WO2004071970A1 - Method for removing phosphorus in wastewater - Google Patents

Method for removing phosphorus in wastewater Download PDF

Info

Publication number
WO2004071970A1
WO2004071970A1 PCT/JP2004/001417 JP2004001417W WO2004071970A1 WO 2004071970 A1 WO2004071970 A1 WO 2004071970A1 JP 2004001417 W JP2004001417 W JP 2004001417W WO 2004071970 A1 WO2004071970 A1 WO 2004071970A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystallization
crystallization tank
tank
slurry
wastewater
Prior art date
Application number
PCT/JP2004/001417
Other languages
French (fr)
Japanese (ja)
Inventor
Rokurou Aoki
Hajime Inagaki
Original Assignee
Nippon Chemical Industrial Co., Ltd
Hipotech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co., Ltd, Hipotech Inc filed Critical Nippon Chemical Industrial Co., Ltd
Publication of WO2004071970A1 publication Critical patent/WO2004071970A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5209Regulation methods for flocculation or precipitation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Definitions

  • the present invention relates to a method for dephosphorizing wastewater, and more particularly, to a method for dephosphorizing wastewater in which sedimentation and separation of hydroxyapatite from a phosphoric acid-containing wastewater without using a flocculant.
  • Patent Document 1 discloses that after contacting water containing phosphate with a crystal seed containing calcium phosphate in the presence of calcium ions, A method for treating phosphate-containing water in contact with activated alumina is disclosed.
  • Patent Document 2 discloses a method of removing organic solid wastewater in a biological treatment step, and then removing a particulate solid phosphorus containing calcium phosphate. A method for contact treatment is disclosed.
  • Japanese Patent Application Laid-Open No. 62-382921 of Patent Document 3 discloses that in removing a phosphorus compound contained in wastewater, a cement pretreated with ion phosphate as a dephosphorizing crystallization material is disclosed.
  • a dephosphorization treatment method using is disclosed. Any of these methods is a dephosphorization treatment method by a crystallization separation method by contact.
  • wastewater from chemical plants that produce or use yellow phosphorus, phosphoric acid, phosphates, and phosphorus compounds, and wastewater from electroless plating plants that use hypophosphorous acid as a reducing agent are, for example, oxidized.
  • the wastewater containing orthophosphate ions will be treated.
  • the concentration of phosphoric acid in the water to be treated is as high as 300 to 30,000 ppm.
  • JP-A-56-33082 (Claims 1 to 3)
  • Patent Document 3 Patent Document 3
  • Patent Document 4 Patent Document 4
  • JP-A-2001-70951 of Patent Document 4 discloses that a calcium compound and sludge are mixed in a sludge preparation tank, for example, for 5 days or more, particularly for 7 to 50 days. After a long residence time as described above, the mixture is mixed with phosphorus-containing water in a reaction tank consisting of one tank to obtain a calcium salt of phosphorus, and a coagulant such as polyacrylamide is added to perform coagulation sedimentation treatment.
  • a method has been developed for treating phosphorus-containing water that is returned after a part of the sludge obtained by solid-liquid separation is adjusted to pH 7 to 12.
  • the use of a flocculant increases the processing cost, and also has a problem that sludge excellent in filterability cannot be obtained.
  • an object of the present invention is to remove phosphoric acid in wastewater without using a flocculant and to produce a hydroxyapatite having excellent filterability and dewaterability from wastewater containing phosphoric acid.
  • An object of the present invention is to provide a dephosphorization method. Disclosure of the invention
  • the present invention uses a treatment apparatus arranged in series in the order of a first crystallization tank, a second crystallization tank, and a sedimentation tank, and uses a treatment apparatus for crystallizing and separating a hydroxy oxyaluminate from a phosphoric acid-containing wastewater.
  • the pH of the phosphoric acid-containing wastewater, calcium chloride, and the returned hydroxyapatite slurry returned from the settling tank are adjusted with a pH adjusting agent.
  • the slurry obtained in the first crystallization step and the slurry obtained in the first crystallization step are flowed into the second crystallization tank, and calcium chloride and a pH adjuster are added to the first crystallization tank. Further reaction crystallization was carried out at a pH higher than PT / JP2004 / 001417
  • the slurry obtained in the second crystallization step is flowed into a settling tank, sedimentation and separation are performed, the supernatant liquid is treated as treated water, and discharged out of the system. It is intended to provide a method for dephosphorizing waste water, which is characterized by using the returned hydroxyapatite slurry.
  • FIG. 1 is an example of a treatment apparatus used in the method for dephosphorizing waste water of the present invention
  • FIG. 2 is a graph showing a dissolution curve of hydroxyapatite.
  • the method for dephosphorizing wastewater according to the present invention comprises a first crystallization step, a second crystallization step, a second crystallization step, and a treatment apparatus arranged in series in the order of a first crystallization tank, a second crystallization tank, and a sedimentation tank. Sedimentation is performed sequentially, and hydroxyapatite is separated by crystallization from the wastewater containing phosphoric acid to be treated.
  • the phosphoric acid-containing wastewater is not particularly limited, and includes, for example, wastewater containing phosphoric acid from several ppm to several weight%, and among them, the phosphoric acid concentration is particularly preferably 100 ppm to 100,000. Suitable for dephosphorization of wastewater containing high concentration of 0 ppm. Specifically, wastewater from a phosphoric acid production plant, a fertilizer plant, a metal surface treatment plant, an electroless plating plant, or a semiconductor component production process, general household wastewater, and sewage treatment wastewater.
  • the calcium chloride is not particularly limited, and industrially available calcium chloride may be used.
  • Returned HAP slurry refers to HAP slurry concentrated in the sedimentation tank, and the amount supplied per unit time to the first crystallization tank is supplied to the first crystallization tank.
  • the amount of phosphoric acid-containing wastewater supplied per unit time is 100 parts by volume or more, preferably 50 parts by volume or more, and more preferably 100 parts by volume or more.
  • the supply amount per unit time converted to the solid content of the returned HAP slurry supplied to the first crystallization tank was calculated by converting the phosphoric acid contained in the phosphoric acid-containing wastewater supplied to the first crystallization tank to HAP.
  • the amount is 2500 parts by weight or more, preferably 4000 parts by weight or more, per 100 parts by weight of the supply amount per unit time.
  • the HAP produced in the first crystallization tank is brought into contact with a large amount of HAP seed crystals that are 25 times or more the weight of HAP to precipitate HAP crystals on the HAP particles, and the increased HAP is used in the equipment. By circulating 25 times or more through the inside, HAP with a large particle size of Stokes diameter of 10 zm or more and excellent sedimentation and filtration properties can be obtained.
  • the concentration of the solid content of the returned HAP slurry is preferably always 2% by weight or more. If the concentration is less than 2% by weight, the amount of seed crystals is too small and HAP is not crystallized on the seed crystals of the returned HAP slurry.
  • the supply amount of calcium chloride supplied to the first crystallization tank per unit time is determined by converting the phosphoric acid in the phosphoric acid-containing wastewater supplied to the first crystallization tank to HAP. It is to be less than the theoretical equivalent.
  • the reason for keeping the stoichiometric equivalent or less is that in the first crystallization tank, the reaction crystallization is performed in a state where the phosphate ion concentration is high, so the calcium ion, which is the other substance in the reaction, is reduced to reduce the HAP. This is because the solubility increases and the degree of supersaturation can be reduced, and the generation of primary nuclei, which are fine crystals, can be suppressed.
  • the pH in the first crystallization tank is adjusted to 5.5 to 8.0, preferably to 6.5 to 7.5.
  • the pH adjustment in this case is different from that of pure water, and is between the first and second neutralization points containing phosphate ions. Therefore, pH can be adjusted relatively easily. If the pH is adjusted to 5.5 to 8.0 in the first crystallization tank, the solubility of HAP in the first crystallization tank increases and the supersaturation decreases, so the primary nucleus Generation is suppressed. If the pH is less than 5.5, the crystallized HAP is easily dissolved, which is not preferable.
  • Examples of the pH adjusting agent used in the first crystallization tank include a basic solution such as sodium hydroxide and a hydrolyzate, and an acidic solution such as hydrochloric acid and nitric acid.
  • a basic solution such as sodium hydroxide and a hydrolyzate
  • an acidic solution such as hydrochloric acid and nitric acid.
  • Sodium hydroxide is preferable as the basic solution
  • hydrochloric acid is preferable as the acidic solution.
  • calcium hydroxide which is a basic solution, is inexpensive, it affects calcium ion concentration as well as pH adjustment. Therefore, when used, it is preferable to use it in combination with sodium hydroxide.
  • the pH adjuster used in the first crystallization tank is a basic solution
  • the basic solution is preferably mixed with the returned hydroxyapatite slurry and then supplied to the first crystallization tank.
  • the returned HAP slurry has the lowest phosphate ion concentration in the apparatus and is highly alkaline and is optimal as a diluent for basic solutions. This is because the water is supplied to the first crystallization tank, and the pH is not too high locally in the first crystallization tank, and it is difficult to generate fine HAP.
  • the acidic solution is preferably mixed with the phosphoric acid-containing wastewater and then supplied to the first crystallization tank.
  • the acidic solution which is a pH adjuster
  • the acidic solution is diluted, increased, and dispersed in a large amount of wastewater containing phosphoric acid before it is supplied to the first crystallization tank. This is because the pH does not locally decrease and HAP does not dissolve.
  • the phosphoric acid-containing wastewater mixed with the acidic solution no change such as precipitation of crystals was observed.
  • the location where calcium chloride is added in the first crystallization tank is not particularly limited. JP2004 / 001417
  • the mixed solution with the phosphoric acid-containing wastewater it is preferable to supply the mixed solution with the phosphoric acid-containing wastewater to the first crystallization tank.
  • the reason for this is diluted, ⁇ amount of calcium chloride, when dispersed in advance phosphoric acid-containing waste water, there can be the C a HP 0 4 ⁇ 2 H 2 0 crystals (second phosphate calcium-'dihydrate)
  • 2 mol of hydrochloric acid is generated at the same time, it is better to handle it in the same way as the above-mentioned acidic solution.Also, it is possible to avoid a local high concentration of calcium ion in the first crystallization tank, This is because the generation of an HAP crystal can be suppressed.
  • the HAP slurry obtained in the first crystallization tank is flowed into the second crystallization tank, calcium chloride is added, and the pH is at least higher than the pH of the first crystallization tank, and p H 11 or less, preferably 8.7 or less further causes reaction crystallization. That is, in the second crystallization tank, the concentration of phosphoric acid in the treated water is reduced as much as possible by controlling the region to a high pH region and a high calcium ion concentration region. If the pH exceeds 11 in the second crystallization tank, calcium carbonate and calcium hydroxide are generated, which results in increased consumption of calcium chloride, which is not preferable.
  • Examples of the pH adjusting agent used to keep the pH in the second crystallization tank within the above range include those similar to those used in the first crystallization tank.
  • sodium hydroxide is preferable as the pH adjuster for changing the liquidity to the basic side.
  • the amount of calcium chloride supplied to the second crystallization tank per unit time is the amount required to convert the equivalent of calcium chloride used in the first crystallization tank and the phosphoric acid in the phosphoric acid-containing wastewater into apatite.
  • the excess is at least 10% by weight or more, preferably 20% by weight or more based on the theoretical equivalent. If the added amount of calcium chloride is insufficient, the unreacted phosphoric acid corresponding to the insufficient amount will flow out.
  • the slurry obtained in the second crystallization tank is flowed into the sedimentation tank, sedimentation and separation are performed, the supernatant liquid is treated water, discharged out of the system, and concentrated.
  • the specific amount of the returned HAP slurry is appropriately selected depending on the pH and average reaction time in the first crystallization tank, the concentration of the returned HAP slurry, the particle size of the HAP, and the like, within a range where the treated water does not become cloudy.
  • the supply amount of the returned HAP slurry to be supplied to the first crystallization tank per unit time is as described above, but preferably the phosphorus supplied to the first crystallization tank is not limited.
  • the amount is 50 to 400 parts by volume, preferably 100 to 200 parts by volume, per 100 parts by volume of supply of acid-containing wastewater per unit time.
  • the returned HAP slurry does not sufficiently act as seed crystals in the first crystallized layer, and fine HAP crystals are generated other than the seed crystals to cause sedimentation and separation. Difficult and undesired because the treated water is easily clouded. Also, if the returned amount exceeds 400 parts by volume, the surface area of the HAP seed crystal increases, but the concentration of phosphoric acid in the first crystallization tank becomes too low due to excessive dilution, and the crystallization rate of HAP decreases. However, the average reaction time is shortened and the concentration of phosphoric acid in the treated water is increased, so it seems that there is an appropriate range.
  • one or more crystallization tanks can be further provided between the first crystallization tank and the sedimentation tank, and the pH in the crystallization tank is the pH in the second crystallization tank. It is preferably higher or the same as it goes downstream, and it is preferably within the range of PH 11 or less.
  • the crystallization action in the method for dephosphorizing waste water of the present invention is to control so as not to generate fine HAP having poor sedimentation such as a Stokes diameter of 1 zm or less in the first crystallization tank.
  • HAP is deposited on the surface of the returned HAP particles, and the HAP particles are grown.
  • the Stokes diameter here is the equivalent diameter of a particle obtained by assuming that the particle is spherical based on the measured sedimentation velocity according to Stokes' law of resistance.
  • the sedimentation velocity is 3.2 mm / h at l ⁇ m and 3201 at 10 ⁇ 111] [1111 / h.
  • HAP seed crystals which are more than 25 times as large as HAP produced per unit time under the control of pH and calcium, and HAP particles are generated.
  • HAP deposited on the top and slightly increased in particle size makes it possible to obtain HAP with a large particle size of 10 m or more and good sedimentation and filtration properties by circulating in the tank. .
  • FIG. 2 shows the vertical axis phosphoric acid concentration (phosphorus content), and the horizontal axis: shows the dissolution curve of Hydro O carboxymethyl ⁇ Pas tie bets in the case of the pH [Ca 5 (OH) ( P 0 4) 3] .
  • A is the dissolution curve of HAP at the calcium ion concentration Omg / l in the aqueous solution
  • B is the dissolution curve of HAP at 4 Omg / l
  • C is the dissolution curve of HAP at 10 Omg / l. It is a curve. That is, FIG. 2 shows the relationship between the phosphate concentration, calcium ion concentration and pH in the production and dissolution of HAP.
  • a crystallization treatment that does not produce finer crystals is performed (approximately X region in FIG. 2). Then, in the crystallization treatment after the second crystallization tank, a high pH region and a high calcium ion concentration region are selected ( (Approximately Y region in Fig. 2) This is to reduce the concentration of phosphoric acid in the treated water sufficiently. It should be noted that the X region and the Y region in FIG. 2 are merely described for convenience of explanation, and are not strict or limit the present invention.
  • FIG. 10 An example of a processing apparatus for performing the wastewater dephosphorization method of the present invention is shown by a flow sheet in FIG.
  • the processing apparatus 10 is arranged in series in the order of a first crystallization tank 1, a second crystallization tank 2, and a settling tank 3.
  • the tandem arrangement means that the phosphoric acid-containing wastewater is treated in the order of the first crystallization tank, the second crystallization tank, and the sedimentation tank, and specifically, treated in the first crystallization tank. It means that the treatment liquid treated in the second crystallization tank is supplied to the settling tank while the treatment liquid is supplied to the second crystallization tank.
  • FIG. 10 An example of a processing apparatus for performing the wastewater dephosphorization method of the present invention is shown by a flow sheet in FIG.
  • the processing apparatus 10 is arranged in series in the order of a first crystallization tank 1, a second crystallization tank 2, and a settling tank 3.
  • the tandem arrangement means that the phosphoric acid-containing wastewater is treated in the order of the
  • the pipe for supplying the processing solution treated in the first crystallization tank 1 to the second crystallization tank 2 is denoted by 21 as a first overflow pipe
  • the second crystallization tank 2 A pipe for supplying the processing solution treated in the above only to the settling tank 3 is denoted by 31 as a second overflow pipe.
  • the first crystallization tank and the second crystallization tank are preferably complete mixing tanks that can stir the liquid in the entire tank up and down so that the crystallization reaction can proceed relatively smoothly.
  • a return pipe 14 connected to the first crystallization tank 1 is provided below the settling tank 3, and a slurry pump 16 is provided in the set pipe 14. The lowered HAP slurry is supplied to the first crystallization tank 1 by a slurry pump 16.
  • the slurry is extracted into the slurry tank, and the HAP cake is taken out once a day or three days by a fill and press machine.
  • the first crystallizer 1 and the second crystallization vessel 2 has a diameter 2 4 0 0 thigh, height 4 2 0 0 mm, an effective volume 1 6 m 3, and diameter under water at the center of the vessel
  • a complete mixing tank capable of vertically flowing the liquid or slurry was used.
  • raw water of phosphoric acid-containing wastewater discharged from a plurality of facilities was introduced into raw water tank 4 via pipe 41, and mixed in raw water tank 4 to make the concentration uniform.
  • the wastewater containing phosphoric acid in the raw water tank 4 had the composition shown in Table 1.
  • the calcium chloride slurry in the calcium chloride storage tank 8 and the sodium hydroxide aqueous solution in the sodium hydroxide storage tank 7 were prepared to have the compositions shown in Table 1, respectively. The operation in this example was performed in a steady state.
  • the phosphoric acid-containing wastewater was supplied from the raw water tank 4 to the liquid surface of the first crystallization tank 1 via the pipe 11 using the pump 15 under the conditions shown in Table 2 “Phosphoric acid-containing wastewater”.
  • the pipe 12 connected to the calcium chloride storage tank 8 was connected just before the pipe 11 to the first crystallization tank, and the phosphoric acid-containing wastewater and the chloride slurry were mixed before the first crystallization tank was mixed.
  • the calcium chloride slurry was supplied using a pump 24 under the conditions shown in Table 2 “Calcium chloride solution”.
  • the returned HAP slurry was supplied onto the liquid surface of the first crystallization tank 1 via the pump 16 and the return pipe 14 under the conditions shown in Table 2.
  • sodium hydroxide solution It was supplied appropriately from the storage tank 7 and adjusted so that the pH in the first crystallization tank 1 became the value shown in Table 2.
  • the pipe 22 leading to the sodium hydroxide storage tank 7 was connected to the return pipe 14 so as to join immediately before the first crystallization tank, and the aqueous sodium hydroxide solution and the returned HAP slurry were mixed. After that, it was supplied to the first crystallization tank.
  • the average residence time in the first crystallization tank 1 was about 1.1 hours.
  • the obtained slurry in the first crystallization tank was continuously transferred to the second crystallization tank via the first overflow pipe 21.
  • HAP was crystallized under the conditions shown in Table 3.
  • the sodium hydroxide and calcium chloride solutions of the pH adjusters were each diluted with 100 L / h of water, increased in volume, and dispersed and supplied.
  • the slurry of the second crystallization tank treated in the second crystallization tank was continuously transferred to the settling tank via the second overflow pipe 31.
  • HAP was settled under the conditions shown in Table 4. After the sedimentation treatment, the obtained supernatant was continuously discharged through the third overflow pipe 32 and used as treated water. Table 5 shows the composition of the treated water.
  • the HAP slurry settled in the lower part of the settling tank 3 is returned to the first crystallization tank 1 through the return pipe 14 via the pump 16 via the pump 16 to form a returned HAP slurry.
  • the slurry was transferred from the receiving tank 5 to the filter press 6 via the pump 17 and separated into cake and filtered water. Since the cake did not contain a coagulant and did not stick, it could be easily separated and separated from the film, and the cake after separation could be easily dried.
  • Treated water Table 5 shows the amount of phosphoric acid and the dephosphorization rate.
  • phosphoric acid in wastewater can be removed without using a coagulant.
  • the cake obtained by pressing the filter after settling and separation does not contain coagulant and does not stick, so it can be easily separated from the filter and separated, and the cake after separation can be easily dried. Cost can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

A method for removing phosphorus in wastewater, which comprises a first crystallization step of reacting, in a first crystallization vessel, a phosphorus-containing wastewater, calcium chloride and a recycled hydroxyapatite slurry recycled form a precipitation tank and crystallizing, while adjusting the pH of the reaction mixture by the use of a pH-adjusting agent, a second crystallization step of feeding the slurry formed in the first step to a second crystallization vessel, adding calcium chloride to the slurry, to carry out further reaction and crystallization at a pH higher than that in the first crystallization vessel and of 11 or lower, and a step of feeding the slurry formed in the second step to a precipitation tank, carrying out precipitation and separation, discharging a resultant supernatant to the outside of the system as a treated water, and recycling most of the resultant concentrated slurry as the above-mentioned hydroxyapatite slurry. The above method allows the removal of phosphorus in a waste water without the use of a coagulant and also the formation of a hydroxyapatite excellent in filtration and dewatering characteristics from a phosphorus-containing waste water.

Description

明細書  Specification
排水の脱リン方法 技術分野  Dephosphorization method of wastewater Technical field
本発明は、 排水の脱リン方法に関するものであり、 詳しくはリン酸含 有排水から凝集剤を用いずにハイ ドロォキシァパタイ 卜の沈降分離を行 う排水の脱リン方法に関するものである。 背景技術  The present invention relates to a method for dephosphorizing wastewater, and more particularly, to a method for dephosphorizing wastewater in which sedimentation and separation of hydroxyapatite from a phosphoric acid-containing wastewater without using a flocculant. . Background art
近年、 内海、 湖沼等の閉鎖水域の汚染が問題となっており、 この汚染 の原因の一つとしてリン化合物による富栄養化がある。 このため、 従来 より、リン含有排水の脱リン処理方法が種々検討されている。このうち、 特許文献 1の特閧昭 5 6 - 3 3 0 8 2号公報には、 リン酸塩を含む水を カルシウムイオンの存在下に、 リン酸カルシウムを含む結晶種と接触さ せた後、 さらに活性アルミナと接触させるリン酸塩を含む水の処理方法 が開示されている。 また特許文献 2の特開昭 5 8 - 1 4 3 8 8 4号公報 には、 有機性汚水を生物学的処理工程にて処理した後、 リン酸カルシゥ ムを含有する粒状固体のリン除去材に接触処理する方法が開示されてい る。 また特許文献 3の特開昭 6 2 - 3 8 2 9 1号公報には、 廃水中に含 まれるリン化合物を除去するに当たり、 脱リン晶析材として、 リン酸ィ オンで前処理したセメントを用いる脱リン処理方法が開示されている。 これらの方法はいずれも接触による晶析分離法による脱リン処理方法で ある。  In recent years, pollution in closed waters such as inland seas and lakes has become a problem, and one of the causes of this pollution is eutrophication by phosphorus compounds. For this reason, various methods for removing phosphorus from the phosphorus-containing wastewater have been conventionally studied. Among them, Japanese Patent Publication No. 56-33082 of Patent Document 1 discloses that after contacting water containing phosphate with a crystal seed containing calcium phosphate in the presence of calcium ions, A method for treating phosphate-containing water in contact with activated alumina is disclosed. Japanese Patent Application Laid-Open No. 58-148384 of Patent Document 2 discloses a method of removing organic solid wastewater in a biological treatment step, and then removing a particulate solid phosphorus containing calcium phosphate. A method for contact treatment is disclosed. In addition, Japanese Patent Application Laid-Open No. 62-382921 of Patent Document 3 discloses that in removing a phosphorus compound contained in wastewater, a cement pretreated with ion phosphate as a dephosphorizing crystallization material is disclosed. A dephosphorization treatment method using is disclosed. Any of these methods is a dephosphorization treatment method by a crystallization separation method by contact.
一方、 黄リン、 リン酸、 リン酸塩及びリン化合物等を製造又は使用す る化学工場からでる排水や次亜リン酸を還元剤として使用する無電解メ ツキ工場からでる排水は、 例えば酸化してオルソリン酸イオンとし、 該 オルソリン酸イオン含有排水を処理することになる。 この例では、 被処 理水中のリン酸濃度が 300〜30000 ppmと高濃度であるため、 上記従来の接触による晶析分離法を適用しょうとすると、 カルシウムを 含有する粒状固体のリン除去剤を充填層または流動層で接触させる前に、 原液にカルシウム剤を添加したり、 pH値をアルカリ側に調整したりす る。 この場合、 微細なヒドロキシァパタイ ト結晶が生成し、 液は牛乳の ように白濁してしまい、 リン酸イオンを有効に除去することができない という問題がある。 On the other hand, wastewater from chemical plants that produce or use yellow phosphorus, phosphoric acid, phosphates, and phosphorus compounds, and wastewater from electroless plating plants that use hypophosphorous acid as a reducing agent are, for example, oxidized. To form orthophosphate ions, The wastewater containing orthophosphate ions will be treated. In this example, the concentration of phosphoric acid in the water to be treated is as high as 300 to 30,000 ppm. Before contacting with a packed bed or fluidized bed, add a calcium agent to the stock solution or adjust the pH value to an alkaline side. In this case, fine hydroxyapatite crystals are generated, and the solution becomes cloudy like milk, and there is a problem that phosphate ions cannot be removed effectively.
このようなリン酸を高濃度で含有する排水処理の場合、 硫酸バンド [A 12(S04)3]や塩化第 2鉄(FeCl3)などが用いられ、不溶性のリン酸アルミ二 ゥムゃリン酸鉄として、 廃水から除去する方法が採られる。 その際、 最 適な pH値があり、 pH調整し薬剤を混合してから、 沈降池で凝集沈殿 が行われている。カルシウムを含有する粒状固体のリン除去剤を用いて、 牛乳のように白濁した液からリン酸を除去するには、 高分子凝集剤を添 加して凝集沈殿を行う方法を採らざるを得ない。 For wastewater treatment containing such phosphate in high concentrations, such as aluminum sulfate [A 1 2 (S0 4) 3] and ferric chloride (FeCl 3) is used, insoluble aluminum phosphate two © beam of鉄 The method of removing iron phosphate from wastewater is adopted. At that time, there is an optimal pH value, and the pH is adjusted and the chemicals are mixed before coagulation and sedimentation is performed in the settling basin. To remove phosphoric acid from milky milky turbid liquid using a calcium-containing particulate solid phosphorus remover, a method of adding a polymer flocculant and performing coagulation precipitation must be adopted. .
(特許文献 1)  (Patent Document 1)
特開昭 56— 33082号公報 (請求項 1〜 3 )  JP-A-56-33082 (Claims 1 to 3)
(特許文献 2)  (Patent Document 2)
特開昭 58— 143884号公報 (請求項 1 )  JP-A-58-143884 (Claim 1)
(特許文献 3)  (Patent Document 3)
特開昭 62— 3829 1号公報 (請求項 1 )  JP-A-62-38291 (Claim 1)
(特許文献 4)  (Patent Document 4)
特閧 2001— 7095 1号公報 (請求項 1 )  Special issue 2001-7095 No. 1 (Claim 1)
しかしながら、硫酸バンド [A12(S04)3]や塩化第 2鉄 (FeCl3)などを用い る方法においては、 該硫酸バンドなどが晶析剤以外に、 凝集剤としても 使われるため、 リン酸当量以上に、 多量に薬剤を必要とし、 処理コスト を高くするという問題がある。 また、 薬剤注入量に比例して大量に汚泥 が発生するが、 この汚泥はべトべトしたものであるため、 沈降性、 濃縮 性及び脱水性が極めて悪く、 乾燥費用等の処理コス卜が嵩むという問題 がある。 また、 特許文献 4の特開 2 0 0 1 - 7 0 9 5 1号公報には、 汚 泥調製槽でカルシウム化合物と汚泥とを混合して、 例えば 5日以上、 特 に 7〜5 0日間のような長時間滞留させた後、 1槽からなる反応槽でリ ン含有水と混合してリンのカルシウム塩を得、 さらにポリアクリルアミ ド等の凝集剤を添加して凝集沈殿処理し、 固液分離して得られた汚泥の 一部を p H 7〜 1 2とした後に返送するリン含有水の処理方法が開発さ れている。 しかしながら、 この方法においては、 凝集剤を使用すること から処理コストが高くなり、 また濾過性に優れた汚泥を得ることができ ないという問題がある。 However, in the method of Ru using a sulfate [A1 2 (S0 4) 3 ] and ferric chloride (FeCl 3), etc. sulfuric acid band other than crystallization out agent, it is also used as a flocculant, phosphorus Requires a large amount of chemicals more than acid equivalent, processing cost There is a problem that is high. In addition, a large amount of sludge is generated in proportion to the chemical injection amount. However, since this sludge is sticky, its sedimentation, concentration and dehydration properties are extremely poor, and processing costs such as drying costs are reduced. There is a problem of bulkiness. Further, JP-A-2001-70951 of Patent Document 4 discloses that a calcium compound and sludge are mixed in a sludge preparation tank, for example, for 5 days or more, particularly for 7 to 50 days. After a long residence time as described above, the mixture is mixed with phosphorus-containing water in a reaction tank consisting of one tank to obtain a calcium salt of phosphorus, and a coagulant such as polyacrylamide is added to perform coagulation sedimentation treatment. A method has been developed for treating phosphorus-containing water that is returned after a part of the sludge obtained by solid-liquid separation is adjusted to pH 7 to 12. However, in this method, the use of a flocculant increases the processing cost, and also has a problem that sludge excellent in filterability cannot be obtained.
従って、 本発明の目的は、 凝集剤を用いることなく、 排水中のリン酸 を除去すると共に、 リン酸含有排水から濾過性及び脱水性に優れたハイ ドロォキシァパタイ トを生成させる排水の脱リン方法を提供することに ある。 発明の開示  Therefore, an object of the present invention is to remove phosphoric acid in wastewater without using a flocculant and to produce a hydroxyapatite having excellent filterability and dewaterability from wastewater containing phosphoric acid. An object of the present invention is to provide a dephosphorization method. Disclosure of the invention
すなわち、 本発明は、 第 1晶析槽、 第 2晶析槽及び沈降槽の順に直列 配置された処理装置を用い、 リン酸含有排水からハイ ド口ォキシアバ夕 ィ トを晶析分離する排水の脱リン方法であって、 前記第 1晶析槽におい て、 前記リン酸含有排水、 塩化カルシウム及び前記沈降槽から返送され る返送ハイ ドロォキシァパタイ トスラリーを p H調整剤で p H調整しな がら反応晶析させてなる第 1晶析工程、 前記第 1晶析工程で得られるス ラリーを第 2晶析槽へ流入させ、 塩化カルシウム及び p H調整剤を添加 し第 1晶析槽の p Hより高く、 且つ p H 1 1以下で更なる反応晶析を行 P T/JP2004/001417 That is, the present invention uses a treatment apparatus arranged in series in the order of a first crystallization tank, a second crystallization tank, and a sedimentation tank, and uses a treatment apparatus for crystallizing and separating a hydroxy oxyaluminate from a phosphoric acid-containing wastewater. In the dephosphorization method, in the first crystallization tank, the pH of the phosphoric acid-containing wastewater, calcium chloride, and the returned hydroxyapatite slurry returned from the settling tank are adjusted with a pH adjusting agent. The slurry obtained in the first crystallization step and the slurry obtained in the first crystallization step are flowed into the second crystallization tank, and calcium chloride and a pH adjuster are added to the first crystallization tank. Further reaction crystallization was carried out at a pH higher than PT / JP2004 / 001417
う第 2晶析工程、 前記第 2晶析工程で得られたスラリーを沈降槽へ流入 させ、 沈降分離を行い、 上澄み液を処理水とし系外へ排出し、 濃縮され たスラリーの大部分を前記返送ハイ ドロォキシァパタイ トスラリーとす ることを特徴とする排水の脱リン方法を提供するものである。 図面の簡単な説明 In the second crystallization step, the slurry obtained in the second crystallization step is flowed into a settling tank, sedimentation and separation are performed, the supernatant liquid is treated as treated water, and discharged out of the system. It is intended to provide a method for dephosphorizing waste water, which is characterized by using the returned hydroxyapatite slurry. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明の排水の脱リン方法に用いられる処理装置の一例であ り、第 2図はハイ ドロォキシァパタイ 卜の溶解曲線を示すグラフである。 発明を実施するための最良の形態  FIG. 1 is an example of a treatment apparatus used in the method for dephosphorizing waste water of the present invention, and FIG. 2 is a graph showing a dissolution curve of hydroxyapatite. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る排水の脱リン方法は、 第 1晶析槽、 第 2晶析槽及び沈降 槽の順に直列配置された処理装置を用いて、 第 1晶析工程、 第 2晶析ェ 程及び沈降分離を順次行い、 被処理液であるリン酸含有排水からハイ ド ロォキシァパタイ トを晶析分離するものである。  The method for dephosphorizing wastewater according to the present invention comprises a first crystallization step, a second crystallization step, a second crystallization step, and a treatment apparatus arranged in series in the order of a first crystallization tank, a second crystallization tank, and a sedimentation tank. Sedimentation is performed sequentially, and hydroxyapatite is separated by crystallization from the wastewater containing phosphoric acid to be treated.
第 1晶析工程において、 第 1晶析槽には、 リン酸含有排水、 塩化カル シゥム及び沈降槽から返送される返送ハイ ドロォキシァパタイ ト (以下 「H A P」という)スラリーが流入される。該リン酸含有排水としては、 特に制限されず、 例えばリン酸を数 p p mから数重量%まで含有する排 水が挙げられ、 このうち、 特にリン酸濃度が 1 0 0 p p m〜 1 0 , 0 0 0 p p mの高濃度含有排水の脱リンに好適である。 具体的には、 リン酸 製造工場、 肥料工場、 金属表面処理工場、 無電解めつき工場あるいは半 導体部品製造工程等から出る排水、 一般家庭排水、 及び下水処理排水等 である。 塩化カルシウムとしては、 特に制限されず、 工業的に入手でき るものを用いればよい。  In the first crystallization step, the phosphoric acid-containing wastewater, calcium chloride, and the returned hydroxyapatite (hereinafter referred to as “HAP”) slurry returned from the sedimentation tank flow into the first crystallization tank. . The phosphoric acid-containing wastewater is not particularly limited, and includes, for example, wastewater containing phosphoric acid from several ppm to several weight%, and among them, the phosphoric acid concentration is particularly preferably 100 ppm to 100,000. Suitable for dephosphorization of wastewater containing high concentration of 0 ppm. Specifically, wastewater from a phosphoric acid production plant, a fertilizer plant, a metal surface treatment plant, an electroless plating plant, or a semiconductor component production process, general household wastewater, and sewage treatment wastewater. The calcium chloride is not particularly limited, and industrially available calcium chloride may be used.
返送 H A Pスラリーは、 沈降槽で濃縮された H A Pスラリーを言い、 第 1晶析槽へ供給する単位時間当たりの供給量は、 第 1晶析槽に供給す るリン酸含有排水の単位時間当たりの供給量 100容量部に対して、 5 0容量部以上、 好ましくは 100容量部以上である。 また、 第 1晶析槽 に供給する返送 HAPスラリーの固形分に換算した単位時間当たりの供 給量が、 第 1晶析槽に供給するリン酸含有排水に含まれるリン酸を H A Pに換算した単位時間当たりの供給量 100重量部に対して、 2500 重量部以上、 好ましくは 4000重量部以上である。 第 1晶析槽におい て生産される HAPを、 その 25重量倍以上の大量の HAPの種晶と接 触させることで、 HAP粒子上に HAPの結晶を析出させ、 増粒された HAPが装置内を 25回以上の多数回循環することでストークス径 10 zm以上の粒径の大きな、 沈降性や濾過性に優れた HAPを得ることが できる。 なお、 第 1晶析槽中においては、 返送 HAPスラリーの固形分 の'濃度が、 常に 2重量%以上になっていることが好ましい。 該濃度が 2 重量%未満であると、 種晶が少なすぎて HAPの晶析が返送 HAPスラ リーの種晶上で行われずに微細結晶が生じて白濁する恐れがあるため好 ましくない。 Returned HAP slurry refers to HAP slurry concentrated in the sedimentation tank, and the amount supplied per unit time to the first crystallization tank is supplied to the first crystallization tank. The amount of phosphoric acid-containing wastewater supplied per unit time is 100 parts by volume or more, preferably 50 parts by volume or more, and more preferably 100 parts by volume or more. In addition, the supply amount per unit time converted to the solid content of the returned HAP slurry supplied to the first crystallization tank was calculated by converting the phosphoric acid contained in the phosphoric acid-containing wastewater supplied to the first crystallization tank to HAP. The amount is 2500 parts by weight or more, preferably 4000 parts by weight or more, per 100 parts by weight of the supply amount per unit time. The HAP produced in the first crystallization tank is brought into contact with a large amount of HAP seed crystals that are 25 times or more the weight of HAP to precipitate HAP crystals on the HAP particles, and the increased HAP is used in the equipment. By circulating 25 times or more through the inside, HAP with a large particle size of Stokes diameter of 10 zm or more and excellent sedimentation and filtration properties can be obtained. In the first crystallization tank, the concentration of the solid content of the returned HAP slurry is preferably always 2% by weight or more. If the concentration is less than 2% by weight, the amount of seed crystals is too small and HAP is not crystallized on the seed crystals of the returned HAP slurry.
第 1晶析工程において、 第 1晶析槽に供給する塩化カルシウムの単位 時間当たりの供給量が、 第 1晶析槽に供給するリン酸含有排水のリン酸 を HAPに換算して、 必要な理論当量以下にすることである。 理論当量 以下にする理由は、 第 1晶析槽では、 リン酸イオン濃度が高い状態で反 応晶析を行うため、 反応のもう一方の物質であるカルシウムイオンを低 下させることにより、 HAPの溶解度が大きくなり過飽和度を低減する ことができ、 微細な結晶である 1次核の生成を抑制することができるか らである。  In the first crystallization step, the supply amount of calcium chloride supplied to the first crystallization tank per unit time is determined by converting the phosphoric acid in the phosphoric acid-containing wastewater supplied to the first crystallization tank to HAP. It is to be less than the theoretical equivalent. The reason for keeping the stoichiometric equivalent or less is that in the first crystallization tank, the reaction crystallization is performed in a state where the phosphate ion concentration is high, so the calcium ion, which is the other substance in the reaction, is reduced to reduce the HAP. This is because the solubility increases and the degree of supersaturation can be reduced, and the generation of primary nuclei, which are fine crystals, can be suppressed.
第 1晶析槽中の pHとしては、 5. 5〜8. 0、 好ましくは 6· 5〜 7. 5の範囲に調整することがよい。 この場合の pH調整は、 純水の場 合と異なり、 リン酸イオン含有の第 1中和点と第 2中和点の中間である ので、比較的容易に p Hを調整することができる。第 1晶析槽において、 p Hが 5 . 5〜8 . 0に調整されていれば、 第 1晶析槽での H A Pの溶 解度が大きくなり、 過飽和度が低くなることから 1次核の生成が抑えら れる。 p Hが 5 . 5未満では晶析した H A Pが溶解し易くなり好ましく ない。 The pH in the first crystallization tank is adjusted to 5.5 to 8.0, preferably to 6.5 to 7.5. The pH adjustment in this case is different from that of pure water, and is between the first and second neutralization points containing phosphate ions. Therefore, pH can be adjusted relatively easily. If the pH is adjusted to 5.5 to 8.0 in the first crystallization tank, the solubility of HAP in the first crystallization tank increases and the supersaturation decreases, so the primary nucleus Generation is suppressed. If the pH is less than 5.5, the crystallized HAP is easily dissolved, which is not preferable.
第 1晶析槽において用いる p H調整剤としては、 水酸化ナトリウムゃ 水酸化力リゥム等の塩基性溶液、 及び塩酸や硝酸等の酸性溶液が挙げら れる。 塩基性溶液としては水酸化ナトリウムが好ましく、 酸性溶液とし ては塩酸が好ましい。 塩基性溶液である水酸化カルシウムは安価である が、 p H調整と同時にカルシウムイオン濃度にも影響するため、 使用す るときは、 水酸化ナトリウムと併用することが好ましい。  Examples of the pH adjusting agent used in the first crystallization tank include a basic solution such as sodium hydroxide and a hydrolyzate, and an acidic solution such as hydrochloric acid and nitric acid. Sodium hydroxide is preferable as the basic solution, and hydrochloric acid is preferable as the acidic solution. Although calcium hydroxide, which is a basic solution, is inexpensive, it affects calcium ion concentration as well as pH adjustment. Therefore, when used, it is preferable to use it in combination with sodium hydroxide.
第 1晶析槽で用いる p H調整剤が塩基性溶液の場合、 該塩基性溶液は 前記返送ハイ ドロォキシァパタイ トスラリーと混合した後に、 第 1晶析 槽に供給することが好ましい。 この理由は、 返送 H A Pスラリーは、 装 置内で最もリン酸イオン濃度が低くアル力リ性であり塩基性溶液の希釈 剤として最適であり、 これで予め希釈し、 増量、 分散してから第 1晶析 槽に供給されることになり、 第 1晶析槽で局所的に p Hが高すぎたりす ることがなくなり、 微細な H A Pが生成し難くなるためである。  When the pH adjuster used in the first crystallization tank is a basic solution, the basic solution is preferably mixed with the returned hydroxyapatite slurry and then supplied to the first crystallization tank. The reason for this is that the returned HAP slurry has the lowest phosphate ion concentration in the apparatus and is highly alkaline and is optimal as a diluent for basic solutions. This is because the water is supplied to the first crystallization tank, and the pH is not too high locally in the first crystallization tank, and it is difficult to generate fine HAP.
第 1晶析槽で用いる p H調整剤が酸性溶液の場合、 該酸性溶液はリン 酸含有排水と混合した後に、 第 1晶析槽に供給することが好ましい。 こ の理由は、 p H調整剤である酸性溶液は予め、 多量のリン酸含有排水に 希釈、 増量、 分散してから、 第 1晶析槽に供給されることになり、 第 1 晶析槽で局所的に p Hが低くなつたり、 H A Pを溶解してしまうことが なくなるためである。 なお、 酸性溶液を混合したリン酸含有排水におい ては、 結晶が析出するような変化はみられない。  When the pH adjuster used in the first crystallization tank is an acidic solution, the acidic solution is preferably mixed with the phosphoric acid-containing wastewater and then supplied to the first crystallization tank. The reason is that the acidic solution, which is a pH adjuster, is diluted, increased, and dispersed in a large amount of wastewater containing phosphoric acid before it is supplied to the first crystallization tank. This is because the pH does not locally decrease and HAP does not dissolve. In the phosphoric acid-containing wastewater mixed with the acidic solution, no change such as precipitation of crystals was observed.
第 1晶析槽における塩化カルシウムの添加箇所としては、 特に限定さ JP2004/001417 The location where calcium chloride is added in the first crystallization tank is not particularly limited. JP2004 / 001417
れないが、 酸性溶液と同様、 リン酸含有排水と混合した後に、 第 1晶析 槽に供給することが好ましい。 この理由は、 塩化カルシウムの希釈、 增 量、 分散を予めリン酸含有排水と行うと、 C a H P 0 4 · 2 H 2 0 (第 2 リン酸カルシム ' 2水塩) の結晶ができることがあるが、 同時に 2モル の塩酸が生成するため、前記酸性溶液と同様に取り扱うのがよく、また、 第 1晶析槽内で、 局所的に高濃度のカルシウムイオン濃度になることが 避けられ、 微細な H A Pの結晶の生成するのを抑制できるためである。 第 2晶析工程は、 第 1晶析槽で得られた H A Pスラリーを第 2晶析槽 へ流入させ、 塩化カルシウムを添加し、 第 1晶析槽の p Hより少なくと も高く、 且つ p H 1 1以下、 好ましくは 8 . 7以下で更に反応晶析をさ せるものである。 すなわち、 第 2晶析槽では、 高 p H領域、 高カルシゥ ムイオン濃度領域に制御して、 処理水中のリン酸濃度を極力低減する。 第 2晶析槽において、 p Hが 1 1を越えると、 炭酸カルシウムや水酸 化カルシウムが生成してしまい、 塩化カルシウムの消費量が増える結果 となり好ましくない。 また、 第 2晶析槽内の p Hを上記範囲内にするた めに用いられる p H調整剤としては、 第 1晶析槽で用いられるものと同 様のものが挙げられ、 第 1晶析槽と同様の理由により、 液性を塩基性側 にするための p H調整剤としては、 水酸化ナトリゥムが好ましい。 However, as in the case of the acidic solution, it is preferable to supply the mixed solution with the phosphoric acid-containing wastewater to the first crystallization tank. The reason for this is diluted,增amount of calcium chloride, when dispersed in advance phosphoric acid-containing waste water, there can be the C a HP 0 4 · 2 H 2 0 crystals (second phosphate calcium-'dihydrate) However, since 2 mol of hydrochloric acid is generated at the same time, it is better to handle it in the same way as the above-mentioned acidic solution.Also, it is possible to avoid a local high concentration of calcium ion in the first crystallization tank, This is because the generation of an HAP crystal can be suppressed. In the second crystallization step, the HAP slurry obtained in the first crystallization tank is flowed into the second crystallization tank, calcium chloride is added, and the pH is at least higher than the pH of the first crystallization tank, and p H 11 or less, preferably 8.7 or less further causes reaction crystallization. That is, in the second crystallization tank, the concentration of phosphoric acid in the treated water is reduced as much as possible by controlling the region to a high pH region and a high calcium ion concentration region. If the pH exceeds 11 in the second crystallization tank, calcium carbonate and calcium hydroxide are generated, which results in increased consumption of calcium chloride, which is not preferable. Examples of the pH adjusting agent used to keep the pH in the second crystallization tank within the above range include those similar to those used in the first crystallization tank. For the same reason as in the precipitation tank, sodium hydroxide is preferable as the pH adjuster for changing the liquidity to the basic side.
第 2晶析槽に供給する塩化カルシウムの単位時間当たりの量は、 第 1 晶析槽工程で使用した塩化カルシウムの当量不足分及びリン酸含有排水 中のリン酸をァパタイ ト化するに必要な理論当量に対して少なくとも 1 0重量%以上、 好ましくは 2 0重量%以上の過剰分である。 塩化カルシ ゥムの添加量が不足すると、 不足分に相当する未反応のリン酸が流出し てしまう。  The amount of calcium chloride supplied to the second crystallization tank per unit time is the amount required to convert the equivalent of calcium chloride used in the first crystallization tank and the phosphoric acid in the phosphoric acid-containing wastewater into apatite. The excess is at least 10% by weight or more, preferably 20% by weight or more based on the theoretical equivalent. If the added amount of calcium chloride is insufficient, the unreacted phosphoric acid corresponding to the insufficient amount will flow out.
沈殿分離工程においては、 第 2晶析槽で得られたスラリーを沈降槽へ 流入させ、 沈降分離を行い、 上澄み液を処理水とし系外へ排出し、 濃縮 04001417 In the sedimentation separation process, the slurry obtained in the second crystallization tank is flowed into the sedimentation tank, sedimentation and separation are performed, the supernatant liquid is treated water, discharged out of the system, and concentrated. 04001417
されたスラリーの大部分を前記返送 HAPスラリーとする。 Most of the slurry is used as the returned HAP slurry.
返送 HAPスラリーの具体的な返送量としては、 第 1晶析槽内の pH や平均反応時間、 返送 HAPスラリーの濃度及び HAPの粒子径等によ り処理水が白濁しない範囲で適宜選択されるため一律に定められるもの でないが、 例えば、 第 1晶析槽に供給する返送 HAPスラリーの単位時 間当りの供給量は、 前述の通りであるが、 好ましくは第 1晶析槽に供給 するリン酸含有排水の単位時間当りの供給量 100容量部に対して、 5 0〜400容量部、 好ましくは 100〜200容量部である。 返送 HA Pスラリーの返送量が 50容量部未満であると、 第 1晶析層において、 返送 HAPスラリーが種晶として充分に作用せず、 種晶以外で HAPの 微細結晶が生じて沈降分離を難かしくし、 処理水が白濁し易くなるため 好ましぐない。 また、 返送量が 400容量部を越えると、 HAP種晶の 表面積は増大するが希釈されすぎることにより第 1晶析槽中のリン酸濃 度が低くなり過ぎて HA Pの晶析速度が低下し、 平均反応時間が短くな り、 処理水中のリン酸濃度上昇が生じるので適当な範囲が存在するもの と思われる。  The specific amount of the returned HAP slurry is appropriately selected depending on the pH and average reaction time in the first crystallization tank, the concentration of the returned HAP slurry, the particle size of the HAP, and the like, within a range where the treated water does not become cloudy. For example, the supply amount of the returned HAP slurry to be supplied to the first crystallization tank per unit time is as described above, but preferably the phosphorus supplied to the first crystallization tank is not limited. The amount is 50 to 400 parts by volume, preferably 100 to 200 parts by volume, per 100 parts by volume of supply of acid-containing wastewater per unit time. If the return amount of the returned HAP slurry is less than 50 parts by volume, the returned HAP slurry does not sufficiently act as seed crystals in the first crystallized layer, and fine HAP crystals are generated other than the seed crystals to cause sedimentation and separation. Difficult and undesired because the treated water is easily clouded. Also, if the returned amount exceeds 400 parts by volume, the surface area of the HAP seed crystal increases, but the concentration of phosphoric acid in the first crystallization tank becomes too low due to excessive dilution, and the crystallization rate of HAP decreases. However, the average reaction time is shortened and the concentration of phosphoric acid in the treated water is increased, so it seems that there is an appropriate range.
更に本発明は、 第 1晶析槽と沈降槽との間にさらに 1つ以上の晶析槽 を設けることができ、 該晶析槽内の p Hは前記第 2晶析槽内の p Hに対 して下流側になるにつれて順次高くなるかまたは同じであって、 且つ P H 1 1以下の範囲内であることが好ましい。  Further, in the present invention, one or more crystallization tanks can be further provided between the first crystallization tank and the sedimentation tank, and the pH in the crystallization tank is the pH in the second crystallization tank. It is preferably higher or the same as it goes downstream, and it is preferably within the range of PH 11 or less.
本発明の排水の脱リン方法における晶析作用は、 第 1晶析槽中では、 ストークス径で 1 zm以下のような沈降性の悪い微細な H A Pを生成さ せないよう制御されることであり、 返送される HAPの粒子表面上に H APを析出させ、 該 HAPの粒子を成長させることである。 ここでいう スト一クス径とは、 ストークスの抵抗法則によって、 測定される粒子の 沈降速度から粒子の球状と仮定した時に求められる粒子の相当径で H A Pの場合、 l〃mでは沈降速度 3. 2 mm/h, 10〃111では3201][1111 /hである (スト一クス径に関する詳細は、 化学工学辞典 (化学工学会 編、 丸善出版、 267〜268頁、 昭和 61年 3月 20日改訂 3版) を 参照) 。 The crystallization action in the method for dephosphorizing waste water of the present invention is to control so as not to generate fine HAP having poor sedimentation such as a Stokes diameter of 1 zm or less in the first crystallization tank. HAP is deposited on the surface of the returned HAP particles, and the HAP particles are grown. The Stokes diameter here is the equivalent diameter of a particle obtained by assuming that the particle is spherical based on the measured sedimentation velocity according to Stokes' law of resistance. In the case of P, the sedimentation velocity is 3.2 mm / h at l〃m and 3201 at 10〃111] [1111 / h. (For details on the stock diameter, see the Chemical Engineering Dictionary (Chemical Engineering Society, Maruzen Publishing, Pp. 267-268, 3rd edition, revised on March 20, 1986).
第 1の晶析槽内においては、 排水中のリン酸が pH、 カルシウムの制 御下で単位時間に生産される HAPの 25倍以上の大量な H A Pの種晶 と接触させることで、 HAP粒子上に HAPが沈積し、 僅かに増粒され た HAPは、 槽内を循環することでストークス径 10 m以上の粒径の 大きな、 沈降性や濾過性の良い HAPを得ることができるものである。 次に、 第 1晶析槽における処理と第 2晶析槽における処理との相違を 第 2図を参照して説明する。 第 2図は、 縦軸がリン酸濃度 (リン量) 、 横軸が: pHとした場合のハイ ドロォキシァパタイ ト [Ca5 (OH) (P 04) 3] の溶解曲線を示す。 また、 第 2図中、 Aは水溶液中のカルシゥ ムイオン濃度 Omg/lにおける HAPの溶解曲線、 Bは同 4 Omg/lにおけ る HAPの溶解曲線、 Cは同 10 Omg/lにおける HAPの溶解曲線であ る。 すなわち、 第 2図は、 HAPの生成及び溶解におけるリン酸濃度、 カルシウムイオン濃度及び pHの関係を示すものである。 A、 B及び C の比較より、 排水中から効率よく脱リンするためには、 カルシウムィォ ン濃度を高くすると共に pHを高くする、 すなわち、 概ね図中の Y領域 で晶析させればよいことが判る。 しかし、 第 1晶析工程でいきなり、 Y 領域で晶析させようとすると晶析する HAPが微細結晶となり白濁して 沈降しなくなる問題がある。 そこで、 本発明では、 第 1晶析槽における 処理では、 白濁させないこと、 すなわち、 HAPの粒径を大きくするこ とを最優先して、 第 1晶析槽のみではリン酸濃度が十分に低下しないこ とを認識しつつも、 あえて低 pH領域、 低カルシウムイオン濃度領域を 選択しつつ、 特定量の返送 H A Pスラリーを種晶として添加することに 04 001417 In the first crystallization tank, phosphoric acid in the wastewater is brought into contact with HAP seed crystals, which are more than 25 times as large as HAP produced per unit time under the control of pH and calcium, and HAP particles are generated. The HAP deposited on the top and slightly increased in particle size makes it possible to obtain HAP with a large particle size of 10 m or more and good sedimentation and filtration properties by circulating in the tank. . Next, the difference between the treatment in the first crystallization tank and the treatment in the second crystallization tank will be described with reference to FIG. Figure 2, the vertical axis phosphoric acid concentration (phosphorus content), and the horizontal axis: shows the dissolution curve of Hydro O carboxymethyl § Pas tie bets in the case of the pH [Ca 5 (OH) ( P 0 4) 3] . In Fig. 2, A is the dissolution curve of HAP at the calcium ion concentration Omg / l in the aqueous solution, B is the dissolution curve of HAP at 4 Omg / l, and C is the dissolution curve of HAP at 10 Omg / l. It is a curve. That is, FIG. 2 shows the relationship between the phosphate concentration, calcium ion concentration and pH in the production and dissolution of HAP. From the comparison of A, B and C, in order to efficiently dephosphorize from wastewater, it is necessary to increase the calcium ion concentration and the pH, that is, to crystallize roughly in the Y region in the figure. I understand. However, in the first crystallization step, if the crystallization is carried out in the Y region immediately, the HAP to be crystallized becomes fine crystals and becomes cloudy, and does not precipitate. Therefore, in the present invention, in the treatment in the first crystallization tank, the highest priority is given to preventing turbidity, that is, increasing the particle size of HAP, and the phosphoric acid concentration is sufficiently reduced only in the first crystallization tank. While recognizing that it will not be used, it is necessary to add a specific amount of the returned HAP slurry as a seed crystal while daringly selecting the low pH region and low calcium ion concentration region. 04 001417
より微細結晶が生成しない晶析処理を行い(第 2図中、およそ X領域)、 次いで第 2晶析槽以降における晶析処理で、 高 p H領域、 高カルシウム イオン濃度領域を選択して (第 2図中、 およそ Y領域) 、 処理水中のリ ン酸濃度を十分に低下させるようにしたものである。 なお、 第 2図中の X領域及び Y領域は、 説明の便宜のために記載したものにすぎず、 厳密 なものでも、 本発明を限定するものでもない。 A crystallization treatment that does not produce finer crystals is performed (approximately X region in FIG. 2). Then, in the crystallization treatment after the second crystallization tank, a high pH region and a high calcium ion concentration region are selected ( (Approximately Y region in Fig. 2) This is to reduce the concentration of phosphoric acid in the treated water sufficiently. It should be noted that the X region and the Y region in FIG. 2 are merely described for convenience of explanation, and are not strict or limit the present invention.
本発明の排水の脱リン方法を実施する処理装置の一例を第 1図のフロ —シートで示す。 処理装置 1 0は、 第 1晶析槽 1、 第 2晶析槽 2及び沈 降槽 3の順に直列配置される。 ここで、 直列配置とは、 リン酸含有排水 が第 1晶析槽、 第 2晶析槽及び沈降槽の順序で処理されることを言い、 具体的には第 1晶析槽で処理された処理液が第 2晶析槽に供給されると 共に第 2晶析槽で処理された処理液が沈降槽に供給されることをいう。 なお、 第 1図中、 第 1晶析槽 1で処理された処理液を第 2晶析槽 2に供 給する配管を第 1オーバ一フロー配管として 2 1で表し、 第 2晶析槽 2 で処理された処理液を沈降槽 3のみに供給する配管を第 2オーバ一フロ 一配管として 3 1で表す。 なお、 第 1晶析槽及び第 2晶析槽は槽全体の 液を上下流動になるように攪拌できる完全混合槽であると、 晶析反応が 比較的円滑に進行させることができる点で好ましい。 また、 沈降槽 3の 下部には、 第 1晶析槽 1と接続される戻り配管 1 4が設けられると共に 該配管 1 4中にスラリーポンプ 1 6が設けられており、 沈降槽 3内で沈 降した H A Pスラリーがスラリーポンプ 1 6により第 1晶析槽 1に供給 されるようになつている。 沈降槽下部のスラリー留りに、 生成 H A Pが 増加して、 スラリーレベルが上昇したら、 スラリータンクに抜き出し、 1〜3日に 1回フィル夕一プレスにて H A Pケーキを取り出す。  An example of a processing apparatus for performing the wastewater dephosphorization method of the present invention is shown by a flow sheet in FIG. The processing apparatus 10 is arranged in series in the order of a first crystallization tank 1, a second crystallization tank 2, and a settling tank 3. Here, the tandem arrangement means that the phosphoric acid-containing wastewater is treated in the order of the first crystallization tank, the second crystallization tank, and the sedimentation tank, and specifically, treated in the first crystallization tank. It means that the treatment liquid treated in the second crystallization tank is supplied to the settling tank while the treatment liquid is supplied to the second crystallization tank. In FIG. 1, the pipe for supplying the processing solution treated in the first crystallization tank 1 to the second crystallization tank 2 is denoted by 21 as a first overflow pipe, and the second crystallization tank 2 A pipe for supplying the processing solution treated in the above only to the settling tank 3 is denoted by 31 as a second overflow pipe. The first crystallization tank and the second crystallization tank are preferably complete mixing tanks that can stir the liquid in the entire tank up and down so that the crystallization reaction can proceed relatively smoothly. . In addition, a return pipe 14 connected to the first crystallization tank 1 is provided below the settling tank 3, and a slurry pump 16 is provided in the set pipe 14. The lowered HAP slurry is supplied to the first crystallization tank 1 by a slurry pump 16. When the generated HAP increases in the slurry remaining at the bottom of the settling tank and the slurry level rises, the slurry is extracted into the slurry tank, and the HAP cake is taken out once a day or three days by a fill and press machine.
(実施例)  (Example)
次に、 実施例を挙げて本発明を更に具体的に説明するが、 これは単に 例示であって、 本発明を制限するものではない。 Next, the present invention will be described more specifically with reference to examples. It is an exemplification and does not limit the present invention.
実施例 1、 2及び比較例 1 Examples 1, 2 and Comparative Example 1
第 1図に示すフローシートで表される処理装置 1 0を用い、 リン酸含 有排水の脱リン処理を行った。なお、第 1晶析槽 1及び第 2晶析槽 2は、 直径 2 4 0 0腿、 高さ 4 2 0 0 mm、 有効容積 1 6 m3であり、 槽の中心で 且つ水面下に直径 6 0 0 mm、 高さ 2 7 0 0醒の下降管と、 該下降管内部 · に直径 5 5 0蘭の翼を有する可変変速機付攪拌機とを備え、 該攪拌機を 稼動することにより槽全体の液又はスラリーの上下流動が可能となる完 全混合槽としたものを用いた。 Phosphoric acid-containing wastewater was subjected to dephosphorization treatment using a treatment apparatus 10 represented by a flow sheet shown in FIG. The first crystallizer 1 and the second crystallization vessel 2 has a diameter 2 4 0 0 thigh, height 4 2 0 0 mm, an effective volume 1 6 m 3, and diameter under water at the center of the vessel A downcomer with a height of 600 mm and a height of 2700, and a stirrer with a variable transmission having blades with a diameter of 550 orchids inside the downcomer, and the whole tank is operated by operating the stirrer. A complete mixing tank capable of vertically flowing the liquid or slurry was used.
まず、 複数の施設から排出されたリン酸含有排水の原水を配管 4 1で 原水槽 4に導入し、原水槽 4中で混合して濃度を均一化した。その結果、 原水槽 4中のリン酸含有排水は第 1表に示す組成になった。 また、 塩化 カルシウム貯蔵夕ンク 8内の塩化カルシウムスラリー及び水酸化ナ卜リ ゥム貯蔵タンク 7内の水酸化ナトリゥム水溶液をそれそれ第 1表に示す 組成になるように調製した。 なお、 本実施例の操業は、 定常状態で行つ た。  First, raw water of phosphoric acid-containing wastewater discharged from a plurality of facilities was introduced into raw water tank 4 via pipe 41, and mixed in raw water tank 4 to make the concentration uniform. As a result, the wastewater containing phosphoric acid in the raw water tank 4 had the composition shown in Table 1. Further, the calcium chloride slurry in the calcium chloride storage tank 8 and the sodium hydroxide aqueous solution in the sodium hydroxide storage tank 7 were prepared to have the compositions shown in Table 1, respectively. The operation in this example was performed in a steady state.
(第 1晶析工程)  (First crystallization step)
先ず、 リン酸含有排水を原水槽 4からポンプ 1 5を用い配管 1 1を介 して第 1晶析槽 1の液面上に第 2表の 「リン酸含有排水」 に示す条件で 供給した。 なお、 配管 1 1の第 1晶析槽への直前で塩化カルシウム貯蔵 タンク 8につながる配管 1 2を接続しておき、 リン酸含有排水と塩化力 ルシゥムスラリーとが混合されてから第 1晶析槽に供給されるようにし た。 塩化カルシウムスラリ一はポンプ 2 4を用いて第 2表の 「塩化カル シゥム溶液」 に示す条件で供給した。 また、 返送 H A Pスラリーは、 ポ ンプ 1 6及び戻り配管 1 4を介して第 1晶析槽 1の液面上に第 2表に示 す条件で供給した。 また、 水酸化ナトリウム水溶液を水酸化ナトリウム 貯蔵タンク 7から適宜供給して、 第 1晶析槽 1内の pHが第 2表に示す 値になるように調整した。 この際、 水酸化ナトリウム貯蔵タンク 7につ ながる配管 22は戻り配管 14と第 1晶析槽の直前で合流するように接 続し、 水酸化ナトリゥム水溶液と返送 HAPスラリーとが混合された後 第 1晶析槽に供給されるようにした。 第 1晶析槽 1内の平均滞留時間は 約 1. 1時間であった。 First, the phosphoric acid-containing wastewater was supplied from the raw water tank 4 to the liquid surface of the first crystallization tank 1 via the pipe 11 using the pump 15 under the conditions shown in Table 2 “Phosphoric acid-containing wastewater”. . It should be noted that the pipe 12 connected to the calcium chloride storage tank 8 was connected just before the pipe 11 to the first crystallization tank, and the phosphoric acid-containing wastewater and the chloride slurry were mixed before the first crystallization tank was mixed. To be supplied. The calcium chloride slurry was supplied using a pump 24 under the conditions shown in Table 2 “Calcium chloride solution”. Further, the returned HAP slurry was supplied onto the liquid surface of the first crystallization tank 1 via the pump 16 and the return pipe 14 under the conditions shown in Table 2. In addition, sodium hydroxide solution It was supplied appropriately from the storage tank 7 and adjusted so that the pH in the first crystallization tank 1 became the value shown in Table 2. At this time, the pipe 22 leading to the sodium hydroxide storage tank 7 was connected to the return pipe 14 so as to join immediately before the first crystallization tank, and the aqueous sodium hydroxide solution and the returned HAP slurry were mixed. After that, it was supplied to the first crystallization tank. The average residence time in the first crystallization tank 1 was about 1.1 hours.
(第 2晶析工程)  (Second crystallization step)
得られた第 1晶析槽スラリーは、 第 1オーバーフロー配管 2 1を介し て連続的に第 2晶析槽に移送した。 第 2晶析槽 2では、 第 3表に示す条 件で HAPの晶析処理を行った。 pH調整剤の水酸化ナトリウムと塩化 カルシウム溶液は、 それぞれ 100 L/hの水で希釈、 増量して分散供 給した。 第 2晶析槽で処理された第 2晶析槽スラリーは、 第 2オーバ一 フロー配管 31を介して連続的に沈降槽に移送した。  The obtained slurry in the first crystallization tank was continuously transferred to the second crystallization tank via the first overflow pipe 21. In the second crystallization tank 2, HAP was crystallized under the conditions shown in Table 3. The sodium hydroxide and calcium chloride solutions of the pH adjusters were each diluted with 100 L / h of water, increased in volume, and dispersed and supplied. The slurry of the second crystallization tank treated in the second crystallization tank was continuously transferred to the settling tank via the second overflow pipe 31.
(沈降分離工程)  (Sedimentation separation process)
沈降槽 3では、 第 4表に示す条件で HAPの沈降処理を行った。 該沈 降処理後、 得られた上澄み液は、 第 3オーバーフロー配管 32を介して 連続的に排出しこれを処理水とした。 処理水の組成等について第 5表に 示す。 一方、 沈降槽 3の下部に沈降した HAPスラリーは、 ポンプ 16 を介して、 戻り配管 14を通して第 1晶析槽 1に返送して返送 HAPス ラリーとし、 沈降槽下部のスラリー界面が生成 HAPによって、 レベル 上昇したら 1〜 3日に 1回は、スラリ一受槽 5からポンプ 17を経てフィ ル夕一プレス機 6に移送し、 ケーキと濾過水とに分離した。 ケーキは、 凝集剤を含まずベとつくことがないため、 フィル夕一から簡単に剥離分 離でき、 また分離後のケーキも容易に乾燥することができた。 また、 濾 過水は、 配管 42を介して原水槽 4に戻し、 HAPスラリーが濾布もれ 等で漏れた時でも、 排水として外部に流出しないようにした。 処理水の リン酸量、 脱リン率等について第 5表に示す。 In settling tank 3, HAP was settled under the conditions shown in Table 4. After the sedimentation treatment, the obtained supernatant was continuously discharged through the third overflow pipe 32 and used as treated water. Table 5 shows the composition of the treated water. On the other hand, the HAP slurry settled in the lower part of the settling tank 3 is returned to the first crystallization tank 1 through the return pipe 14 via the pump 16 via the pump 16 to form a returned HAP slurry. Once the level increased, once every 1 to 3 days, the slurry was transferred from the receiving tank 5 to the filter press 6 via the pump 17 and separated into cake and filtered water. Since the cake did not contain a coagulant and did not stick, it could be easily separated and separated from the film, and the cake after separation could be easily dried. Further, the filtered water was returned to the raw water tank 4 through the pipe 42 so that even when the HAP slurry leaked due to leakage of the filter cloth or the like, it did not flow out as wastewater to the outside. Treated water Table 5 shows the amount of phosphoric acid and the dephosphorization rate.
第 1表 Table 1
原料組成 単位 実施例 実施例 比較例  Raw material composition Unit Example Example Example Comparative example
1 2 1 1 2 1
1) 今右お!:マ 3 1) Right now !: Ma 3
リン酸濃度 p p m 720 1090 620 j R « 7 ? 7 ? 塩化カルシウム溶液組成  Phosphoric acid concentration p pm 720 1090 620 j R «7? 7? Calcium chloride solution composition
塩化カルシウム濃度 里宙 ·& 0 //0 35 35 35 返送 HAPスラリ一組成 Calcium chloride concentration Sato · & 0 // 0 35 35 35 Return HAP slurry composition
0/  0 /
スラリ一濃度 里 ο 5.1 6.6 4.7 スラリーのストークス径 11.3 12.0 10.2 水酸化ナトリウム水溶液組成  Slurry concentration ο 5.1 6.6 4.7 Stokes diameter of slurry 11.3 12.0 10.2 Composition of aqueous sodium hydroxide solution
水酸化ナトリウム濃度 ¾mo/  Sodium hydroxide concentration ¾mo /
里 /0 25 25 25 Sato / 0 25 25 25
2表 2 tables
Figure imgf000016_0001
Figure imgf000016_0001
)固形分換算量 ) Solid content conversion
3表 第 2晶析槽の条件 単位 実施例 実施例 比較例 Table 3 Conditions for second crystallization tank Unit Example Example Example Comparative example
1 2 1 有効容積 m3 16 16 16 第 1晶析槽スラリー 1 2 1 Effective volume m 3 16 16 16 First crystallization tank slurry
流入量 m3/h 14.4 15.1 14.5 塩化カルシウム溶液 Inflow m 3 / h 14.4 15.1 14.5 Calcium chloride solution
流入量 L/h 15 10 10 塩化カルシウム換算量 kg/h 6.8 4.6 4.6 単位時間当たり第 2晶析槽に % 70 43 40 供給する塩化カルシウム換算  Inflow L / h 15 10 10 Calculated amount of calcium chloride kg / h 6.8 4.6 4.6% 70 43 40 Calculated as calcium chloride supplied to the second crystallization tank per unit time
量 z単位時間当たり処理する Process per unit time
リン酸に見合う塩化カルシゥ Calcium chloride suitable for phosphoric acid
ム換算量 Conversion amount
第 2晶析槽内の pH 8.3 8.5 8.2 第 2晶析槽内の平均滞留時間 時間 1.1 1.1 1.1 PH in the second crystallization tank 8.3 8.5 8.2 Average residence time in the second crystallization tank Time 1.1 1.1 1.1
沈降槽内の条件 単位 実施例 実施例 比較例 Conditions in the settling tank Unit Example Example Example Comparative example
1 2 1 第 2晶析槽スラリー  1 2 1 Second crystallization tank slurry
流入量 m3/ 14.5 15.2 14.6 沈降槽内の pH 8.3 8.5 8.1 第 5表 Inflow m 3 / 14.5 15.2 14.6 pH in sedimentation tank 8.3 8.5 8.1 Table 5
Figure imgf000018_0001
産業上の利用可能性
Figure imgf000018_0001
Industrial applicability
本発明に係る排水の脱リン方法によれば、 凝集剤を用いることなく、 排水中のリン酸を除去することができる。 また、 沈降分離後、 フィル夕 一プレスされて得られるケーキは凝集剤を含まずベとつかないため、 フ ィルターから簡単に剥離分離でき、 また、 分離後のケーキも容易に乾燥 できるため、 処理コストを低減することができる。  According to the method for removing phosphorus from wastewater according to the present invention, phosphoric acid in wastewater can be removed without using a coagulant. In addition, the cake obtained by pressing the filter after settling and separation does not contain coagulant and does not stick, so it can be easily separated from the filter and separated, and the cake after separation can be easily dried. Cost can be reduced.

Claims

請求の範囲 The scope of the claims
1 . 第 1晶析槽、 第 2晶析槽及び沈降槽の順に直列配置された処理装置 を用い、 リン酸含有排水からハイ ドロォキシァパタイ トを晶析分離する 排水の脱リン方法であって、 前記第 1晶析槽において、 前記リン酸含有 排水、 塩化カルシウム及び前記沈降槽から返送される返送ハイ ドロォキ シァパタイ トスラリーを p H調整剤で p H調整しながら反応晶析させて なる第 1晶析工程、 前記第 1晶析工程で得られるスラリーを第 2晶析槽 へ流入させ、 塩化カルシウム及び p H調整剤を添加し第 1晶析槽の p H より高く、 且つ p H 1 1以下で更なる反応晶析を行う第 2晶析工程、 前 記第 2晶析工程で得られたスラリーを沈降槽へ流入させ、 沈降分離を行 い、 上澄み液を処理水とし系外へ排出し、 濃縮されたスラリーの大部分 を前記返送ハイ ドロォキシァパタイ トスラリーとすることを特徴とする 排水の脱リン方法。 1. Using a treatment device that is arranged in series in the order of the first crystallization tank, the second crystallization tank, and the sedimentation tank, the crystallization separation of hydroxyapatite from the phosphoric acid-containing waste water In the first crystallization tank, the phosphoric acid-containing waste water, calcium chloride, and the returned hydroxyapatite slurry returned from the sedimentation tank are reacted and crystallized while adjusting the pH with a pH adjusting agent. (1) The crystallization step, the slurry obtained in the first crystallization step is allowed to flow into a second crystallization tank, and calcium chloride and a pH adjuster are added to increase the pH of the first crystallization tank, and Second crystallization step for further reaction crystallization under 1 and below, The slurry obtained in the second crystallization step is flowed into the sedimentation tank, sedimentation separation is performed, and the supernatant liquid is treated water to outside the system. Discharge and return most of the concentrated slurry to the A method for dephosphorizing wastewater, which comprises using apatite slurry.
2 . 前記第 1晶析槽に供給する前記返送ハイ ド口ォキシアパタイ トスラ リーの単位時間当りの供給量が、 前記第 1晶析槽に供給する前記リン酸 含有排水の単位時間当りの供給量 1 0 0容量部に対して、 5 0容量部以 上である請求項 1記載の排水の脱リン方法。 2. The supply amount of the returned hydroxyapatite slurry to be supplied to the first crystallization tank per unit time is equal to the supply amount of the phosphoric acid-containing wastewater to be supplied to the first crystallization tank per unit time. 2. The method for dephosphorizing wastewater according to claim 1, wherein the amount is 50 parts by volume or more with respect to 100 parts by volume.
3 . 前記第 1晶析槽に供給する前記返送ハイ ドロォキシァパタイ トスラ リーの固形分に換算した単位時間当りの供給量が、 前記第 1晶析槽に供 給する前記リン酸含有排水のリン酸をハイ ドロォキシァパタイ トに換算 した単位時間当りの供給量 1 0 0重量部に対して、 2 5 0 0重量部以上 であることを特徴とする請求項 1又は 2記載の排水の脱リン方法。  3. The supply amount per unit time, which is converted into the solid content of the returned hydroxyapatite slurry supplied to the first crystallization tank, is equal to the phosphoric acid-containing wastewater supplied to the first crystallization tank. 3. The method according to claim 1, wherein the amount of the phosphoric acid is not less than 250 parts by weight based on 100 parts by weight of the supplied amount per unit time in terms of hydroxyapatite. How to remove phosphorus from wastewater.
4 . 前記第 1晶析槽に供給する前記塩化カルシウムの単位時間当りの供 給量が、 前記第 1晶析槽に供給する前記リン酸含有排水のリン酸をハイ ドロォキシァパタイ トに換算して、 必要な理論当量以下にすることを特 徴とする請求項 1〜3のいずれか 1項記載の排水の脱リン方法。 4. The supply amount of the calcium chloride supplied to the first crystallization tank per unit time is such that the phosphoric acid of the phosphoric acid-containing wastewater supplied to the first crystallization tank is converted into a hydroxyapatite. Converting to less than the required theoretical equivalent The method for dephosphorizing wastewater according to any one of claims 1 to 3, characterized in that:
5 . 前記第 2晶析槽に供給する前記塩化カルシウムの単位時間当りの供 給量が、 前記第 1晶析槽に供給する前記塩化カルシウムの当量不足分及 ぴリン酸含有排水中のリン酸をァパタイ ト化するに必要な理論当量に対 して少なくとも 1 0 %以上の過剰分の合計量とすることを特徴とする請 求項 1〜 4のいずれか 1項記載の排水の脱リン方法。  5. The supply amount of the calcium chloride per unit time supplied to the second crystallization tank depends on the equivalent shortage of the calcium chloride supplied to the first crystallization tank. The method for removing phosphorus from wastewater according to any one of claims 1 to 4, wherein the total amount of the excess amount is at least 10% or more based on the theoretical equivalent required for converting the wastewater into an aperitite. .
6 . 前記第 1晶析槽で用いる p H調整剤が塩基性溶液の場合、 該塩基性 溶液は前記返送ハイ ドロォキシァパタイ トスラリーと混合した後に前記 第 1晶析槽に供給することを特徴とする請求項 1〜 5のいずれか 1項記 載の排水の脱リン方法。  6. When the pH adjuster used in the first crystallization tank is a basic solution, the basic solution is mixed with the returned hydroxyapatite slurry and then supplied to the first crystallization tank. The method for dephosphorizing wastewater according to any one of claims 1 to 5, which is characterized in that:
7 . 前記第 1晶析槽で用いる p H調整剤が酸溶液の場合、 該酸溶液と前 記塩化カルシウムは前記リン酸含有排水と混合した後に前記第 1晶析槽 に供給することを特徴とする請求項 1〜 6のいずれか 1項記載の排水の 脱リン方法。  7. When the pH adjuster used in the first crystallization tank is an acid solution, the acid solution and the calcium chloride are mixed with the phosphoric acid-containing wastewater and then supplied to the first crystallization tank. The method for removing phosphorus from wastewater according to any one of claims 1 to 6.
8 . 前記第 1晶析槽で用いる p H調整剤が、 水酸化ナトリウム又は塩酸 であることを特徴とする請求項 1〜 7のいずれか 1項記載の排水の脱リ ン方法。  8. The method for removing waste water according to any one of claims 1 to 7, wherein the pH adjuster used in the first crystallization tank is sodium hydroxide or hydrochloric acid.
9 .前記第 2晶析槽と前記沈降槽との間にさらに 1以上の晶析槽を設け、 該晶析槽内の p Hは前記第 2晶析槽内の p Hに対して下流側になるにつ れて順次高くなるかまたは同じであって、 且つ p H l 1以下の範囲内で あることとを特徴とする請求項 1〜8のいずれか 1項記載の排水の脱リ ン方法。  9. One or more crystallization tanks are further provided between the second crystallization tank and the sedimentation tank, and the pH in the crystallization tank is downstream of the pH in the second crystallization tank. 9. The dewatering of the drainage water according to claim 1, wherein the water content is sequentially higher or the same as the pressure becomes higher, and is within a range of pH 11 or less. Method.
PCT/JP2004/001417 2003-02-12 2004-02-10 Method for removing phosphorus in wastewater WO2004071970A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-033510 2003-02-12
JP2003033510A JP3977757B2 (en) 2003-02-12 2003-02-12 Dephosphorization method of waste water

Publications (1)

Publication Number Publication Date
WO2004071970A1 true WO2004071970A1 (en) 2004-08-26

Family

ID=32866227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001417 WO2004071970A1 (en) 2003-02-12 2004-02-10 Method for removing phosphorus in wastewater

Country Status (4)

Country Link
JP (1) JP3977757B2 (en)
KR (1) KR101031160B1 (en)
CN (1) CN100335428C (en)
WO (1) WO2004071970A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105540770A (en) * 2015-12-19 2016-05-04 湖南科技大学 Magnetically induced crystallization method and apparatus for removal and recovery of phosphorus in wastewater

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4894139B2 (en) * 2004-10-28 2012-03-14 栗田工業株式会社 Method and apparatus for treating phosphoric acid-containing liquid
JP4600865B2 (en) * 2005-03-31 2010-12-22 株式会社日立プラントテクノロジー Method for crystallizing phosphorus-containing water
JP2009226250A (en) 2008-03-19 2009-10-08 Toshiba Corp Phosphorus recovery method and system
JP5058129B2 (en) * 2008-11-06 2012-10-24 オルガノ株式会社 Crystallization reaction method
KR101309565B1 (en) * 2010-12-08 2013-09-17 서울시립대학교 산학협력단 Method for Removing Phosphorus in wastewater Using Crystal from P-C SWRO system
CN102826640A (en) * 2011-06-17 2012-12-19 中国石油化工股份有限公司 Method for treating organic phosphorus production wastewater
CN103521155B (en) * 2013-10-08 2014-12-31 中国农业大学 Livestock wastewater phosphorus crystallization and fertilizer formation reactor and its application
CN105016523B (en) * 2015-07-06 2017-07-28 重庆泰克环保科技股份有限公司 A kind for the treatment of of Phosphorus Containing Waste Water cleaning system
KR102114634B1 (en) * 2020-03-03 2020-05-25 주식회사 지이테크 Phosphorus treatment and recovery process of sewage using selective adsorption module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187092A (en) * 1981-05-15 1982-11-17 Rasa Kogyo Kk Treatment of waste water containing phosphoric acid
JPH02164493A (en) * 1988-12-19 1990-06-25 Osaka Gas Co Ltd Dephosphorization of waste water
JPH04150996A (en) * 1990-10-12 1992-05-25 Agency Of Ind Science & Technol Treatment of phosphate ion-containing waste water
JP2001129560A (en) * 1999-11-02 2001-05-15 Kurita Water Ind Ltd Method and apparatus for treating phosphorus- containing water
JP2002348106A (en) * 2001-05-29 2002-12-04 Kiyoshi Suzuki Method for recovering phosphorus and device used for the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3918294B2 (en) * 1998-03-30 2007-05-23 オルガノ株式会社 Method and apparatus for treating fluorine-containing wastewater
JP3903591B2 (en) * 1998-05-26 2007-04-11 栗田工業株式会社 Treatment method for fluorine and phosphorus containing wastewater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187092A (en) * 1981-05-15 1982-11-17 Rasa Kogyo Kk Treatment of waste water containing phosphoric acid
JPH02164493A (en) * 1988-12-19 1990-06-25 Osaka Gas Co Ltd Dephosphorization of waste water
JPH04150996A (en) * 1990-10-12 1992-05-25 Agency Of Ind Science & Technol Treatment of phosphate ion-containing waste water
JP2001129560A (en) * 1999-11-02 2001-05-15 Kurita Water Ind Ltd Method and apparatus for treating phosphorus- containing water
JP2002348106A (en) * 2001-05-29 2002-12-04 Kiyoshi Suzuki Method for recovering phosphorus and device used for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105540770A (en) * 2015-12-19 2016-05-04 湖南科技大学 Magnetically induced crystallization method and apparatus for removal and recovery of phosphorus in wastewater
CN105540770B (en) * 2015-12-19 2018-06-29 湖南科技大学 A kind of Magnetic guidance crystallization removal and the method and device of recycling phosphor in sewage

Also Published As

Publication number Publication date
KR101031160B1 (en) 2011-04-27
JP3977757B2 (en) 2007-09-19
KR20050114619A (en) 2005-12-06
CN1741967A (en) 2006-03-01
JP2004261640A (en) 2004-09-24
CN100335428C (en) 2007-09-05

Similar Documents

Publication Publication Date Title
CA2845019C (en) Treatment of phosphate-containing wastewater with fluorosilicate and phosphate recovery
WO2000003952A1 (en) Method for treating a fluorine-containing waste water and treating apparatus
WO2004071970A1 (en) Method for removing phosphorus in wastewater
JP4519485B2 (en) Phosphorus recovery method and apparatus
JP5439439B2 (en) Sludge treatment apparatus, phosphorus production method and sludge treatment method
JP5157040B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4423676B2 (en) Method and apparatus for treating phosphorus-containing water
JP2013119081A (en) Treatment method and treatment apparatus for phosphorus-containing wastewater
JPH11333467A (en) Treatment of fluorine and phosphorus-containing waste water
JP2010017631A (en) Method and apparatus for treating phosphoric acid-containing water
JP4871384B2 (en) Treatment equipment for phosphorus-containing wastewater
JPS62250990A (en) Treatment of waste water containing phosphate ion
JP3157347B2 (en) Treatment of wastewater containing fluorine compounds
JP3918294B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4866410B2 (en) Treatment equipment for phosphoric acid-containing water
KR100324078B1 (en) Process for removing fluorine from desulfurization waste water of flue gas
JP4525601B2 (en) Treatment method for fluorine-containing wastewater
JP4190679B2 (en) Method and apparatus for treating phosphorus-containing water
JPH10235398A (en) Sludge treatment
JP2006142191A (en) Method for treating phosphoric acid-containing drainage
JP3304400B2 (en) Treatment method for acidic fluorine-containing water
JP4163891B2 (en) Crystallization and dephosphorization method
JP2021007912A (en) Phosphoric acid removal apparatus and phosphoric acid removal method
JP2006272121A (en) Starting-up method of water treatment apparatus
JP2009142744A (en) Sludge concentration method and sludge concentration apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048028552

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057014943

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057014943

Country of ref document: KR

122 Ep: pct application non-entry in european phase