JPS5990690A - Treatment of water containing organic substance and phosphate - Google Patents
Treatment of water containing organic substance and phosphateInfo
- Publication number
- JPS5990690A JPS5990690A JP57200920A JP20092082A JPS5990690A JP S5990690 A JPS5990690 A JP S5990690A JP 57200920 A JP57200920 A JP 57200920A JP 20092082 A JP20092082 A JP 20092082A JP S5990690 A JPS5990690 A JP S5990690A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- acid
- phosphates
- phosphate
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Removal Of Specific Substances (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は有機物およびリン酸塩を含む水を生物学的脱
リン工程および晶析工程により処理する方法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating water containing organic matter and phosphates by a biological dephosphorization process and a crystallization process.
下水、廃水などの有機物およびリンを含む水から有機物
およびリンを除去するために、生物学的な脱リン方法が
提案されている。この方法はリン酸塩等のリンを含む原
水を返送汚泥と混合し、嫌気槽に60−3”60分間滞
留させ、次いで曝気槽で90〜ろ6D分間滞留させて、
リンとともにB’ODを除去し、曝気液は沈澱槽におい
て処理水と沈澱汚泥に分離し、この沈澱汚泥の一部を返
送するとともに残部を余剰汚泥として排出するものであ
る。Biological dephosphorization methods have been proposed to remove organic matter and phosphorus from water containing organic matter and phosphorus, such as sewage and wastewater. In this method, raw water containing phosphorus such as phosphate is mixed with returned sludge, retained in an anaerobic tank for 60 minutes, and then retained in an aeration tank for 90 to 6 days.
B'OD is removed together with phosphorus, and the aeration liquid is separated into treated water and settled sludge in a settling tank. A part of this settled sludge is returned and the remainder is discharged as surplus sludge.
この一方法におけるリンおよびBODの除去機構は次の
通9と推定される。すなわち、汚水を返送汚泥と混合し
、嫌気槽にて攪拌すると、汚泥中の微生物は体内に蓄え
ていたリン化合物(ポIJ IJン酸のマグネシウム塩
)をエネルギー源として消費し、リン(正リン酸)を放
出してBODを吸着ないし吸収するが、次の曝気槽では
吸収したBODを呼吸により酸化するとともに放出した
リンや流入したリンを吸収してエネルギー源として前記
リン化合物の形で体内に蓄える。リンを蓄えた汚泥は嫌
気槽に返送され、同様の作用をくシ返す。通常の活性汚
泥処理法における余剰汚泥のリン含有率は汚泥乾燥重量
当シ1.5〜2,5%であるが、嫌気−好気という環境
を交互にくシ返すことによって、余剰汚泥のリン含有率
は汚泥乾燥重量当シ8係程度となることがある。このた
め汚水中のリンは高除去率で除去されることに々る。The mechanism for removing phosphorus and BOD in this one method is estimated to be as follows9. In other words, when sewage is mixed with returned sludge and stirred in an anaerobic tank, microorganisms in the sludge consume phosphorus compounds (magnesium salt of phosphoric acid) stored in the body as an energy source, and produce phosphorus (normal phosphorus). However, in the next aeration tank, the absorbed BOD is oxidized through respiration, and the released phosphorus and inflow phosphorus are absorbed and absorbed into the body in the form of phosphorus compounds as an energy source. store. The sludge that has accumulated phosphorus is returned to the anaerobic tank, where it undergoes the same action. In the normal activated sludge treatment method, the phosphorus content of excess sludge is 1.5 to 2.5% based on the dry weight of sludge. The content may be about 8 parts per dry weight of sludge. For this reason, phosphorus in wastewater is often removed at a high removal rate.
ところでこのような生物学的脱リン方法では、原水の水
質、流量等にょシ影響を受け、処理効果が変動する。特
に嫌気槽に流入する原水中のリン濃度に対するBOD濃
度の比(BOD/P比)が20以上でないと、脱リン効
果が低下するという問題がある。However, in such a biological dephosphorization method, the treatment effect varies depending on the quality of raw water, flow rate, etc. In particular, if the ratio of the BOD concentration to the phosphorus concentration (BOD/P ratio) in the raw water flowing into the anaerobic tank is not 20 or more, there is a problem that the dephosphorization effect is reduced.
一方このような生物学的脱リン工程の処理水を、カルシ
ウムイオンの存在下で、PH6以上の条件下に、リン酸
カルシウムを含む結晶種と接触させて晶析を行い、残留
するリン酸塩を除去しようとすると、前の生物学的脱リ
ン工程の処理水のリン濃度の変動によシ晶析の負荷が変
動し、安定した処理が行えないという問題があった。ま
た生物学的脱リン工程から流出する残留有機物等が結晶
種を汚染して結晶種の脱リン′活性が低下し、これを再
活性化した場合、再活性化廃液の処理が必要となるとい
う問題点もあった。On the other hand, the treated water from such a biological dephosphorization process is brought into contact with crystal seeds containing calcium phosphate in the presence of calcium ions under conditions of pH 6 or higher to perform crystallization to remove residual phosphates. However, there was a problem in that the crystallization load fluctuated due to fluctuations in the phosphorus concentration of the water treated in the previous biological dephosphorization process, making it impossible to perform stable treatment. In addition, residual organic matter flowing out from the biological dephosphorization process contaminates the crystal seeds, reducing the dephosphorization activity of the crystal seeds, and if this is reactivated, treatment of the reactivation waste liquid is required. There were also problems.
この発明は上記のような従来の問題点を改善するだめの
もので、結晶種を有機酸で再活性化し、その再活性化廃
液を生物学的脱リン工程に供給することによシ、再活性
化廃液が処理できるとともに、原水のB OD/P比を
調整でき、安定して効率よく有機物およびリン酸塩を除
去することができる有、機動およびリン酸塩を含む水の
処理方法を提供することを目的としている。This invention is intended to improve the above-mentioned conventional problems, and it is possible to reactivate the crystal seeds by reactivating them with an organic acid and supplying the reactivated waste liquid to a biological dephosphorization process. Provides a method for treating organic, mobile, and phosphate-containing water that can treat activated waste liquid, adjust the BOD/P ratio of raw water, and stably and efficiently remove organic matter and phosphates. It is intended to.
この発明は嫌気性処理工程および好気性処理工程を含む
生物学的脱リン工程により、有機物とリン酸塩を含む水
を処理し、処理水をカルシウムイオンの存在下であって
、かつpH6以上の条件下で、リン酸カルシウムを含む
結晶種と接触させて晶析を行い、脱リン性能の低下した
結晶種を有機酸と接触させて再活性化し、得られる再活
性化廃液を前記生物学的脱リン工程に供給することを特
徴とする有機物およ。びリン酸塩を含む水の処理方法で
ある。This invention treats water containing organic matter and phosphates by a biological dephosphorization process including an anaerobic treatment process and an aerobic treatment process, and treats the treated water in the presence of calcium ions and with a pH of 6 or higher. Crystallization is performed by contacting crystal seeds containing calcium phosphate under the following conditions, and the crystal seeds with reduced dephosphorization performance are reactivated by contacting with an organic acid, and the resulting reactivated waste liquid is subjected to the biological dephosphorization. An organic substance characterized by being supplied to a process. This is a method for treating water containing biphosphates.
以下、この発明を図面によシ説明する。図面はこの発明
の一実施態様を示す系統図である。図面において、1は
沈殿槽、2は脱窒槽、6は嫌気槽、4は曝気槽、5は固
液分離槽、6は晶析槽で、上記順序でシリーズに接続さ
れている。The present invention will be explained below with reference to the drawings. The drawing is a system diagram showing one embodiment of the present invention. In the drawing, 1 is a settling tank, 2 is a denitrification tank, 6 is an anaerobic tank, 4 is an aeration tank, 5 is a solid-liquid separation tank, and 6 is a crystallization tank, which are connected in series in the above order.
沈殿槽1は必ずしも必要ではないが、原水管7から流入
する原水を沈殿分離し、固形物を沈殿汚泥として排泥管
8から排出するものである。沈殿槽1の上澄水は、反送
管9の返送汚泥とともに原水供給管10から脱窒槽2へ
供給する。Although the sedimentation tank 1 is not necessarily required, the raw water flowing in from the raw water pipe 7 is sedimented and separated, and the solid matter is discharged from the sludge pipe 8 as settled sludge. The supernatant water of the settling tank 1 is supplied to the denitrification tank 2 from the raw water supply pipe 10 together with the return sludge from the anti-transfer pipe 9 .
脱窒槽2および嫌気槽6はほぼ同様の構成となっておシ
、空気を遮断した状態で緩やかに攪拌して、嫌気処理を
行えるようになっている。脱窒槽2は嫌気性処理工程に
含まれ、返送汚泥中に硝酸イオンまたは亜硝酸イオンが
含まれる場合に脱窒するためのもので、これらが含まれ
ない場合には省略してもよい。ここで硝酸イオンまたは
亜硝酸イオンを含む返送汚泥と原水とを混合して嫌気性
に保つと、脱窒細菌が優勢となって、硝酸イオンおよび
亜硝酸イオンが消費されて望素として放出される。The denitrification tank 2 and the anaerobic tank 6 have substantially the same configuration, and are capable of performing anaerobic treatment by gently stirring them while blocking air. The denitrification tank 2 is included in the anaerobic treatment process and is for denitrifying when nitrate ions or nitrite ions are contained in the returned sludge, and may be omitted when these are not contained. When the returned sludge containing nitrate ions or nitrite ions is mixed with raw water and kept in an anaerobic environment, denitrifying bacteria become dominant, consuming nitrate and nitrite ions and releasing them as desirable elements. .
こうして硝酸イオンおよび亜硝酸イオンが消費された混
合液を嫌気槽6に移し、脱窒と同様の操作で嫌気性処理
工程を行う。嫌気槽6では硝酸イオンおよび亜硝酸イオ
ンが存在しないため、脱窒細菌を含む通性嫌気性菌は体
内のリンをエネルギー源として消費し、リンを放出し、
BODを吸着ないし吸収する。返送汚泥中に硝酸イオン
等が存在しな−い場合で、かつ、脱窒槽2を省略した場
合も同様の現象が起こる。嫌気槽6・の混合液は一部づ
つ連絡管11から曝気槽4へ送9、曝気槽4において散
気、管4aから通気して曝気し、好気性処理工程を行う
。ここで活性汚泥中の微生物は液中のリンを摂取すると
ともに、BODを分解する。The mixed liquid in which the nitrate ions and nitrite ions have been consumed in this manner is transferred to the anaerobic tank 6, and an anaerobic treatment step is performed in the same manner as denitrification. Since nitrate ions and nitrite ions are not present in the anaerobic tank 6, facultative anaerobes including denitrifying bacteria consume phosphorus in the body as an energy source and release phosphorus.
Adsorbs or absorbs BOD. A similar phenomenon occurs even when nitrate ions and the like are not present in the returned sludge and when the denitrification tank 2 is omitted. The mixed liquid in the anaerobic tank 6 is sent in portions 9 to the aeration tank 4 through the communication pipe 11, diffused in the aeration tank 4, and aerated through the pipe 4a to perform an aerobic treatment process. Here, the microorganisms in the activated sludge ingest phosphorus in the liquid and decompose BOD.
こうして混合液中の有機物およびリン酸塩は除去される
。曝気された混合液は一部づつ連絡管12から固液分離
槽5に送って沈殿分離を行い、沈殿固形分は排泥管16
から取出し、一部を返送汚泥として返送管9から返送し
、残部を余剰汚泥として排出する。以上によシ生物学的
脱リン工程を終わる。In this way, organic substances and phosphates in the mixed solution are removed. The aerated mixed liquid is sent in portions from the connecting pipe 12 to the solid-liquid separation tank 5 for sedimentation separation, and the precipitated solid content is sent to the solid-liquid separation tank 5 through the communication pipe 12.
A portion is returned from the return pipe 9 as return sludge, and the remainder is discharged as surplus sludge. This completes the biological dephosphorization process.
上澄水は連絡管14から取出し、薬注管15がらカルシ
ウム剤および(または)アルカリ剤を注入して晶析槽6
に送り、カルシウムイオンの存在下であって、かつpH
6以上の条件下に、晶析槽6に充填されたリン酸カルシ
ウムを含む結晶種と接触させ、晶析工程を行う。The supernatant water is taken out from the communication pipe 14, and a calcium agent and/or an alkaline agent are injected through the chemical injection pipe 15, and the crystallization tank 6 is
in the presence of calcium ions and at a pH of
The crystallization step is performed by contacting the crystal seeds containing calcium phosphate filled in the crystallization tank 6 under conditions of 6 or more.
リン酸塩を含む水をカルシウムイオンの存在下にリン酸
カルシウムを含む結晶種と接触させたときに起こる反応
は、反応条件によって異なるが、通常は次式によって表
わされる。The reaction that occurs when water containing phosphate is brought into contact with crystal seeds containing calcium phosphate in the presence of calcium ions varies depending on the reaction conditions, but is usually expressed by the following formula.
SCa +3HPO4−1−40H−+ca5(OH
I(PO413+3H20=・(1)(1)式かられか
るように、リン酸塩の除去率を上げるためには、反応を
右に進行させる必要がある。SCa +3HPO4-1-40H-+ca5(OH
I(PO413+3H20=·(1)) As can be seen from the formula (1), in order to increase the removal rate of phosphate, it is necessary to advance the reaction to the right.
リン酸カルシウムを含む結晶種としては、ヒドロキシア
パタイト〔Ca5(OH)(PO4)3〕、フルオロア
パタイト[Cas (F l (’PO4’l 3〕ま
たはリン酸三石灰(Ca 3 <PO4)2 )などの
リン酸カルシウムを含む結晶種が使用でき、天然のリン
鉱石または骨炭はこれらのリン酸カルシウムを主成分と
しており、結晶種として適している。また、砂などの炉
材面にリン酸カルシウムを析出させた結晶種も用いるこ
とができる。結晶種としては、反応によって生成するリ
ン酸カルシウムと同種のリン酸カルシウムを主成分とす
るものが望ましい。例えばヒドロキシアパタイトを生成
する系では、ヒドロキシアパタイトを使用すると新しい
結晶の析出が円滑に行われ、リン酸塩の除去が効率的に
行われ、除去率が上がる。Crystal species containing calcium phosphate include hydroxyapatite [Ca5(OH)(PO4)3], fluoroapatite [Cas (F l ('PO4'l 3) or tricalcium phosphate (Ca 3 <PO4)2), etc. Crystal seeds containing calcium phosphate can be used. Natural phosphate rock or bone char has calcium phosphate as the main component and is suitable as a crystal seed. Crystal seeds with calcium phosphate precipitated on the surface of furnace materials such as sand can also be used. As a crystal seed, it is desirable that the main component is calcium phosphate of the same type as the calcium phosphate produced by the reaction.For example, in a system that produces hydroxyapatite, the use of hydroxyapatite facilitates the precipitation of new crystals. , phosphate removal is performed efficiently and the removal rate is increased.
晶析の条件は従来法と同様であシ、カルシウムイオンの
存在下であって、かつPH6以上の条件下にリン酸カル
シウムを含む結晶種と接触させると、前記(1)式によ
シ生成するリン酸カルシウムが結晶種表面に析出して結
晶が成長し、水中のリン酸イオンが除去される。The crystallization conditions are the same as those of the conventional method, and when brought into contact with crystal seeds containing calcium phosphate in the presence of calcium ions and at a pH of 6 or higher, calcium phosphate is produced according to the formula (1) above. is precipitated on the surface of the crystal seed, the crystal grows, and the phosphate ions in the water are removed.
水中に存在させるカルシウムイオンや水酸イオンは、原
水中に初めから存在する場合には外部から添加する必要
はないが、原水中に存在しない場合または不足する場合
には外部から添加する。添加量は反応当量よシも過剰量
とするが、あまシ多量に添加すると結晶種以外の場所で
微細な沈殿が析出したシ、また炭酸カルシウム等の不純
物が生成する場合があるから、これらが生成しない範囲
とすべきである。すなわち、カルシウムイオンおよび水
酸イオンの量は、(1)式において生成するヒドロキシ
アパタイトの溶解度よシ高く、過溶解度よりは低い濃度
、すなわち準安定域の濃度のヒドロキシアパタイトが生
成する条件とする。ここで過溶解度とは、反応系に結晶
種が存在しない場合に結晶が析出し始める濃度である。Calcium ions and hydroxide ions to be present in water do not need to be added from the outside if they are present in the raw water from the beginning, but if they are not present in the raw water or are insufficient, they are added from the outside. The amount added should be in excess of the reaction equivalent, but if too much is added, fine precipitates may precipitate in areas other than the crystal seeds, and impurities such as calcium carbonate may be generated. It should be within the range where it will not be generated. That is, the amounts of calcium ions and hydroxyl ions are set to be higher than the solubility of hydroxyapatite produced in equation (1), but lower than the supersolubility, that is, the conditions are such that hydroxyapatite is produced at a concentration in the metastable range. Here, supersolubility is the concentration at which crystals begin to precipitate when no crystal seeds are present in the reaction system.
すなわち過溶解度より高い濃度では、結晶種の存在しな
いところに新たな結晶が析出して微細な沈殿を生成し、
炉床の目詰りが生ずるが、過溶解度よシ低い準安定域で
は結晶種の上に新たな結晶が析出して、結晶が成長する
だけで沈殿は生成しない。また溶解度よシ低い系では結
晶は析出しない。In other words, at a concentration higher than supersolubility, new crystals precipitate where crystal seeds do not exist, forming fine precipitates.
Although clogging of the hearth occurs, in the metastable region where the supersolubility is lower, new crystals precipitate on top of the crystal seeds, and only crystals grow and no precipitates are formed. In addition, crystals do not precipitate in systems with low solubility.
ヒドロキシアパタイトの生成する量は反応系のリン酸イ
オン濃度、カルシウムイオン濃度およびPHによって支
配される。生成したヒドロキシアパタイトの量を準安定
域内にするカルシウムイオンの量およびPH値は、反応
系ごとにこれらの値を変えて実験的に求めることができ
る。おおよその範囲は、リン酸イオン501n9/A以
下の場合において、カルシウムイオンが10〜100■
/ A s pHが6〜12程度であるが、それぞれの
条件によって変動する。The amount of hydroxyapatite produced is controlled by the phosphate ion concentration, calcium ion concentration, and pH of the reaction system. The amount of calcium ions and the pH value that bring the amount of produced hydroxyapatite within the metastable range can be determined experimentally by changing these values for each reaction system. The approximate range is when the phosphate ion is 501n9/A or less, the calcium ion is 10 to 100
/A s pH is about 6 to 12, but varies depending on each condition.
リン酸塩を含む水とリン酸カルシウムを含む結晶種との
接触方法は固定床式でも流動床式でもよい。結晶種の大
きさは小培いものほど表面積が太きいため新しい結晶が
析出しやすいが、あまり小さいと結晶種と水の接触また
は分離に困難を伴う。The method of contacting the water containing phosphate with the crystal seeds containing calcium phosphate may be a fixed bed method or a fluidized bed method. The smaller the size of the crystal seeds, the larger the surface area, which makes it easier for new crystals to precipitate, but if the size of the crystal seeds is too small, it will be difficult to contact or separate the crystal seeds from water.
また粒径が1つ太きいと単位充填量当シの比表面積が小
さいから、通常は9〜600メツシュ程度のものを使用
する。このうち大きいものは固定床に適し、小さいもの
は流動床に適する。固定床の場合9〜65メツシユの粒
径の結晶種を充填し、流速SV1〜5hr で上向流
または下向流で通水してリン酸カルシウムの結晶を析出
させる。また固定床と流動床を組合せてもよい。Furthermore, if the particle size is one size larger, the specific surface area per unit filling amount is small, so particles with a mesh size of about 9 to 600 are usually used. The larger ones are suitable for fixed beds, and the smaller ones are suitable for fluidized beds. In the case of a fixed bed, crystal seeds having a particle size of 9 to 65 mesh are packed, and water is passed upwardly or downwardly at a flow rate of SV1 to 5 hours to precipitate calcium phosphate crystals. Furthermore, a fixed bed and a fluidized bed may be combined.
通水中に結晶種表面が汚泥された汐、目詰シを起こすこ
とがあれば、定期的に上向流による洗浄(逆洗)を行っ
て結晶種床を展開して洗浄し、表面に付着した不純物を
剥離することが望ましい。If the crystal seed surface becomes clogged with sludge during water flow, periodically perform upward flow cleaning (backwashing) to spread out the crystal seed bed and clean it, and remove it from the surface. It is desirable to remove the impurities.
洗浄時の通水条件と1〜ては、流速は20〜80m/h
r程度、洗浄時間は5〜60分程度でちる。The water flow conditions during cleaning are 1 to 1, and the flow rate is 20 to 80 m/h.
The cleaning time is approximately 5 to 60 minutes.
上記のような晶析槽6における晶析工程により、固液分
離槽5の上澄水中に漏出するリン酸塩は除去され、最終
処理水は処理水管16から流出する。Through the crystallization process in the crystallization tank 6 as described above, phosphates leaking into the supernatant water of the solid-liquid separation tank 5 are removed, and the final treated water flows out from the treated water pipe 16.
どのように、嫌気性処理工程および好気性処理工程を含
む生物学的脱リン工程において、原水中の有機物および
リン酸塩の大部分は除去され、晶析工程において残留す
るリン酸塩は除去され、放流可能な処理水が得られるが
、原水中のB OD/P比が2D未満の場合1cは生物
学的脱リン工程における脱リン効果が低下する。下水の
一般的な水質はPが3〜5m9/〃、BODが50〜1
50m9/A程度で、通常はB OD/P比は20以上
となっているため、上記の操作で十分処理可能であるが
、季節的要因、人為的要因等によJBOD/P比が20
未満となったときに処理の安定性が失われるので、結晶
種の再活性化に有機酸を使用し、その廃液を原水に供給
して、嫌気性処理工程に入る原水のB OD/P比を2
0以上に調整する。How, in the biological dephosphorization process, which includes anaerobic and aerobic treatment steps, most of the organic matter and phosphates in the raw water are removed, and the remaining phosphates are removed in the crystallization step. , treated water that can be discharged is obtained, but when the BOD/P ratio in the raw water is less than 2D, the dephosphorization effect in the biological dephosphorization process decreases. The general quality of sewage water is P: 3-5 m9/〃, BOD: 50-1
50 m9/A, and the B OD/P ratio is usually 20 or more, so the above operation can be sufficient for treatment, but due to seasonal factors, human factors, etc., the JBOD/P ratio is 20 or more.
Since the stability of the treatment is lost when the BOD/P ratio of the raw water goes into the anaerobic treatment process, an organic acid is used to reactivate the crystal seeds and the waste liquid is supplied to the raw water. 2
Adjust to 0 or more.
晶析槽6における晶析を継続していると、結晶種の脱リ
ン活性が低下し、通常の洗浄操作によっても回復しなく
なる。そこで晶析操作を停止して晶析槽6に薬注管17
から有機酸を注入して結晶種と接触させ、再活性化を行
う。再活性化の時期はBOD/P比が低下したときでも
よいが、特に制限はない。If crystallization continues in the crystallization tank 6, the dephosphorization activity of the crystal seeds decreases and cannot be recovered even by normal washing operations. Therefore, the crystallization operation is stopped and the chemical injection pipe 17 is placed in the crystallization tank 6.
Organic acid is injected into the crystal and brought into contact with the crystal seeds to reactivate them. The timing of reactivation may be when the BOD/P ratio decreases, but there is no particular restriction.
有機酸としては生物分解可能なものであればよいが、例
えば酢酸、プロピオン酸、酪酸、乳酸、シュウ酸、クエ
ン酸、グルタミン酸等が使用でき、これらの1種以上を
溶液として結晶種と接触させる。酸濃度は汚染の程度、
酸処理の頻度等によって異なるが、通常0.005〜5
モル/!程度が目安となる。The organic acid may be one that is biodegradable, such as acetic acid, propionic acid, butyric acid, lactic acid, oxalic acid, citric acid, glutamic acid, etc., and one or more of these acids is brought into contact with the crystal seeds in the form of a solution. . Acid concentration is a measure of the degree of contamination;
It varies depending on the frequency of acid treatment, etc., but usually 0.005 to 5
Mol/! The degree is a guideline.
再活性化処理の方法は結晶種を有機酸溶液と接触させる
だけでよく、例えば充填床通水、浸漬法など任意の方法
が採用できるが、晶析方法に対応させるのが好ましい。The reactivation treatment may be carried out by simply bringing the crystal seeds into contact with an organic acid solution, and any method such as water passage through a packed bed or immersion method can be employed, but it is preferable to use a method that corresponds to the crystallization method.
例えば充填床通水方式によシ晶析を行う場合は、同様に
充填床通水方式で再活性化を行えば簡単であυ、特に結
晶層の洗浄の際に有機酸浴液で処理すれば効率的である
。処理時間は酸濃度にもよるが、数分ないし数時間程度
であり、あまり長すぎるとリンの溶出量が増えるので好
ましくない。再活性化は通常1月に1〜2回程度の割合
で行う。For example, when performing crystallization using a packed bed water flow method, it is easy to perform reactivation using the same packed bed water flow method.In particular, when cleaning the crystal layer, it is recommended to treat it with an organic acid bath solution. It is efficient. Although the treatment time depends on the acid concentration, it is about several minutes to several hours, and if it is too long, the amount of leached phosphorus will increase, which is not preferable. Reactivation is usually performed once or twice a month.
以上により再活性化を行った後、晶析槽6に再び通水し
て晶析工程を再開する。再活性化廃液は条件によって異
なるが、通常60〜5000m97!程度のリンを含み
、B OD/P比は50〜1o。After reactivating as described above, water is passed through the crystallization tank 6 again to restart the crystallization process. The reactivation waste liquid varies depending on the conditions, but it is usually 60 to 5000 m97! Contains a certain amount of phosphorus, and has a BOD/P ratio of 50 to 1o.
となっており、連絡管18がら取出して貯留槽19に貯
留し、原水のB OD/P比が20未満になったときに
、連絡管2oがら原水供給管1oに供給し、BOD/P
比を20以上に調整する。原水のB OD/P比が20
以上の場合は、廃液を分岐管21から曝気槽4に供給し
て処理を行ってもよいが、婢気槽6におけるB O’
D / P比が高いほど脱リン効果が高くなるので、常
時連絡管2oから原水供給管10に供給するようにして
もよい。The connecting pipe 18 is taken out and stored in the storage tank 19, and when the BOD/P ratio of raw water becomes less than 20, the connecting pipe 2o is supplied to the raw water supply pipe 1o, and the BOD/P is
Adjust the ratio to 20 or more. BOD/P ratio of raw water is 20
In the above case, the waste liquid may be supplied from the branch pipe 21 to the aeration tank 4 for treatment;
Since the higher the D/P ratio, the higher the dephosphorization effect, the raw water may be constantly supplied to the raw water supply pipe 10 from the communication pipe 2o.
原水に注入された再活性化廃液中の有機物は脱窒槽2お
よび嫌気槽6で一部が吸着ないし吸収され、残部は曝気
槽4で分解される。また廃液中のリンも原水中のリンと
ともに、大部分が曝気槽4で除去され、残部は晶析槽6
で除去される。Part of the organic matter in the reactivation waste liquid injected into the raw water is adsorbed or absorbed in the denitrification tank 2 and the anaerobic tank 6, and the remainder is decomposed in the aeration tank 4. In addition, most of the phosphorus in the waste liquid is removed in the aeration tank 4 along with the phosphorus in the raw water, and the remainder is removed in the crystallization tank 6.
will be removed.
このように再活性化廃液を生物学的脱リン工程に供給す
ることにより、廃液処理を行うとともに、1物学的脱リ
ン工程のB OD/P比を適正値に調整して、生物学的
脱リン工程における脱リン効果を高く維持し、これによ
シ安定な処理を行って晶析工程の負荷を平均化し、全体
として安定して効率的な処理を行うことができる。In this way, by supplying the reactivated waste liquid to the biological dephosphorization process, waste liquid treatment is carried out, and the BOD/P ratio of the first physical dephosphorization process is adjusted to an appropriate value, and biological The dephosphorization effect in the dephosphorization process can be maintained high, thereby stably processing can be performed, the load of the crystallization process can be averaged, and the process can be performed stably and efficiently as a whole.
なお、上記の説明において、生物学的脱リン工程および
晶析工程の細部の工程、操作等は変更可能である。また
晶析槽6は複数個設けて順次再活性化を行うようにする
と、晶析工程を中断するとノ
となく連続して晶析を行うことができるとともに、再活
性化廃液の発生を平均化でき、貯留槽19を小形化でき
るか、場合によっては省略できる。In addition, in the above description, the detailed steps, operations, etc. of the biological dephosphorization step and the crystallization step can be changed. In addition, if multiple crystallization tanks 6 are provided and reactivation is performed sequentially, crystallization can be performed continuously without interrupting the crystallization process, and the generation of reactivation waste liquid can be averaged. Therefore, the storage tank 19 can be made smaller, or it can be omitted depending on the case.
本発明は下水、し尿膜離液その他の有機物およびリンを
含む水から有機物およびリンを除去する場合に適用可能
である。The present invention is applicable to the case of removing organic matter and phosphorus from sewage, syneresis, and other water containing organic matter and phosphorus.
以上説明してきたように、この発明によれば、有機物お
よびリン酸塩を含む水を生物学的脱リン工程および晶析
工程で処理し、晶析工程に使用する結晶種を有機酸で再
活性化して、その廃液を生物学的脱リン工程に供給する
ように構成したので、再活性化廃液を簡単に処理できる
とともに、原水効率よく有機物およびリン酸塩を除去で
きるという効果が得られる。As explained above, according to the present invention, water containing organic substances and phosphates is treated in a biological dephosphorization process and a crystallization process, and the crystal seeds used in the crystallization process are reactivated with an organic acid. Since the waste liquid is supplied to the biological dephosphorization process, it is possible to easily treat the reactivated waste liquid and to efficiently remove organic substances and phosphates from the raw water.
次に本発明の実施例について説明する。Next, examples of the present invention will be described.
実施例
p)17.0、アルカリ度100■/!、リン濃度4”
’;j、/ AlB OD 、(ハブトング、/l/:
I−ス) 100m9/!の合成廃水を図面の70−に
基づいて処理した。ただし、沈殿槽1および脱窒槽2は
省略した。Example p) 17.0, alkalinity 100■/! , phosphorus concentration 4”
';j, / AlB OD , (Habtong, /l/:
I-su) 100m9/! Synthetic wastewater was treated according to Figure 70-. However, the sedimentation tank 1 and denitrification tank 2 were omitted.
まず上記廃水を嫌気槽6に送り、0.85br滞留させ
て嫌気性処理した後、曝気槽4に送り好気性処理をした
。曝気槽4のMLSSは2.000〜4,000m9/
!、滞留時間は2.Ohrとした。次いで固液分離槽5
で汚泥を分離し、その一部を返送率が3o%となるよう
に嫌気槽3・\戻した。一方、固液分離槽5の上澄水に
はカルシウムイオン4CJm9/A1pH8,5となる
ように消石灰を添加した後、16〜62メツシユの粒径
のリン鉱石150mIVを充填した晶析2槽6に、5V
2hr−’で1力月間通水した。First, the wastewater was sent to the anaerobic tank 6, where it was retained at 0.85 br for anaerobic treatment, and then sent to the aeration tank 4 for aerobic treatment. MLSS of aeration tank 4 is 2,000 to 4,000 m9/
! , the residence time is 2. Ohr. Next, solid-liquid separation tank 5
The sludge was separated and a portion of it was returned to the anaerobic tank 3 so that the return rate was 30%. On the other hand, after adding slaked lime to the supernatant water of the solid-liquid separation tank 5 so that the pH becomes 8.5 with calcium ions 4CJm9/A1, the second crystallization tank 6 filled with 150 mIV of phosphate rock with a particle size of 16 to 62 meshes is added. 5V
Water was passed for 1 month at 2 hr-'.
その後通水を中断し、0,5モル/!の酢酸0.75!
を用いてリン鉱石を再活性化処理し、発生した再活性化
廃液は貯留槽19に貯めた。次いで運転を再開したが、
その際に前述の合成廃水のBODを、ペプトングルコー
ス50m97!と再活性化廃液50ダ/z(BODとし
て)からなる100m97!とした以外は、同一条件で
処理を行った(Run1八1力月後の各検出口の水質(
BODおよびTotal−Elを次の表に示す。After that, water flow was interrupted and 0.5 mol/! of acetic acid 0.75!
The phosphorus ore was reactivated using the phosphate rock, and the generated reactivation waste liquid was stored in a storage tank 19. I then resumed driving, but
At that time, the BOD of the synthetic wastewater mentioned above was determined to be peptone glucose 50m97! 100m97 consisting of and reactivated waste liquid 50 da/z (as BOD)! The treatment was carried out under the same conditions except for the water quality at each detection port after 18 months of Run 1 (
BOD and Total-El are shown in the following table.
比較例として、上記再活性化処理後に合成廃水中のBO
D(ペプトングリコース)を50■/にとした以外は同
一条件で処理を行った(Run2)。As a comparative example, BO in synthetic wastewater after the above reactivation treatment was
The treatment was carried out under the same conditions except that D (peptone glycose) was changed to 50 μ/cm (Run 2).
同様に1力月後の水質を久の表に併記する。Similarly, the water quality after one month is also recorded in the table.
表
以上の結果より、生物学的脱リン方法ではBOD/P比
が20未満になるとリン除去率が悪化し、最終処理水の
水質を改善するためには晶析条件が極めて繁雑になるこ
とがわかる。From the results shown in the table above, in the biological dephosphorization method, the phosphorus removal rate deteriorates when the BOD/P ratio becomes less than 20, and the crystallization conditions must be extremely complicated in order to improve the quality of the final treated water. Recognize.
一方、本発明方法によるRun 1では再活性化廃液を
供給することにより、BOD/P比を常に20以上とし
ているため、各槽における処理条件はほぼ一定となシ、
運転操作が簡略化されるとともに、得られる処理水の水
質も極めて良好になることがわかる。On the other hand, in Run 1 according to the method of the present invention, the BOD/P ratio is always kept at 20 or more by supplying reactivated waste liquid, so the processing conditions in each tank are almost constant.
It can be seen that the operation is simplified and the quality of the treated water obtained is also extremely good.
図面はこの発明の一実施態様を示す系統図であシ、1は
沈殿槽、2は脱窒槽、6は嫌気槽、4は曝気槽、5は固
液分離槽、6は晶析槽、7は原水管、15.17は薬注
管、16は処理水管、19は貯留槽である。
代理人 弁理士 柳 原 成The drawing is a system diagram showing one embodiment of the present invention, in which 1 is a precipitation tank, 2 is a denitrification tank, 6 is an anaerobic tank, 4 is an aeration tank, 5 is a solid-liquid separation tank, 6 is a crystallization tank, 7 15.17 is a raw water pipe, 15.17 is a chemical injection pipe, 16 is a treated water pipe, and 19 is a storage tank. Agent Patent Attorney Sei Yanagihara
Claims (1)
学的脱リン工程により、有機物とリン酸塩を含む水を処
理し、処理水をカルシウムイオンの存在下であって、か
つpH6以上の条件下で、リン酸カルシウムを含む結晶
種と接触させて晶析を行い、脱リン性能の低〒した結晶
種を有機酸と接触させて再活性化し、得られる再活性化
廃液を前記生物学的脱リン工程に供給することを特徴と
する有機物およびリン酸塩を含む水の処理方法。 (2)有機酸が酢酸、プロピオン酸、酪酸、乳酸、シュ
ウ酸、クエン酸およびグルタミン酸から選ばれる1種以
上のものである特許請求の範囲第1項記載の有機物およ
びリン酸塩を含む水の処理方法。 (6)リン酸カルシウムを含む結晶種がヒドロキシアパ
タイト、フルオロアノξタイトまたはリン酸三石灰であ
る一特許請求の範囲第1項または第2項記載の有機酸お
よびリン酸塩を含む水の処理方法。 (4)嫌気性処理工程は脱窒工程を含む特許請求の範囲
第1項ないし第6項のいずれかに記載の有機物およびリ
ン酸塩を含む水の処理方法。[Claims] (1) Water containing organic matter and phosphates is treated by a biological dephosphorization process including an anaerobic treatment process and an aerobic treatment process, and the treated water is treated in the presence of calcium ions. The reactivated waste liquid is obtained by contacting crystal seeds containing calcium phosphate under conditions of pH 6 or higher for crystallization, and reactivating the crystal seeds with low dephosphorization performance by contacting them with an organic acid. A method for treating water containing organic matter and phosphates, characterized in that the organic matter and phosphates are supplied to the biological dephosphorization step. (2) The water containing organic substances and phosphates according to claim 1, wherein the organic acid is one or more selected from acetic acid, propionic acid, butyric acid, lactic acid, oxalic acid, citric acid, and glutamic acid. Processing method. (6) The method for treating water containing organic acids and phosphates according to claim 1 or 2, wherein the crystal species containing calcium phosphate are hydroxyapatite, fluoroanotite, or tricalcium phosphate. (4) The method for treating water containing organic matter and phosphate according to any one of claims 1 to 6, wherein the anaerobic treatment step includes a denitrification step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57200920A JPS5990690A (en) | 1982-11-16 | 1982-11-16 | Treatment of water containing organic substance and phosphate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57200920A JPS5990690A (en) | 1982-11-16 | 1982-11-16 | Treatment of water containing organic substance and phosphate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5990690A true JPS5990690A (en) | 1984-05-25 |
Family
ID=16432469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57200920A Pending JPS5990690A (en) | 1982-11-16 | 1982-11-16 | Treatment of water containing organic substance and phosphate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5990690A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4780208A (en) * | 1986-08-29 | 1988-10-25 | Botho Bohnke | Process for purification of effluent |
US6623642B2 (en) | 2000-03-17 | 2003-09-23 | Centre For Research In Earth And Space Technology | System for removing phosphorus from waste water |
JP2007125482A (en) * | 2005-11-02 | 2007-05-24 | Japan Organo Co Ltd | Method and apparatus for treating chelating agent-containing water with fluorine and phosphorus |
CN105540934A (en) * | 2016-01-28 | 2016-05-04 | 合肥茂腾环保科技有限公司 | Method for pretreating high-ammonia-nitrogen and high-phosphorus wastewater generated during LCD (liquid crystal display) screen manufacturing waste liquid recovery |
CN106007200A (en) * | 2016-07-04 | 2016-10-12 | 宜兴市永加化工有限公司 | Method for treating wastewater |
-
1982
- 1982-11-16 JP JP57200920A patent/JPS5990690A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4780208A (en) * | 1986-08-29 | 1988-10-25 | Botho Bohnke | Process for purification of effluent |
US6623642B2 (en) | 2000-03-17 | 2003-09-23 | Centre For Research In Earth And Space Technology | System for removing phosphorus from waste water |
JP2007125482A (en) * | 2005-11-02 | 2007-05-24 | Japan Organo Co Ltd | Method and apparatus for treating chelating agent-containing water with fluorine and phosphorus |
CN105540934A (en) * | 2016-01-28 | 2016-05-04 | 合肥茂腾环保科技有限公司 | Method for pretreating high-ammonia-nitrogen and high-phosphorus wastewater generated during LCD (liquid crystal display) screen manufacturing waste liquid recovery |
CN106007200A (en) * | 2016-07-04 | 2016-10-12 | 宜兴市永加化工有限公司 | Method for treating wastewater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002346593A (en) | Method and apparatus for denitrification | |
JP5115252B2 (en) | Activated sludge treatment method and activated sludge treatment apparatus for wastewater | |
SI20266A (en) | Method for treating process waste waters highly charged with ammoniumin waste water systems | |
Kalyuzhnyi et al. | Integrated mechanical, biological and physico-chemical treatment of liquid manure streams | |
JP4685224B2 (en) | Waste water treatment method and waste water treatment equipment | |
JPS6384696A (en) | Dephosphorization device | |
JPS5990690A (en) | Treatment of water containing organic substance and phosphate | |
JPH06182393A (en) | Fluidized bed type denitrification treating device | |
JP2006239536A (en) | Sewage treatment apparatus and method | |
JP3387244B2 (en) | Anaerobic treatment method | |
KR101135011B1 (en) | A sewage and wastewater treatment and an apparatus for thereof | |
JP6880894B2 (en) | Wastewater treatment method with ANAMMOX process | |
JP4101539B2 (en) | Wastewater treatment equipment | |
JPH0259000B2 (en) | ||
JP3449862B2 (en) | Advanced purification method for organic wastewater | |
JPH0975992A (en) | Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen | |
JPH08318292A (en) | Waste water treatment method and apparatus | |
JPH024360B2 (en) | ||
JP3846562B2 (en) | Organic wastewater treatment method | |
JP2005095758A (en) | Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus | |
JPS63126599A (en) | Biochemical treatment of waste water | |
JPH0253117B2 (en) | ||
JP3861573B2 (en) | Waste water treatment equipment | |
JP3346690B2 (en) | Method for removing nitrogen and phosphorus from organic wastewater | |
JPS60129194A (en) | Treatment of sewage |