JP2013184110A - Device for recovering phosphorus from phosphorus-containing water - Google Patents

Device for recovering phosphorus from phosphorus-containing water Download PDF

Info

Publication number
JP2013184110A
JP2013184110A JP2012050962A JP2012050962A JP2013184110A JP 2013184110 A JP2013184110 A JP 2013184110A JP 2012050962 A JP2012050962 A JP 2012050962A JP 2012050962 A JP2012050962 A JP 2012050962A JP 2013184110 A JP2013184110 A JP 2013184110A
Authority
JP
Japan
Prior art keywords
phosphorus
crystallization reaction
reaction tower
raw water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012050962A
Other languages
Japanese (ja)
Other versions
JP5540034B2 (en
Inventor
Kenji Mitsutome
憲二 満留
Kazuki Mori
一樹 森
Yasuo Matsushima
泰生 松島
Hiroshi Sato
大士 佐藤
Shotaro Furuhara
翔太郎 古原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Zosen Environment Engineering Corp
Original Assignee
Mitsui Zosen Environment Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Zosen Environment Engineering Corp filed Critical Mitsui Zosen Environment Engineering Corp
Priority to JP2012050962A priority Critical patent/JP5540034B2/en
Priority to KR1020147028006A priority patent/KR20140133908A/en
Priority to CN201380012732.6A priority patent/CN104159853B/en
Priority to KR1020167032595A priority patent/KR101787308B1/en
Priority to PCT/JP2013/053428 priority patent/WO2013132981A1/en
Publication of JP2013184110A publication Critical patent/JP2013184110A/en
Application granted granted Critical
Publication of JP5540034B2 publication Critical patent/JP5540034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds

Abstract

PROBLEM TO BE SOLVED: To provide a device for recovering phosphorus from phosphorus-containing water, in which agglomerating phosphorus is not precipitated and a phosphorus recovery rate is not lowered.SOLUTION: A device for recovering phosphorus includes a crystallization reaction tower 2 for recovering phosphorus by a crystallization reaction. An raw water introduction port 17 is arranged in the lower part of the crystallization reaction tower 2, a discharge port 20 of treated water is arranged in the upper part thereof and a pH adjustment tank 3 for adjusting pH is arranged on the outside of the crystallization reaction tower 2. One end of an upper part circulation pipeline 30 is connected to the discharge port 20 of treated water and another end of the upper part circulation pipeline 30 is connected to the pH adjustment tank 3. The pH adjustment tank 3 is connected to the lower part of the crystallization reaction tower 2 by a lower part circulation pipeline 31. While the raw water introduced from the raw water introduction port 17 of the lower part of the crystallization reaction tower 2 is made to ascend inside the crystallization reaction tower 2, phosphorus is recovered therefrom, and then the raw water is sent from the discharge port 20 of treated water in the upper part of the crystallization reaction tower 2 to the pH adjustment tank 3 through the upper part circulation pipeline 30 as circulating water. The treated water after pH adjustment is returned and circulated as circulating water to the lower part of the crystallization reaction tower 2 through the lower part circulation pipeline 31.

Description

本発明はリン回収率を向上させたリン含有水のリン回収装置に関する。   The present invention relates to a phosphorus recovery apparatus for phosphorus-containing water with an improved phosphorus recovery rate.

リンは、肥料、工業薬品などの原料、食料、飼料として大量に輸入され、使用されているが、し尿、雑排水、工場からの産業排水、畜産廃棄物、農耕地からの排出等による水域への富栄養化が問題となっている。   Phosphorus is imported and used in large quantities as fertilizers, industrial chemicals, and other raw materials, food, and feed, but it is released into human bodies by excreta, miscellaneous wastewater, industrial wastewater from factories, livestock waste, and emissions from agricultural land. Eutrophication is a problem.

一方、リンは枯渇が懸念される資源であり、循環型社会形成のためにも、「除去する」から「回収する」への転換が重要である。   On the other hand, phosphorus is a resource that is depleted, and it is important to switch from “removing” to “recovering” in order to create a recycling-oriented society.

従来のリン除去方法は、生物学的リン除去方法、同時凝集法、晶析脱リン方法が知られている。生物学的リン除去方法は、エアレーションタンクの一部の曝気を行なわずに、嫌気状態とすることにより、余剰汚泥として引き抜かれるリン量を通常の処理法より多くできることを原理としている。同時凝集法は、既存のエアレーションタンクに凝集剤を添加する方法である。晶析脱リン法は、液中のリン酸イオンがカルシウムイオン及び水酸化物イオンの反応によって生成するヒドロキシアパタイト(HAP)の晶析現象を利用した方法である。   As a conventional phosphorus removal method, a biological phosphorus removal method, a simultaneous aggregation method, and a crystallization dephosphorization method are known. The biological phosphorus removal method is based on the principle that the amount of phosphorus withdrawn as excess sludge can be increased as compared with a normal treatment method by making the anaerobic state without aeration of a part of the aeration tank. The simultaneous flocculation method is a method of adding a flocculating agent to an existing aeration tank. The crystallization dephosphorization method is a method that utilizes the crystallization phenomenon of hydroxyapatite (HAP) produced by the reaction of phosphate ions in the liquid with calcium ions and hydroxide ions.

今後、リンを回収するという観点から、晶析脱リン法が有効に用いられていくと考えられる。   In the future, the crystallization dephosphorization method will be used effectively from the viewpoint of recovering phosphorus.

晶析脱リン方法は、特許文献1に、脱リン材として、珪酸カルシウム水和物を主構成物とし、50〜90%の空隙率を有する多孔質処理材を用いて、晶析脱リンする方法が記載されている。この方法では、水温等の細かい前後調整が必要なく、処理が安定している。また、生物学的リン除去方法で問題となる汚泥処理から水処理系へのリン含有水の流入や、同時凝集法で問題となる汚泥増加もない。   The crystallization and dephosphorization method is disclosed in Patent Document 1, in which crystallization dephosphorization is performed using a porous treatment material having a calcium silicate hydrate as a main constituent and a porosity of 50 to 90% as a dephosphorization material. A method is described. In this method, fine adjustments such as water temperature are not necessary, and the treatment is stable. In addition, there is no inflow of phosphorus-containing water from the sludge treatment, which is a problem in biological phosphorus removal methods, to the water treatment system, and an increase in sludge, which is a problem in the simultaneous coagulation method.

しかし、特許文献1では、脱炭酸、カルシウム添加を行なわなかったため、リン濃度が低い場合において炭酸カルシウムと競合反応してしまうなどして、カルシウム不足による処理速度の低下が著しく、長期使用に耐えることができなかった。   However, in Patent Document 1, since decarboxylation and calcium addition were not performed, a decrease in the processing speed due to calcium shortage caused by a competitive reaction with calcium carbonate when the phosphorus concentration was low, etc., and could withstand long-term use. I could not.

そこで、特許文献2と特許文献3には、原水に脱炭酸処理を施し、原水または反応槽にカルシウムイオン(塩化カルシウム)を供給して、珪酸カルシウム水和物を主体とした脱リン材を充填し、または流動させた反応槽に、リンを含む原水を通流させて脱リンを行なう技術が示されている。この技術は、晶析反応槽では、滞留する原水のpH値を8から10に調整し、カルシウムイオンを補充することで、原水から高速に脱リンする。   Therefore, in Patent Document 2 and Patent Document 3, the raw water is decarboxylated, calcium ions (calcium chloride) are supplied to the raw water or the reaction tank, and the dephosphorization material mainly composed of calcium silicate hydrate is filled. In addition, a technique is shown in which dephosphorization is performed by passing raw water containing phosphorus through a reaction vessel that has been or fluidized. In the crystallization reaction tank, this technique adjusts the pH value of the remaining raw water from 8 to 10 and replenishes calcium ions to dephosphorylate the raw water at high speed.

特開昭62−183898号公報JP 62-183898 A 特許第3569086号Japanese Patent No. 3569086 特許第3763551号Japanese Patent No. 3766551

カルシウムイオンを補充し、pH調整を行なうと、従来の技術よりはリン除去率が上がり、処理時間も短縮できるが、原水のリン濃度が高い場合、pHを8以上に調整すると、種晶とリンが反応する前に、凝集性リン(リン酸カルシウム)が発生し、各処理槽においてスケールの問題を引き起こしていた。当然、種晶にヒドロキシアパタイトとして析出する量が減少し、リン回収率は下がる。   Replenishing calcium ions and adjusting the pH increases the phosphorus removal rate and shortens the treatment time compared to the conventional technique. However, when the phosphorus concentration of the raw water is high, adjusting the pH to 8 or more will increase the seed crystal and phosphorus. Before the reaction, cohesive phosphorus (calcium phosphate) was generated, causing scale problems in each treatment tank. Naturally, the amount of hydroxyapatite deposited on the seed crystal decreases, and the phosphorus recovery rate decreases.

また、原水から晶析反応によって脱リンを行う際に、リン回収装置の運転を一定時間続けていくと、SS等の閉塞(つまり)によって、リン回収率が低下する問題があった。さらにまた、SSはリンが晶析する際に一部が取り込まれてしまうので、ヒドロキシアパタイトの純度も低下させていた。   Further, when dephosphorization is performed from raw water by a crystallization reaction, if the operation of the phosphorus recovery apparatus is continued for a certain period of time, there is a problem that the phosphorus recovery rate decreases due to clogging (that is, SS) or the like. Furthermore, since a part of SS is taken in when phosphorus crystallizes, the purity of hydroxyapatite is also lowered.

原水を通流させることによって、SSによる閉塞を防止しても、供給水が種晶に充分に接触せずに越流する等、種晶と原水の反応時間が短く、リン析出のための十分な反応時間がとれていないことにより、リン回収率が低下していた。   Even if the clogging with SS is prevented by passing the raw water, the reaction time of the seed crystal and the raw water is short, such as the supply water overflows without sufficiently contacting the seed crystal, and it is sufficient for phosphorus precipitation. As a result, the phosphorus recovery rate was reduced.

そこで、本発明は、凝集性リンの析出をなくし、リン回収率を低下させないリン含有水のリン回収装置を提供することを課題とする。   Then, this invention makes it a subject to provide the phosphorus collection | recovery apparatus of the phosphorus containing water which eliminates precipitation of cohesive phosphorus and does not reduce a phosphorus collection | recovery rate.

本発明の他の課題は、以下の記載により明らかとなる。   Other problems of the present invention will become apparent from the following description.

上記課題は以下の各発明によって解決される。   The above problems are solved by the following inventions.

(請求項1)
内部にリン回収材を充填または流動させて、種結晶として珪酸カルシウム水和物を用い、晶析反応によりリンを含む原水から当該リンを回収する晶析反応塔を備えたリン回収装置において、
前記晶析反応塔の下部には、前記リンを含む原水をpH調整することなくそのまま導入する原水導入口が設けられ、上部には、処理水の排出口が設けられ、
前記晶析反応塔の外部には、pH調整槽が設けられ、
前記処理水の排出口には、上部循環配管の一端が接続され、該上部循環配管の他端は前記pH調整槽に接続され、該pH調整槽と前記晶析反応塔の下部は下部循環配管で接続されており、
前記晶析反応塔の下部の前記原水導入口から導入された原水は、該晶析反応塔の内部を上昇する過程でリンが回収され、該晶析反応塔の上部の前記処理水の排出口から循環水として該上部循環配管を介して該pH調整槽に送られ、該pH調整槽で、pH8.0〜8.7の範囲に調整され、pH調整後の処理水は、下部循環配管を介して前記晶析反応塔の下部に循環水として返送循環される構成であり、
前記循環水の水量を、前記晶析反応塔の下部から導入される前記リンを含む原水の水量の3倍から30倍の範囲となるように調整することを特徴とするリン回収装置。
(Claim 1)
In a phosphorus recovery apparatus equipped with a crystallization reaction tower for charging or flowing phosphorus recovery material inside, using calcium silicate hydrate as a seed crystal, and recovering the phosphorus from raw water containing phosphorus by a crystallization reaction,
A raw water inlet for introducing the raw water containing phosphorus as it is without adjusting the pH is provided at the bottom of the crystallization reaction tower, and an outlet for treated water is provided at the top.
A pH adjustment tank is provided outside the crystallization reaction tower,
One end of an upper circulation pipe is connected to the treated water discharge port, the other end of the upper circulation pipe is connected to the pH adjustment tank, and the lower part of the pH adjustment tank and the crystallization reaction tower is a lower circulation pipe. Connected with
The raw water introduced from the raw water inlet at the bottom of the crystallization reaction tower is recovered in the course of ascending the inside of the crystallization reaction tower, and the treated water discharge port at the top of the crystallization reaction tower. Is sent to the pH adjustment tank as circulating water through the upper circulation pipe, adjusted to a pH of 8.0 to 8.7 in the pH adjustment tank, and the treated water after pH adjustment passes through the lower circulation pipe. Through the lower part of the crystallization reaction tower through the circulating water,
A phosphorus recovery apparatus, wherein the amount of the circulating water is adjusted to be in a range of 3 to 30 times the amount of raw water containing phosphorus introduced from the lower part of the crystallization reaction tower.

(請求項2)
前記晶析反応塔の下部に散気ノズルを有するか、または前記晶析反応塔の下部から気泡を混入させた原水を導入することを特徴とする請求項1記載のリン回収装置。
(Claim 2)
2. The phosphorus recovery apparatus according to claim 1, wherein a raw water mixed with bubbles is introduced from the lower part of the crystallization reaction tower, which has an aeration nozzle at the lower part of the crystallization reaction tower.

(請求項3)
前記pH調整槽に処理水排出管が接続されていることを特徴とする請求項1又は2記載のリン回収装置。
(Claim 3)
The phosphorus recovery apparatus according to claim 1, wherein a treated water discharge pipe is connected to the pH adjustment tank.

(請求項4)
前記晶析反応塔の前段に、塩化カルシウム添加設備を備えた混合槽を有し、該塩化カルシウム混合槽に設けられた原水を供給する原水供給管は、原水のリン濃度を測定するためのリン濃度測定計を有し、該リン濃度測定計においてリン濃度を測定し、前記原水のリン濃度に応じて、カルシウム(Ca)がリン(P)に対して重量比2〜3倍になるように塩化カルシウムを前記混合槽に添加することを特徴とする請求項1〜3の何れかに記載のリン回収装置。
(Claim 4)
The raw water supply pipe for supplying raw water provided in the calcium chloride mixing tank has a mixing tank equipped with a calcium chloride addition facility in the preceding stage of the crystallization reaction tower, and is a phosphor for measuring the phosphorus concentration of the raw water. Having a concentration meter, measuring the phosphorus concentration in the phosphorus concentration meter, and depending on the phosphorus concentration of the raw water, calcium (Ca) is 2 to 3 times the weight ratio of phosphorus (P) The phosphorus recovery apparatus according to claim 1, wherein calcium chloride is added to the mixing tank.

(請求項5)
前記晶析反応塔内で循環水により希釈された状態で、晶析反応塔内における前記原水のリン濃度が、30mg/l以下であることを特徴とする請求項1〜4の何れかに記載のリン回収装置。
(Claim 5)
5. The phosphorus concentration of the raw water in the crystallization reaction tower is 30 mg / l or less in a state diluted with circulating water in the crystallization reaction tower. Phosphorus recovery equipment.

本発明によれば、晶析反応塔とpH調整槽の間に、循環ラインを形成し、リン含有原水ないし処理水を、循環ラインを介して循環することにより、晶析反応塔のリン濃度を常時好ましくは30mg/l程度に保ち、該循環ライン内においてpHを調整することによって、凝集性リン析出の問題を解消できる効果がある。   According to the present invention, a circulation line is formed between the crystallization reaction tower and the pH adjustment tank, and the phosphorus concentration of the crystallization reaction tower is increased by circulating phosphorus-containing raw water or treated water through the circulation line. By maintaining the pH at about 30 mg / l at all times and adjusting the pH in the circulation line, it is possible to eliminate the problem of cohesive phosphorus precipitation.

また、処理水は循環しているため、リン析出のために、原水と種晶の充分な接触時間ないし反応時間が確保されており、排水中のリンの回収効率を低下させることはない。   In addition, since the treated water is circulated, sufficient contact time or reaction time between the raw water and the seed crystal is secured for phosphorus precipitation, and the recovery efficiency of phosphorus in the waste water is not reduced.

さらに、循環水の水量を、晶析反応塔の下部から導入されるリンを含む原水の水量の3倍から30倍、好ましくは5倍から25倍の範囲となるように調整する調整手段を有することにより、原水と種晶の接触回数も増加し、種晶の圧密を防ぎ、反応効率が上昇し、原水中のリンの回収効率を増加させることができる。   Furthermore, it has adjusting means for adjusting the amount of circulating water to be in the range of 3 to 30 times, preferably 5 to 25 times the amount of raw water containing phosphorus introduced from the lower part of the crystallization reaction tower. As a result, the number of contact between the raw water and the seed crystal is also increased, the compaction of the seed crystal is prevented, the reaction efficiency is increased, and the recovery efficiency of phosphorus in the raw water can be increased.

さらにまた、晶析反応塔下部から散気したり、気泡を入れたりすると、気泡により、SSが塔の上方に抜けるので、SSによる閉塞も防止され、その閉塞によるリン回収率の低下を防止できる。なお、このため、本発明リン回収装置の前段に、SS除去のための膜処理の必要がないという効果もある。   Furthermore, when air is diffused from the lower part of the crystallization reaction tower or bubbles are introduced, SS is pulled out above the tower by the bubbles, so that clogging with SS is prevented, and a decrease in phosphorus recovery rate due to the clogging can be prevented. . For this reason, there is also an effect that there is no need for film treatment for removing SS in the previous stage of the phosphorus recovery apparatus of the present invention.

一般的な排水処理において、リン回収後の処理水は、凝集沈殿槽などに移行され、排水処理が行なわれる。本発明は、該凝集沈殿槽において利用できるため、SSを除去しないでいて、且つ、リン回収処理においてはSSによる閉塞が防止されているため、一連の一般的な排水処理を考慮に入れると、大変望ましい形態をとっていると考えられる。   In general wastewater treatment, treated water after phosphorus recovery is transferred to a coagulation sedimentation tank or the like, and wastewater treatment is performed. Since the present invention can be used in the coagulation sedimentation tank, SS is not removed, and blockage due to SS is prevented in the phosphorus recovery process, so that a series of general wastewater treatment is taken into consideration. It is considered to have a very desirable form.

本発明の一実施例に係るリン回収装置を示す模式図である。It is a schematic diagram which shows the phosphorus collection | recovery apparatus based on one Example of this invention. 本発明の一実施例に係るリン回収装置において処理を行なった際の、pH、リン濃度、晶析反応処理における循環水量に係るリン回収率を表したグラフである。It is the graph showing the phosphorus collection | recovery rate which concerns on pH, phosphorus concentration, and the amount of circulating water in a crystallization reaction process at the time of processing in the phosphorus collection | recovery apparatus which concerns on one Example of this invention.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明においてリン回収となる排水(原水)としては、リンが回収できる排水であれば特に限定されず、例えばし尿、雑排水、工場からの産業排水、畜産廃棄物、農耕地からの排出等による水域への富栄養化が問題となるような排水からリン回収できれば、富栄養化の問題を回収しつつ、リン回収できて二重の効果がある。   The drainage (raw water) for phosphorus recovery in the present invention is not particularly limited as long as it can recover phosphorus, for example, human waste, miscellaneous wastewater, industrial wastewater from factories, livestock waste, discharge from agricultural land, etc. If phosphorus can be recovered from wastewater where eutrophication into the water becomes a problem, phosphorus can be recovered while recovering the problem of eutrophication, which has a double effect.

図1は本発明のリン回収装置の一例を示す図である。   FIG. 1 is a view showing an example of the phosphorus recovery apparatus of the present invention.

同図において、1はカルシウム混合槽であり、該混合槽1には攪拌機10が設置されている。11は、リンを含む原水の供給管であり、12は塩化カルシウム供給設備である。   In the figure, 1 is a calcium mixing tank, and the mixing tank 1 is provided with a stirrer 10. 11 is a supply pipe for raw water containing phosphorus, and 12 is a calcium chloride supply facility.

塩化カルシウム供給設備12は、図示しないが、塩化カルシウムタンクを備え、タンク内には必要により攪拌機を備えている。塩化カルシウム供給設備12には、塩化カルシウムポンプ13が備えられており、原水供給管11に設けられたリン濃度計14からの例えば電気信号により、塩化カルシウムの供給が制御されている。   Although not shown, the calcium chloride supply facility 12 includes a calcium chloride tank and, if necessary, a stirrer. The calcium chloride supply facility 12 is provided with a calcium chloride pump 13, and the supply of calcium chloride is controlled by, for example, an electrical signal from a phosphorus concentration meter 14 provided in the raw water supply pipe 11.

リンを含む原水の供給管11は、リンを含む原水を混合槽1の上部から供給できるように接続されれば、混合槽1のどの部位に接続されてもよい。   The supply pipe 11 for raw water containing phosphorus may be connected to any part of the mixing tank 1 as long as the raw water containing phosphorus can be supplied from the upper part of the mixing tank 1.

混合槽1では、この原水に対して、塩化カルシウム供給設備12からカルシウムイオンが供給される。本実施例で、塩化カルシウムを用いているのは、カルシウムイオンとして溶出しやすいものが好ましいからである。   In the mixing tank 1, calcium ions are supplied from the calcium chloride supply facility 12 to the raw water. In this embodiment, calcium chloride is used because it is preferable that calcium chloride is easily eluted as calcium ions.

塩化カルシウムを添加する目的は、混合槽1の後段に配設される晶析反応塔2に供給する原水中のカルシウム濃度を原水のリン濃度に応じて調整し、ヒドロキシアパタイトの析出に必要なカルシウムイオンを補うためである。   The purpose of adding calcium chloride is to adjust the calcium concentration in the raw water supplied to the crystallization reaction tower 2 disposed in the latter stage of the mixing tank 1 according to the phosphorus concentration of the raw water, and to increase the calcium necessary for the precipitation of hydroxyapatite. This is to supplement the ions.

この混合槽1内の原水に対するカルシウムの注入量は、原水中のリン濃度に応じて、カルシウム(Ca)がリン(P)に対して重量比2〜3倍の範囲に調整するのが好ましい。   The amount of calcium injected into the raw water in the mixing tank 1 is preferably adjusted within a range of 2 to 3 times the weight ratio of calcium (Ca) to phosphorus (P) according to the phosphorus concentration in the raw water.

本発明においては、混合槽1内でのpHは、6.5以上7.0未満であり、pHを7以上に調整する処理は行わない。凝集性リン析出の問題を発生させないためである。   In this invention, pH in the mixing tank 1 is 6.5 or more and less than 7.0, and the process which adjusts pH to 7 or more is not performed. This is because the problem of cohesive phosphorus precipitation does not occur.

混合槽1の後段に配設される晶析反応塔2は、塔状に形成され、塔状の晶析反応塔2の下部には、前記混合槽1の下部に接続された原水排出管15が接続され、原水排出管15には原水ポンプ16が設けられ、晶析反応塔2の下部から原水導入口17を介して原水が導入される構造になっている。   The crystallization reaction tower 2 disposed in the rear stage of the mixing tank 1 is formed in a tower shape, and a raw water discharge pipe 15 connected to the lower part of the mixing tank 1 is provided at the lower part of the tower-like crystallization reaction tower 2. The raw water discharge pipe 15 is provided with a raw water pump 16 so that the raw water is introduced from the lower part of the crystallization reaction tower 2 through the raw water inlet 17.

20は塔状の晶析反応塔2の内部の処理水を排出する処理水の排出口である。処理水の排出口20は晶析反応塔2上部に設けられており、処理水が処理水の排出口20から排出される際に、晶析反応塔2上部に集積されたSSも共に排出するため、晶析反応塔2内にSSを蓄積させない構造になっている。   Reference numeral 20 denotes a treated water discharge port for discharging treated water inside the columnar crystallization reaction tower 2. The treated water discharge port 20 is provided in the upper part of the crystallization reaction tower 2, and when the treated water is discharged from the treated water discharge port 20, the SS accumulated in the upper part of the crystallization reaction tower 2 is also discharged. Therefore, the structure is such that SS is not accumulated in the crystallization reaction tower 2.

3は、塔状の晶析反応塔2に隣接して設けられるpH調整槽3である。塔状の晶析反応塔2の内部の処理水は、晶析反応塔2の上部に設けられた処理水の排出口20から、上部循環配管30を介してpH調整槽3に流入するように構成される。またpH調整槽3でpH調整された循環水は、下部循環配管31を介して塔状の晶析反応塔2の下部に戻されるように構成される。32は循環ポンプである。また、下部循環配管31にはバルブ33が設けられ、晶析反応塔2の下部に戻す循環水の水量を調節することができる構成になっている。本実施例では、上部循環配管30と下部循環配管31は循環ラインを構成する。   3 is a pH adjusting tank 3 provided adjacent to the tower-like crystallization reaction tower 2. The treated water inside the tower-shaped crystallization reaction tower 2 flows from the treated water discharge port 20 provided at the upper part of the crystallization reaction tower 2 into the pH adjustment tank 3 through the upper circulation pipe 30. Composed. The circulating water whose pH is adjusted in the pH adjusting tank 3 is configured to be returned to the lower part of the tower-like crystallization reaction tower 2 through the lower circulating pipe 31. 32 is a circulation pump. The lower circulation pipe 31 is provided with a valve 33 so that the amount of circulating water returned to the lower part of the crystallization reaction tower 2 can be adjusted. In the present embodiment, the upper circulation pipe 30 and the lower circulation pipe 31 constitute a circulation line.

晶析反応塔2の内部には、珪酸カルシウム水和物を主体とした脱リン材が流動可能に充填されている。種晶の積み高さは1000mm〜3000mmの範囲が好ましい。   The inside of the crystallization reaction tower 2 is filled with a dephosphorization material mainly composed of calcium silicate hydrate so as to be flowable. The stack height of the seed crystals is preferably in the range of 1000 mm to 3000 mm.

この珪酸カルシウム水和物としては、例えば、トバモライト、ゾノトライト、ヒレブランダイト、ワラストナイトの微小な板状晶、柱状晶および針状晶の中の1種類または2種類以上の組み合わせを挙げることができる。   Examples of the calcium silicate hydrate include, for example, one kind or a combination of two or more kinds of fine plate-like crystals, columnar crystals, and acicular crystals of tobermorite, zonotrite, hireblandite, and wollastonite. it can.

本実施の態様において、晶析反応塔2の下方から散気できる構造を採用することは、原水排出管15におけるエアー送気により原水中の塩化カルシウム混合が促進され、さらにそのまま晶析反応塔2下部からの槽内撹拌用エアーとして使用できる観点で好ましい。また、原水排出管15にスタティックミキサー22等を付設し、塩化カルシウムの混合を促進する手段をとってもよい。   In the present embodiment, adopting a structure in which the gas can be diffused from below the crystallization reaction tower 2 promotes the mixing of calcium chloride in the raw water by the air supply in the raw water discharge pipe 15, and further the crystallization reaction tower 2 as it is. It is preferable from the viewpoint that it can be used as air for stirring in the tank from the lower part. Alternatively, a static mixer 22 or the like may be attached to the raw water discharge pipe 15 to promote the mixing of calcium chloride.

散気できる構造は格別限定されないが、例えば、コンプレッサーのような空気供給機21を設け、該空気供給機21から原水排出管15に圧縮エアーを送気し、原水中にエアーを混入させた状態で晶析反応塔2の下部より供給することが好ましい。   The structure that can be diffused is not particularly limited. For example, an air supply device 21 such as a compressor is provided, compressed air is supplied from the air supply device 21 to the raw water discharge pipe 15, and air is mixed into the raw water. It is preferable to supply from below the crystallization reaction tower 2.

晶析反応塔2の内部の処理水は、晶析反応塔2の上部から上部循環配管30を介してpH調整槽3に戻り、そのpHを調整される。該pH調整槽3には必要により攪拌機37を設置してもよい。pH調整槽3には水酸化ナトリウム供給設備34とpHセンサー35を備え、水酸化ナトリウム供給設備34は、図示しないが、水酸化ナトリウムタンクを備え、タンク内には必要により攪拌機を備えている。水酸化ナトリウム供給設備34には、水酸化ナトリウムポンプ36が備えられており、pHセンサー35からの例えば電気信号により、水酸化ナトリウムの供給を制御されている。pH調整槽3では水酸化ナトリウムの投入によりそのpHを8.0〜8.7の範囲に調整される。   The treated water inside the crystallization reaction tower 2 returns to the pH adjustment tank 3 from the upper part of the crystallization reaction tower 2 via the upper circulation pipe 30 and the pH is adjusted. If necessary, a stirrer 37 may be installed in the pH adjusting tank 3. The pH adjusting tank 3 includes a sodium hydroxide supply facility 34 and a pH sensor 35. The sodium hydroxide supply facility 34 includes a sodium hydroxide tank (not shown), and a stirrer in the tank as necessary. The sodium hydroxide supply facility 34 is provided with a sodium hydroxide pump 36, and the supply of sodium hydroxide is controlled by, for example, an electric signal from the pH sensor 35. In the pH adjusting tank 3, the pH is adjusted to a range of 8.0 to 8.7 by adding sodium hydroxide.

本実施例で、水酸化ナトリウムを用いているのは水酸化物イオンとして溶出しやすいものが好ましいからである。   In this embodiment, sodium hydroxide is used because it is preferable that it is easy to elute as hydroxide ions.

pH調整槽3において、リン濃度が30mg/l以下、好ましくは25mg/l以下、より好ましくは20mg/l以下にリン除去されていることが確認された場合、一部の処理水はpH調整槽3上部から処理水排出管38を介して排出され、次の排水処理工程へ移行される。その他の処理水は下部循環配管31を介して晶析反応塔2の下部より送入され、循環する。この循環水は下部循環配管31に設置されたバルブ33によって晶析反応塔2への流入量を調整される。   In the pH adjustment tank 3, when it is confirmed that phosphorus is removed to a phosphorus concentration of 30 mg / l or less, preferably 25 mg / l or less, more preferably 20 mg / l or less, a part of the treated water is a pH adjustment tank. 3 is discharged from the upper part through the treated water discharge pipe 38 and transferred to the next wastewater treatment process. Other treated water is fed from the lower part of the crystallization reaction tower 2 through the lower circulation pipe 31 and circulated. The amount of the circulating water flowing into the crystallization reaction tower 2 is adjusted by a valve 33 installed in the lower circulation pipe 31.

処理水排出管38からは、晶析反応塔2から排出されたSSも共に排出される。本リン回収処理においてSSを除去しないのは、リン回収処理の後段に、凝集沈殿処理等の排水処理が行なわれるのを見越しているからであって、凝集沈殿槽においてSSをそのまま利用することができ、好ましい態様だからである。   The SS discharged from the crystallization reaction tower 2 is also discharged from the treated water discharge pipe 38. The reason why SS is not removed in this phosphorus recovery process is that wastewater treatment such as coagulation and precipitation is expected after the phosphorus recovery process, and it is possible to use SS as it is in the coagulation sedimentation tank. This is because it is a preferred embodiment.

また、晶析反応塔2の下部には、リンと反応した後の種晶HAP回収のためにHAP排出管40が設けられ、種晶が充分にリンと十分に反応した後に、バルブ41を開いてHAPを回収する。   In addition, a HAP discharge pipe 40 is provided at the lower portion of the crystallization reaction tower 2 to recover the seed crystal HAP after reacting with phosphorus, and the valve 41 is opened after the seed crystal has sufficiently reacted with phosphorus. To recover HAP.

本発明の実施例について説明する。かかる実施例によって本発明が限定されるものではない。   Examples of the present invention will be described. The present invention is not limited to the embodiments.

<試験装置>
図1に示す装置を用いた。
塔状の晶析反応塔2の塔径を0.147m、塔断面積0.017m、種晶高さ1.8mとし、原水供給量を1.1m3/Dとした。
<Test equipment>
The apparatus shown in FIG. 1 was used.
The tower-shaped crystallization reaction tower 2 had a tower diameter of 0.147 m, a tower cross-sectional area of 0.017 m 2 , a seed crystal height of 1.8 m, and a raw water supply amount of 1.1 m 3 / D.

本発明における下記の試験データは、し尿を用いて行った。原水の性状は概ねpH6.5〜7.1、PO−Pが45〜55mg/l、SSが10〜50mg/l、温度28〜33℃であった。 The following test data in the present invention was conducted using human waste. The properties of the raw water were generally pH 6.5 to 7.1, PO 4 -P 45 to 55 mg / l, SS 10 to 50 mg / l, and temperature 28 to 33 ° C.

混合槽1において、カルシウムイオンを添加し、原水のカルシウムイオン濃度は、原水のリン濃度に対して2〜3倍に調整された。pHは約6.6であった。また、本実施例においては、混合槽1においてリン酸カリウムを添加し、リン濃度を95〜105mg/lに調整した。   In mixing tank 1, calcium ions were added, and the calcium ion concentration of raw water was adjusted to 2 to 3 times the phosphorus concentration of raw water. The pH was about 6.6. Moreover, in the present Example, potassium phosphate was added in the mixing tank 1, and the phosphorus concentration was adjusted to 95-105 mg / l.

混合槽1から晶析反応塔2へ流入するラインにおけるエアー挿入量は4〜10L/minに設定した。SSの量や種晶の圧密の状態により、エアー挿入量は適宜調整される。   The amount of air inserted in the line flowing from the mixing tank 1 into the crystallization reaction tower 2 was set to 4 to 10 L / min. The amount of air inserted is appropriately adjusted depending on the amount of SS and the compaction state of the seed crystal.

晶析反応塔2において、珪酸カルシウム水和物を主体とした脱リン材は35kg充填した。晶析反応塔2における槽内LVは、0.3m/min以上に設定した。流速はSSや種晶の状態をみて適宜変更できる。   In the crystallization reaction tower 2, 35 kg of a dephosphorization material mainly composed of calcium silicate hydrate was packed. The LV in the crystallization reaction tower 2 was set to 0.3 m / min or more. The flow rate can be changed as appropriate according to the state of SS and seed crystals.

晶析反応塔2からpH調整槽3への排出量は5.1〜24.1m3/Dとした。pH調整層3では、リン回収装置立ち上げ時は晶析反応塔2内のリン濃度が高いため、凝集性リンが発生しない程度に徐々にpHを上げていき、最終的にpH8.0〜8.7で安定させた。 The discharge amount from the crystallization reaction tower 2 to the pH adjusting tank 3 was 5.1 to 24.1 m 3 / D. In the pH adjusting layer 3, since the phosphorus concentration in the crystallization reaction tower 2 is high when the phosphorus recovery apparatus is started up, the pH is gradually raised to the extent that coherent phosphorus is not generated, and finally the pH is 8.0 to 8. 7 to stabilize.

pH調整槽3から排出される処理水は1.1m3/D、晶析反応循環ラインへの循環は4〜23m3/Dとした。 treated water discharged from the pH adjustment vessel 3 1.1 m 3 / D, circulation to the crystallization reaction circulation line was 4~23m 3 / D.

上記の状態において、第一形態の条件の下で処理した結果は、図2に示す通りであった。   In the above state, the result of processing under the conditions of the first embodiment is as shown in FIG.

晶析反応塔2で脱リンする際に、晶析反応循環ラインを設けたことで、晶析反応塔2内のリン濃度を30mg/L程度に保ち、また晶析反応循環ライン内でpHを8.0〜8.7に調整することで、凝集性リンの析出は起こらなかった。   By providing a crystallization reaction circulation line when dephosphorizing in the crystallization reaction tower 2, the phosphorus concentration in the crystallization reaction tower 2 is maintained at about 30 mg / L, and the pH is adjusted in the crystallization reaction circulation line. By adjusting to 8.0 to 8.7, precipitation of cohesive phosphorus did not occur.

また、晶析反応塔下部からの散気や流速によって、晶析反応塔内における種晶の圧密やSSによる種晶の閉塞は見られなかった。加えて、処理水を循環ラインで循環させたことで、リンと種晶の接触回数も増え、HAP析出のための充分な接触反応時間が確保されたと考察できる。   Moreover, due to the aeration and flow rate from the lower part of the crystallization reaction tower, the seed crystal was not consolidated in the crystallization reaction tower and the seed crystal was not blocked by SS. In addition, it can be considered that by circulating the treated water in the circulation line, the number of contact times of phosphorus and the seed crystal is increased, and sufficient contact reaction time for HAP precipitation is secured.

さらに、本発明のリン回収装置に流入する原水中のSSと、処理水排出管から排出されるSSの濃度は同量程度に保たれており、晶析反応塔におけるSSの濃縮、堆積が防止されていることが確認できた。   Furthermore, the concentration of SS in the raw water flowing into the phosphorus recovery apparatus of the present invention and the concentration of SS discharged from the treated water discharge pipe are kept at the same level, preventing concentration and accumulation of SS in the crystallization reaction tower. It has been confirmed that.

そして、図2によると、晶析反応処理における循環量4〜23m3/Dの範囲においては何れもリン回収率が安定して73%以上となっていることがわかる。 And according to FIG. 2, in the range of the circulation amount of 4-23 m < 3 > / D in a crystallization reaction process, it turns out that phosphorus recovery rate is 73% or more stably.

リン回収率や、処理水を晶析反応塔に循環させる動力コストを考えると、出来るだけ循環量を低く設定することが好ましいと考えられるが、本試験によれば、循環水の水量をリンを含む原水の水量の3〜30倍の範囲において調整を行なうことによって、安定してリン回収率73%以上を保てることが立証された。   Considering the phosphorus recovery rate and the cost of power for circulating the treated water to the crystallization reaction tower, it is considered preferable to set the circulation rate as low as possible. It has been proved that the phosphorus recovery rate can be stably maintained at 73% or more by adjusting in the range of 3 to 30 times the amount of raw water contained.

また、リン含有水のリン濃度が95mg/L〜125mg/Lの範囲においては、本発明を用いることで、処理水のリン濃度30mg/L以下までリン回収をすることが出来た。   Moreover, when the phosphorus concentration of phosphorus-containing water is in the range of 95 mg / L to 125 mg / L, phosphorus can be recovered to a phosphorus concentration of 30 mg / L or less by using the present invention.

1:混合槽
2:晶析反応塔
3:pH調整槽
10:攪拌機
11:原水供給管
12:塩化カルシウム供給設備
13:塩化カルシウムポンプ
14:リン濃度計
15:原水排出管
16:原水ポンプ
17:原水導入口
20:処理水の排出口
21:空気供給機
22:スタティックミキサー
30:上部循環配管
31:下部循環配管
32:循環ポンプ
33:バルブ
34:水酸化ナトリウム供給設備
35:pHセンサー
36:水酸化ナトリウムポンプ
37:撹拌機
38:処理水排出管
40:HAP排出管
41:バルブ
1: Mixing tank 2: Crystallization reaction tower 3: pH adjusting tank 10: Stirrer 11: Raw water supply pipe 12: Calcium chloride supply equipment 13: Calcium chloride pump 14: Phosphorus concentration meter 15: Raw water discharge pipe 16: Raw water pump 17: Raw water inlet 20: treated water outlet 21: air feeder 22: static mixer 30: upper circulation pipe 31: lower circulation pipe 32: circulation pump 33: valve 34: sodium hydroxide supply equipment 35: pH sensor 36: water Sodium oxide pump 37: Stirrer 38: Treated water discharge pipe 40: HAP discharge pipe 41: Valve

Claims (5)

内部にリン回収材を充填または流動させて、種結晶として珪酸カルシウム水和物を用い、晶析反応によりリンを含む原水から当該リンを回収する晶析反応塔を備えたリン回収装置において、
前記晶析反応塔の下部には、前記リンを含む原水をpH調整することなくそのまま導入する原水導入口が設けられ、上部には、処理水の排出口が設けられ、
前記晶析反応塔の外部には、pH調整槽が設けられ、
前記処理水の排出口には、上部循環配管の一端が接続され、該上部循環配管の他端は前記pH調整槽に接続され、該pH調整槽と前記晶析反応塔の下部は下部循環配管で接続されており、
前記晶析反応塔の下部の前記原水導入口から導入された原水は、該晶析反応塔の内部を上昇する過程でリンが回収され、該晶析反応塔の上部の前記処理水の排出口から循環水として該上部循環配管を介して該pH調整槽に送られ、該pH調整槽で、pH8.0〜8.7の範囲に調整され、pH調整後の処理水は、下部循環配管を介して前記晶析反応塔の下部に循環水として返送循環される構成であり、
前記循環水の水量を、前記晶析反応塔の下部から導入される前記リンを含む原水の水量の3倍から30倍の範囲となるように調整することを特徴とするリン回収装置。
In a phosphorus recovery apparatus equipped with a crystallization reaction tower for charging or flowing phosphorus recovery material inside, using calcium silicate hydrate as a seed crystal, and recovering the phosphorus from raw water containing phosphorus by a crystallization reaction,
A raw water inlet for introducing the raw water containing phosphorus as it is without adjusting the pH is provided at the bottom of the crystallization reaction tower, and an outlet for treated water is provided at the top.
A pH adjustment tank is provided outside the crystallization reaction tower,
One end of an upper circulation pipe is connected to the treated water discharge port, the other end of the upper circulation pipe is connected to the pH adjustment tank, and the lower part of the pH adjustment tank and the crystallization reaction tower is a lower circulation pipe. Connected with
The raw water introduced from the raw water inlet at the bottom of the crystallization reaction tower is recovered in the course of ascending the inside of the crystallization reaction tower, and the treated water discharge port at the top of the crystallization reaction tower. Is sent to the pH adjustment tank as circulating water through the upper circulation pipe, adjusted to a pH of 8.0 to 8.7 in the pH adjustment tank, and the treated water after pH adjustment passes through the lower circulation pipe. Through the lower part of the crystallization reaction tower through the circulating water,
A phosphorus recovery apparatus, wherein the amount of the circulating water is adjusted to be in a range of 3 to 30 times the amount of raw water containing phosphorus introduced from the lower part of the crystallization reaction tower.
前記晶析反応塔の下部に散気ノズルを有するか、または前記晶析反応塔の下部から気泡を混入させた原水を導入することを特徴とする請求項1記載のリン回収装置。   2. The phosphorus recovery apparatus according to claim 1, wherein a raw water mixed with bubbles is introduced from the lower part of the crystallization reaction tower, which has an aeration nozzle at the lower part of the crystallization reaction tower. 前記pH調整槽に処理水排出管が接続されていることを特徴とする請求項1又は2記載のリン回収装置。   The phosphorus recovery apparatus according to claim 1, wherein a treated water discharge pipe is connected to the pH adjustment tank. 前記晶析反応塔の前段に、塩化カルシウム添加設備を備えた混合槽を有し、該塩化カルシウム混合槽に設けられた原水を供給する原水供給管は、原水のリン濃度を測定するためのリン濃度測定計を有し、該リン濃度測定計においてリン濃度を測定し、前記原水のリン濃度に応じて、カルシウム(Ca)がリン(P)に対して重量比2〜3倍になるように塩化カルシウムを前記混合槽に添加することを特徴とする請求項1〜3の何れかに記載のリン回収装置。   The raw water supply pipe for supplying raw water provided in the calcium chloride mixing tank has a mixing tank equipped with a calcium chloride addition facility in the preceding stage of the crystallization reaction tower, and is a phosphor for measuring the phosphorus concentration of the raw water. Having a concentration meter, measuring the phosphorus concentration in the phosphorus concentration meter, and depending on the phosphorus concentration of the raw water, calcium (Ca) is 2 to 3 times the weight ratio of phosphorus (P) The phosphorus recovery apparatus according to claim 1, wherein calcium chloride is added to the mixing tank. 前記晶析反応塔内で循環水により希釈された状態で、晶析反応塔内における前記原水のリン濃度が、30mg/l以下であることを特徴とする請求項1〜4の何れかに記載のリン回収装置。   5. The phosphorus concentration of the raw water in the crystallization reaction tower is 30 mg / l or less in a state diluted with circulating water in the crystallization reaction tower. Phosphorus recovery equipment.
JP2012050962A 2012-03-07 2012-03-07 Phosphorus recovery equipment for phosphorus-containing water Active JP5540034B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012050962A JP5540034B2 (en) 2012-03-07 2012-03-07 Phosphorus recovery equipment for phosphorus-containing water
KR1020147028006A KR20140133908A (en) 2012-03-07 2013-02-13 Device for recovering phosphorus from phosphorus-containing water
CN201380012732.6A CN104159853B (en) 2012-03-07 2013-02-13 The phosphorus recovery device of phosphorous water
KR1020167032595A KR101787308B1 (en) 2012-03-07 2013-02-13 Device for recovering phosphorus from phosphorus-containing water
PCT/JP2013/053428 WO2013132981A1 (en) 2012-03-07 2013-02-13 Device for recovering phosphorus from phosphorus-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012050962A JP5540034B2 (en) 2012-03-07 2012-03-07 Phosphorus recovery equipment for phosphorus-containing water

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014040335A Division JP5927216B2 (en) 2014-03-03 2014-03-03 Phosphorus recovery equipment for phosphorus-containing water

Publications (2)

Publication Number Publication Date
JP2013184110A true JP2013184110A (en) 2013-09-19
JP5540034B2 JP5540034B2 (en) 2014-07-02

Family

ID=49116465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012050962A Active JP5540034B2 (en) 2012-03-07 2012-03-07 Phosphorus recovery equipment for phosphorus-containing water

Country Status (4)

Country Link
JP (1) JP5540034B2 (en)
KR (2) KR20140133908A (en)
CN (1) CN104159853B (en)
WO (1) WO2013132981A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6342232B2 (en) * 2014-06-19 2018-06-13 水ing株式会社 Phosphorus recovery apparatus and phosphorus recovery method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153191A (en) * 1984-12-26 1986-07-11 Ebara Infilco Co Ltd Catalytic dephosphorizer
JPS61216795A (en) * 1985-03-19 1986-09-26 Ebara Infilco Co Ltd Treatment of phosphorus-containing waste water
JPS6331593A (en) * 1986-07-25 1988-02-10 Ataka Kogyo Kk Removal of phosphate ion in water
JP2000140891A (en) * 1998-11-11 2000-05-23 Mitsubishi Materials Corp Method for recovering phosphorus in sludge and device therefor
JP2002292204A (en) * 2001-03-30 2002-10-08 Japan Organo Co Ltd Crystallization reaction apparatus provided with means for controlling amount of raw water to be supplied and crystallization method to use the same
JP2005246249A (en) * 2004-03-04 2005-09-15 Ebara Corp Method for recovering phosphorus and its apparatus
JP2006122896A (en) * 2004-09-28 2006-05-18 Mitsubishi Materials Corp Method of treatment with reactional crystallization and apparatus therefor
JP2007125482A (en) * 2005-11-02 2007-05-24 Japan Organo Co Ltd Method and apparatus for treating chelating agent-containing water with fluorine and phosphorus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640484A (en) * 1979-09-10 1981-04-16 Ataka Kogyo Kk Removal of phosphoric acid ion in water
JPS60225692A (en) * 1984-04-23 1985-11-09 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for controlling contact crystallization phosphorization process
JP3763551B2 (en) * 1996-05-21 2006-04-05 三菱マテリアル株式会社 Water treatment system
JP3569086B2 (en) * 1996-05-21 2004-09-22 三菱マテリアル株式会社 Dephosphorization method for phosphorus-containing water
JP2002348106A (en) * 2001-05-29 2002-12-04 Kiyoshi Suzuki Method for recovering phosphorus and device used for the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153191A (en) * 1984-12-26 1986-07-11 Ebara Infilco Co Ltd Catalytic dephosphorizer
JPS61216795A (en) * 1985-03-19 1986-09-26 Ebara Infilco Co Ltd Treatment of phosphorus-containing waste water
JPS6331593A (en) * 1986-07-25 1988-02-10 Ataka Kogyo Kk Removal of phosphate ion in water
JP2000140891A (en) * 1998-11-11 2000-05-23 Mitsubishi Materials Corp Method for recovering phosphorus in sludge and device therefor
JP2002292204A (en) * 2001-03-30 2002-10-08 Japan Organo Co Ltd Crystallization reaction apparatus provided with means for controlling amount of raw water to be supplied and crystallization method to use the same
JP2005246249A (en) * 2004-03-04 2005-09-15 Ebara Corp Method for recovering phosphorus and its apparatus
JP2006122896A (en) * 2004-09-28 2006-05-18 Mitsubishi Materials Corp Method of treatment with reactional crystallization and apparatus therefor
JP2007125482A (en) * 2005-11-02 2007-05-24 Japan Organo Co Ltd Method and apparatus for treating chelating agent-containing water with fluorine and phosphorus

Also Published As

Publication number Publication date
WO2013132981A1 (en) 2013-09-12
JP5540034B2 (en) 2014-07-02
CN104159853A (en) 2014-11-19
KR20160139046A (en) 2016-12-06
KR20140133908A (en) 2014-11-20
CN104159853B (en) 2016-12-21
KR101787308B1 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
JP4892212B2 (en) Reaction crystallizer
EP1593417A1 (en) Method and apparatus for removing ion in fluid by crystallization
US20120031849A1 (en) Aerated reactor apparatus and methods
JPH1190483A (en) Method and apparatus for treating waste water
JP6592406B2 (en) Crystallizer, methane fermentation facility, and scale prevention method in methane fermentation facility
JP5927216B2 (en) Phosphorus recovery equipment for phosphorus-containing water
JP4519485B2 (en) Phosphorus recovery method and apparatus
KR101462033B1 (en) Sewage and wastewater treatment system with crystallization apparatus for phosphorus recovery
US20060196835A1 (en) Method and apparatus for removing ions in liquid through crystallization method
CN103193370A (en) Phosphorus recovery device for excess sludge
JP5540034B2 (en) Phosphorus recovery equipment for phosphorus-containing water
JP4685224B2 (en) Waste water treatment method and waste water treatment equipment
CN203112675U (en) System for reclaiming phosphorus from residual sludge
JP2016047534A (en) Apparatus for recovering phosphorus from phosphorus-containing water
CN105060616B (en) Waste water purifying treatment system
JP4368159B2 (en) Method for treating wastewater containing phosphate
CN206232466U (en) Two-stage multiphase Fenton fluidized system
WO2005121028A1 (en) Apparatus for removing phosphorus
JP5788628B2 (en) Chemical supply apparatus, waste water treatment apparatus and waste water treatment equipment using the chemical supply apparatus
CN205076808U (en) Waste water phosphorus fertilizer production composite set
CN204369634U (en) A kind of internal-circulation type struvite crystallization apparatus
JP6548937B2 (en) Waste water treatment method and waste water treatment apparatus
CN216472404U (en) Fluidized bed phosphorus recovery reactor
JP4233545B2 (en) Phosphorus removal equipment
JP5172882B2 (en) Water treatment equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140303

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5540034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140501

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350