 北京石晶光电科技股份有限公司 Artificial crystal plate corrosion volatile liquid treatment device

Also Published As

Publication number Publication date
JP3918294B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
JP3169899B2 (en) Method and apparatus for treating fluorine-containing wastewater
WO2000003952A1 (en) Method for treating a fluorine-containing waste water and treating apparatus
JP4584185B2 (en) Method and apparatus for treating wastewater containing boron
JPH1085761A (en) Method and apparatus for treating drainage containing fluorine
JP2006255499A (en) Fluorine-containing wastewater treatment method and apparatus
JPH11277072A (en) Method and apparatus for treating waste water containing fluorine
JP2002292204A5 (en)
JP2002292204A (en) Crystallization reaction apparatus provided with means for controlling amount of raw water to be supplied and crystallization method to use the same
JP2007125510A (en) Method for treating fluorine-containing water
JP4508600B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP3399276B2 (en) Treatment method for fluorine-containing wastewater
JP4396965B2 (en) Heavy metal removal method and apparatus
JP3157347B2 (en) Treatment of wastewater containing fluorine compounds
JP3077174B2 (en) Treatment method for fluoride-containing liquid
WO2004071970A1 (en) Method for removing phosphorus in wastewater
JPH0315512B2 (en)
JP3349637B2 (en) Fluorine-containing wastewater treatment apparatus and method
JP4169996B2 (en) Method and apparatus for treating fluorine-containing wastewater
JPH1057969A (en) Fluorine-containing waste water treating device and its treatment
JP2002346574A (en) Boron-containing water treatment method
JPH1034166A (en) Apparatus for treating fluorine-containing waste water and method therefor
KR20060118291A (en) Effluent treatment equipment
JP2598456B2 (en) Treatment method for phosphate-containing water
JP2002292205A5 (en)
JP2001129560A (en) Method and apparatus for treating phosphorus- containing water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees