JP4163891B2 - Crystallization and dephosphorization method - Google Patents

Crystallization and dephosphorization method Download PDF

Info

Publication number
JP4163891B2
JP4163891B2 JP2002113584A JP2002113584A JP4163891B2 JP 4163891 B2 JP4163891 B2 JP 4163891B2 JP 2002113584 A JP2002113584 A JP 2002113584A JP 2002113584 A JP2002113584 A JP 2002113584A JP 4163891 B2 JP4163891 B2 JP 4163891B2
Authority
JP
Japan
Prior art keywords
phosphorus
magnesium
ion concentration
wastewater
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002113584A
Other languages
Japanese (ja)
Other versions
JP2003305478A (en
Inventor
佳一郎 野本
哲郎 乾
弘雅 角谷
昭夫 田巻
文紀 出口
平 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2002113584A priority Critical patent/JP4163891B2/en
Publication of JP2003305478A publication Critical patent/JP2003305478A/en
Application granted granted Critical
Publication of JP4163891B2 publication Critical patent/JP4163891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燐化合物を含有する燐含有排水から燐を分離・除去する晶析脱燐方法に関し、さらに詳しくは、前記燐含有排水とマグネシウム法排煙脱硫装置から排出される排脱排水とを混合し、反応晶析槽内でアンモニア水及び/又は酸を添加して前記混合液のpH値を調整し、燐含有排水から燐を燐酸マグネシウム化合物の結晶として分離・除去するように構成した晶析脱燐方法に関する。
【0002】
【従来の技術】
従来、し尿、下水、食品排水又は厨房排水などの燐化合物を含有する燐含有排水中の燐を除去する方法として、嫌気性処理と好気性処理とを組み合わせて燐を微生物中に取り込んで除去する生物脱燐法や硫酸アルミニウム、ポリ塩化アルミニウムなどの凝集剤を用いてSSやコロイドなどと共に燐を凝集させて沈降分離する凝集沈殿法が一般に用いられている。
これらの燐の除去方法のうち生物脱燐法は、生物学的処理であるため、運転管理が煩雑であり、また高度な技術を必要とし、しかも処理時間がかかるため装置が過大となるという問題がある。
一方、凝集沈殿法は、凝集剤自体とSSやコロイドなどが凝集分離するため、発生スラッジ量が多くなり、スラッジの処理に多額な費用や過大な設備が必要となるという問題がある。
【0003】
また、生物脱燐法や凝集沈殿法は、発生汚泥やスラッジをそのまま埋め立て処分するか、焼却処理したのちに埋め立て処分をしているが、脱水や焼却などその処分に多大な費用や過大な設備が必要になると共に、近年はダイオキシン発生問題などからスラッジを焼却処分するのが困難となってきており、できるだけスラッジ量などを少なくすると共に資源の有効活用が図れる燐含有排水の処理方法が望まれている。
【0004】
前記脱燐方法の問題点に鑑みて、近年は、消石灰や生石灰などのカルシウム塩を燐含有排水に添加して、ヒドロキシアパタイトの結晶を析出させて燐を分離・除去する晶析脱燐方法や塩化マグネシウム、水酸化マグネシウムなどのマグネシウム塩を燐含有排水に添加し、排水中のアンモニアを利用して燐酸マグネシウムアンモニウム(MAP)などの燐酸マグネシウム化合物の結晶を析出させて分離する晶析脱燐法(MAP法)等が開発されている。
尚、前記MAP法における主な反応は以下の式で表される。
Mg2++NH4 ++HPO4 2-+OH-+5H2O→MgNH4PO4・6H2O↓
【0005】
一方、各種加熱炉やボイラ等から排出される排ガス中の硫黄酸化物を除去する装置として、海水、苦汁又は酸化マグネシウムなどから製造した水酸化マグネシウムのスラリーを供給し、硫黄酸化物をこのスラリーに吸収させることで生成した亜硫酸マグネシウムを含有するスラリーを脱硫用の吸収液として使用するマグネシウム法排煙脱硫装置がある。
この排煙脱硫装置からは、脱硫率を所定の値以上に保つため、吸収液の一部である硫酸マグネシウムや未反応亜硫酸マグネシウムなどを含有するパージ液が発生し、そのパージ液は必要により酸化処理されたのち、工業用水などで希釈されて海や河川などに放流されている。
尚、後記する排脱排水とは、上記パージ液又はパージ液を希釈した排水をいう。
また、マグネシウム法排煙脱硫装置における主な工程は以下の通りである。

Figure 0004163891
【0006】
【発明が解決しようとする課題】
しかしながら、前記した晶析脱燐方法のうちカルシウム塩を析出させる晶析脱燐方法では、燐含有排水中に溶解している炭酸イオンとカルシウムイオンとが先に反応して炭酸カルシウムが生成するのを抑えるため、晶析する前に被処理液を脱炭酸する必要がある。また、それらの工程やpH調整工程が複雑であり、また、カルシウム塩は、スケールが発生し易いため、処理槽内でのスケールの付着や配管の閉塞などを引き起こす虞れがある。
また、MAP法による晶析脱燐方法では、マグネシウムイオン濃度、アンモニウムイオン濃度及び燐酸イオン濃度のモル濃度の比が1:1:1である必要があり、燐酸マグネシウムアンモニウムの結晶を析出させる結晶析出条件が狭いので、実際に晶析に使用できる範囲が限定されてしまうのに加えてpHの変動等で微細なフロックが流出し易く、脱燐率が低くなってしまうという問題がある。
【0007】
また、前記排煙脱硫装置から排出される排脱排水は、前記した反応式により生成した硫酸マグネシウムや亜硫酸マグネシウムなどのマグネシウム化合物を含有しており、それらを海や河川に放流して廃棄する場合には、亜硫酸マグネシウムの酸化処理費や薬品費が嵩むという問題がある。
【0008】
本発明は、前記した従来の晶析脱燐方法の問題点に鑑みてなされたものであり、第1の目的は、燐化合物を含有する燐含有排水中の燐を除去する方法において、設備費や運転経費が低廉で、かつ、脱燐率を安定して高く保つことができる晶析脱燐方法を提供することである。また、第2の目的は、前記晶析脱燐方法で分離・回収した結晶が、不純物が少なく、肥料原料や肥料として還元することができるものが得られる晶析脱燐方法を提供することである。
尚、本発明の晶析脱燐方法は、特にイオン交換樹脂の再生工程などから排出されるpH値が10を超える強アルカリ性でアンモニアを殆ど含有せず、比較的高濃度に燐を含有する排水中の燐の除去に適した方法である。
【0009】
【課題を解決するための手段】
前記課題を解決するためになされた請求項1に記載の晶析脱燐方法は、燐化合物を含有する燐含有排水にマグネシウム法排煙脱硫装置から排出される排脱排水を前記排脱排水中のマグネシウムイオン濃度と前記燐含有排水中の燐酸イオン濃度とのモル濃度の比(Mg/P)が、0.5〜4となるように混合したのち、酸でpH値を7.5〜10に調整し、pH調整された前記混合液にアンモニア水を添加して前記混合液中のアンモニウムイオン濃度と前記燐含有排水中の燐酸イオン濃度とのモル濃度の比(NH 4 /P)が、0.5〜3となるように調整し、前記アンモニウムイオン濃度が調整された前記混合液を攪拌して燐酸マグネシウム化合物の結晶を析出させることを特徴とする方法である。
【0010】
請求項1に記載の発明によると、
(1)従来、海や河川に廃棄していたマグネシウム法排煙脱硫装置から排出されていた排脱排水を燐酸マグネシウム化合物の結晶を析出させるためのマグネシウム源として有効利用することができるので、薬品費が不要となる結果、排煙脱硫装置の設備費や運転経費を低減できる。
また、晶析脱燐する場合、原料となるマグネシウム源が安定して確保できるので設備費や運転経費を低減できる。さらに燐酸マグネシウム化合物の結晶は水中で難溶解性なので沈殿しやすいため、脱燐率を安定して高く維持できる。
従って、設備費や運転経費が低廉で、かつ、脱燐率を安定して高く保つことができる晶析脱燐方法を提供することができる。
(2)酸でpH値を7.5〜10に調整することで溶液中で難溶性の燐酸マグネシウムの結晶が得られ、さらにアンモニア水を添加することで、難溶性の燐酸マグネシウムアンモニウムの結晶が得られる。尚、pH値が7.5未満では燐酸マグネシウム化合物の結晶が生成しにくくなり、pH値が10を超えると溶液中のアンモニアの溶解度が低くなりすぎて、アンモニアが揮散し易くなる。
【0011】
請求項2に記載の晶析脱燐方法は、燐化合物を含有するpH値が10を超える強アルカリ性の燐含有排水中の燐を除去する方法において、前記燐含有排水にマグネシウム法排煙脱硫装置から排出される排脱排水を前記排脱排水中のマグネシウムイオン濃度と前記燐含有排水中の燐酸イオン濃度とのモル濃度の比(Mg/P)が、0.5〜4となるように混合したのち、酸でpH値を7.5〜10に調整し、pH調整された前記混合液にアンモニア水を添加して前記混合液中のアンモニウムイオン濃度と前記燐含有排水中の燐酸イオン濃度とのモル濃度の比(NH 4 /P)が、0.5〜3となるように調整し、前記アンモニウムイオン濃度が調整された前記混合液を酸でpH値を7.5〜10に再調整し、pH値が再調整された前記混合液を攪拌して燐酸マグネシウム化合物の結晶を析出させることを特徴とする方法である。
【0012】
請求項2に記載の発明によると、
(1)従来、海や河川に廃棄していたマグネシウム法排煙脱硫装置から排出されていた排脱排水を燐酸マグネシウム化合物の結晶を析出させるためのマグネシウム源として有効利用することができるので、薬品費が不要となる結果、排煙脱硫装置の設備費や運転経費を低減できる。
また、晶析脱燐する場合、原料となるマグネシウム源が安定して確保できるので設備費や運転経費を低減できる。さらに燐酸マグネシウム化合物の結晶は水中で難溶解性なので沈殿しやすいため、脱燐率を安定して高く維持できる。
従って、設備費や運転経費が低廉で、かつ、脱燐率を安定して高く保つことができる晶析脱燐方法を提供することができる。
(2)酸でpH値を7.5〜10に調整することで溶液中で難溶性の燐酸マグネシウムの結晶が得られ、さらにアンモニア水を添加することで、難溶性の燐酸マグネシウムアンモニウムの結晶が得られる。尚、pH値が7.5未満では燐酸マグネシウム化合物の結晶が生成しにくくなり、pH値が10を超えると溶液中のアンモニアの溶解度が低くなりすぎて、アンモニアが揮散し易くなる。
【0014】
請求項1及び2に記載の晶析脱燐方法によると、前記燐含有排水に混合する前記排脱排水量を、前記排脱排水中のマグネシウムイオン濃度と前記燐含有排水中の燐酸イオン濃度とのモル濃度の比(Mg/P)が、0.5〜4となるように混合することにより、脱燐率を高く維持することができる。モル濃度の比(Mg/P)が0.5未満になると脱燐率が低くなり、モル濃度の比(Mg/P)が4を超えると排水量全体が多くなると共に、残存マグネシウム量が多くなり、装置内でスケールが発生する虞れがある。
【0016】
請求項1及び2に記載の発明によると、前記燐含有排水に前記アンモニア水を添加して調整する前記アンモニウムイオン濃度は、前記アンモニウムイオン濃度と前記燐含有排水中の燐酸イオン濃度とのモル濃度の比(NH4/P)が、0.5〜3となるように調整することで、脱燐率をさらに高く維持することができる。モル濃度の比(NH4/P)が、0.5未満になると脱燐率が低くなり、モル濃度の比(NH4/P)が、3を超えると排水中の残存アンモニア量が多くなり、その脱窒処理が必要となる。
【0017】
【発明の実施の形態】
最初に、本発明の晶析脱燐方法の概要について述べる。
本発明の晶析脱燐方法は、燐含有排水を混合する混合工程、酸やアンモニア水などでpH調整するpH調整工程及び燐酸マグネシウム化合物の結晶を析出させる晶析工程などの工程からなり、これらの工程を実施する場合、それぞれの工程毎に混合槽、pH調整槽及び反応晶析槽を設けて実施しても良いし、全工程を1つの反応晶析槽内で実施するようにしても良い。
特に、本発明の晶析脱燐方法は、イオン交換樹脂の再生工程等から排出されるpH値が10を超える強アルカリ性でアンモニウムイオンを殆ど含有せず、比較的高濃度に燐を含有する排水中の燐の除去に適している。
【0018】
本発明で分離・回収される燐酸マグネシウム化合物の結晶としては、燐酸マグネシウム:Mg3(PO42、燐酸マグネシウムアンモニウム:MgNH4PO4、それらの混合物などの結晶であり、その粒径は0.5〜1.5mm程度である。
尚、結晶の析出を促進するため、種結晶を添加して晶析するようにしても良い。
また反応晶析槽における攪拌は、生成した結晶が流動化し反応晶析槽の底部に沈殿しない程度の攪拌が望ましい。すなわち、攪拌方法としては、緩速攪拌機、空気攪拌手段又はポンプ循環手段などによる攪拌方法のうち何れで攪拌しても良い。
【0019】
また、燐含有排水に混合する排脱排水量は、前記排脱排水中のマグネシウムイオン濃度と前記燐含有排水中の燐酸イオン濃度とのモル濃度の比(Mg/P)が、0.5〜4、より好ましくは1.5〜3.5となる量が混合される。又アンモニア水の添加量は、アンモニウムイオン濃度と前記燐含有排水中の燐酸イオン濃度とのモル濃度の比(NH4/P)が、0.5〜3、好ましくは1.5〜2.5となる量が添加される。さらに酸による1段調整及び2段調整におけるpH調整は、pH値が7.5〜10、より好ましくはpH値が8〜9.5に調整される。尚、pH調整に用いられる酸としては、硫酸を用いるのが好ましいが、適宜廃酸などを用いても良い。
【0020】
尚、反応晶析槽で生成した燐酸マグネシウム化合物の結晶を結晶混合液から分離する装置としては、デカンタなどの遠心分離機(遠心沈降機)、遠心濾過機や濾布を張設した回転濾過機等の濾過装置又はウェッジワイヤ、金網、多孔板などからなる平板状スクリーン等、母液から結晶を分離する装置であれば良いが、分離効率や脱液率を向上させるためデカンタ型遠心分離機を用いるのがより好ましい。
【0021】
以下に本発明の実施の形態について図面に基づいて説明する。図1は本発明の一実施形態である晶析脱燐装置の系統図である。尚、この晶析脱燐装置は本発明に係る晶析脱燐方法を具現化するための装置の一例である。
【0022】
図1において、1は燐化合物を含有するpH値が10を越える強アルカリ性の燐含有排水(以下、単に燐含有排水という)を貯留する燐含有排水貯留槽、2はマグネシウム法排煙脱硫装置から排出される排脱排水を貯留する排脱排水貯留槽、4は燐含有排水と排脱排水との混合液中のアンモニウムイオン濃度調整用のアンモニア水を貯留するアンモニア水貯留槽である。
【0023】
また、3は反応晶析槽であり、槽内では燐含有排水に排脱排水を混合する工程、アンモニア水を添加する工程、硫酸でpH調整するpH調整工程及び燐酸マグネシウム化合物の結晶を析出させる晶析工程など全工程が行われる。
反応晶析槽3の形状は、下部がコーン状となった槽で底部から結晶混合液を抜き出せるようになっている。反応晶析槽3には、反応晶析槽3内の液を攪拌する回転翼型の緩速攪拌機8及び反応晶析槽3内のpH値を測定するpH計9が付設されており、pH計9の電気出力信号は、測定されたpH値に基づいてアンモニア水の添加量及び硫酸の添加量を制御する制御装置(図示しない)に入力される。
さらに、制御装置(図示しない)は、入力された電気信号に基づいて後記するアンモニア水供給ポンプ12及び硫酸供給ポンプ13を制御する。
【0024】
6は反応晶析槽3で生成した結晶から液分を脱液して結晶(固形分)を回収するデカンタ型遠心分離機であり、反応晶析槽3の底部と結晶混合液供給配管eで接続されている。デカンタ型遠心分離機6には、前記結晶混合液供給配管eに設けられた結晶混合液供給ポンプ14を介して反応晶析槽3から結晶混合液が供給され、結晶混合液は遠心力で分離液と結晶(固形分)とに分離される。
【0025】
7はデカンタ型遠心分離機6で分離された結晶を貯留する結晶貯留槽、10は燐含有排水貯留槽1に接続した燐含有排水供給配管aに設けられ、反応晶析槽3に燐含有排水を供給する燐含有排水供給ポンプ、11は排脱排水貯留槽2に接続した排脱排水供給管bに設けられ、反応晶析槽3に排脱排水を供給する排脱排水供給ポンプである。
また、12はアンモニア水貯留槽4に接続したアンモニア水供給配管cに設けられ、反応晶析槽3にアンモニア水を供給するアンモニア水供給ポンプ、13は硫酸貯留槽5に接続した硫酸供給配管dに設けられ、反応晶析槽3に硫酸を供給する硫酸供給ポンプである。
【0026】
前記構成からなる晶析脱燐装置により排水中の燐を除去する方法について以下詳述する。
燐含有排水を燐含有排水貯留槽1から燐含有排水供給管aを介して燐含有排水供給ポンプ10で抜き出して反応晶析槽3ヘ導入し、排脱排水を排脱排水供給管bを介して排脱排水貯留槽2から排脱排水供給ポンプ11で抜き出して反応晶析槽3ヘ供給する。
尚、排脱排水の供給量は、排脱排水中のマグネシウムイオン濃度が燐含有排水中のリン酸イオン濃度とのモル濃度の比が0.5〜4好ましくは1.3〜3.5となるように供給される。
【0027】
アンモニア水をアンモニア供給管cを介してアンモニア水貯留槽4からアンモニア供給ポンプ12で抜き出して反応晶析槽3へ添加する。尚、アンモニア水の添加量は、燐含有排水中のリン酸イオン濃度とのモル濃度の比が0.5〜3、好ましくは、1.5〜2.5となる量が添加される。
また、硫酸によるpH調整は、前記1回のみでもよいが、アンモニア水を添加するとpH値が上昇するのでアンモニアが揮散し易くなるため、再度硫酸を添加してpH値を7.5〜10、好ましくは、pH値を8〜9.5に調整することも好ましい。
【0028】
また、反応晶析槽3内で回転翼型の緩速攪拌機8で攪拌されながら析出され、所定の滞留時間をもって成長した燐酸マグネシウム化合物の結晶を含有する結晶混合液は、反応晶析槽3から結晶混合液供給管eを介して結晶混合液供給ポンプ14により抜き出され、前記結晶混合液中の結晶を分離・脱液するデカンタ型遠心分離機6へ供給される。
【0029】
デカンタ型遠心分離機6に供給された結晶混合液は、高速回転による遠心力を受けて分離液と結晶(固形分)とに分離される。
分離された液分は、分離液排出管fから排出され、一方、結晶は、結晶排出管gから結晶貯留槽7に排出されて貯留される。
尚、結晶貯留槽7に回収された燐酸マグネシウム化合物の結晶は、マグネシウムや燐酸及びアンモニアを多量に含有し、不純物も少ないため、肥料原料や肥料として還元することができる。
【0030】
【実施例】
以下に本発明の一実施の形態の晶析脱燐装置を用いてイオン交換樹脂の再生排水である原水(PO4‐P含有量:1160mg/L)を処理した実施例について述べる。尚、混合する排脱排水としてはMgSO4:25.7g/L含有する排水を用いた。その結果を表1に示す。
【0031】
【表1】
Figure 0004163891
【0032】
表1からも判るように、case1〜case5のうち、
case2は、燐含有排水中の燐酸イオン濃度に対してアンモニア水の添加量が1番少ないので脱燐率が90%未満と1番低い値となった。
また、case5は、燐含有排水中の燐酸イオン濃度に対して添加したマグネシウムイオン及びアンモニウムイオンの量が多く、特にマグネシウムイオン濃度をアンモニウムイオン濃度よりもより多く添加したので生成する燐酸マグネシウム化合物の結晶量も多く、かつ脱燐率も99.3%と1番高い値となった。
脱燐率としては、case2を除いて90%以上の脱燐率を確保できた。
【0033】
以上説明したように、本発明に係る晶析脱燐方法によれば、燐化合物を含有する燐含有排水中の燐を除去する方法において、設備費や運転経費も低廉で、脱燐率も安定して高く保つことができ、また、分離回収した結晶も不純物が少なくマグネシウムや燐酸及びアンモニアを多量に含んでいるため、肥料原料や肥料として還元することができる晶析脱燐方法を提供できる。
また、本発明に係る晶析脱燐方法は、特にイオン交換樹脂の再生工程などから排出されるpH値が10を超える強アルカリ性でアンモニアを殆ど含有せず、比較的高濃度の燐を含有する排水中の燐の除去に適した方法である。
【0034】
【発明の効果】
以上説明した構成と作用からなる本発明によれば、以下の効果を奏する。
1.請求項1の発明によれば、
(1)従来、海や河川に廃棄していたマグネシウム法排煙脱硫装置から排出されていた排脱排水を燐酸マグネシウム化合物の結晶を析出させるためのマグネシウム源として有効利用することができるので、薬品費が不要となる結果、排煙脱硫装置の設備費や運転経費を低減できる。また、燐酸マグネシウム化合物の結晶は水中で難溶解性なので沈殿しやすいため、脱燐効果を安定して高く維持できる。従って、設備費や運転経費が低廉で、かつ、脱燐効果を安定して高く維持できる晶析脱燐方法を提供することができる。
(2)酸でpH値を7.5〜10に調整することで溶液中で難溶性の燐酸マグネシウムの結晶が得られ、さらにアンモニア水を添加することで、難溶性の燐酸マグネシウムアンモニウムの結晶が得られる。尚、pH値が7.5未満では燐酸マグネシウム化合物の結晶が生成しにくくなり、pH値が10を超えると溶液中のアンモニアの溶解度が低くなりすぎて、アンモニアが揮散し易くなる。
2.請求項2の発明によれば、
(1)従来、海や河川に廃棄していたマグネシウム法排煙脱硫装置から排出されていた排脱排水を燐酸マグネシウム化合物の結晶を析出させるためのマグネシウム源として有効利用することができるので、薬品費が不要となる結果、排煙脱硫装置の設備費や運転経費を低減できる。また、晶析脱燐する場合、原料となるマグネシウム源が安定して確保できるので設備費や運転経費を低減できる。さらに燐酸マグネシウム化合物の結晶は水中で難溶解性なので沈殿しやすいため、脱燐率を安定して高く維持できる。従って、設備費や運転経費が低廉で、かつ、脱燐率を安定して高く保つことができる晶析脱燐方法を提供することができる。
(2)酸でpH値を7.5〜10に調整することで溶液中で難溶性の燐酸マグネシウムの結晶が得られ、さらにアンモニア水を添加することで、難溶性の燐酸マグネシウムアンモニウムの結晶が得られる。尚、pH値が7.5未満では燐酸マグネシウム化合物の結晶が生成しにくくなり、pH値が10を超えると溶液中のアンモニアの溶解度が低くなりすぎて、アンモニアが揮散し易くなる。
3.請求項1及び2の発明によれば、前記燐含有排水に混合する前記排脱排水量を、前記排脱排水中のマグネシウムイオン濃度と前記燐含有排水中の燐酸イオン濃度とのモル濃度の比(Mg/P)が、0.5〜4となるように混合することにより、脱燐率を高く維持することができる。モル濃度の比(Mg/P)が0.5未満になると脱燐率が低くなり、モル濃度の比(Mg/P)が4を超えると排水量全体が多くなると共に、残存マグネシウム量が多くなり、装置内でスケールが発生する虞れがある。
4.請求項1及び2の発明によれば、前記燐含有排水に前記アンモニア水を添加して調整する前記アンモニウムイオン濃度は、前記アンモニウムイオン濃度と前記燐含有排水中の燐酸イオン濃度とのモル濃度の比(NH4/P)が、0.5〜3となるように調整することで、脱燐率をさらに高く維持することができる。モル濃度の比(NH4/P)が、0.5未満になると脱燐率が低くなり、モル濃度の比(NH4/P)が、3を超えると排水中の残存アンモニア量が多くなり、その脱窒処理が必要となる。
【図面の簡単な説明】
【図1】本発明の一実施形態である晶析脱燐装置の系統図である。
【符号の説明】
1 燐含有排水貯留槽
2 排脱排水貯留槽
3 反応晶析槽
4 アンモニア水貯留槽
5 硫酸貯留槽
6 デカンタ型遠心分離機
7 結晶貯留槽
8 緩速攪拌機
9 pH計
10 燐含有排水供給ポンプ
11 排脱排水供給ポンプ
12 アンモニア水供給ポンプ
13 硫酸供給ポンプ
14 結晶混合液供給ポンプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crystallization dephosphorization method for separating and removing phosphorus from a phosphorus-containing wastewater containing a phosphorus compound, and more specifically, the phosphorus-containing wastewater and the wastewater drainage discharged from a magnesium process flue gas desulfurization apparatus. Crystals configured to mix, adjust the pH value of the mixed solution by adding ammonia water and / or acid in a reaction crystallization tank, and separate and remove phosphorus from the phosphorus-containing wastewater as magnesium phosphate compound crystals. The present invention relates to an analysis and dephosphorization method.
[0002]
[Prior art]
Conventionally, as a method for removing phosphorus in phosphorus-containing wastewater containing phosphorus compounds such as human waste, sewage, food wastewater or kitchen wastewater, phosphorus is taken into microorganisms by combining anaerobic treatment and aerobic treatment. In general, a biological dephosphorization method or a coagulation-precipitation method in which phosphorus is coagulated with an SS or colloid using an aggregating agent such as aluminum sulfate or polyaluminum chloride and then separated by precipitation.
Among these phosphorus removal methods, the biological dephosphorization method is a biological treatment, so that the operation management is complicated, high technology is required, and the processing time is long, so that the apparatus becomes excessive. There is.
On the other hand, the coagulation-precipitation method has a problem that since the coagulant itself and SS, colloid, and the like coagulate and separate, the amount of generated sludge increases, and a large amount of cost and excessive equipment are required for sludge treatment.
[0003]
Biological dephosphorization and coagulation-precipitation methods either dispose of the generated sludge and sludge as they are or landfill them after incineration. However, the disposal of such dewatering and incineration requires enormous costs and excessive facilities. In recent years, it has become difficult to incinerate sludge due to dioxin generation problems, etc., and a method for treating phosphorus-containing wastewater that can reduce the amount of sludge and make effective use of resources is desired. ing.
[0004]
In view of the problems of the dephosphorization method, in recent years, a crystallization dephosphorization method in which a calcium salt such as slaked lime or quicklime is added to phosphorus-containing wastewater to precipitate hydroxyapatite crystals to separate and remove phosphorus. A crystallization dephosphorization method in which magnesium salts such as magnesium chloride and magnesium hydroxide are added to phosphorus-containing waste water, and crystals of a magnesium phosphate compound such as magnesium ammonium phosphate (MAP) are precipitated and separated using ammonia in the waste water. (MAP method) has been developed.
The main reaction in the MAP method is represented by the following formula.
Mg 2+ + NH 4 + + HPO 4 2− + OH + 5H 2 O → MgNH 4 PO 4 .6H 2 O ↓
[0005]
On the other hand, as a device for removing sulfur oxides in exhaust gas discharged from various heating furnaces and boilers, etc., a slurry of magnesium hydroxide produced from seawater, bitter or magnesium oxide is supplied, and the sulfur oxides are supplied to this slurry. There is a magnesium-based flue gas desulfurization apparatus that uses a slurry containing magnesium sulfite produced by absorption as an absorbent for desulfurization.
This flue gas desulfurization unit generates a purge liquid containing magnesium sulfate, unreacted magnesium sulfite, etc., which is a part of the absorption liquid, in order to keep the desulfurization rate above a predetermined value, and the purge liquid is oxidized if necessary. After being treated, it is diluted with industrial water and discharged into the sea and rivers.
The drainage / drainage described later refers to the purge liquid or drainage obtained by diluting the purge liquid.
Moreover, the main processes in a magnesium method flue gas desulfurization apparatus are as follows.
Figure 0004163891
[0006]
[Problems to be solved by the invention]
However, among the crystallization and dephosphorization methods described above, in the crystallization and dephosphorization method in which calcium salts are precipitated, the carbonate ions and calcium ions dissolved in the phosphorus-containing wastewater react first to generate calcium carbonate. Therefore, it is necessary to decarboxylate the liquid to be treated before crystallization. In addition, these steps and the pH adjustment step are complicated, and the calcium salt is likely to generate scale, which may cause adhesion of scale in the treatment tank and blockage of piping.
In addition, in the crystallization dephosphorization method by the MAP method, the molar ratio of the magnesium ion concentration, the ammonium ion concentration, and the phosphate ion concentration must be 1: 1: 1, and crystal precipitation for precipitating magnesium ammonium phosphate crystals Since the conditions are narrow, there is a problem that the range that can actually be used for crystallization is limited, and in addition, fine flocs are likely to flow out due to fluctuations in pH and the like, resulting in a low dephosphorization rate.
[0007]
In addition, the exhaust and waste water discharged from the flue gas desulfurization apparatus contains magnesium compounds such as magnesium sulfate and magnesium sulfite generated by the above reaction formula, and when these are discharged to the sea or river for disposal However, there is a problem in that the oxidation treatment cost and chemical cost of magnesium sulfite increase.
[0008]
The present invention has been made in view of the above-described problems of the conventional crystallization dephosphorization method. The first object of the present invention is to provide equipment cost in a method of removing phosphorus in phosphorus-containing wastewater containing a phosphorus compound. Another object of the present invention is to provide a crystallization and dephosphorization method that can be operated at low cost and can stably maintain a high dephosphorization rate. A second object is to provide a crystallization and dephosphorization method in which the crystals separated and recovered by the crystallization and dephosphorization method have few impurities and can be reduced as fertilizer raw materials and fertilizers. is there.
Incidentally, the crystallization and dephosphorization method of the present invention is a wastewater containing a relatively high concentration of phosphorous having a strong alkalinity with a pH value of more than 10 discharged from an ion exchange resin regeneration process and the like, and hardly containing ammonia. This method is suitable for removing phosphorus contained therein.
[0009]
[Means for Solving the Problems]
Crystal phosphorus removal method according to claim 1 which has been made to solve the above problems, phosphorus compounds the exhaust de drainage in waste removal waste water discharged from the magnesium method flue gas desulfurization system to a phosphorus-containing wastewater containing After mixing so that the molar ratio (Mg / P) of the magnesium ion concentration of the phosphorous ion in the phosphorus-containing wastewater is 0.5 to 4 , the pH value is adjusted to 7.5 to 10 with acid. The ammonia solution was added to the pH-adjusted mixed solution, and the molar ratio (NH 4 / P) of the ammonium ion concentration in the mixed solution and the phosphate ion concentration in the phosphorus-containing waste water was The method is characterized in that the mixture is adjusted to 0.5 to 3 and the mixed solution in which the ammonium ion concentration is adjusted is stirred to precipitate a magnesium phosphate compound crystal.
[0010]
According to the invention of claim 1,
(1) The wastewater discharged from the magnesium method flue gas desulfurization device that has been disposed of in the sea or river can be effectively used as a magnesium source for precipitating magnesium phosphate compound crystals. As a result, the cost and operating cost of the flue gas desulfurization device can be reduced.
In addition, when crystallization dephosphorization is performed, a magnesium source as a raw material can be stably secured, so that facility costs and operation costs can be reduced. Furthermore, since the crystals of magnesium phosphate compound are hardly soluble in water and are likely to precipitate, the dephosphorization rate can be stably maintained at a high level.
Therefore, it is possible to provide a crystallization and dephosphorization method that can reduce the equipment cost and operation cost and can keep the dephosphorization rate stably high.
(2) By adjusting the pH value to 7.5 to 10 with an acid, crystals of poorly soluble magnesium phosphate are obtained in the solution. Further, by adding ammonia water, crystals of poorly soluble magnesium ammonium phosphate are obtained. can get. If the pH value is less than 7.5, crystals of the magnesium phosphate compound are difficult to be formed. If the pH value exceeds 10, the solubility of ammonia in the solution becomes too low, and ammonia tends to volatilize.
[0011]
The crystallization dephosphorization method according to claim 2 is a method for removing phosphorus in a strongly alkaline phosphorus-containing wastewater containing a phosphorus compound and having a pH value of more than 10, wherein the magnesium method flue gas desulfurization apparatus is added to the phosphorus-containing wastewater. The waste water discharged from the waste water is mixed so that the molar ratio (Mg / P) between the magnesium ion concentration in the waste water and the phosphate ion concentration in the phosphorus-containing waste water is 0.5-4 Thereafter, the pH value is adjusted to 7.5 to 10 with an acid, and ammonia water is added to the pH-adjusted liquid mixture to adjust the ammonium ion concentration in the liquid mixture and the phosphate ion concentration in the phosphorus-containing waste water. The molar ratio (NH 4 / P) was adjusted to 0.5-3, and the pH of the mixture adjusted to the ammonium ion concentration was adjusted to 7.5-10 with acid. The mixed solution whose pH value has been readjusted is then stirred. A method characterized in that to precipitate crystals of magnesium phosphate compound.
[0012]
According to the invention described in claim 2,
(1) The wastewater discharged from the magnesium method flue gas desulfurization device that has been disposed of in the sea or river can be effectively used as a magnesium source for precipitating magnesium phosphate compound crystals. As a result, the cost and operating cost of the flue gas desulfurization device can be reduced.
In addition, when crystallization dephosphorization is performed, a magnesium source as a raw material can be stably secured, so that facility costs and operation costs can be reduced. Furthermore, since the crystals of magnesium phosphate compound are hardly soluble in water and are likely to precipitate, the dephosphorization rate can be stably maintained at a high level.
Therefore, it is possible to provide a crystallization and dephosphorization method that can reduce the equipment cost and operation cost and can keep the dephosphorization rate stably high.
(2) By adjusting the pH value to 7.5 to 10 with an acid, crystals of poorly soluble magnesium phosphate are obtained in the solution. Further, by adding ammonia water, crystals of poorly soluble magnesium ammonium phosphate are obtained. can get. If the pH value is less than 7.5, crystals of the magnesium phosphate compound are difficult to be formed. If the pH value exceeds 10, the solubility of ammonia in the solution becomes too low, and ammonia tends to volatilize.
[0014]
According to the crystallization and dephosphorization method according to claim 1 and 2 , the amount of waste water discharged and mixed into the phosphorus-containing waste water is determined by the magnesium ion concentration in the waste water and waste water and the phosphate ion concentration in the phosphorus-containing waste water. By mixing so that the molar concentration ratio (Mg / P) is 0.5 to 4, the dephosphorization rate can be kept high. When the molar ratio (Mg / P) is less than 0.5, the dephosphorization rate decreases, and when the molar ratio (Mg / P) exceeds 4, the total amount of waste water increases and the amount of residual magnesium increases. There is a risk that scale will occur in the apparatus.
[0016]
According to invention of Claim 1 and 2 , the said ammonium ion concentration adjusted by adding the said ammonia water to the said phosphorus containing waste_water | drain is the molar concentration of the said ammonium ion concentration and the phosphate ion concentration in the said phosphorus containing waste_water | drain. By adjusting the ratio (NH 4 / P) to be 0.5 to 3, the dephosphorization rate can be kept higher. When the molar ratio (NH 4 / P) is less than 0.5, the dephosphorization rate decreases, and when the molar ratio (NH 4 / P) exceeds 3, the amount of residual ammonia in the waste water increases. The denitrification process is necessary.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
First, an outline of the crystallization dephosphorization method of the present invention will be described.
The crystallization dephosphorization method of the present invention comprises a mixing step of mixing phosphorus-containing wastewater, a pH adjustment step of adjusting pH with acid or ammonia water, and a crystallization step of precipitating crystals of a magnesium phosphate compound. When carrying out the above process, a mixing tank, a pH adjustment tank and a reaction crystallization tank may be provided for each process, or all processes may be carried out in one reaction crystallization tank. good.
In particular, the crystallization and dephosphorization method of the present invention is a wastewater containing a relatively high concentration of phosphorus, which is strongly alkaline and contains almost no ammonium ions, and has a pH value of more than 10 discharged from the regeneration step of the ion exchange resin. Suitable for removing phosphorus in the inside.
[0018]
The crystals of the magnesium phosphate compound separated and recovered in the present invention are crystals of magnesium phosphate: Mg 3 (PO 4 ) 2 , magnesium ammonium phosphate: MgNH 4 PO 4 , a mixture thereof, and the particle size thereof is 0. About 5 to 1.5 mm.
In order to promote the precipitation of crystals, seed crystals may be added for crystallization.
Further, the stirring in the reaction crystallization tank is desirably stirring to such an extent that the generated crystal does not flow and precipitate at the bottom of the reaction crystallization tank. That is, as a stirring method, stirring may be performed by any of stirring methods using a slow stirrer, air stirring means, pump circulation means, or the like.
[0019]
The amount of drainage / drainage mixed with the phosphorus-containing wastewater is such that the molar ratio (Mg / P) between the magnesium ion concentration in the wastewater / drainage and the phosphate ion concentration in the phosphorus-containing wastewater is 0.5-4. More preferably, an amount of 1.5 to 3.5 is mixed. The amount of ammonia water added is such that the molar ratio (NH 4 / P) between the ammonium ion concentration and the phosphate ion concentration in the phosphorus-containing wastewater is 0.5 to 3, preferably 1.5 to 2.5. Is added. Further, the pH adjustment in the first-stage adjustment and the second-stage adjustment with an acid is adjusted to a pH value of 7.5 to 10, more preferably a pH value of 8 to 9.5. In addition, although it is preferable to use a sulfuric acid as an acid used for pH adjustment, you may use a waste acid etc. suitably.
[0020]
In addition, as a device for separating the magnesium phosphate compound crystals produced in the reaction crystallization tank from the crystal mixture, a centrifugal separator such as a decanter (centrifugal settling machine), a centrifugal filter or a rotary filter with a filter cloth stretched Any device that separates crystals from the mother liquor, such as a filtration device such as a wedge wire, a wire mesh, or a perforated plate, may be used, but a decanter centrifuge is used to improve separation efficiency and drainage rate. Is more preferable.
[0021]
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of a crystallization dephosphorization apparatus according to an embodiment of the present invention. This crystallization dephosphorization apparatus is an example of an apparatus for embodying the crystallization dephosphorization method according to the present invention.
[0022]
In FIG. 1, 1 is a phosphorus-containing wastewater storage tank for storing strongly alkaline phosphorus-containing wastewater (hereinafter simply referred to as phosphorus-containing wastewater) containing a phosphorus compound and having a pH value exceeding 10, and 2 is from a magnesium process flue gas desulfurization apparatus. 4 is an ammonia water storage tank for storing ammonia water for adjusting the concentration of ammonium ions in a mixed liquid of phosphorus-containing waste water and waste water.
[0023]
In addition, 3 is a reaction crystallization tank, in which a process of mixing waste water with phosphorus-containing waste water, a process of adding ammonia water, a pH adjusting process of adjusting pH with sulfuric acid, and a crystal of a magnesium phosphate compound are precipitated. All steps including the crystallization step are performed.
The shape of the reaction crystallization tank 3 is such that the crystal mixture can be extracted from the bottom in a corn tank at the bottom. The reaction crystallization tank 3 is provided with a rotary blade type slow-speed stirrer 8 for stirring the liquid in the reaction crystallization tank 3 and a pH meter 9 for measuring the pH value in the reaction crystallization tank 3. The electric output signal of the total 9 is input to a control device (not shown) that controls the addition amount of aqueous ammonia and the addition amount of sulfuric acid based on the measured pH value.
Further, the control device (not shown) controls an ammonia water supply pump 12 and a sulfuric acid supply pump 13 which will be described later based on the input electric signal.
[0024]
6 is a decanter type centrifuge for recovering the crystals (solid content) by removing the liquid from the crystals produced in the reaction crystallization tank 3, and at the bottom of the reaction crystallization tank 3 and the crystal mixture supply pipe e. It is connected. The decanter centrifuge 6 is supplied with the crystal mixture from the reaction crystallization tank 3 via the crystal mixture supply pump 14 provided in the crystal mixture supply pipe e, and the crystal mixture is separated by centrifugal force. It is separated into liquid and crystals (solid content).
[0025]
7 is a crystal storage tank for storing crystals separated by the decanter centrifuge 6, 10 is provided in a phosphorus-containing waste water supply pipe a connected to the phosphorus-containing waste water storage tank 1, and a phosphorus-containing waste water is supplied to the reaction crystallization tank 3. A phosphorus-containing drainage supply pump 11 is provided in the drainage / drainage supply pipe b connected to the drainage / drainage storage tank 2, and is a drainage / drainage supply pump that supplies drainage / drainage to the reaction crystallization tank 3.
Further, 12 is provided in an ammonia water supply pipe c connected to the ammonia water storage tank 4, an ammonia water supply pump for supplying ammonia water to the reaction crystallization tank 3, and 13 is a sulfuric acid supply pipe d connected to the sulfuric acid storage tank 5. And a sulfuric acid supply pump for supplying sulfuric acid to the reaction crystallization tank 3.
[0026]
A method for removing phosphorus in the wastewater by the crystallization dephosphorization apparatus having the above configuration will be described in detail below.
The phosphorus-containing wastewater is extracted from the phosphorus-containing wastewater storage tank 1 through the phosphorus-containing wastewater supply pipe a by the phosphorus-containing wastewater supply pump 10 and introduced into the reaction crystallization tank 3, and the wastewater discharged from the drainage wastewater supply pipe b. Then, it is extracted from the discharge / drainage storage tank 2 by the discharge / drainage supply pump 11 and supplied to the reaction crystallization tank 3.
In addition, the supply amount of the drainage and drainage is such that the ratio of the molar concentration of the magnesium ion concentration in the drainage and drainage to the phosphate ion concentration in the phosphorus-containing wastewater is 0.5 to 4, preferably 1.3 to 3.5. Supplied to be
[0027]
Ammonia water is extracted from the ammonia water storage tank 4 via the ammonia supply pipe c by the ammonia supply pump 12 and added to the reaction crystallization tank 3. The ammonia water is added in such an amount that the molar concentration ratio with respect to the phosphate ion concentration in the phosphorus-containing wastewater is 0.5 to 3, preferably 1.5 to 2.5.
Further, the pH adjustment with sulfuric acid may be performed only once. However, when ammonia water is added, the pH value rises, so that ammonia is easily volatilized. Therefore, sulfuric acid is added again to adjust the pH value to 7.5 to 10. It is also preferable to adjust the pH value to 8 to 9.5.
[0028]
In addition, a crystal mixed solution containing crystals of a magnesium phosphate compound that has been precipitated in the reaction crystallization tank 3 while being stirred by a rotary blade type slow agitator 8 and has grown with a predetermined residence time is obtained from the reaction crystallization tank 3. It is extracted by the crystal mixture supply pump 14 through the crystal mixture supply pipe e, and supplied to the decanter centrifuge 6 that separates and drains the crystals in the crystal mixture.
[0029]
The crystal mixture supplied to the decanter type centrifuge 6 is separated into a separation liquid and a crystal (solid content) by receiving a centrifugal force by high-speed rotation.
The separated liquid is discharged from the separated liquid discharge pipe f, while the crystals are discharged from the crystal discharge pipe g to the crystal storage tank 7 and stored.
The crystal of the magnesium phosphate compound recovered in the crystal storage tank 7 contains a large amount of magnesium, phosphoric acid and ammonia, and has few impurities, so it can be reduced as a fertilizer raw material or fertilizer.
[0030]
【Example】
The following describes an example in which raw water (PO 4 -P content: 1160 mg / L), which is a regenerated waste water of an ion exchange resin, is treated using the crystallization dephosphorization apparatus of one embodiment of the present invention. Incidentally, MgSO as waste removal the waste water to be mixed is 4: Using 25.7 g / L containing draining. The results are shown in Table 1.
[0031]
[Table 1]
Figure 0004163891
[0032]
As can be seen from Table 1, among cases 1 to 5,
In case 2, the amount of ammonia water added was the smallest with respect to the phosphate ion concentration in the phosphorus-containing wastewater, so the dephosphorization rate was the lowest value of less than 90%.
In addition, in case 5, the amount of magnesium ions and ammonium ions added relative to the phosphate ion concentration in the phosphorus-containing wastewater is large, and in particular, the magnesium phosphate compound crystals produced because the magnesium ion concentration is higher than the ammonium ion concentration. The amount was high and the dephosphorization rate was 99.3%, the highest value.
As the dephosphorization rate, a dephosphorization rate of 90% or more could be secured except for case 2.
[0033]
As described above, according to the crystallization and dephosphorization method according to the present invention, in the method for removing phosphorus in the phosphorus-containing wastewater containing the phosphorus compound, the equipment cost and the operation cost are low, and the dephosphorization rate is stable. In addition, since the separated and recovered crystals have few impurities and contain a large amount of magnesium, phosphoric acid and ammonia, it is possible to provide a crystallization dephosphorization method which can be reduced as a fertilizer raw material or fertilizer.
Further, the crystallization and dephosphorization method according to the present invention is a strong alkali having a pH value of more than 10 discharged from the regeneration process of the ion exchange resin and the like and hardly contains ammonia and contains a relatively high concentration of phosphorus. This method is suitable for removing phosphorus in waste water.
[0034]
【The invention's effect】
According to the present invention having the configuration and operation described above, the following effects can be obtained.
1. According to the invention of claim 1,
(1) The wastewater discharged from the magnesium method flue gas desulfurization device that has been disposed of in the sea or river can be effectively used as a magnesium source for precipitating magnesium phosphate compound crystals. As a result, the cost and operating cost of the flue gas desulfurization device can be reduced. Further, since the crystals of the magnesium phosphate compound are hardly soluble in water and thus easily precipitated, the dephosphorization effect can be stably maintained at a high level. Therefore, it is possible to provide a crystallization and dephosphorization method that is low in equipment cost and operation cost and can stably maintain a high dephosphorization effect.
(2) By adjusting the pH value to 7.5 to 10 with an acid, crystals of poorly soluble magnesium phosphate are obtained in the solution. Further, by adding ammonia water, crystals of poorly soluble magnesium ammonium phosphate are obtained. can get. If the pH value is less than 7.5, crystals of the magnesium phosphate compound are difficult to be formed. If the pH value exceeds 10, the solubility of ammonia in the solution becomes too low, and ammonia tends to volatilize.
2. According to the invention of claim 2,
(1) The wastewater discharged from the magnesium method flue gas desulfurization device that has been disposed of in the sea or river can be effectively used as a magnesium source for precipitating magnesium phosphate compound crystals. As a result, the cost and operating cost of the flue gas desulfurization device can be reduced. In addition, when crystallization dephosphorization is performed, a magnesium source as a raw material can be stably secured, so that facility costs and operation costs can be reduced. Furthermore, since the crystals of magnesium phosphate compound are hardly soluble in water and are likely to precipitate, the dephosphorization rate can be stably maintained at a high level. Therefore, it is possible to provide a crystallization and dephosphorization method that can reduce the equipment cost and operation cost and can keep the dephosphorization rate stably high.
(2) By adjusting the pH value to 7.5 to 10 with an acid, crystals of poorly soluble magnesium phosphate are obtained in the solution. Further, by adding ammonia water, crystals of poorly soluble magnesium ammonium phosphate are obtained. can get. If the pH value is less than 7.5, crystals of the magnesium phosphate compound are difficult to be formed. If the pH value exceeds 10, the solubility of ammonia in the solution becomes too low, and ammonia tends to volatilize.
3. According to invention of Claim 1 and 2 , the said drainage drainage amount mixed with the said phosphorus containing waste_water | drain is ratio (Molar concentration of the magnesium ion concentration in the said wastewater drainage and the phosphate ion density | concentration in the said phosphorus containing waste_water | drain ( By mixing so that (Mg / P) is 0.5-4, the dephosphorization rate can be kept high. When the molar ratio (Mg / P) is less than 0.5, the dephosphorization rate decreases, and when the molar ratio (Mg / P) exceeds 4, the total amount of waste water increases and the amount of residual magnesium increases. There is a risk that scale will occur in the apparatus.
4). According to the first and second aspects of the invention, the ammonium ion concentration adjusted by adding the ammonia water to the phosphorus-containing wastewater is a molar concentration of the ammonium ion concentration and the phosphate ion concentration in the phosphorus-containing wastewater. By adjusting the ratio (NH 4 / P) to be 0.5 to 3, the dephosphorization rate can be kept higher. When the molar ratio (NH 4 / P) is less than 0.5, the dephosphorization rate decreases, and when the molar ratio (NH 4 / P) exceeds 3, the amount of residual ammonia in the waste water increases. The denitrification process is necessary.
[Brief description of the drawings]
FIG. 1 is a system diagram of a crystallization dephosphorization apparatus according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Phosphorus containing waste water storage tank 2 Emission / drainage water storage tank 3 Reaction crystallization tank 4 Ammonia water storage tank 5 Sulfuric acid storage tank 6 Decanter type centrifuge 7 Crystal storage tank 8 Slow agitator 9 pH meter 10 Phosphorus containing drainage supply pump 11 Exhaust / drainage supply pump 12 Ammonia water supply pump 13 Sulfuric acid supply pump 14 Crystal mixture supply pump

Claims (2)

燐化合物を含有する燐含有排水にマグネシウム法排煙脱硫装置から排出される排脱排水を前記排脱排水中のマグネシウムイオン濃度と前記燐含有排水中の燐酸イオン濃度とのモル濃度の比(Mg/P)が、0.5〜4となるように混合したのち、酸でpH値を7.5〜10に調整し、pH調整された前記混合液にアンモニア水を添加して前記混合液中のアンモニウムイオン濃度と前記燐含有排水中の燐酸イオン濃度とのモル濃度の比(NH 4 /P)が、0.5〜3となるように調整し、前記アンモニウムイオン濃度が調整された前記混合液を攪拌して燐酸マグネシウム化合物の結晶を析出させることを特徴とする晶析脱燐方法。 The ratio of the molar concentration of the magnesium ion concentration in the exhaust wastewater and the phosphate concentration in the phosphorus containing wastewater (Mg) / P) is mixed so as to be 0.5 to 4, and then the pH value is adjusted to 7.5 to 10 with an acid, and ammonia water is added to the pH-adjusted mixture to The mixture in which the ammonium ion concentration and the phosphate ion concentration in the phosphorus-containing waste water are adjusted so that the molar concentration ratio (NH 4 / P) is 0.5 to 3, and the ammonium ion concentration is adjusted. A crystallization dephosphorization method, wherein the solution is stirred to precipitate crystals of a magnesium phosphate compound. 燐化合物を含有するpH値が10を超える強アルカリ性の燐含有排水中の燐を除去する方法において、前記燐含有排水にマグネシウム法排煙脱硫装置から排出される排脱排水を前記排脱排水中のマグネシウムイオン濃度と前記燐含有排水中の燐酸イオン濃度とのモル濃度の比(Mg/P)が、0.5〜4となるように混合したのち、酸でpH値を7.5〜10に調整し、pH調整された前記混合液にアンモニア水を添加して前記混合液中のアンモニウムイオン濃度と前記燐含有排水中の燐酸イオン濃度とのモル濃度の比(NH 4 /P)が、0.5〜3となるように調整し、前記アンモニウムイオン濃度が調整された前記混合液を酸でpH値を7.5〜10に再調整し、pH値が再調整された前記混合液を攪拌して燐酸マグネシウム化合物の結晶を析出させることを特徴とする晶析脱燐方法。In the method for removing phosphorus in strongly alkaline phosphorus-containing wastewater containing a phosphorus compound and having a pH value exceeding 10, the wastewater discharged from the magnesium flue gas desulfurization device is discharged into the phosphorus-containing wastewater during the wastewater drainage. After mixing so that the molar ratio (Mg / P) of the magnesium ion concentration of the phosphorous ion in the phosphorus-containing wastewater is 0.5 to 4 , the pH value is adjusted to 7.5 to 10 with acid. The ammonia solution was added to the pH-adjusted mixed solution, and the molar ratio (NH 4 / P) of the ammonium ion concentration in the mixed solution and the phosphate ion concentration in the phosphorus-containing waste water was Adjust the pH of the mixture so that the ammonium ion concentration is adjusted to 0.5 to 3, readjust the pH value to 7.5 to 10 with an acid, and adjust the pH value of the mixture. Stir to form the magnesium phosphate compound. Crystal phosphorus removal method characterized by precipitating.
JP2002113584A 2002-04-16 2002-04-16 Crystallization and dephosphorization method Expired - Fee Related JP4163891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002113584A JP4163891B2 (en) 2002-04-16 2002-04-16 Crystallization and dephosphorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002113584A JP4163891B2 (en) 2002-04-16 2002-04-16 Crystallization and dephosphorization method

Publications (2)

Publication Number Publication Date
JP2003305478A JP2003305478A (en) 2003-10-28
JP4163891B2 true JP4163891B2 (en) 2008-10-08

Family

ID=29395727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002113584A Expired - Fee Related JP4163891B2 (en) 2002-04-16 2002-04-16 Crystallization and dephosphorization method

Country Status (1)

Country Link
JP (1) JP4163891B2 (en)

Also Published As

Publication number Publication date
JP2003305478A (en) 2003-10-28

Similar Documents

Publication Publication Date Title
WO2003086990A1 (en) Method of treating organic wastewater and sludge and treatment apparatus therefor
JP4519485B2 (en) Phosphorus recovery method and apparatus
JP6376951B2 (en) Phosphorus recovery equipment and phosphorus recovery method
JP5439439B2 (en) Sludge treatment apparatus, phosphorus production method and sludge treatment method
JP5128735B2 (en) Recovery and reuse of phosphorus and flocculant in wastewater
JP6026865B2 (en) Sludge treatment apparatus and phosphorus production method
JP2006255499A (en) Fluorine-containing wastewater treatment method and apparatus
JP3977757B2 (en) Dephosphorization method of waste water
JP4163891B2 (en) Crystallization and dephosphorization method
JP6873821B2 (en) Sludge treatment system and sludge treatment method
JP4368159B2 (en) Method for treating wastewater containing phosphate
JP2007260556A (en) Phosphoric acid-containing wastewater treatment method and apparatus
JP4019212B2 (en) How to recover phosphorus from sludge
JP2000334474A (en) Method for removing phosphorus from waste water
JP5963656B2 (en) Sludge treatment apparatus and phosphorus production method
JP4147609B2 (en) Dephosphorization device
JP4223334B2 (en) Phosphorus recovery equipment
JP3921922B2 (en) Dephosphorization method
JP4519965B2 (en) Crystallization dephosphorization apparatus and crystallization dephosphorization method
JP3915245B2 (en) Aluminum recovery equipment from aluminum-containing sludge
JP2004049996A (en) Phosphorus resource recovery system
JP4631295B2 (en) Treatment method for wastewater containing phosphorus
JP2016087583A (en) Phosphorus recovery facility, and phosphorus recovery method
JP2001149951A (en) For dephosphorizing method by crystallization
JPH04156995A (en) Method for removing dissolved calcium in waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4163891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees