JP2009142744A - Sludge concentration method and sludge concentration apparatus - Google Patents

Sludge concentration method and sludge concentration apparatus Download PDF

Info

Publication number
JP2009142744A
JP2009142744A JP2007322242A JP2007322242A JP2009142744A JP 2009142744 A JP2009142744 A JP 2009142744A JP 2007322242 A JP2007322242 A JP 2007322242A JP 2007322242 A JP2007322242 A JP 2007322242A JP 2009142744 A JP2009142744 A JP 2009142744A
Authority
JP
Japan
Prior art keywords
sludge
agent
acid
calcium
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007322242A
Other languages
Japanese (ja)
Other versions
JP5057955B2 (en
Inventor
Toru Sekiya
透 関谷
Masayuki Takahashi
正行 高橋
Hiroshi Shirahama
宏志 白濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATSUO KIKI SANGYO KK
ORGANO PLANT SERVICE CORP
Organo Corp
Original Assignee
MATSUO KIKI SANGYO KK
ORGANO PLANT SERVICE CORP
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATSUO KIKI SANGYO KK, ORGANO PLANT SERVICE CORP, Organo Corp, Japan Organo Co Ltd filed Critical MATSUO KIKI SANGYO KK
Priority to JP2007322242A priority Critical patent/JP5057955B2/en
Publication of JP2009142744A publication Critical patent/JP2009142744A/en
Application granted granted Critical
Publication of JP5057955B2 publication Critical patent/JP5057955B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Treatment Of Sludge (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sludge concentration method by which the volume of sludge produced in a water treatment using an aluminum based flocculant can be reduced and concentration of the sludge in a highly concentrated state is adjusted. <P>SOLUTION: The concentration method of the sludge produced in the water treatment using the aluminum based flocculant includes: an acid treating step of treating the sludge with an acid; and an alkali treating step of treating the sludge to which the acid is added with at least one of a calcium agent and a magnesium agent being an alkali agent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、アルミ系凝集剤を使用した水処理において発生する汚泥の濃縮方法及び濃縮装置に関する。   The present invention relates to a method and apparatus for concentrating sludge generated in water treatment using an aluminum flocculant.

アルミ系の凝集剤を用いて凝集沈澱等の水処理を行う水処理方法は、一般産業、上水道及び下水道等において広く用いられている。この処理は水中の夾雑物の除去においては非常に優れた方法ではあるが、凝集剤としてアルミ系等のものが使用されることから、処理の結果発生する汚泥には水酸化アルミニウム等の水酸化金属化合物が多量に含まれる。   A water treatment method for performing water treatment such as coagulation precipitation using an aluminum-based flocculant is widely used in general industries, waterworks, sewerage, and the like. Although this treatment is a very good method for removing contaminants in water, aluminum flocculant is used as the flocculant. A large amount of metal compound is contained.

汚泥の処理方法としては、例えば特許文献1に記載されるように、高分子凝集剤を使用して汚泥を濃縮脱水する方法が知られている。また、薬品を使用しない方法として、重力沈降により汚泥の濃縮を行い、加圧脱水等で脱水して固形化処理を行う方法が知られている。   As a method for treating sludge, for example, as described in Patent Document 1, a method of concentrating and dewatering sludge using a polymer flocculant is known. In addition, as a method that does not use chemicals, a method is known in which sludge is concentrated by gravity sedimentation and solidified by dehydration by pressure dehydration or the like.

しかし、上記のような水酸化アルミニウム等を含む汚泥は、汚泥に含まれる水酸化金属化合物が膨潤するために汚泥の沈降濃縮性が非常に悪く、発生する汚泥は含水率が高く、濃縮処理や脱水処理がしにくいものになっている。そのため、重力沈降による濃縮では汚泥の濃縮濃度が低いため、加圧脱水等で固形化まで脱水するのに時間を要し、大型の加圧脱水装置を必要としていた。また含水率を低下させることが困難で産業廃棄物としての汚泥の量が非常に多いものとなっていた。   However, sludge containing aluminum hydroxide or the like as described above has very poor sedimentation and concentration of the sludge because the metal hydroxide compound contained in the sludge swells, and the generated sludge has a high water content. It is difficult to dehydrate. Therefore, since concentration by sludge is low in concentration by gravity sedimentation, it takes time to dehydrate to solidification by pressure dehydration or the like, and a large pressure dehydration apparatus is required. Moreover, it was difficult to reduce the moisture content, and the amount of sludge as industrial waste was very large.

また消石灰を直接汚泥に添加し、脱水処理を行う方法も行われているが、アルカリ排水が多量に発生し、アルカリ溶解するものが排水に含まれるため、中和処理とその夾雑物の除去が必要となっていた(例えば非特許文献1参照)。また消石灰と空気中の炭酸ガスとが反応して生成する炭酸カルシウムが脱水処理の際の濾布に析出し、濾布の目詰まりを発生させるという問題があり、濾布の頻繁な洗浄と、塩酸等による化学洗浄を必要としていた。   There is also a method of adding slaked lime directly to sludge and performing a dehydration treatment. However, since a large amount of alkaline wastewater is generated and the alkali is dissolved in the wastewater, neutralization treatment and removal of its impurities are possible. It was necessary (see, for example, Non-Patent Document 1). In addition, there is a problem that calcium carbonate generated by the reaction of slaked lime and carbon dioxide in the air precipitates on the filter cloth during the dehydration treatment, causing clogging of the filter cloth, frequent washing of the filter cloth, Chemical cleaning with hydrochloric acid was required.

そこで特許文献2には、汚泥の沈降濃縮性を改善することによって汚泥の減容化を図るために、アルミ系又は/及び鉄系凝集剤を使用して凝集沈殿を行う際に発生する沈殿汚泥の濃縮において、汚泥に硫酸を添加した後、カルシウムイオンの存在下でアルカリ剤を添加することが記載されている。   Therefore, in Patent Document 2, in order to reduce the volume of sludge by improving the settling concentration of sludge, the precipitated sludge generated when coagulating sedimentation is performed using an aluminum-based and / or iron-based flocculant. In the concentration of the above, it is described that after adding sulfuric acid to sludge, an alkaline agent is added in the presence of calcium ions.

特許第3709825号公報Japanese Patent No. 3709825 特開2007−196086号公報JP 2007-196086 A 水道施設設計指針 2000年 日本水道協会,p377Water Supply Facility Design Guidelines 2000 Japan Waterworks Association, p377

特許文献2の方法により汚泥の沈降濃縮性が改善され、汚泥の減容化が可能であるが、汚泥の減容化は不十分であり汚泥のさらなる減容化が求められている。また、後段の脱水処理において安定した処理を行うために減容化後の汚泥の高濃度状態における汚泥濃度の調整が求められている。   The method of Patent Document 2 improves the sedimentation and concentration of sludge and can reduce the volume of sludge, but the volume reduction of sludge is insufficient and further reduction of the sludge is required. In addition, adjustment of the sludge concentration in a high-concentration state of sludge after volume reduction is required in order to perform stable treatment in the subsequent dewatering treatment.

本発明は、アルミ系凝集剤を使用した水処理において発生する汚泥を減容化することができ、減容化後の汚泥の高濃度状態における汚泥濃度の調整を行うことができる汚泥濃縮方法及び汚泥濃縮装置である。   The present invention is a sludge concentration method capable of reducing the volume of sludge generated in water treatment using an aluminum flocculant, and capable of adjusting the sludge concentration in a high concentration state of the sludge after volume reduction, and This is a sludge concentrator.

本発明は、アルミ系凝集剤を使用した水処理において発生する汚泥の濃縮方法であって、前記汚泥を酸により処理する酸処理工程と、前記酸により処理した汚泥をアルカリ剤であるカルシウム剤及びマグネシウム剤のうち少なくとも1つにより処理するアルカリ処理工程と、を含む汚泥濃縮方法である。   The present invention is a method for concentrating sludge generated in water treatment using an aluminum flocculant, an acid treatment step for treating the sludge with an acid, a calcium agent as an alkaline agent for the sludge treated with the acid, and And an alkali treatment step of treating with at least one of the magnesium agents.

また、前記汚泥濃縮方法において、前記カルシウム剤及び前記マグネシウム剤の使用量を変更して、前記アルカリ処理工程により得られる汚泥の濃度を調整することが好ましい。   Moreover, in the said sludge concentration method, it is preferable to change the usage-amount of the said calcium agent and the said magnesium agent, and to adjust the density | concentration of the sludge obtained by the said alkali treatment process.

また、前記汚泥濃縮方法において、前記カルシウム剤が水酸化カルシウムであることが好ましい。   Moreover, in the said sludge concentration method, it is preferable that the said calcium agent is calcium hydroxide.

また、前記汚泥濃縮方法において、前記マグネシウム剤が水酸化マグネシウムであることが好ましい。   Moreover, in the said sludge concentration method, it is preferable that the said magnesium agent is magnesium hydroxide.

また、前記汚泥濃縮方法において、前記酸が硫酸であることが好ましい。   Moreover, in the said sludge concentration method, it is preferable that the said acid is a sulfuric acid.

また、前記汚泥濃縮方法において、前記酸に対する前記アルカリ剤の化学当量比は、1.2〜2の範囲であることが好ましい。   Moreover, in the said sludge concentration method, it is preferable that the chemical equivalent ratio of the said alkali agent with respect to the said acid is the range of 1.2-2.

また、前記汚泥濃縮方法において、前記カルシウム剤に対する前記マグネシウム剤の混合比率は、0〜100%の範囲であることが好ましい。   Moreover, in the said sludge concentration method, it is preferable that the mixing ratio of the said magnesium agent with respect to the said calcium agent is the range of 0 to 100%.

また、本発明は、アルミ系凝集剤を使用した水処理において発生する汚泥の濃縮装置であって、前記汚泥を酸により処理するための酸処理槽と、前記酸処理槽に前記酸を添加する酸添加手段と、前記酸により処理した汚泥をアルカリ剤であるカルシウム剤及びマグネシウム剤のうち少なくとも1つにより処理するためのアルカリ処理槽と、前記アルカリ処理槽に前記アルカリ剤を添加するアルカリ剤添加手段と、を有する汚泥濃縮装置である。   The present invention is also a device for concentrating sludge generated in water treatment using an aluminum flocculant, wherein the acid is added to the acid treatment tank for treating the sludge with an acid, and the acid treatment tank. Acid addition means, an alkali treatment tank for treating the sludge treated with the acid with at least one of a calcium agent and a magnesium agent as an alkali agent, and an alkali agent addition for adding the alkali agent to the alkali treatment tank And a sludge concentrating device.

本発明では、アルミ系凝集剤を使用した水処理において発生する汚泥を酸で処理した後、アルカリ剤であるカルシウム剤及びマグネシウム剤のうち少なくとも1つにより処理することにより、汚泥の沈降濃縮性を改善して、汚泥を減容化することができ、減容化後の汚泥の高濃度状態における汚泥濃度の調整を行うことができる。   In the present invention, sludge generated in water treatment using an aluminum-based flocculant is treated with an acid, and then treated with at least one of a calcium agent and a magnesium agent, which are alkaline agents, to thereby improve the sediment concentration properties of the sludge. It is possible to improve the volume of sludge and to adjust the sludge concentration in the high-concentration state of the sludge after volume reduction.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

本発明の実施形態に係る汚泥濃縮装置の一例の概略を図1に示し、その構成について説明する。汚泥濃縮装置1は、アルミ系凝集剤を使用した凝集沈澱等の水処理装置からの汚泥を濃縮調整する汚泥濃縮調整槽10と、汚泥を酸により処理するための酸処理槽12と、酸により処理した汚泥をアルカリ剤により処理するためのアルカリ処理槽14と、酸を貯蔵するための酸貯槽16と、アルカリ剤を貯蔵するためのアルカリ剤貯槽であるカルシウム剤貯槽18及びマグネシウム剤貯槽20と、アルカリ剤により処理した汚泥を沈降濃縮するための汚泥沈降槽22と、脱水装置24とを備える。   The outline of an example of the sludge concentration apparatus which concerns on embodiment of this invention is shown in FIG. 1, and the structure is demonstrated. The sludge concentrating device 1 includes a sludge concentration adjusting tank 10 for concentrating and adjusting sludge from a water treatment apparatus such as coagulating sediment using an aluminum flocculant, an acid treatment tank 12 for treating sludge with an acid, and an acid. An alkali treatment tank 14 for treating the treated sludge with an alkali agent, an acid storage tank 16 for storing acid, a calcium agent storage tank 18 and a magnesium agent storage tank 20 which are alkali agent storage tanks for storing the alkali agent, The sludge sedimentation tank 22 for sedimentation and concentration of the sludge treated with the alkali agent and a dehydrator 24 are provided.

図1の汚泥濃縮装置1において、水処理装置からの汚泥配管48が汚泥濃縮調整槽10に接続され、汚泥濃縮調整槽10は汚泥配管50によりポンプ26を介して酸処理槽12に接続されている。酸処理槽12は酸処理液配管52によりポンプ28を介してアルカリ処理槽14に接続され、アルカリ処理槽14はアルカリ処理液配管54によりポンプ30を介して汚泥沈降槽22に接続されている。汚泥沈降槽22は汚泥配管56によりポンプ38を介して脱水装置24の入口に接続されている。酸処理槽12には、酸貯槽16が酸配管58により酸添加手段としてのポンプ32を介して接続されており、モータ、撹拌羽根等を備える撹拌装置40が設置されている。アルカリ処理槽14には、カルシウム剤貯槽18がカルシウム剤配管60によりアルカリ剤添加手段としてのポンプ34を介して、マグネシウム剤貯槽20がマグネシウム剤配管62によりアルカリ剤添加手段としてのポンプ36を介してそれぞれ接続されており、モータ、撹拌羽根等を備える撹拌装置42が設置されている。カルシウム剤貯槽18及びマグネシウム剤貯槽20には、モータ、撹拌羽根等を備える撹拌装置44,46がそれぞれ設置されている。   In the sludge concentration apparatus 1 of FIG. 1, the sludge pipe 48 from the water treatment apparatus is connected to the sludge concentration adjustment tank 10, and the sludge concentration adjustment tank 10 is connected to the acid treatment tank 12 via the pump 26 by the sludge pipe 50. Yes. The acid treatment tank 12 is connected to the alkali treatment tank 14 via the pump 28 by the acid treatment liquid pipe 52, and the alkali treatment tank 14 is connected to the sludge settling tank 22 via the pump 30 by the alkali treatment liquid pipe 54. The sludge settling tank 22 is connected to the inlet of the dehydrator 24 via a pump 38 by a sludge pipe 56. An acid storage tank 16 is connected to the acid treatment tank 12 through an acid pipe 58 via a pump 32 as an acid addition means, and a stirring device 40 having a motor, stirring blades, and the like is installed. In the alkali treatment tank 14, the calcium agent storage tank 18 is connected to the calcium agent pipe 60 via a pump 34 as an alkali agent addition means, and the magnesium agent storage tank 20 is connected to a magnesium agent pipe 62 via a pump 36 as an alkali agent addition means. A stirrer 42 that is connected to each other and includes a motor, a stirring blade, and the like is installed. In the calcium agent storage tank 18 and the magnesium agent storage tank 20, stirring devices 44 and 46 each having a motor, stirring blades, and the like are installed.

本実施形態に係る汚泥濃縮方法及び汚泥濃縮装置1の動作について説明する。   Operation | movement of the sludge concentration method and the sludge concentration apparatus 1 which concern on this embodiment is demonstrated.

水処理装置からの汚泥は、汚泥配管48を通して汚泥濃縮調整槽10へと移送され、そこで重力沈降等によって濃度が濃縮調整される。濃縮調整によって減容化した酸処理対象汚泥は、ポンプ26により汚泥濃縮調整槽10から引き抜かれて汚泥配管50を通して酸処理槽12に移送され、酸貯層16からポンプ32により酸配管58を通して送られる酸と混合され、酸処理される(酸処理工程)。添加した酸により酸処理対象汚泥に含まれる水酸化アルミニウム等が溶解され、例えばアルミニウムイオンと硫酸イオンの形でイオン化される。酸処理を円滑に進めるために、汚泥配管50と酸配管58とを酸処理槽12への流入前に接続し、酸処理対象汚泥と酸との混合を予め行ってもよい。酸処理槽12において、撹拌装置40により酸処理液を撹拌して処理の促進を図ってもよい。   The sludge from the water treatment apparatus is transferred to the sludge concentration adjusting tank 10 through the sludge pipe 48, where the concentration is adjusted by gravity sedimentation or the like. The acid treatment target sludge whose volume has been reduced by the concentration adjustment is extracted from the sludge concentration adjustment tank 10 by the pump 26 and transferred to the acid treatment tank 12 through the sludge pipe 50, and sent from the acid reservoir 16 through the acid pipe 58 by the pump 32. And acid treatment (acid treatment step). Aluminum hydroxide or the like contained in the acid treatment target sludge is dissolved by the added acid, and is ionized, for example, in the form of aluminum ions and sulfate ions. In order to advance the acid treatment smoothly, the sludge pipe 50 and the acid pipe 58 may be connected before flowing into the acid treatment tank 12, and the acid treatment target sludge and the acid may be mixed in advance. In the acid treatment tank 12, the acid treatment liquid may be stirred by the stirring device 40 to promote the treatment.

続いて酸処理された汚泥を含む酸処理液は、酸処理槽12からポンプ28により酸処理液配管52を通してアルカリ処理槽14へと移送され、カルシウム剤貯槽18からポンプ34によりカルシウム剤配管60を通して水酸化カルシウム等のカルシウム剤が、マグネシウム剤貯槽20からポンプ36によりマグネシウム剤配管62を通して水酸化マグネシウム等のマグネシウム剤が添加されてアルカリ処理される(アルカリ処理工程)。アルカリ処理槽14において、撹拌装置42によりアルカリ処理液を撹拌して処理の促進を図ってもよい。   Subsequently, the acid treatment liquid containing the acid-treated sludge is transferred from the acid treatment tank 12 to the alkali treatment tank 14 through the acid treatment liquid pipe 52 by the pump 28, and from the calcium agent storage tank 18 through the calcium agent pipe 60 by the pump 34. A calcium agent such as calcium hydroxide is alkali-treated by adding a magnesium agent such as magnesium hydroxide from the magnesium agent storage tank 20 through the magnesium agent pipe 62 by the pump 36 (alkali treatment step). In the alkaline treatment tank 14, the treatment may be promoted by stirring the alkaline treatment liquid with the stirring device 42.

アルカリ処理された汚泥を含むアルカリ処理液は、アルカリ処理槽14からポンプ30によりアルカリ処理液配管54を通して汚泥沈降槽22へと移送され、重力沈降等により沈降濃縮され減容化される。汚泥沈降槽22において汚泥と分離された分離水(上澄水)は放流もしくは再利用等が行われる。一方、汚泥沈降槽22において減容化された汚泥は、さらに水分を減少させて固形化され産業廃棄物として処分されてもよいし、必要に応じてさらなる脱水処理が行われて再利用されてもよい。例えば、汚泥沈降槽22において減容化された汚泥はポンプ38により汚泥配管56を通して脱水装置24に送られ、脱水処理を経て廃棄物等として排出される。   The alkali treatment liquid containing the alkali-treated sludge is transferred from the alkali treatment tank 14 to the sludge settling tank 22 through the alkali treatment liquid pipe 54 by the pump 30, and is settled, concentrated, and reduced in volume by gravity settling or the like. The separated water (supernatant water) separated from the sludge in the sludge settling tank 22 is discharged or reused. On the other hand, the sludge whose volume has been reduced in the sludge settling tank 22 may be further solidified by reducing moisture, and disposed of as industrial waste, or may be reused after further dehydration if necessary. Also good. For example, the sludge whose volume has been reduced in the sludge settling tank 22 is sent to the dehydrator 24 through the sludge pipe 56 by the pump 38, and is discharged as waste or the like through the dehydration process.

本実施形態ではアルカリ剤としてカルシウム剤とマグネシウム剤のうち少なくとも1つを使用、好ましくはカルシウム剤とマグネシウム剤とを併用することにより、汚泥の沈降濃縮性を改善することができる。このため汚泥の大幅な減容化が可能となると共に、汚泥の脱水処理における脱水性、含水率をも改善することができ、従って処理の最終段階で発生する産業廃棄物の量を大幅に削減することができる。以下、酸として硫酸、カルシウム剤として水酸化カルシウム、マグネシウム剤として水酸化マグネシウムを用いた場合を例として推定される汚泥の減容化の機構について説明する。   In this embodiment, at least one of a calcium agent and a magnesium agent is used as an alkaline agent, and preferably, the sedimentation and concentration properties of sludge can be improved by using a calcium agent and a magnesium agent in combination. As a result, the volume of sludge can be significantly reduced and the dewaterability and moisture content in the sludge dewatering process can be improved, thus greatly reducing the amount of industrial waste generated at the final stage of the treatment. can do. Hereinafter, the mechanism of volume reduction of sludge estimated by taking as an example the case of using sulfuric acid as the acid, calcium hydroxide as the calcium agent, and magnesium hydroxide as the magnesium agent will be described.

まず、酸処理槽12において添加した硫酸により酸処理対象汚泥に含まれる水酸化アルミニウム等が溶解しイオン化する。次に、アルカリ処理槽14において水酸化カルシウム及び水酸化マグネシウムを添加することにより、硫酸で溶解した汚泥中のアルミニウムイオンが水酸化カルシウム及び水酸化マグネシウムにより中和されると同時に水酸化アルミニウムとして再び析出(再凝集)する。そして、この水酸化アルミニウム、不溶解の状態で残留している水酸化マグネシウム、水酸化カルシウムから生成するカルシウムイオンと硫酸イオンとの反応により生じた硫酸カルシウム、汚泥中の濁質成分等の複数の共存物質による共沈現象が発生すると考えられる。   First, aluminum hydroxide or the like contained in the acid treatment target sludge is dissolved and ionized by the sulfuric acid added in the acid treatment tank 12. Next, by adding calcium hydroxide and magnesium hydroxide in the alkali treatment tank 14, the aluminum ions in the sludge dissolved with sulfuric acid are neutralized with calcium hydroxide and magnesium hydroxide, and at the same time, again as aluminum hydroxide. Precipitate (reaggregate). And this aluminum hydroxide, magnesium hydroxide remaining in an insoluble state, calcium sulfate produced by the reaction of calcium ions and sulfate ions generated from calcium hydroxide, turbid components in sludge, etc. It is thought that coprecipitation occurs due to coexisting substances.

(1)硫酸による水酸化アルミニウムの溶解
3HSO + 2Al(OH) → 6HO + 2Al3+ + 3SO 2−
(2)アルカリ処理
3Ca(OH) → 3Ca2+ + 6OH
3Mg(OH) → 3Mg2+ + 6OH
2Al3+ + 6OH → 2Al(OH)
3Ca2+ + 3SO 2− → 3CaSO
3Mg2+ + 3SO 2− → 3MgSO
(1) Dissolution of aluminum hydroxide with sulfuric acid 3H 2 SO 4 + 2Al (OH) 3 → 6H 2 O + 2Al 3+ + 3SO 4 2-
(2) Alkali treatment 3Ca (OH) 2 → 3Ca 2+ + 6OH
3Mg (OH) 2 → 3Mg 2+ + 6OH
2Al 3+ + 6OH → 2Al (OH) 3
3Ca 2+ + 3SO 4 2- → 3CaSO 4 ↓
3Mg 2+ + 3SO 4 2− → 3MgSO 4

すなわち、硫酸酸性下では、添加した水酸化カルシウムは溶解性の低い硫酸カルシウム(石膏)となる。一方、添加した水酸化マグネシウムの一部は硫酸マグネシウムとなるが、溶解性が高いためにMg2+イオンとして存在する。そのため水酸化カルシウム単独使用時のように大量の硫酸カルシウムを生成させることなく中和反応を行うことができ、凝集に関与する固形物量を減らすことができる。添加した水酸化マグネシウムはアルカリ剤の添加により中和反応が進行した中性付近では溶解性が非常に悪く、水酸化マグネシウムとしてそのまま不溶解の状態で存在する。この不溶解の水酸化マグネシウムはそれ自体が凝集作用を有し、凝集フロックを形成するものと推定される。このとき、この不溶解の水酸化マグネシウムと上記のように再凝集した水酸化アルミニウムと硫酸カルシウム等が共沈する。この現象により、水酸化カルシウムをアルカリ剤として単独使用する際に比較して汚泥の沈降濃縮性が大幅に改善され、汚泥の大幅な減容化が可能となる。汚泥の減容化は、後段での脱水処理の効率を飛躍的に高めることができる。なお、硫酸カルシウムは石膏とも呼ばれるが石膏には三種の形があり、生成した硫酸カルシウムがどの形であるか不明であるが、常温での反応が主であるため、結晶水のないCaSOの形であると推定される。 That is, under sulfuric acid acidity, the added calcium hydroxide becomes calcium sulfate (gypsum) having low solubility. On the other hand, some of the added magnesium hydroxide becomes magnesium sulfate, but exists as Mg 2+ ions because of its high solubility. Therefore, the neutralization reaction can be performed without generating a large amount of calcium sulfate as in the case of using calcium hydroxide alone, and the amount of solid matter involved in aggregation can be reduced. The added magnesium hydroxide has very poor solubility in the vicinity of the neutral where the neutralization reaction has progressed due to the addition of the alkaline agent, and exists as an insoluble state as magnesium hydroxide. This insoluble magnesium hydroxide itself has an aggregating action and is presumed to form an aggregated floc. At this time, the insoluble magnesium hydroxide, the aluminum hydroxide reaggregated as described above, calcium sulfate, and the like co-precipitate. Due to this phenomenon, the sedimentation concentration of sludge is greatly improved compared to when calcium hydroxide is used alone as an alkaline agent, and the sludge can be greatly reduced in volume. Sludge volume reduction can dramatically increase the efficiency of the subsequent dehydration process. Although calcium sulfate is also called gypsum, there are three types of gypsum, and it is unclear what form the generated calcium sulfate is, but since it is mainly a reaction at room temperature, CaSO 4 without crystal water Presumed to be in shape.

本実施形態の酸処理において用いられる酸としては、硫酸、塩酸等が挙げられるが、硫酸が好ましい。硫酸カルシウムの生成量を調整して減容化を制御するために、酸処理対象汚泥を溶解する際の酸として硫酸と塩酸を併用してもよい。しかし、硫酸と塩酸を併用することにより硫酸カルシウムの生成量を調整することは可能であるが、水酸化マグネシウム、水酸化カルシウム共に塩酸では溶解性の非常に高い塩化マグネシウム及び塩化カルシウムを生成し、共沈現象の発現に必要な凝集反応物が少なくなるため、硫酸と塩酸を併用しても減容化の程度は低い場合がある。さらに塩酸の薬剤の添加管理が複雑になる。このため、酸としては硫酸が好ましい。   Examples of the acid used in the acid treatment of this embodiment include sulfuric acid and hydrochloric acid, and sulfuric acid is preferred. In order to control the volume reduction by adjusting the amount of calcium sulfate produced, sulfuric acid and hydrochloric acid may be used in combination as the acid for dissolving the acid treatment target sludge. However, it is possible to adjust the amount of calcium sulfate produced by using sulfuric acid and hydrochloric acid together, but magnesium hydroxide and calcium hydroxide both produce magnesium chloride and calcium chloride that are very soluble in hydrochloric acid, Since the amount of coagulation reaction product necessary for the expression of the coprecipitation phenomenon is reduced, the degree of volume reduction may be low even when sulfuric acid and hydrochloric acid are used in combination. Furthermore, the addition management of hydrochloric acid chemicals becomes complicated. For this reason, sulfuric acid is preferred as the acid.

酸処理対象汚泥に含まれる水酸化アルミニウム等のイオン化は一部に留めても効果があるため、予め反応試験を行い、できるだけ経済的な酸の添加量に設定しておくことが好ましい。   Since ionization of aluminum hydroxide or the like contained in the acid treatment target sludge is effective even if it is limited to a part, it is preferable to conduct a reaction test in advance and set the acid addition amount as economical as possible.

酸処理槽12における反応液は、pHが5未満になるように調整することが好ましく、pHが4以下になるように調整することがより好ましく、pHが3以下になるように調整することが更に好ましい。ランニングコスト等の観点からは、pHが2.5〜3になるように調整することが好ましいが、pHが1.5〜2.5になるように調整することで反応時間を短縮することができ、装置を小型化することができる。   The reaction solution in the acid treatment tank 12 is preferably adjusted to have a pH of less than 5, more preferably adjusted to have a pH of 4 or less, and adjusted to have a pH of 3 or less. Further preferred. From the viewpoint of running cost and the like, it is preferable to adjust the pH to 2.5 to 3, but the reaction time can be shortened by adjusting the pH to 1.5 to 2.5. The apparatus can be reduced in size.

カルシウム剤としては、カルシウムを含むアルカリ剤であって、溶解してカルシウムイオンを生成するものであればよく特に制限はないが、水酸化カルシウム(消石灰)、酸化カルシウム(生石灰)、塩化カルシウム、炭酸カルシウム等のカルシウム塩のうち少なくとも1つが挙げられる。これらのうち、水酸化カルシウム、酸化カルシウムが好ましく、水酸化カルシウムがより好ましい。   The calcium agent is not particularly limited as long as it is an alkaline agent containing calcium and dissolves to generate calcium ions, but calcium hydroxide (slaked lime), calcium oxide (quick lime), calcium chloride, carbonic acid There may be mentioned at least one of calcium salts such as calcium. Of these, calcium hydroxide and calcium oxide are preferable, and calcium hydroxide is more preferable.

水酸化カルシウム、酸化カルシウムは水に対する溶解度が小さいことから、バルクでの局部的な反応を制限しながら、水酸化カルシウム粒子や酸化カルシウム粒子の周辺を中心に凝集反応と結晶生成反応が進行すると考えられる。そのため、当該粒子を核として水酸化アルミニウム等の再凝集がおこり、この再凝集の際に硫酸カルシウム等の取り込みを円滑に行うことができ、脱水性のよい汚泥を得ることができると考えられる。また、酸化カルシウムを使用した場合には、酸化カルシウムが水に溶解する際の発熱反応による加温効果により、上記反応の促進と汚泥の沈降促進効果も期待できる。   Since calcium hydroxide and calcium oxide have low solubility in water, it is considered that agglomeration and crystal formation reactions proceed mainly around calcium hydroxide particles and calcium oxide particles while limiting local reactions in the bulk. It is done. Therefore, reaggregation of aluminum hydroxide or the like occurs using the particles as nuclei, and it is considered that calcium sulfate or the like can be smoothly taken in during the reaggregation, and sludge having good dewaterability can be obtained. In addition, when calcium oxide is used, the above reaction and sludge settling acceleration effect can be expected due to the heating effect due to the exothermic reaction when calcium oxide is dissolved in water.

マグネシウム剤としては、マグネシウムを含むアルカリ剤であって、溶解してマグネシウムイオンを生成するものであればよく特に制限はないが、水酸化マグネシウム、酸化マグネシウム、塩化マグネシウム、炭酸マグネシウム等のマグネシウム塩のうち少なくとも1つが挙げられる。これらのうち、酸に対する中和能力と凝集力等の観点から水酸化マグネシウム、酸化マグネシウムが好ましく、水酸化マグネシウムがより好ましい。   The magnesium agent is not particularly limited as long as it is an alkaline agent containing magnesium and can be dissolved to produce magnesium ions, but magnesium salts such as magnesium hydroxide, magnesium oxide, magnesium chloride, magnesium carbonate, etc. At least one of them is mentioned. Of these, magnesium hydroxide and magnesium oxide are preferable from the viewpoints of neutralizing ability against acid and cohesive strength, and magnesium hydroxide is more preferable.

カルシウム剤及びマグネシウム剤は粉体状もしくは水等の溶媒に混合させたスラリ状のどちらでも効果は発現するので都合の良いものを採用すればよい。取り扱い易さの点ではスラリ状として用いる方が優れることが多い。なお、スラリとして用いる場合は、カルシウム剤貯槽18及びマグネシウム剤貯槽20において、カルシウム剤及びマグネシウム剤が沈降しないように撹拌装置44,46により撹拌することが好ましい。   The calcium agent and the magnesium agent can be used in a powder form or a slurry form mixed with a solvent such as water. In terms of ease of handling, it is often better to use it as a slurry. In addition, when using as a slurry, in the calcium agent storage tank 18 and the magnesium agent storage tank 20, it is preferable to stir with the stirring apparatuses 44 and 46 so that a calcium agent and a magnesium agent may not settle.

カルシウム剤及びマグネシウム剤は、酸の添加とともに、あるいは、酸を添加した後に添加することができる。また、汚泥に添加するアルカリ剤としては、カルシウムイオンあるいはマグネシウムイオンの存在下で苛性ソーダ、炭酸ナトリウム等のアルカリ剤を添加する形態であってもよい。   The calcium agent and the magnesium agent can be added together with the addition of the acid or after the addition of the acid. Moreover, as an alkaline agent added to sludge, the form which adds alkaline agents, such as caustic soda and sodium carbonate in presence of calcium ion or magnesium ion, may be sufficient.

カルシウム剤及びマグネシウム剤の添加順序は、カルシウム剤を加えてからマグネシウム剤を添加しても、マグネシウム剤を加えてからカルシウム剤を添加しても、カルシウム剤をマグネシウム剤とともに添加してもよい。マグネシウム剤として例えば水酸化マグネシウムを用いる場合、水酸化マグネシウムは上記の通り中性領域では水に対する溶解性が低いため、酸性領域で添加して溶解させることが望ましいことから、添加順序としては、マグネシウム剤を加えてからカルシウム剤を添加することが好ましい。   The calcium agent and the magnesium agent may be added in the order of adding the calcium agent and then adding the magnesium agent, adding the magnesium agent and then adding the calcium agent, or adding the calcium agent together with the magnesium agent. For example, when magnesium hydroxide is used as the magnesium agent, magnesium hydroxide has low solubility in water in the neutral region as described above. Therefore, it is desirable to add and dissolve in the acidic region. It is preferable to add the calcium agent after adding the agent.

本実施形態において、カルシウム剤とマグネシウム剤の添加に際してはカルシウム剤とマグネシウム剤とを含む混合剤を使用してもよい。この場合は、図1のカルシウム剤貯槽18及びマグネシウム剤貯槽20は1つのアルカリ剤貯槽とすればよい。   In this embodiment, when adding a calcium agent and a magnesium agent, you may use the mixing agent containing a calcium agent and a magnesium agent. In this case, the calcium agent storage tank 18 and the magnesium agent storage tank 20 of FIG. 1 may be one alkaline agent storage tank.

本実施形態においては、高分子凝集剤を使用しなくても十分な沈降性を得ることができるが、さらに沈降性を向上させるために高分子凝集剤を使用してもよい。   In this embodiment, sufficient sedimentation can be obtained without using a polymer flocculant, but a polymer flocculant may be used to further improve the sedimentation.

アルカリ処理槽14における反応液は、分離水の放流もしくは再利用の観点から、pHが4以上になるように調整することが好ましく、pHが4.5〜9になるように調整することがより好ましく、pHが6.0〜8.5になるように調整することが更に好ましい。   The reaction solution in the alkali treatment tank 14 is preferably adjusted to have a pH of 4 or more, and more preferably adjusted to have a pH of 4.5 to 9, from the viewpoint of releasing or reusing the separated water. Preferably, it is more preferable to adjust so that pH may be 6.0-8.5.

減容化後の汚泥の濃度はカルシウム剤とマグネシウム剤との混合比率を変更することにより、後段での処理に応じて目的とする減容化の程度に濃度を調整することができる。また、カルシウム剤とマグネシウム剤との混合比率の変更により、上澄水(分離水)の清澄性を調整することができる。   By changing the mixing ratio of the calcium agent and the magnesium agent, the concentration of the sludge after volume reduction can be adjusted to the target degree of volume reduction according to the treatment in the subsequent stage. Moreover, the clarity of the supernatant water (separated water) can be adjusted by changing the mixing ratio of the calcium agent and the magnesium agent.

例えば、水酸化カルシウムと水酸化マグネシウムの添加量を変更、すなわち水酸化カルシウムと水酸化マグネシウムとの混合比率を変更することで、硫酸カルシウムの生成量と不溶解の水酸化マグネシウムの量を調整することにより、分離水の水質を向上させながら汚泥の減容化の濃度を調整できる。したがって、汚泥濃度を調整して例えば一定にすることが可能なため、後段の脱水処理の運転管理を円滑に進めることができる。   For example, by changing the amount of calcium hydroxide and magnesium hydroxide added, that is, by changing the mixing ratio of calcium hydroxide and magnesium hydroxide, the amount of calcium sulfate produced and the amount of insoluble magnesium hydroxide are adjusted. Thus, the concentration of sludge volume reduction can be adjusted while improving the quality of the separated water. Therefore, since the sludge concentration can be adjusted to be constant, for example, the operation management of the subsequent dehydration process can be smoothly advanced.

減容化汚泥濃度の調整において、例えば減容化汚泥の濃度を高めたい場合は水酸化カルシウムに対する水酸化マグネシウムの比率を高くし、低めたい場合は水酸化マグネシウムに対する水酸化カルシウムの比率を高くすることができる。   When adjusting the volume reduction sludge concentration, for example, to increase the concentration of volume reduction sludge, increase the ratio of magnesium hydroxide to calcium hydroxide, and to decrease it, increase the ratio of calcium hydroxide to magnesium hydroxide. be able to.

アルカリ剤として水酸化マグネシウムを単独で使用した場合には、最も減容化汚泥の濃度が高くなるが、後段の汚泥の重力沈降等による分離の操作で発生する分離水に懸濁質が多く含まれ、またそれに伴う色度が発生し、減容化が進行している状況(沈降汚泥と分離水との界面等)が見にくい場合がある。そして、この懸濁質が多く含まれる分離水は放流もしくは再利用等においても障害となる場合がある。この状況を改善するために、アルカリ剤として水酸化マグネシウムに加えて水酸化カルシウムを用いると、減容化を損なうことなく分離水の懸濁質の低減と色度の低減を図りながら減容化を調整することができる。   When magnesium hydroxide is used alone as the alkaline agent, the concentration of the volume-reducing sludge is the highest, but there is a lot of suspended solids in the separation water generated by the separation operation such as gravity sedimentation of the latter stage sludge. In addition, the chromaticity associated therewith may occur and it may be difficult to see the situation in which volume reduction is progressing (such as the interface between the settled sludge and separated water). In addition, the separated water containing a large amount of suspended matter may become an obstacle in the discharge or reuse. In order to improve this situation, when calcium hydroxide is used in addition to magnesium hydroxide as an alkaline agent, the volume is reduced while reducing suspended solids and reducing chromaticity without impairing volume reduction. Can be adjusted.

上記の通り、水酸化カルシウムの添加により、硫酸カルシウムの生成反応と中和反応とが並行して起きる。その硫酸カルシウムの結晶と中和反応で生成した水酸化アルミニウムとが凝集反応を起こし、硫酸カルシウムと不溶解の水酸化マグネシウムを取り込みながら共沈現象により汚泥の減容化が行われ、同時に分離水は清澄となる。この分離水の清澄性は水酸化マグネシウムに対する水酸化カルシウムの比率が高くなるほど高まり、同時に硫酸カルシウムの生成量が多くなり、全体の固形物質量が増加し、減容化の程度が低くなる。   As described above, the addition of calcium hydroxide causes the calcium sulfate formation reaction and the neutralization reaction to occur in parallel. The calcium sulfate crystals and the aluminum hydroxide produced by the neutralization reaction cause an agglomeration reaction, and the sludge volume is reduced by coprecipitation while calcium sulfate and insoluble magnesium hydroxide are taken in. Becomes clear. The clarity of the separated water increases as the ratio of calcium hydroxide to magnesium hydroxide increases, and at the same time, the amount of calcium sulfate produced increases, the total amount of solid substances increases, and the degree of volume reduction decreases.

カルシウム剤に対するマグネシウム剤の混合比率((マグネシウム剤の重量/(マグネシウム剤の重量+カルシウム剤の重量))×100)は、0〜100%の範囲で適宜決めて、減容化後の汚泥の高濃度状態における汚泥濃度の調整を行えばよいが、汚泥の減容化と分離水の清澄性のバランス等の観点から35〜65%の範囲であることが好ましい。   The mixing ratio of magnesium agent to calcium agent ((magnesium agent weight / (magnesium agent weight + calcium agent weight)) × 100) is appropriately determined in the range of 0 to 100%, and the volume of sludge after volume reduction is determined. The sludge concentration in the high concentration state may be adjusted, but it is preferably in the range of 35 to 65% from the viewpoint of reducing the sludge volume and the clarification of separated water.

分離水の清澄性の指標としては、例えばSS(浮遊懸濁固形物:Suspended Solid)により表すことができ、SSとして例えば10(mg/L)以下とすることができる。   As an index of the clarity of separated water, for example, it can be expressed by SS (Suspended Solid), and SS can be, for example, 10 (mg / L) or less.

酸に対するアルカリ剤の化学当量比(アルカリ剤/酸)は、撹拌混合装置の形成や、粉体の粒度特性等の観点から1.2〜2の範囲であることが好ましい。なお、本明細書において「化学当量」とは「モル当量」のことを指す。   The chemical equivalent ratio of the alkali agent to the acid (alkali agent / acid) is preferably in the range of 1.2 to 2 from the viewpoint of formation of a stirring and mixing device, particle size characteristics of the powder, and the like. In the present specification, “chemical equivalent” means “molar equivalent”.

以上のように本実施形態では、水処理装置からの汚泥を酸を用いて酸性とした後、カルシウム剤を添加することにより汚泥の減容化がなされるが、アルカリ剤としてマグネシウム剤を併用使用することにより、カルシウム剤単独使用時と比べて、例えば1.1倍〜3倍程度の減容化と、減容化後の汚泥の高濃度状態における汚泥濃度の調整ができる。また、マグネシウム剤及びカルシウム剤の併用処理による減容化で発生した分離水を両アルカリ剤の添加比率を変えることにより、例えば中性液として清澄にすることができる。   As described above, in this embodiment, the sludge from the water treatment apparatus is acidified using an acid, and then the sludge is reduced in volume by adding a calcium agent. By doing so, compared with the case of using calcium agent alone, for example, volume reduction of about 1.1 to 3 times and adjustment of sludge concentration in the high concentration state of sludge after volume reduction can be performed. Moreover, the separated water generated by volume reduction by the combined treatment of the magnesium agent and the calcium agent can be clarified, for example, as a neutral liquid by changing the addition ratio of both alkali agents.

汚泥の沈降濃縮性及び汚泥の脱水性等が改善されれば、高価な脱水処理装置の設備容量の削減や、産業廃棄物の投棄量の低減が可能となる。特に、上水道で行われているような、アルミ系の凝集剤としてポリ塩化アルミニウムや硫酸バンドを用いる凝集沈澱処理から発生する汚泥に対しては、非常に顕著な濃縮減容化効果があり、発生汚泥の処理が問題となっている浄水場等において大変に有用な技術となりうる。天日乾燥床を用いる場合においても、濃度が上昇すれば張り込み深さを浅くすることが可能となり、いままで以上に乾燥の進行が早くなり、運用が容易となり、乾燥床の面積も削減することができる等の効果につながる。   If sludge sedimentation concentration and sludge dewaterability are improved, it is possible to reduce the capacity of expensive dewatering equipment and the amount of industrial waste dumped. Especially for sludge generated from coagulation sedimentation treatment using polyaluminum chloride or sulfuric acid band as an aluminum-based coagulant as in waterworks, there is a very remarkable concentration reduction effect. This can be a very useful technology in water purification plants where sludge treatment is a problem. Even when using a sun-dried bed, if the concentration is increased, it is possible to reduce the depth of penetration, making the drying progress faster and easier to operate, and reducing the area of the dry bed. This leads to effects such as

また、分離水が中性液として清澄であることは、排水として放流の場合は排水基準に触れることがなく、2次処理の必要がなく、また汚泥濃縮装置の運転管理面では汚泥の界面監視を容易に行うことができる。   In addition, the fact that the separated water is clear as a neutral liquid means that when it is discharged as wastewater, it does not touch the wastewater standards, there is no need for secondary treatment, and the sludge concentrator operation management monitors sludge interface. Can be easily performed.

本実施形態において、酸処理槽12における酸の添加に際して汚泥を含む液を撹拌することが好ましい。酸処理槽12における撹拌強度が強ければ強いほど早く酸が全体に拡散し溶解が早く進行し、装置容量が小さくなるため、撹拌装置40の撹拌強度は強い方が好ましく、例えばG値(撹拌の強さを示す指標)を150s−1以上となるように設定することが好ましい。 In this embodiment, it is preferable to stir the liquid containing sludge when adding acid in the acid treatment tank 12. The stronger the stirring strength in the acid treatment tank 12, the faster the acid diffuses and the faster the dissolution proceeds, and the smaller the capacity of the device, the stronger the stirring strength of the stirring device 40. It is preferable to set the strength index) to be 150 s −1 or more.

また、本実施形態において、アルカリ処理槽14におけるアルカリ剤の添加に際しても汚泥を含む液を撹拌することが好ましい。アルカリ処理槽14における撹拌装置42の撹拌強度は、生成したフロックを破壊しないように設定することが好ましく、酸処理槽12における撹拌装置40の撹拌強度より低い強度に設定することが好ましい。例えば、アルカリ処理槽14における撹拌装置42の撹拌強度はいわゆるG値が10〜150s−1となるように設定することが好ましく、G値が50〜120s−1となるように設定することがより好ましい。 Moreover, in this embodiment, it is preferable to stir the liquid containing sludge also at the time of the addition of the alkaline agent in the alkaline treatment tank 14. The stirring strength of the stirring device 42 in the alkali treatment tank 14 is preferably set so as not to destroy the generated flocs, and is preferably set lower than the stirring strength of the stirring device 40 in the acid treatment tank 12. For example, the stirring intensity of the stirring device 42 in the alkali treatment tank 14 is preferably set so that the so-called G value is 10 to 150 s −1, and more preferably set so that the G value is 50 to 120 s −1. preferable.

温度条件によっては、アルカリ処理槽14ではアルカリ処理により、結晶水の付加した不溶性の硫酸カルシウム等が生成するため、酸処理液及びアルカリ剤の注入点は注意が必要である。すなわち、硫酸カルシウム等の生成に際してアルカリ処理槽14内の壁もしくは撹拌装置42の撹拌羽根及び軸等に硫酸カルシウム等のスケールが蓄積する場合があるため、生成した濃度の高い硫酸カルシウム等とアルカリ剤との接触をできるだけ最少となるような注入点とすることが好ましい。例えば、酸処理槽12から移送された酸処理液の注入点とカルシウム剤及びマグネシウム剤の注入点を、アルカリ処理槽14の中心部を中心として対称の位置に配置することが好ましい。   Depending on the temperature conditions, the alkali treatment tank 14 generates insoluble calcium sulfate or the like to which crystal water has been added due to the alkali treatment, so care must be taken in the injection point of the acid treatment solution and the alkali agent. That is, when calcium sulfate or the like is produced, scales such as calcium sulfate may accumulate on the walls in the alkali treatment tank 14 or the stirring blades and shafts of the stirring device 42. It is preferable to set the injection point so as to minimize the contact with. For example, it is preferable to arrange the injection point of the acid treatment liquid transferred from the acid treatment tank 12 and the injection point of the calcium agent and the magnesium agent at symmetrical positions with the central portion of the alkali treatment tank 14 as the center.

本実施形態においては、汚泥等を酸処理槽12、アルカリ処理槽14、汚泥沈降槽22、脱水装置24へポンプで移送しているが、ポンプを使用せず、水位差を利用して配管やトラフで移送してもよい。なお、小規模の処理においては、酸処理槽12にアルカリ剤を入れ、この槽において、汚泥の濃縮と上澄水の分離を行う回分式の装置形態でも十分に本実施形態の効果を発揮することができる。   In the present embodiment, sludge and the like are pumped to the acid treatment tank 12, the alkali treatment tank 14, the sludge settling tank 22, and the dehydration device 24. You may transfer by trough. In a small-scale treatment, an alkaline agent is put in the acid treatment tank 12, and in this tank, the effect of the present embodiment can be sufficiently exerted even in a batch-type apparatus form in which sludge is concentrated and supernatant water is separated. Can do.

脱水装置24としては、加圧脱水機や乾燥機等が用いられる。   As the dehydrator 24, a pressure dehydrator or a dryer is used.

以下、実施例及び比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

(実施例1〜7)
以下、ある浄水場において発生した汚泥を図1に示すような汚泥濃縮装置を用いて処理した例を示す。この浄水場は、河川水を水源とし、濁度が低く、しかもフミン質系の色度を有しているため、凝集剤としてPAC(ポリ塩化アルミニウム)を使用し、約50mg/Lの注入により、凝集フロックを生成させ、凝集沈澱処理と濾過処理により、上水道としての水質に適合した処理を行っている。凝集フロックは沈殿池において凝集沈澱汚泥となる。その汚泥については固形化処理を行い、産業廃棄物として廃棄している。固形化処理の過程では、まず汚泥の重力沈降濃縮により汚泥の濃縮を行い、その濃縮汚泥を加圧脱水機により脱水処理することにより固形化(脱水ケーキ)する。脱水ケーキは産業廃棄物として処分される。
(Examples 1-7)
Hereinafter, the example which processed the sludge generated in a certain water purification plant using the sludge concentration apparatus as shown in FIG. This water purification plant uses river water as its water source, has low turbidity, and has humic chromaticity. Therefore, it uses PAC (polyaluminum chloride) as a flocculant and is injected by about 50 mg / L. Then, a floc is generated, and a treatment suitable for water quality as a water supply is performed by a coagulation precipitation treatment and a filtration treatment. Agglomerated flocs become agglomerated sedimentation sludge in the sedimentation basin. The sludge is solidified and discarded as industrial waste. In the solidification process, sludge is first concentrated by gravity sedimentation and sludge is dehydrated by a pressure dehydrator to be solidified (dehydrated cake). The dehydrated cake is disposed of as industrial waste.

この浄水場において発生する凝集沈澱汚泥は、原水水質として高色度、低濁、高PAC注入率のために、水酸化アルミニウムの含有率が高く、非常に沈降濃縮性が悪く、汚泥濃度が48時間沈降濃縮を行っても1.6%にしか達しない汚泥性状となっている。汚泥濃度が低いということは薄い大量の汚泥を処理することになり、汚泥処理施設が非常に大きな施設となり、同時に脱水固化するにも大型の脱水設備を必要としている。   The agglomerated sediment sludge generated in this water purification plant has a high content of aluminum hydroxide due to its high chromaticity, low turbidity, and high PAC injection rate as raw water quality, very poor sedimentation concentration, and a sludge concentration of 48 Even if time sedimentation is performed, the sludge properties reach only 1.6%. When the sludge concentration is low, a large amount of sludge is treated, and the sludge treatment facility becomes a very large facility. At the same time, a large dehydration facility is required for dehydration and solidification.

そこで本実施例においては、当該浄水場において発生する汚泥に表1に示すように濃度70%の硫酸を添加し、添加後15分経過後に表1に示すような添加量、割合でアルカリ剤として水酸化マグネシウム及び水酸化カルシウムを混合剤としてスラリ状で添加し、さらに1時間経過後の上澄水のSS(mg/L)、1時間経過後及び24時間経過後の減容化汚泥界面、24時間経過後の上澄水のSSを調べた。結果を表1に示す。上澄水(分離水)のSSについては、環境庁告示59号付表8の方法で、減容化汚泥界面については、メスシリンダを用いた目視で測定した。   In this embodiment, therefore, sulfuric acid having a concentration of 70% is added to the sludge generated at the water purification plant as shown in Table 1, and as an alkaline agent at an addition amount and ratio as shown in Table 1 15 minutes after the addition. Magnesium hydroxide and calcium hydroxide were added as a mixture in a slurry state, and SS (mg / L) of supernatant water after 1 hour had passed, and the volume-reduced sludge interface after 24 hours and 24 hours later, 24 The SS of the supernatant water after the lapse of time was examined. The results are shown in Table 1. The SS of supernatant water (separated water) was measured by the method of Appendix 8 of Environment Agency Notification No. 59, and the volume-reduced sludge interface was measured visually using a graduated cylinder.

(比較例1,2)
アルカリ剤として水酸化マグネシウムのみ(比較例1)、水酸化カルシウムのみ(比較例2)を使用した以外は、実施例1〜7と同様にしてそれぞれ処理を行った。結果を表1に示す。
(Comparative Examples 1 and 2)
The treatment was carried out in the same manner as in Examples 1 to 7, except that only magnesium hydroxide (Comparative Example 1) and only calcium hydroxide (Comparative Example 2) were used as the alkaline agent. The results are shown in Table 1.

Figure 2009142744
Figure 2009142744

実施例1〜7の結果からわかるように、水酸化マグネシウムと水酸化カルシウムの添加量を調整することにより、汚泥減容化の濃度を調整することができた。比較例1の水酸化マグネシウムを単独で使用した場合には、上澄水の浮遊懸濁質が非常に多く、また減容化の程度は実施例1〜3の水酸化マグネシウムと水酸化カルシウムの併用に比べて低かった。   As can be seen from the results of Examples 1 to 7, the concentration of sludge volume reduction could be adjusted by adjusting the addition amount of magnesium hydroxide and calcium hydroxide. When the magnesium hydroxide of Comparative Example 1 was used alone, the supernatant suspended in suspension was very large, and the degree of volume reduction was a combination of magnesium hydroxide and calcium hydroxide of Examples 1-3. It was low compared to.

水酸化マグネシウムの単独使用においても汚泥の減容化の進行は見られるが、減容化により発生する上澄水のSS値が高く、実施例1〜7ではメスシリンダのガラスを通した側面から汚泥減容化の状況を観察できたが、比較例1では上からの観察ができない状況であった。   Although the progress of volume reduction of sludge is seen even when magnesium hydroxide is used alone, the SS value of the supernatant water generated by volume reduction is high, and in Examples 1 to 7, the sludge is seen from the side through the glass of the graduated cylinder. Although the volume reduction could be observed, Comparative Example 1 was not able to be observed from above.

汚泥濃縮装置の運転では減容化界面の目視観察ができることは装置性能を引き出し、安定運転ができる点で非常に重要である。また上澄水を余剰水として排水放流する場合においても無処理で放流できることが望ましい。実施例1〜7の水酸化マグネシウムと水酸化カルシウムの併用処理はこの減容化処理において、水酸化マグネシウムと水酸化カルシウムの両薬剤比率を調整することにより減容化汚泥濃度を実施例2の5.71倍〜実施例7の2.70倍まで調整ができるとともに、上澄水の水質を改善できることを示している。   In the operation of the sludge concentrator, visual observation of the volume-reducing interface is very important in that the performance of the apparatus is extracted and stable operation is possible. Moreover, it is desirable that the supernatant water can be discharged without any treatment even when discharged as surplus water. In this volume reduction treatment, the combined treatment of magnesium hydroxide and calcium hydroxide in Examples 1 to 7 was used to adjust the volume ratio of sludge by adjusting both chemical ratios of magnesium hydroxide and calcium hydroxide. It is shown that it can be adjusted from 5.71 times to 2.70 times of Example 7 and the quality of the supernatant water can be improved.

これは水酸化マグネシウムを添加することにより、水酸化カルシウム単独使用の場合と比較して、硫酸と水酸化カルシウムとの反応によって生じる硫酸カルシウムの量を調整することができ、汚泥中で生成する固形物量が変化し、汚泥の減容化を制御する因子として働くものと推測される。また硫酸カルシウムの生成は、共沈現象に先立つ凝集反応にも影響を与え、水酸化マグネシウム単独使用で見られる浮遊懸濁質をも取込みながら共沈現象を起こしているものと推測される。   By adding magnesium hydroxide, the amount of calcium sulfate produced by the reaction between sulfuric acid and calcium hydroxide can be adjusted as compared with the case of using calcium hydroxide alone, and solids produced in sludge It is presumed that the quantity changes and acts as a factor that controls sludge volume reduction. In addition, the formation of calcium sulfate has an influence on the aggregation reaction prior to the coprecipitation phenomenon, and it is presumed that the coprecipitation phenomenon occurs while taking in suspended suspended solids that are observed when magnesium hydroxide is used alone.

また水酸化マグネシウムは酸性液には溶解するが、pHが中性に近づくにつれて溶解性が非常に小さくなる。中和が進むにつれて水酸化マグネシウムの一部が不溶解の状態として残留している状況となっていると推測される。硫酸当量より多いアルカリ剤添加量で減容化が最も起きていることは、一部不溶解の水酸化マグネシウムが共沈現象に関係しているものと推測される。   Magnesium hydroxide dissolves in an acidic solution, but the solubility becomes very small as the pH approaches neutrality. It is presumed that a part of magnesium hydroxide remains in an insoluble state as the neutralization proceeds. It is presumed that the volume reduction occurs most when the amount of alkali agent added is greater than the sulfuric acid equivalent, because partially insoluble magnesium hydroxide is related to the coprecipitation phenomenon.

共沈による減容化の進行は、水酸化マグネシウムと水酸化カルシウムを加えることにより、酸性汚泥中に溶解しているアルミニウム分を水酸化アルミニウムに生成させながら、硫酸イオンと水酸化カルシウムとの反応で発生した硫酸カルシウムと、不溶解の水酸化マグネシウムと、汚泥中の固形物及び硫酸で溶解しアルカリ剤の添加により再度固形物になった物質等による多成分の関連物質による共沈現象によるものと推測される。   The progress of volume reduction by coprecipitation is due to the reaction between sulfate ions and calcium hydroxide while adding aluminum hydroxide and calcium hydroxide to produce aluminum dissolved in acidic sludge in aluminum hydroxide. Due to the coprecipitation phenomenon due to multi-component related substances such as calcium sulfate generated in sewage, insoluble magnesium hydroxide, solids in sludge and substances that are dissolved in sulfuric acid and become solids again by the addition of alkaline agent It is guessed.

実施例2及び実施例3では、水酸化カルシウムを加えることにより、浮遊懸濁質の少ない上澄水の生成と、水酸化マグネシウム単独使用(比較例1)より強力な沈降濃縮とを起こすことを示している。   In Examples 2 and 3, it is shown that the addition of calcium hydroxide causes the production of supernatant water with less suspended suspended matter and the stronger sedimentation concentration than using magnesium hydroxide alone (Comparative Example 1). ing.

比較例1の水酸化マグネシウム単独使用及び実施例1のような水酸化カルシウムの少ない状況では硫酸カルシウムの生成がない、またはほとんどないため、凝集を含めた共沈現象が起こりにくく汚泥の減容化倍率が低くなるものと推測される。   In the situation where magnesium hydroxide alone is used in Comparative Example 1 and the amount of calcium hydroxide is low as in Example 1, there is no or almost no calcium sulfate formation, so coprecipitation phenomenon including agglomeration hardly occurs and the volume of sludge is reduced. The magnification is estimated to be low.

実施例1〜7は凝集剤としてPAC(ポリ塩化アルミニウム)を使用して発生した汚泥を用いたもので、従来の方法であれば後段の脱水処理として加圧脱水を使用する際は汚泥の濃度により脱水能力が大幅に変化し、脱水処理後の脱水ケーキ発生量が大きく変動する等の運転管理上の問題点があった。本実施例ではアルカリ剤として水酸化マグネシウム単独使用時を上回る減容化を達成し、加圧脱水機の能力を向上させながら、水酸化マグネシウムと水酸化カルシウムの添加量を調整することにより減容化汚泥濃度と後段の加圧脱水機の運転管理を容易にすることができた。   In Examples 1 to 7, sludge generated using PAC (polyaluminum chloride) as a flocculant was used, and in the case of a conventional method, the concentration of sludge is used when pressure dehydration is used as a subsequent dewatering treatment. As a result, the dewatering capacity changed drastically, and the amount of dewatered cake generated after the dehydration process fluctuated greatly. In this example, volume reduction was achieved by adjusting the addition amount of magnesium hydroxide and calcium hydroxide while improving the capacity of the pressure dehydrator while achieving volume reduction exceeding that when using magnesium hydroxide alone as the alkali agent. It was possible to facilitate the operation management of the activated sludge concentration and the subsequent pressure dehydrator.

加圧脱水機のケーキ発生量を制御できることは後段の汚泥乾燥等においても取扱量が一定となり、汚泥発生量と性状変動の激しい上水汚泥の処理においては運転管理面で有用な手段を提供できることになる。   The ability to control the amount of cake generated by the pressure dehydrator ensures that the amount handled is constant even during subsequent sludge drying, etc., and can provide a useful means in terms of operation management in the treatment of water sludge with severe sludge generation and property fluctuations. become.

実施例1〜7は、沈降後の上澄水を放流可能な中性とした減容化処理の実施例である。排水の放流を考えた場合、上澄水を中性とすることが必要条件となる。この実施例1〜7においては水酸化マグネシウムと水酸化カルシウムを混合剤として同時添加する場合であり、酸の当量に対して使用した総アルカリ当量が1.7〜1.9倍程度必要となった。水酸化マグネシウムに対する水酸化カルシウムの比率を多くすると酸の当量に対して使用した総アルカリ当量が高くなる傾向となった。   Examples 1 to 7 are examples of a volume reduction treatment in which the supernatant water after sedimentation is made neutral so that it can be discharged. When considering the discharge of wastewater, it is necessary to make the supernatant water neutral. In Examples 1 to 7, magnesium hydroxide and calcium hydroxide are simultaneously added as a mixture, and the total alkali equivalent used for the acid equivalent is about 1.7 to 1.9 times. It was. Increasing the ratio of calcium hydroxide to magnesium hydroxide tended to increase the total alkali equivalent used relative to the acid equivalent.

硫酸に対して当量以上の総アルカリ当量が必要とされる要因としては、硫酸カルシウムが生成する際の硫酸カルシウムの生成反応の速度が速いため、生成した硫酸カルシウムによって溶解速度の遅い不溶解の水酸化カルシウム及び水酸化マグネシウムの表面が被覆されて溶解が妨げられるためと、水酸化マグネシウムの溶解が中性領域では殆ど起こらないので不溶解の状態で残留していることが要因と推測される。なお、この現象は撹拌状況にも左右されるものと推測される。   The factor that requires a total alkali equivalent of sulfuric acid or more with respect to sulfuric acid is that the rate of calcium sulfate formation reaction when calcium sulfate is formed is high, so insoluble water with a slow dissolution rate due to the generated calcium sulfate. It is presumed that this is because the surfaces of calcium oxide and magnesium hydroxide are covered to prevent dissolution, and that magnesium hydroxide hardly dissolves in the neutral region and remains in an insoluble state. In addition, it is estimated that this phenomenon is influenced also by the stirring condition.

しかし撹拌操作を長時間行っても総アルカリ当量の改善は困難であったため、実用的な装置では実施例のような総アルカリ当量が必要であると考えられる。なお、汚泥は非常に多くの物質で構成されているため、上記考察はあくまでも推定に過ぎない。   However, since it was difficult to improve the total alkali equivalent even when the stirring operation was performed for a long time, it is considered that the total alkali equivalent as in the examples is necessary in a practical apparatus. In addition, since the sludge is comprised with very many substances, the said consideration is only an estimation to the last.

本発明の実施形態に係る汚泥濃縮装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the sludge concentration apparatus which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 汚泥濃縮装置、10 汚泥濃縮調整槽、12 酸処理槽、14 アルカリ処理槽、16 酸貯槽、18 カルシウム剤貯槽、20 マグネシウム剤貯槽、22 汚泥沈降槽、24 脱水装置、26,28,30,32,34,36,38 ポンプ、40,42,44,46 撹拌装置、48,50,56 汚泥配管、58 酸配管、60 カルシウム剤配管、52 酸処理液配管、54 アルカリ処理液配管、62 マグネシウム剤配管。   DESCRIPTION OF SYMBOLS 1 Sludge concentration apparatus, 10 Sludge concentration adjustment tank, 12 Acid treatment tank, 14 Alkali treatment tank, 16 Acid storage tank, 18 Calcium agent storage tank, 20 Magnesium agent storage tank, 22 Sludge sedimentation tank, 24 Dehydration apparatus, 26, 28, 30, 32, 34, 36, 38 Pump, 40, 42, 44, 46 Stirrer, 48, 50, 56 Sludge pipe, 58 Acid pipe, 60 Calcium agent pipe, 52 Acid treatment liquid pipe, 54 Alkali treatment liquid pipe, 62 Magnesium Agent piping.

Claims (8)

アルミ系凝集剤を使用した水処理において発生する汚泥の濃縮方法であって、
前記汚泥を酸により処理する酸処理工程と、
前記酸により処理した汚泥をアルカリ剤であるカルシウム剤及びマグネシウム剤のうち少なくとも1つにより処理するアルカリ処理工程と、
を含むことを特徴とする汚泥濃縮方法。
A method for concentrating sludge generated in water treatment using an aluminum flocculant,
An acid treatment step of treating the sludge with an acid;
An alkali treatment step of treating the sludge treated with the acid with at least one of a calcium agent and a magnesium agent which are alkali agents;
A method for concentrating sludge.
請求項1に記載の汚泥濃縮方法であって、
前記カルシウム剤及び前記マグネシウム剤の使用量を変更して、前記アルカリ処理工程により得られる汚泥の濃度を調整することを特徴とする汚泥濃縮方法。
It is a sludge concentration method of Claim 1, Comprising:
A method for concentrating sludge, wherein the concentration of sludge obtained by the alkali treatment step is adjusted by changing the amount of calcium agent and magnesium agent used.
請求項1または2に記載の汚泥濃縮方法であって、
前記カルシウム剤が水酸化カルシウムであることを特徴とする汚泥濃縮方法。
It is the sludge concentration method of Claim 1 or 2,
The method for concentrating sludge, wherein the calcium agent is calcium hydroxide.
請求項1〜3のいずれか1項に記載の汚泥濃縮方法であって、
前記マグネシウム剤が水酸化マグネシウムであることを特徴とする汚泥濃縮方法。
It is the sludge concentration method of any one of Claims 1-3,
The method for concentrating sludge, wherein the magnesium agent is magnesium hydroxide.
請求項1〜4のいずれか1項に記載の汚泥濃縮方法であって、
前記酸が硫酸であることを特徴とする汚泥濃縮方法。
It is the sludge concentration method of any one of Claims 1-4,
The sludge concentration method, wherein the acid is sulfuric acid.
請求項1〜5のいずれか1項に記載の汚泥濃縮方法であって、
前記酸に対する前記アルカリ剤の化学当量比は、1.2〜2の範囲であることを特徴とする汚泥濃縮方法。
It is the sludge concentration method of any one of Claims 1-5,
The chemical equivalent ratio of the alkaline agent to the acid is in the range of 1.2 to 2, wherein the sludge concentration method is characterized.
請求項1〜6のいずれか1項に記載の汚泥濃縮方法であって、
前記カルシウム剤に対する前記マグネシウム剤の混合比率は、0〜100%の範囲であることを特徴とする汚泥濃縮方法。
It is the sludge concentration method of any one of Claims 1-6,
The mixing ratio of the magnesium agent to the calcium agent is in the range of 0 to 100%.
アルミ系凝集剤を使用した水処理において発生する汚泥の濃縮装置であって、
前記汚泥を酸により処理するための酸処理槽と、
前記酸処理槽に前記酸を添加する酸添加手段と、
前記酸により処理した汚泥をアルカリ剤であるカルシウム剤及びマグネシウム剤により処理するためのアルカリ処理槽と、
前記アルカリ処理槽に前記アルカリ剤を添加するアルカリ剤添加手段と、
を有することを特徴とする汚泥濃縮装置。
An apparatus for concentrating sludge generated in water treatment using an aluminum flocculant,
An acid treatment tank for treating the sludge with an acid;
Acid addition means for adding the acid to the acid treatment tank;
An alkali treatment tank for treating the sludge treated with the acid with a calcium agent and a magnesium agent which are alkali agents;
Alkali agent addition means for adding the alkali agent to the alkali treatment tank;
A sludge concentrating device characterized by comprising:
JP2007322242A 2007-12-13 2007-12-13 Sludge concentration method and sludge concentration apparatus Active JP5057955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007322242A JP5057955B2 (en) 2007-12-13 2007-12-13 Sludge concentration method and sludge concentration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007322242A JP5057955B2 (en) 2007-12-13 2007-12-13 Sludge concentration method and sludge concentration apparatus

Publications (2)

Publication Number Publication Date
JP2009142744A true JP2009142744A (en) 2009-07-02
JP5057955B2 JP5057955B2 (en) 2012-10-24

Family

ID=40914020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007322242A Active JP5057955B2 (en) 2007-12-13 2007-12-13 Sludge concentration method and sludge concentration apparatus

Country Status (1)

Country Link
JP (1) JP5057955B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020132A (en) * 2013-07-22 2015-02-02 株式会社片山化学工業研究所 Zinc-containing liquid-waste treatment agent

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057973A (en) * 1973-09-25 1975-05-20
JPS51107653A (en) * 1975-03-18 1976-09-24 Tsukishima Kikai Co
JPS5224187A (en) * 1975-08-20 1977-02-23 Toyo Soda Mfg Co Ltd Treatment of aluminum-sludge including phosphorus
JPS5225450A (en) * 1975-08-20 1977-02-25 Toyo Soda Mfg Co Ltd Method of treating sludge
JPS5235450A (en) * 1975-09-13 1977-03-18 Chibaken Suidoukiyoku Mud disposal method
JPS5238768A (en) * 1975-09-22 1977-03-25 Tsukishima Kikai Co Ltd Sludge disposing method
JPS5768200A (en) * 1980-10-16 1982-04-26 Ebara Infilco Co Ltd Treatment of sludge in drinking water
JPS5771700A (en) * 1980-10-23 1982-05-04 Ebara Infilco Co Ltd Method for treatment of organic waste water
JPS5787897A (en) * 1980-11-21 1982-06-01 Ebara Infilco Co Ltd Treatment of purification plant sludge
JPS5787899A (en) * 1980-11-22 1982-06-01 Ebara Infilco Co Ltd Treatment of purification plant sludge
JPS5787900A (en) * 1980-11-22 1982-06-01 Ebara Infilco Co Ltd Treatment of purification plant sludge
JPS5791800A (en) * 1980-11-25 1982-06-08 Ebara Infilco Co Ltd Treatment for dehydrating coagulated and precipitated sludge
JP2003117600A (en) * 2001-10-11 2003-04-22 Toagosei Co Ltd Dewatering method for sludge
JP2007196086A (en) * 2006-01-24 2007-08-09 Japan Organo Co Ltd Concentration volume reduction process and arrangement of sludge

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057973A (en) * 1973-09-25 1975-05-20
JPS51107653A (en) * 1975-03-18 1976-09-24 Tsukishima Kikai Co
JPS5224187A (en) * 1975-08-20 1977-02-23 Toyo Soda Mfg Co Ltd Treatment of aluminum-sludge including phosphorus
JPS5225450A (en) * 1975-08-20 1977-02-25 Toyo Soda Mfg Co Ltd Method of treating sludge
JPS5235450A (en) * 1975-09-13 1977-03-18 Chibaken Suidoukiyoku Mud disposal method
JPS5238768A (en) * 1975-09-22 1977-03-25 Tsukishima Kikai Co Ltd Sludge disposing method
JPS5768200A (en) * 1980-10-16 1982-04-26 Ebara Infilco Co Ltd Treatment of sludge in drinking water
JPS5771700A (en) * 1980-10-23 1982-05-04 Ebara Infilco Co Ltd Method for treatment of organic waste water
JPS5787897A (en) * 1980-11-21 1982-06-01 Ebara Infilco Co Ltd Treatment of purification plant sludge
JPS5787899A (en) * 1980-11-22 1982-06-01 Ebara Infilco Co Ltd Treatment of purification plant sludge
JPS5787900A (en) * 1980-11-22 1982-06-01 Ebara Infilco Co Ltd Treatment of purification plant sludge
JPS5791800A (en) * 1980-11-25 1982-06-08 Ebara Infilco Co Ltd Treatment for dehydrating coagulated and precipitated sludge
JP2003117600A (en) * 2001-10-11 2003-04-22 Toagosei Co Ltd Dewatering method for sludge
JP2007196086A (en) * 2006-01-24 2007-08-09 Japan Organo Co Ltd Concentration volume reduction process and arrangement of sludge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020132A (en) * 2013-07-22 2015-02-02 株式会社片山化学工業研究所 Zinc-containing liquid-waste treatment agent

Also Published As

Publication number Publication date
JP5057955B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP2007061718A (en) Composite flocculant
JP6793014B2 (en) Wastewater treatment method and wastewater treatment equipment
JP2019217423A (en) System of treating effluent or sludge containing high-concentration suspended matter
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP5157040B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4879590B2 (en) Method and apparatus for concentration and volume reduction of sludge
JP4508600B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP2021186793A (en) Water purification method and water purification apparatus
US8013204B2 (en) Use of partly prehydrated lime for separating a solid matter/liquid mixture, method for treating sludge and purified sludge obtained by said method
JP6731261B2 (en) Heavy metal-containing water treatment device and treatment method
JP5057955B2 (en) Sludge concentration method and sludge concentration apparatus
JP2007038163A (en) Method for treating fluorine-containing waste water and treatment apparatus
JP2007260556A (en) Phosphoric acid-containing wastewater treatment method and apparatus
JP2010075928A (en) Treatment method and treatment device for fluorine-containing waste water
JP4559755B2 (en) Wastewater treatment method
JP2007061749A (en) Method for treating cement-containing waste liquid
JP6723058B2 (en) Water treatment method and water treatment system
JP6723057B2 (en) Water treatment method and water treatment system
JP4347096B2 (en) Fluorine removal apparatus and method for removing fluorine in waste water
JP7117101B2 (en) Water treatment method and device
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JPH1076279A (en) Treatment method for drainage containing heavy metal
JP2010253424A (en) Muddy water purification system
JP5142945B2 (en) Phosphoric acid-containing water treatment apparatus and phosphoric acid-containing water treatment method
JP3412641B2 (en) Coagulation treatment of low turbidity wastewater from power plants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5057955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250