JPS6229115B2 - - Google Patents

Info

Publication number
JPS6229115B2
JPS6229115B2 JP11596279A JP11596279A JPS6229115B2 JP S6229115 B2 JPS6229115 B2 JP S6229115B2 JP 11596279 A JP11596279 A JP 11596279A JP 11596279 A JP11596279 A JP 11596279A JP S6229115 B2 JPS6229115 B2 JP S6229115B2
Authority
JP
Japan
Prior art keywords
water
treated
ions
calcium
packed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11596279A
Other languages
Japanese (ja)
Other versions
JPS5640485A (en
Inventor
Hiroji Seki
Hideo Asada
Takao Mineo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ataka Kogyo KK
Original Assignee
Ataka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ataka Kogyo KK filed Critical Ataka Kogyo KK
Priority to JP11596279A priority Critical patent/JPS5640485A/en
Publication of JPS5640485A publication Critical patent/JPS5640485A/en
Publication of JPS6229115B2 publication Critical patent/JPS6229115B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は骨炭を利用して下水、し尿等の二次処
理水中その他の水中に存在するリン酸イオン、ア
ンモニアイオンを化学的、生物学的に同時に除去
する廃水の処理方法に関する。 下水、し尿等の二次処理水中には、有機リン化
合物、無機リン酸塩、有機窒素化合物、アンモニ
ア等が含まれているが通常の生物処理工程では有
機リン化合物、有機窒素化合物はそれぞれ一部生
物処理され、無機リン酸化合物、アンモニア等に
変るが、これらのうち一部は微生物の栄養として
利用されるのみで過剰のものは処理水中に残存す
る。そしてこうしたリン酸イオン、アンモニアイ
オンは環境水域の富栄養化をもたらし、水質を汚
濁して公害発生の原因となる。 従来リン酸イオンの除去法として実施されてい
る方法は、下水に金属イオンを加えて、その溶存
するリン酸イオンを難溶性塩として沈殿除去する
ものであるが、難溶性塩の生成反応を有利にする
ため、あるいは下水中に溶存するアルカリによつ
て加えた金属塩が加水分解される副反応のため、
金属イオンを理論量よりも多量に用いる必要があ
り、コストが高くつくと共に、沈殿した汚泥を処
理する必要がある。又消石灰法も用いられてい
る。従来の消石灰法は、PH10〜PH11で反応を行
い、下水中に溶存する炭酸イオン、リン酸イオン
は、炭酸カルシウム、リン酸アルシウムの沈殿と
なつて除去されるが、この方法によつても沈殿の
生成量が多く、この沈殿が汚泥となつてその処理
が必要となり、処理水を中和するために他の薬剤
を必要とし何れもコスト高の原因となる。 またリン酸イオンの除去法として一定の径をも
つ骨炭を充填した脱リン塔において、骨炭充填層
のPHを6以上、好ましくは8〜9にアルカリ剤
(水酸化カルシウム、水酸化ナトリウム等)によ
り調節し、処理水の一部を循環させることにより
骨炭充填層内を一定流動状態に保ち骨炭すなわち
その主成分である活性化されたカルシウムヒドロ
キシアパタイトの結晶にリン酸イオンを晶析成長
させて除去する方法もある。この方法によるとき
は、従来の消石灰法に比べて水酸化カルシウム等
のアルカリ剤は少量で足り、運転コストが安くか
つ汚泥が生成しないという長所がある。しかしこ
のような骨炭充填層を用いた脱リン方法において
も下水二次処理水を被処理水とした場合、水中に
存在する有機物等が骨炭の表面に附着して表面活
性を低下させ脱リン効果を妨げることになる。こ
のため脱リン効果を上げるには、このような有機
物を酸化分解する必要がある。 一方富栄養化のもう一つの原因物質であるアン
モニアイオン等の除去法は、生物学的硝化脱窒法
が最も効率的な処理法として行われているが、そ
の処理工程は硝化工程、脱窒工程とわかれている
のが一般的である。そして被処理水中にリン酸イ
オン、アンモニアイオンが同時に含まれている場
合には、両者共除去することが富栄養化防止とい
う面からは望ましいことである。 本発明は以上の問題に鑑みて従来の消石灰法の
欠点を除き被処理水を骨炭充填層に流通させてリ
ン酸イオンをカルシウムヒドロキシアパタイトと
して骨炭に晶析して除去するとともに処理水を空
気、酸素等により気曝して酸素の供給を行い、こ
の気曝処理水の一部を循環させて骨炭充填層内を
被処理水とともに流通させ、骨炭充填層内を充分
好気的条件に維持し、被処理水中の有機物を酸化
分解しリン酸イオンの除去効果を高めるととも
に、水中のアンモニアイオンを硝化しようとする
ものである。 次に本発明の実施に用いられる装置の一例を添
附図面について説明する。 1は脱リン反応塔で内部に骨炭充填層2が形成
され充填層2の上下には清澄水導出部3と被処理
水導入部4が形成されている。更に導入部4には
被処理水導入管5が連通され、導出部3からは処
理水導出管6が導出されるとともにこの導出部3
には空気又は酸素の供給管7に連通した散気管8
が挿入されている。更に導出部3より導出された
循環管9が途中に循環ポンプ10を介して反応塔
1の導入部4又はこの導入部4に近い導入管5の
途中に連通されている。又導出部3にはPH電極1
1が挿入されこのPH電極11にPH指示調節計12
が接続され、このPH指示調節計12がアルカリ注
入管13の途中に設けられたアルカリ注入ポンプ
14に接続され、アルカリ注入管13は反応塔1
の導入部4又はこの導入部4に近い循環管9の途
中に連通されている。 次に上述の装置を用いた本発明の実施例を説明
する。 被処理水は導入管5より脱リン反応塔1の下部
に流入し、骨炭充填層2を下から上へ向つて通過
する間に骨炭と接触して被処理水中に含まれるリ
ン酸イオンは、骨炭表面のカルシウムヒドロキシ
アパタイト結晶に晶析されて除去されて導出部3
に排出される。充填層2の上部の導出部3に挿入
された散気管8より供給管7を通じて空気または
酸素が気曝され処理水中に酸素が溶解される。酸
素が溶解された処理水の一部は、循環管9を通じ
て循環ポンプ10により脱リン反応塔1の導入部
4に導入され導入管5より導入された被処理水と
ともに塔内上向流線速度を10m/hr〜100m/hr
好ましくは25m/hr〜60m/hrとすることによつ
て0.1mm〜3.0mmの一定粒径を持つた骨炭を充填し
た骨炭充填層2を膨脹・流動化させる。被処理水
に対する循環処理水の添加量及び流速は循環ポン
プ11を容量可変の液ポンプとしてこのポンプ1
1のバルブを調節することによつて行う。さらに
充填層2の上部の導出部3に挿入されたPH電極1
1からの信号でPH指示調節計12がPH値の読み取
りと充填層2内のPHの設定を行い、その設定に従
つてアルカリ注入ポンプ14を動作させ、アルカ
リ剤がアルカリ注入管13を通じて脱リン反応塔
1の下部の導入部4に導入される。 次にこの実施例の作用を説明する。 カルシウムヒドロキシアパタイトの結晶は、カ
ルシウムイオン濃度、リン酸イオン濃度、水酸イ
オン濃度とその溶解度積を通じて平衡関係にあ
り、カルシウムイオン濃度、水酸イオン濃度が高
い程平衛するリン酸イオン濃度は低くなる。また
晶析によるリン酸イオンの除去速度は、カルシウ
ムイオン濃度、水酸イオン濃度を高める程速くな
る他、充填物表面のカルシウムヒドロキシアパタ
イトの結晶比表面積に比例して速くなる。普通下
水二次処理水中には、リン酸イオンをカルシウム
ヒドロキシアパタイトとして晶析させるには充分
な量のカルシウムイオンが含まれているから、水
酸イオン濃度を高めるだけであるならば水酸化ナ
トリウムを使用できるが、コスト面と、被処理水
中のカルシウムイオン濃度を低くし反応時間を長
くすることから、コスト的に安く、被処理水中へ
カルシウムイオンを添加する意味から、水酸化カ
ルシウムを使用することが有利である。またアル
カリ剤の添加により、被処理水としての下水二次
処理水の示す中性附近のPHよりもPH6以上好まし
くは8〜9に調節するとカルシウムヒドロキシア
パタイトの溶解度を大巾に低下させ数倍〜十数倍
に反応速度を速く出来装置を小型化出来る。PH6
以下ではカルシウムヒドロキシアパタイトの溶解
度は急速に増加する。又PHの調整に要する水酸化
カルシウムの量は数十mg/で充分であり従来の
石炭凝集法の場合のように300mg/〜400mg/
も添加する必要がない。またカルシウムヒドロキ
シアパタイトの結晶を含むものは骨炭の他にはリ
ン鉱石等があるが、その表面上の活性な結晶比表
面積は少く、せいぜい骨炭の数%しかなく効率が
悪く装置が巨大となる。また被処理水の各イオン
濃度が高くなり、過飽和度が上がると、カルシウ
ムヒドロキシアパタイトやリン酸カルシウム等の
リン酸カルシウム塩のフロツクが生成し、処理水
中に流出することになる。このためにリン酸イオ
ンが除去された処理水の一部を循環して被処理と
これの1倍〜20倍混合して被処理水のリン酸イオ
ン濃度を下げフロツクの生成を防止している。更
に処理水に酸素を供給しこれを循環することによ
り骨炭充填層内は好気的条件におかれ、アンモニ
アイオンの硝化有機物の酸化分解が効果的に行わ
れるとともに、骨炭の表面に附着して表面活性を
低下させる有機物が除去されてリン酸イオンの除
去効率が向上する。又被処理水からのリン酸イオ
ンの除去と、アンモニアイオンの硝化を併用した
場合のリン酸イオンの除去時間とアンモニアイオ
ンの硝化時間を比べると、被処理水として下水二
次処理水を用いるときリン酸イオンの除去時間の
方が長く装置規模としてはリン酸イオンの除去に
律せられるため、アンモニアイオンの硝化速度が
低下する冬季においても処理時間が延長されるよ
うなことはない。また被処理水がリン酸イオンを
多量に含む場合は、硝化に必要な水酸化カルシウ
ムを含めてカルシウムイオンを添加してもカルシ
ウムヒドロキシアパタイトとしてリン酸イオンを
除去するに必要な不足分の量に達しない場合はカ
ルシウムイオンをリン酸イオンに対して化学量論
的な重量比で1:0.7以上を被処理水中に加えれ
ばよい。 本発明によれば下水あるいはし尿二次処理水そ
の他のリン酸イオン、アンモニアイオンを含んだ
被処理水を骨炭充填層に通水することにより、被
処理水中に含まれているリン酸イオンは骨炭表面
の活性なカルシウムヒドロキシアパタイト結晶と
接触し、水中カルシウムイオン、水酸イオンとと
もにカルシウムヒドロキシアパタイト〔Ca5
(PO53OH〕として晶析成長して汚泥の発生を伴
わずに被処理水中より除去することが出来る。更
に骨炭充填層を通水した処理水に気曝した後この
処理水の一部を再び骨炭充填層の下部より被処理
水とともに通水して循環させることにより骨炭充
填層内を均一PHに保つことができ、又、骨炭充填
層が膨張・流動化して被処理水と骨炭との接触が
促進される。又リン酸イオンが除去された処理水
を被処理水と混合することによりリン酸イオン濃
度の過飽和に原因するリン酸カルシウム塩のフロ
ツクの生成を防止することができる。更に気曝さ
れて酸素を溶解した処理水を循環させることによ
り骨炭充填層内に酸素供給を行い充填層内を好気
的条件下におくことにより骨炭表面に附着した微
生物を利用してアンモニアの硝化と、有機物の酸
化分解を行い有機物の酸化分解により被処理水中
の有機物の濃度を低下させ骨炭表面への有機物の
付着沈積を防ぎ、骨炭表面のカルシウムヒドロキ
シアパタイトの結晶の表面活性を高め脱リン効率
をあげることができる。 又骨炭充填層の層内のPHを6以上に調整するこ
とによつて析出したカルシウムヒドロキシアパタ
イトの溶解度を低く保ち反応速度を促進させるこ
とができる。 更に被処理水にリン(P)とカルシウム
(Ca)の原子数比が3対5以下になるようにカル
シウムイオンを添加することにより、カルシウム
ヒドロキシアパタイトの生成に充分なカルシウム
イオンを供給するが、この供給量は、従来の石灰
凝集法で添加されるカルシウムイオンの略1/10で
充分であり石灰の添加量が少いため、処理コスト
が安く汚泥が生成しないため、汚泥処理コスト及
び汚泥処理設備面でも経済的となる。 次に本発明の方法と気曝を行わない方法の比較
実験を行いその結果を検討した。 1 実験方法 実験例 1 粒径0.54mm〜0.99mmの骨炭2を直径5cm、高
さ200cmの円筒カラムに充填した。(充填層の高さ
は略105cmとなる。)被処理水は下水二次処理水を
用い、これを流速4/hrで供給しアルカリ剤と
して水酸化カルシウムを用い充填層内のPHを8〜
9に調整し、循環ポンプにより、充填層内の液線
速度を40m/hrとした。また充填層の上部で空気
による気曝を行つた。 実験例 2 実験例1と同じ方法で気曝を行わなかつた。 2 実験の結果 表−1に示す。
The present invention relates to a wastewater treatment method that uses bone char to simultaneously chemically and biologically remove phosphate ions and ammonia ions present in secondary treated water such as sewage and human waste, as well as other waters. Secondary treated water such as sewage and human waste contains organic phosphorus compounds, inorganic phosphates, organic nitrogen compounds, ammonia, etc., but in normal biological treatment processes, some of the organic phosphorus compounds and organic nitrogen compounds are removed. It is biologically treated and converted into inorganic phosphoric acid compounds, ammonia, etc., but some of these are only used as nutrients for microorganisms, and the excess remains in the treated water. These phosphate ions and ammonia ions cause eutrophication of environmental waters, contaminate water quality, and cause pollution. The conventional method for removing phosphate ions is to add metal ions to sewage and remove the dissolved phosphate ions by precipitation as poorly soluble salts. or due to a side reaction in which the added metal salt is hydrolyzed by the alkali dissolved in the sewage.
It is necessary to use a larger amount of metal ions than the theoretical amount, which increases the cost and requires treatment of the precipitated sludge. The slaked lime method is also used. In the conventional slaked lime method, the reaction takes place at a pH of 10 to 11, and carbonate and phosphate ions dissolved in sewage are removed as precipitates of calcium carbonate and aluminum phosphate. This precipitate becomes sludge that must be treated, and other chemicals are required to neutralize the treated water, both of which lead to high costs. In addition, as a method for removing phosphate ions, in a dephosphorization tower filled with bone char of a certain diameter, the pH of the bone char packed bed is adjusted to 6 or more, preferably 8 to 9, by using an alkaline agent (calcium hydroxide, sodium hydroxide, etc.). By adjusting and circulating a portion of the treated water, a constant fluidity state is maintained within the bone char packed bed, and phosphate ions are removed by crystallization and growth on bone char, the activated calcium hydroxyapatite crystals that are its main component. There is a way to do that. Compared to the conventional slaked lime method, this method has the advantage that only a small amount of alkaline agent such as calcium hydroxide is required, the operating cost is low, and no sludge is generated. However, even in such a dephosphorization method using a bone char packed bed, when secondary treated sewage water is used as the water to be treated, organic substances present in the water adhere to the surface of the bone char, reducing the surface activity and reducing the dephosphorization effect. This will hinder the Therefore, in order to increase the dephosphorization effect, it is necessary to oxidize and decompose such organic substances. On the other hand, biological nitrification and denitrification is the most efficient treatment method for removing ammonia ions, which is another causative agent of eutrophication. It is generally known that If the water to be treated contains phosphate ions and ammonia ions at the same time, it is desirable to remove both from the viewpoint of preventing eutrophication. In view of the above problems, the present invention eliminates the drawbacks of the conventional slaked lime method, allows the water to be treated to flow through a bone char packed bed, crystallizes phosphate ions into bone char as calcium hydroxyapatite, and removes the treated water. Supplying oxygen by aeration with oxygen, etc., circulating a part of this aerated water to circulate inside the bone charcoal packed bed along with the water to be treated, and maintaining the inside of the bone charcoal packed bed in a sufficiently aerobic condition, This method oxidizes and decomposes organic matter in the water to be treated, increasing the effect of removing phosphate ions, and nitrifies ammonia ions in the water. Next, an example of an apparatus used to carry out the present invention will be described with reference to the accompanying drawings. Reference numeral 1 denotes a dephosphorization reaction tower in which a bone char packed bed 2 is formed, and above and below the packed bed 2 a clear water outlet part 3 and a treated water inlet part 4 are formed. Furthermore, a treated water introduction pipe 5 is connected to the introduction part 4 , and a treated water delivery pipe 6 is led out from the delivery part 3 .
a diffuser pipe 8 connected to an air or oxygen supply pipe 7;
is inserted. Further, a circulation pipe 9 led out from the outlet part 3 is communicated with an introduction part 4 of the reaction column 1 or an introduction pipe 5 near the introduction part 4 through a circulation pump 10 in the middle. In addition, the PH electrode 1 is installed in the lead-out part 3.
1 is inserted and a PH indicator controller 12 is inserted into this PH electrode 11.
This PH indicator controller 12 is connected to an alkali injection pump 14 provided in the middle of the alkali injection pipe 13, and the alkali injection pipe 13 is connected to the reaction tower 1.
It is communicated with the introduction part 4 of , or the middle of the circulation pipe 9 near this introduction part 4 . Next, an embodiment of the present invention using the above-described apparatus will be described. The water to be treated flows into the lower part of the dephosphorization reaction tower 1 through the introduction pipe 5, and while passing through the bone char packed bed 2 from the bottom to the top, it comes into contact with the bone char, and the phosphate ions contained in the water to be treated are Calcium is crystallized into hydroxyapatite crystals on the surface of bone charcoal and removed, leading to extraction section 3.
is discharged. Air or oxygen is aerated through the supply pipe 7 from the aeration pipe 8 inserted into the outlet part 3 at the upper part of the packed bed 2, and the oxygen is dissolved in the treated water. A part of the treated water in which oxygen has been dissolved is introduced into the introduction section 4 of the dephosphorization reaction tower 1 through the circulation pipe 9 by the circulation pump 10, and together with the treated water introduced from the introduction pipe 5, the upward flow linear velocity inside the tower is increased. 10m/hr~100m/hr
Preferably, by setting the speed to 25 m/hr to 60 m/hr, the bone char packed bed 2 filled with bone char having a constant particle size of 0.1 mm to 3.0 mm is expanded and fluidized. The amount and flow rate of the circulating treated water added to the water to be treated are determined by using the circulating pump 11 as a variable capacity liquid pump.
This is done by adjusting the valve No. 1. Furthermore, the PH electrode 1 inserted into the lead-out part 3 at the upper part of the packed layer 2
1, the PH indicator controller 12 reads the PH value and sets the PH in the packed bed 2, operates the alkali injection pump 14 according to the setting, and the alkali agent is dephosphorized through the alkali injection pipe 13. It is introduced into the introduction section 4 at the bottom of the reaction tower 1. Next, the operation of this embodiment will be explained. Calcium hydroxyapatite crystals are in an equilibrium relationship through the solubility product of calcium ion concentration, phosphate ion concentration, hydroxide ion concentration, and the higher the calcium ion concentration and hydroxide ion concentration, the lower the phosphate ion concentration. Further, the rate of removal of phosphate ions by crystallization increases as the concentration of calcium ions and hydroxide ions increases, and also increases in proportion to the specific surface area of the calcium hydroxyapatite crystals on the surface of the filler. Normal secondary sewage treatment water contains enough calcium ions to crystallize phosphate ions as calcium hydroxyapatite, so if you only want to increase the hydroxide ion concentration, add sodium hydroxide. However, it is recommended to use calcium hydroxide because of the cost and because it lowers the concentration of calcium ions in the water to be treated and lengthens the reaction time, and because it adds calcium ions to the water to be treated. is advantageous. In addition, by adding an alkaline agent, if the pH is adjusted to 6 or more, preferably 8 to 9, than the neutral pH of the secondary treated sewage water, the solubility of calcium hydroxyapatite will be greatly reduced by several times. The reaction speed can be increased more than ten times and the device can be made smaller. PH6
Below, the solubility of calcium hydroxyapatite increases rapidly. In addition, the amount of calcium hydroxide required to adjust the pH is sufficient at several tens of mg/300mg/~400mg/ as in the case of the conventional coal flocculation method.
There is no need to add either. In addition to bone char, there are other substances that contain calcium hydroxyapatite crystals, such as phosphate rock, but the active crystal specific surface area on the surface is small, at most only a few percent of bone char, making it inefficient and requires a large device. Furthermore, when the concentration of each ion in the water to be treated increases and the degree of supersaturation increases, flocs of calcium phosphate salts such as calcium hydroxyapatite and calcium phosphate are generated and flow out into the treated water. For this purpose, a part of the treated water from which phosphate ions have been removed is circulated and mixed with the treated water at a ratio of 1 to 20 times, thereby lowering the phosphate ion concentration in the treated water and preventing the formation of flocs. . Furthermore, by supplying and circulating oxygen to the treated water, the inside of the bone charcoal packed bed is kept under aerobic conditions, which effectively oxidizes and decomposes the nitrified organic matter of ammonia ions, and removes the nitrified organic matter that is attached to the surface of the bone charcoal. Organic substances that reduce surface activity are removed, and phosphate ion removal efficiency is improved. Also, when comparing the removal time of phosphate ions and the nitrification time of ammonia ions when removing phosphate ions from treated water and nitrifying ammonia ions, it is found that when secondary treated sewage water is used as the water to be treated, Since the removal time for phosphate ions is longer and the scale of the equipment is determined by the removal of phosphate ions, the treatment time will not be extended even in the winter when the nitrification rate of ammonia ions decreases. In addition, if the water to be treated contains a large amount of phosphate ions, even if calcium ions are added, including calcium hydroxide necessary for nitrification, the amount necessary to remove the phosphate ions as calcium hydroxyapatite will not be enough. If this is not achieved, calcium ions may be added to the water to be treated in a stoichiometric weight ratio of 1:0.7 or more to phosphate ions. According to the present invention, by passing sewage, secondary treated human waste water, or other water to be treated containing phosphate ions and ammonia ions through a bone char packed bed, the phosphate ions contained in the water to be treated are removed from bone char. Upon contact with active calcium hydroxyapatite crystals on the surface, calcium hydroxyapatite [Ca 5
(PO 5 ) 3 OH] and can be removed from the water to be treated without generating sludge. Furthermore, after the treated water that has passed through the bone charcoal bed is aerated, a portion of this treated water is passed through and circulated again from the bottom of the bone charcoal bed along with the treated water to maintain a uniform pH within the bone charcoal bed. In addition, the bone char packed bed expands and becomes fluidized, promoting contact between the water to be treated and the bone char. Furthermore, by mixing the treated water from which phosphate ions have been removed with the water to be treated, it is possible to prevent the formation of calcium phosphate flocs caused by supersaturation of the phosphate ion concentration. Furthermore, by circulating treated water that has been aerated and dissolved in oxygen, oxygen is supplied into the bone char packed bed, and by placing the packed bed under aerobic conditions, ammonia is removed using microorganisms attached to the bone char surface. Nitrification and oxidative decomposition of organic matter are performed to reduce the concentration of organic matter in the water to be treated, prevent the deposition of organic matter on the surface of bone charcoal, and increase the surface activity of calcium hydroxyapatite crystals on the surface of bone charcoal for dephosphorization. It can increase efficiency. Furthermore, by adjusting the pH within the bone char packed bed to 6 or more, the solubility of precipitated calcium hydroxyapatite can be kept low and the reaction rate can be accelerated. Furthermore, by adding calcium ions to the water to be treated so that the atomic ratio of phosphorus (P) and calcium (Ca) is 3:5 or less, sufficient calcium ions are supplied for the production of calcium hydroxyapatite. This supply amount is approximately 1/10 of the calcium ions added in the conventional lime flocculation method, which is sufficient, and because the amount of lime added is small, the processing cost is low and no sludge is generated, which reduces the sludge processing cost and sludge processing equipment. It is also economical. Next, a comparative experiment was conducted between the method of the present invention and a method without aeration, and the results were examined. 1 Experimental Method Experimental Example 1 Bone charcoal 2 with a particle size of 0.54 mm to 0.99 mm was packed into a cylindrical column with a diameter of 5 cm and a height of 200 cm. (The height of the packed bed is approximately 105 cm.) Secondary treated sewage water is used as the water to be treated, and this is supplied at a flow rate of 4/hr. Calcium hydroxide is used as the alkaline agent to adjust the pH in the packed bed to 8-8.
9, and the liquid linear velocity in the packed bed was set to 40 m/hr using a circulation pump. In addition, aeration with air was performed at the top of the packed bed. Experimental Example 2 The same method as Experimental Example 1 was used without aeration. 2 Experimental results are shown in Table-1.

【表】 表−1より気曝を行つた処理水を気曝を行わ
ない処理水と比較するとリン酸イオンの残量は
略1/2になりアンモニア態窒素は悉く硝酸態室
素に変化しておりTOC、BODは何れ少量にな
つていることがわかる。
[Table] From Table 1, when comparing treated water with aeration to treated water without aeration, the remaining amount of phosphate ions is approximately 1/2, and all ammonia nitrogen is converted to nitrate nitrogen. It can be seen that both TOC and BOD are small.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施の一例を説明する説明図であ
る。 2……骨炭充填層。
The figure is an explanatory diagram illustrating an example of implementation of the present invention. 2...Bone charcoal filling layer.

Claims (1)

【特許請求の範囲】 1 リン酸イオン、アンモニアイオンを含んだ被
処理水を骨炭充填層の下部より通水して上部へ導
出し、上部へ導出した処理水に空気、酸素等を気
曝した後この処理水の一部を再び骨炭充填層の下
部より被処理水とともに通水して循環させること
を特徴とする廃水の処理方法。 2 骨炭充填層の層内のPHを水酸化カルシウム、
水酸化ナトリウム等のアルカリ剤によつてPH6以
上に調整することを特徴とする特許請求の範囲第
1項に記載の廃水の処理方法。 3 被処理水に混合される処理水が被処理水の1
倍〜20倍であり骨炭充填層を上向流で流通する液
線速度が10m/hr〜100m/hrであることを特徴
とする特許請求の範囲第1項記載の廃水の処理方
法。 4 被処理水中のリン(P)とカルシウム
(Ca)の原子数比が3対5以下になるようにカル
シウムイオンを添加することを特徴とする特許請
求の範囲第1項ないし第3項のいずれかに記載の
廃水の処理方法。
[Scope of Claims] 1. Water to be treated containing phosphate ions and ammonia ions is passed from the lower part of the bone char packed bed and led to the upper part, and the treated water led out to the upper part is aerated with air, oxygen, etc. A wastewater treatment method characterized in that a part of the treated water is then circulated by flowing it together with the water to be treated from the lower part of the bone char packed bed. 2. Calcium hydroxide,
The method for treating wastewater according to claim 1, wherein the pH is adjusted to 6 or higher using an alkaline agent such as sodium hydroxide. 3 The treated water mixed with the treated water is treated water 1
2. The wastewater treatment method according to claim 1, wherein the liquid linear velocity flowing upward through the bone charcoal packed bed is 10 m/hr to 100 m/hr. 4. Any one of claims 1 to 3, characterized in that calcium ions are added so that the atomic ratio of phosphorus (P) to calcium (Ca) in the water to be treated is 3:5 or less. The wastewater treatment method described in
JP11596279A 1979-09-10 1979-09-10 Treatment of waste water Granted JPS5640485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11596279A JPS5640485A (en) 1979-09-10 1979-09-10 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11596279A JPS5640485A (en) 1979-09-10 1979-09-10 Treatment of waste water

Publications (2)

Publication Number Publication Date
JPS5640485A JPS5640485A (en) 1981-04-16
JPS6229115B2 true JPS6229115B2 (en) 1987-06-24

Family

ID=14675436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11596279A Granted JPS5640485A (en) 1979-09-10 1979-09-10 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPS5640485A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168587A (en) * 1984-02-14 1985-09-02 Ebara Infilco Co Ltd Fluidized bed type catalytic dephosphorization
JPS6265821U (en) * 1985-10-14 1987-04-23

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152544A (en) * 1974-05-29 1975-12-08
JPS51122942A (en) * 1975-04-18 1976-10-27 Ebara Infilco Co Ltd Process for treating sewage water
JPS5248260A (en) * 1975-10-14 1977-04-16 Ebara Infilco Co Ltd Method of removing phosphate in liquid
JPS53101844A (en) * 1977-02-18 1978-09-05 Ebara Infilco Co Ltd Removing method of phosphates from luquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152544A (en) * 1974-05-29 1975-12-08
JPS51122942A (en) * 1975-04-18 1976-10-27 Ebara Infilco Co Ltd Process for treating sewage water
JPS5248260A (en) * 1975-10-14 1977-04-16 Ebara Infilco Co Ltd Method of removing phosphate in liquid
JPS53101844A (en) * 1977-02-18 1978-09-05 Ebara Infilco Co Ltd Removing method of phosphates from luquid

Also Published As

Publication number Publication date
JPS5640485A (en) 1981-04-16

Similar Documents

Publication Publication Date Title
US4056465A (en) Production of non-bulking activated sludge
USRE32429E (en) Production of non-bulking activated sludge
EP0509609B1 (en) Method and apparatus for processing manure
BRPI0515105B1 (en) process for the simultaneous removal of bod and phosphate from a liquid containing ammonium, bod, phosphate and magnesium, and apparatus for the simultaneous removal of bod and phosphate from a liquid
US3900394A (en) Process for total sewage treatment
PT96213A (en) REACTOR AND BIOLOGICAL PROCESS OF AERIAL NITRIFICATION OF EFFLUENTS USING A NITRIFICANT BIOMASS SUPPORT AND PROCESS OF ELIMINATION OF WHIPPED COMPOUNDS
CA1151323A (en) Process for the chemical removal of phosphorus compounds from waste water and process for the purification of waste water
JP4685224B2 (en) Waste water treatment method and waste water treatment equipment
JP2716348B2 (en) Sewage return water treatment method
JPH1157773A (en) Biological dephosphorizing device
JP2007117948A (en) Method and apparatus for treating high-concentration organic waste liquid
JPS6229115B2 (en)
JPS6317513B2 (en)
JPH08318292A (en) Waste water treatment method and apparatus
JP4101498B2 (en) Nitrogen and phosphorus-containing wastewater treatment method and apparatus
JPH0416238B2 (en)
JP3239306B2 (en) Wastewater treatment method
JPH0810791A (en) Method for removing phosphorus
JPS6345275B2 (en)
JP2004089931A (en) Dephosphorization and ammonia-removal method, manufacturing method for ammonia fertilizer and manufacturing method for molten solidified matter
JPS5990690A (en) Treatment of water containing organic substance and phosphate
JP3341639B2 (en) How to remove phosphorus
JPH0994596A (en) Removal and recovery of phosphorus from organic sewage
JPS59206092A (en) Treating process of waste water
JP2004174386A (en) Treatment method for phosphoric acid-containing wastewater