JP3846562B2 - Organic wastewater treatment method - Google Patents

Organic wastewater treatment method Download PDF

Info

Publication number
JP3846562B2
JP3846562B2 JP2001383552A JP2001383552A JP3846562B2 JP 3846562 B2 JP3846562 B2 JP 3846562B2 JP 2001383552 A JP2001383552 A JP 2001383552A JP 2001383552 A JP2001383552 A JP 2001383552A JP 3846562 B2 JP3846562 B2 JP 3846562B2
Authority
JP
Japan
Prior art keywords
sludge
solid
tank
treatment
biological treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001383552A
Other languages
Japanese (ja)
Other versions
JP2003181489A (en
Inventor
一郎 住田
昭男 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001383552A priority Critical patent/JP3846562B2/en
Publication of JP2003181489A publication Critical patent/JP2003181489A/en
Application granted granted Critical
Publication of JP3846562B2 publication Critical patent/JP3846562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1221Particular type of activated sludge processes comprising treatment of the recirculated sludge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水等の有機物及びリンを含有する有機性汚水の処理方法に関し、更に詳しくは、小規模の処理設備に適し、かつ、高度にリン除去率を維持しながら汚泥の発生量を減少させることができる有機性汚水の処理方法に関する。
【0002】
【従来の技術】
有機性汚水を微生物により浄化する生物処理方法は、微生物が汚水中の有機物を摂取して増殖する結果、下水等の汚水処理施設から多量の余剰汚泥を発生する。
【0003】
このため、最近、有機性汚水の生物処理方法においては、余剰汚泥の発生量を削減したり、あるいは余剰汚泥をほとんど発生しない汚泥減量法が採用されるようになっている。
この汚泥減量法は、生物処理工程の汚泥混合液或いは濃縮汚泥を抜き取り、この抜き取った汚泥を機械的、生物的、化学的又は物理的方法、若しくは、これらを組み合わせた手法により可溶化処理して生物処理工程へ返送し、同工程内の微生物により全量或いはその一部を分解消滅させる方法である。
【0004】
一方、有機性汚水中のリンは、公共用水域にそのまま排出して閉鎖性水域の湖沼や内湾で蓄積されると富栄養化現象により水質汚濁を発生すると言われており、上記汚泥減量法に加えてさらに有機性汚水中のリンが除去できる有機性汚水の処理方法が求められている。
【0005】
これらの要求に答えるため、上記汚泥減量法とリン除去法とを組み合わせた有機性汚水の処理方法が例えば特開平11−188383号公報に開示されている。
この方法は、図2に示すように、有機物及びリンを含んだ有機性汚水である原水100が、最初に生物化学的脱リン活性汚泥処理工程101の嫌気槽102に導入される。
嫌気槽102に導入された原水100は、嫌気処理されることにより原水100中に含まれる汚泥がリンを液中に吐き出す。前記嫌気槽102から排出された汚泥混合液は好気槽103で曝気されて酸素が供給され、このとき汚泥は液中のリンを嫌気槽102で吐き出した量よりも過剰に摂取する。
好気槽103で曝気処理された汚泥混合液は、後段の沈殿槽104で沈降分離され、上澄水は処理水105として取り出され、沈殿槽104で沈殿した沈殿汚泥106のうちの大部分は、返送汚泥107として生物化学的脱リン活性汚泥処理工程101の嫌気槽102に戻される。残りの沈殿汚泥106は、分岐汚泥108として汚泥嫌気滞留槽109に導入される。
【0006】
汚泥嫌気滞留槽109に導入された分岐汚泥108は、リン酸イオンを液中に吐き出した後、膜分離槽110で固液分離され、該分離汚泥112は、オゾン処理槽117にてオゾン酸化された後、オゾン酸化汚泥118として生物化学的脱リン活性汚泥処理工程101の嫌気槽102に返送される。一方、膜分離槽110で固液分離された固液分離水111は、リン化学的除去工程114の前段で水酸化カルシウム113を添加され、後段のリン化学的除去工程114では固液分離水111中のリン酸イオンとカルシウムイオンとが反応してヒドロキシアパタイト116が生成する。生成したヒドロキシアパタイト116は系外に分離・除去され、分離水115はBOD、アンモニアが含まれているので生物化学的脱リン活性汚泥処理工程101に戻して浄化される。
【0007】
【発明が解決しようとする課題】
しかしながら、このような有機性汚水の処理方法では、系外へ排出されるリンの量は汚泥中に過剰に摂取されたリンに限定される。従って、処理水105中に含まれるリンを低減するためには、生物化学的脱リン活性汚泥処理工程101で汚泥中に摂取されるリンを多くするための制御が必要となる。
しかし原水の流入負荷変動の大きい小規模の処理場では、汚泥中へのリンの取り込みや汚泥嫌気滞留槽109でのリンの吐き出しを原水の流入負荷変動に対応して適切に制御することが困難である。また、このような小規模の処理場では、処理設備を維持管理する常駐の人員を確保することが一般に困難である。
これらのことがこのような処理システムを小規模処理場へ適用するのを困難にしていた。
【0008】
本発明は、前記課題を解決するためになされたものであって、小規模の処理場にも適し、かつ、生物処理工程への原水の流入負荷変動があってもリン除去率を高度に安定して維持できる有機性汚水の処理方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記課題を解決するためになされた請求項1に係る有機性汚水の処理方法は、有機性汚水を生物処理により浄化する有機性汚水の処理方法において、有機性汚水を生物処理する生物処理工程と、前記生物処理工程で発生した汚泥の少なくとも一部を可溶化する可溶化工程と、前記可溶化工程で可溶化した汚泥を前記生物処理工程に返送する返送工程と、前記生物処理工程からの生物処理水を固液分離する固液分離工程と、前記固液分離工程で得られた固液分離水から化学的処理によりリンを分離・除去する脱リン工程とを含み、前記生物処理に供給される前記有機性汚水の流量が、所定の流量未満の場合は前記固液分離工程及び前記脱リン工程を停止し、前記所定の流量が得られる場合のみ前記固液分離工程及び前記脱リン工程を運転することを特徴とする処理方法である。
【0010】
請求項1の発明によると、有機性汚水を生物処理により浄化する有機性汚水の処理方法において、有機性汚水を生物処理する生物処理工程と、前記生物処理工程で発生した汚泥の少なくとも一部を可溶化する可溶化工程と、前記可溶化工程で可溶化した汚泥を前記生物処理工程に返送する返送工程と、前記生物処理工程からの生物処理水を固液分離する固液分離工程と、前記固液分離工程で得られた固液分離水から化学的処理によりリンを分離・除去する脱リン工程とを含むことにより、以下の作用・効果が得られる。
(1)生物処理工程から発生する汚泥を可溶化工程で可溶化し、可溶化された汚泥を前記生物処理工程へ返送することにより、前記生物処理工程から発生する余剰汚泥を大幅に削減、或いは全量を削減することができる。
(2)生物処理水を固液分離する固液分離工程で得られた固液分離水を化学的に脱リン処理することにより、生物学的なリンの除去性に関して特に注意を払うことなく、放流水は安定して高いリン処理性(除去率)を維持することができる。従って、常駐の維持管理要員を配置することが困難な小規模な処理場に対しても適用が可能となる。
また、前記生物処理に供給される前記有機性汚水の流量が、所定の流量未満の場合は前記固液分離工程及び前記脱リン工程を停止し、前記所定の流量が得られる場合のみ前記固液分離工程及び前記脱リン工程を運転することにより、固液分離工程と脱リン工程の運転中は、脱リン工程において、常に所定の流量が確保されるので、脱リン処理した処理水を脱リン工程に循環供給する循環水ポンプに余分な容量を与える必要がなく、流量変動に合わせた複雑な制御をする必要がない。
【0011】
請求項2に係る有機性汚水の処理方法は、前記固液分離工程が膜分離工程であることを特徴とする請求項1に記載の有機性汚水の処理方法である。
【0012】
請求項2の発明によると、固液分離工程が膜分離工程であることにより、生物処理槽の負荷(例えばBOD,SS等)が増大しても、従来、好気槽の後段に沈殿槽を設けていたときのように汚泥の沈降性を気にしなくても良く、槽内MLSS(活性汚泥浮遊物質)を高く維持することが可能となる。槽内MLSS(活性汚泥浮遊物質)を高く維持することでSRT(汚泥滞留時間)を長くとることができるため、処理水のCODなどの有機物質濃度を低減することが可能となる上、槽内の自己消化を促進し、汚泥減量に必要なオゾン量を削減することができる。
また、化学的リン除去工程においては、被処理水の水質が向上することにより、薬剤の使用量を低減することが可能となる。そして,吸着剤による処理や晶析脱リンの結晶種へのスライムの付着が抑制される結果、これら吸着剤や結晶種の活性を高く保持することができ、吸着剤や結晶種の寿命を伸ばすことができる。
更に、化学的リン除去工程に反応晶析処理を適用する場合には、回収されたリン酸カルシウムの反応生成物の純度を高くすることができ、再利用時の価値を高めることができる。
【0013】
請求項3に係る有機性汚水の処理方法は、前記化学的処理が、Ca化合物及び/又はアルカリ剤を添加してリンと反応させる反応晶析処理であることを特徴とする請求項1又は請求項2に記載の有機性汚水の処理方法である。
【0014】
請求項3の発明によると、化学的処理として、Ca化合物及び/又はアルカリ剤を添加してリンと反応させる反応晶析処理を行うことにより、系外に排出されるリンを、極めて含水率の低いリン酸カルシウム化合物(例えばヒドロキシアパタイト)の粒子として回収することができる。従って,化学的処理によって生成する化合物を特に固液分離する工程を特に必要とせず、汚泥発生量を大幅に削減することができる。
さらに生物処理工程から発生する余剰汚泥を全量減量する場合には、脱水機等の汚泥処理装置を設置する必要がなくなる。さらに生物処理工程から発生する余剰汚泥を全量減量する場合には、脱水機等の汚泥処理設備を設置する必要がなくなる。また、この反応生成物は、リン酸肥料原料に再利用することができる。
【0015】
【発明の実施の形態】
本発明に係る有機性汚水の処理方法の1実施形態について図面を参照して説明する。
最初に、本実施形態で使用される薬剤について説明する。
(1)本実施形態の脱リン工程で用いられるカルシウム化合物及び/又はアルカリ剤とは、排水中のリンと反応して難溶解性のカルシウム塩を生成するものであり、代表的には、消石灰Ca(OH)2の消石灰乳が挙げられる。しかし、本発明で用いるカルシウム化合物は、同様な機能を奏すればCa(OH)2に限定されるものではなく、例えば塩化カルシウム等他のカルシウム化合物を用いることもできる。本発明の実施形態においては代表的な化合物としてCa(OH)2を例示して説明する。Ca(OH)2は、カルシウムイオン供給源としてだけでなくアルカリ剤としての機能を兼用できることから、カルシウム化合物としてはCa(OH)2を用いるのが望ましい。
(2)晶析反応に使用するリン酸カルシウムを含有する結晶種としては、晶析反応に一般的に用いられる結晶種が利用でき、例えば骨炭、リン酸カルシウム、リン鉱石等の天然素材の他、人工的に調整された脱リン材等も用いることができる。
本実施形態では代表的な化合物としてリン鉱石を例示して説明する。
リン鉱石の粒径は反応様式によって異なり、固定床式の場合は0.3mm以上、流動床式の場合は1.0mm以下が使用できる。但し、固定床式の場合は、粒子充填部(反応部)の圧力損失や反応速度の関係から粒径は0.5mm〜1.0mm程度であることが望ましい。流動床式の場合は、反応速度と流動床の維持性から粒径は0.15mm〜0.3mm程度とすることが望ましい。
【0016】
本発明に係る1実施形態の有機性汚水の処理方法は、図1に示すように、有機性汚水を生物処理する生物処理工程と、前記生物処理工程で発生した汚泥の少なくとも一部を可溶化する可溶化工程と、前記可溶化工程で可溶化した汚泥を前記生物処理工程に返送する返送工程と、前記生物処理工程の好気槽4内で生物処理水を固液分離する固液分離工程としての膜分離工程と、前記膜分離工程で得られた膜濾過水から化学的処理によりリンを分離・除去する脱リン工程とを含んで主要部が構成される。
【0017】
次に、これらの工程から主要部が構成される本発明に係る有機性汚水の処理方法について図1を参照して説明する。
有機物及びリンを含有する有機性汚水である原水1が生物処理工程の曝気槽2に導入される。図1では、硝化・脱窒処理を行うために曝気槽2は嫌気槽3と好気槽4に分割されているが、硝化・脱窒処理を行わない場合には、特に曝気槽2は分割せず、全体を好気槽4とすればよい。硝化・脱窒処理を行うために曝気槽2を嫌気槽3と好気槽4に分割した場合には、原水1は嫌気槽3にまず導入し、好気槽4から硝化液を嫌気槽3に循環処理する。
曝気槽2で処理された処理液は、固液分離工程に導入され、膜分離装置5で固液分離される。そして固液分離工程で分離された分離汚泥は、沈殿汚泥13として抜き出され、その一部は返送汚泥14として曝気槽2へ返送される。その残りは分岐汚泥15として可溶化工程である可溶化槽16に導入される。
本実施の形態では固液分離工程に膜分離法を採用している。固液分離工程に膜分離装置5を設ける場合には、膜分離装置5を好気槽4の内部に設置することができ、沈殿槽を省略することができる。
膜分離装置5は、好気槽4内部に設置するほか、外部に設けて膜濾過するようにしてもよい。膜分離装置5の膜の形状は特に限定するものでなく、平膜、中空糸膜、スパイラル膜等が使用できる。
固液分離工程に膜分離装置5を設ける場合には、曝気槽2の負荷(例えばBOD,SS等)が増大しても沈殿槽を使用する場合のように汚泥の沈降性を気にしなくても良く、曝気槽2内のMLSS(活性汚泥浮遊物質)を高く維持することでSRT(汚泥滞留時間)を長くとることができるため、処理水のCOD等の有機物質濃度を低減することが可能となる上、槽内の自己消化を促進し、汚泥減量に必要なオゾン量を削減することが可能となる。
【0018】
分岐汚泥15の可溶化手段としては、破砕法(ミル法、回転ディスク法等)、生物処理法(酵素法、好熱細菌法等)、化学法(薬剤法、オゾン法、塩素法等)、物理法(加温法、曝砕法等)種々の方法があるが特に限定しない。但し、例えばミルなどにより破砕・可溶化する場合は前段に濃縮槽を設置することが望ましい。
本実施形態では、分岐汚泥15の可溶化手段として、化学法のうちのオゾン法を適用している。すなわち、可溶化槽16に導入された汚泥は、オゾンによりBOD成分に酸化分解され可溶化される。尚、分岐汚泥15の可溶化方法としてオゾンを使用する場合は、曝気槽2から直接オゾン可溶化槽16へ汚泥を送ることができる。
【0019】
可溶化工程の可溶化槽16で可溶化された可溶化汚泥17は、返送工程の返送路を通って生物処理工程の曝気槽2に戻される。戻された可溶化汚泥17は、全量或いは一部が生物処理工程で分解・消滅する。
【0020】
一方、生物処理工程の曝気槽2内に浸漬した膜分離装置5により固液分離された膜濾過水6は、真空ポンプ7に吸引され、後段に設けられた脱リン工程の流動床式の反応晶析槽9に供給されて脱リン処理される。
反応晶析槽9では、曝気槽2から抜き出され反応晶析槽9に供給される膜濾過水6の流量を、原水1の流量計FMで確認し、この値に基づいて膜分離工程及び脱リン工程を間欠的に運転することもできる。
【0021】
ここで膜分離工程及び脱リン工程を間欠的に運転する方法について説明する。
膜分離工程及び脱リン工程の運転方法は、曝気槽2へ原水1を供給する配管に設けられた流量計FMの示す原水1の流量が、所定の流量未満の場合は膜分離工程及び脱リン工程を停止し、所定の流量が得られる場合のみ膜分離工程及び脱リン工程を運転するようになっている。
【0022】
このように膜分離工程及び脱リン工程を、前記脱リン工程に導入する原水1の流量に基づいて間欠的に運転することにより、
(1)膜分離工程の休止中に、曝気槽2内に生じる気液混合流により膜の表面が常に浄化されるので膜面の汚染、目詰まりを抑制できる。
(2)膜分離工程の後段に設けられる脱リン工程が流動式の反応晶析槽9の場合には、反応晶析槽9の運転中(膜分離工程の運転中)は、常に所定の流量が確保されるので、脱リン処理した処理水を反応晶析槽9に循環供給する循環水ポンプ8に余分な容量を与えることなく、また、流量変動に合わせた複雑な制御をすることなく晶析装置を運転することができる。
【0023】
脱リン工程の反応晶析槽9に膜濾過水6が供給されると、結晶種となるリン鉱石9bが流動床9aを形成しながら反応晶析槽9内を膜濾過水6が上向流で通水する。このとき、反応晶析槽9の処理水のpH値がpH計PMで9〜11、好ましくは9.5〜10.5となるように流動床9aへの消石灰乳の添加量を調整する。
【0024】
このように消石灰乳を加えてリン酸カルシウムを含有するリン鉱石9bの流動床9aを形成しながら膜濾過水6を前記リン鉱石9bと接触させて反応晶析処理を行うことにより、系外に排出されるリンを含めて含水率の低いリン酸カルシウム化合物(例えばカルシウムヒドロキシアパタイト)として回収することができる。尚、脱リン工程に使用できる反応晶析槽9としては固定床式も使用できるが、固定床式では、固着防止のために逆洗操作が必要であり、流動床式の方が処理速度が速く、かつ、回収するリン酸カルシウム化合物の性状も均一なものが得られるので流動床式の方が望ましい。
【0025】
尚、脱リン工程は、流動床式の反応晶析槽9の代わりに凝集処理槽を設けて凝集剤、例えば鉄塩、アルミニウム塩(PAC)、石灰等を使用して膜濾過水6からリンを分離・除去するようにしてもよい。
また、リン吸着能を有する吸着剤、例えばアルミナ、水酸化鉄、ゼオライトを使用して膜濾過水6からリンを分離・除去するようにしても良い。
【0026】
脱リン工程で脱リン処理された処理水10は、必要に応じて中和設備で処理された後、河川に放流される。
【0027】
【実施例】
次に、このような構成と作用を有する有機性汚水の処理方法を実際に適用した実施例について説明する。
実施例1
1.原水
(a)原水処理量:3m3/hr
(b)原水中のリン濃度:3.5mg(PO4−P)/L
(c)BOD濃度:200mg/L
(d)SS濃度:160mg/L
2.曝気槽
(a)曝気槽容量:36m3
(b)MLSS(活性汚泥浮遊物質):6000mg/L
3.膜分離工程
(a)濾面積:120m2
(b)膜フラックス:0.6m3/m2・日
(但し、脱リン工程運転時のみ濾過)
(c)膜材質:親水性酢酸セルロース(UF膜)
4.脱リン工程
(a)流動床式の反応晶析槽
(b)空塔速度SV:10/hr
(但し、処理水基準の空塔速度)
(c)線速度LV:10m/hr
(d)pH値:9.8〜10.2(処理水)
(e)カルシウムイオン濃度:原水25〜35mg/L,処理水35〜60mg/L
このような運転条件で原水を処理した結果、処理水中のリン濃度は、平均で0.65mg(PO4−P)/Lであった。この処理水中のリン濃度は、新設する下水処理場の排出水の許容限度であるリン含有量1mg(PO4−P)/Lを充分クリアできるものであった。
【0028】
実施例2
好気槽の生物処理水を膜分離した膜濾過水と好気槽の後段で生物処理水を沈殿分離した沈殿分離水とを代表的な脱リン工程で脱リン処理したときの薬剤の使用量及び通水BVの値を表1に示す。尚、表中の通水BV[L/L−吸着剤]とは、吸着剤の充填体積の何倍の水量が通過したかという通水倍量を示す。
【0029】
【表1】

Figure 0003846562
【0030】
表1からも判るように、
(1)好気槽の生物処理水を膜分離した膜濾過水を、凝集剤又は消石灰(反応晶析)を使用して脱リン処理する場合は、従来の好気槽の後段で沈降分離した処理水を脱リン処理する場合と比較して薬剤の使用量を削減することができた。
(2)一方、好気槽の生物処理水を膜分離した膜濾過水を吸着剤又は反応晶析により脱リン処理する場合には、膜濾過水が無菌であることからスライム(微生物、バクテリア、藻類およびその死骸に空気中から混入した土砂および錆などが混合した粘性のある泥状塊)等の付着が抑制される結果、吸着剤や結晶種の表面の活性を高く保持することができ、吸着剤の寿命を延ばすことができた。
【0031】
【発明の効果】
以上説明した工程と作用からなる本発明によれば、以下の効果を奏する。
1.請求項1の発明によれば、有機性汚水を生物処理により浄化する有機性汚水の処理方法において、
(1)生物処理工程から発生する汚泥を前記可溶化工程で可溶化し、可溶化された汚泥を生物処理工程へ返送することにより、生物処理工程から発生する余剰汚泥を大幅に削減、或いは全量を消滅することができる。
(2)生物処理水を固液分離する固液分離工程で得られた分離水を化学的に脱リン処理することにより、生物学的なリンの除去性に関して特に注意を払うこともなく、放流水は安定して高いリン処理性(除去率)を維持することができる。また、常駐の維持管理要員を配置することが困難な小規模な処理場に関しても適用が可能となる。
前記生物処理に供給される前記有機性汚水の流量が、所定の流量未満の場合は前記固液分離工程及び前記脱リン工程を停止し、前記所定の流量が得られる場合のみ前記固液分離工程及び前記脱リン工程を運転することにより、固液分離工程と脱リン工程の運転中は、脱リン工程において、常に所定の流量が確保されるので、脱リン処理した処理水を脱リン工程に循環供給する循環水ポンプに余分な容量を与える必要がなく、流量変動に合わせた複雑な制御をする必要がない。
2.請求項2の発明によれば、生物処理工程の処理水を固液分離工程が膜分離工程であることにより、
(1)生物処理槽の負荷(例えばBOD、SS等)が増大しても、好気槽の後段に沈殿槽を設けていた従来の方法と比較して、汚泥の沈降性を気にしなくても良く、槽内MLSS(活性汚泥浮遊物質)を高く維持することでSRT(汚泥滞留時間)を長くとることができるため、処理水のCOD等の有機物質濃度を低減することが可能となる上、槽内の自己消化を促進し、汚泥減量に必要なオゾン量を削減することができる。
(2)化学的リン除去工程においては、被処理水の水質が向上することにより、薬剤の使用量を低減することが可能となる。そして、吸着剤による処理や晶析脱リンによる処理では、吸着剤や晶析脱リンの結晶種へのスライムの付着が抑制される結果、これら吸着剤や結晶種の活性を高く保持することができ、吸着剤や結晶種の寿命を延ばすことができる。更に、化学的リン除去工程に、反応晶析処理を適用する場合には、回収されたリン酸カルシウムの反応生成物の純度を高くすることができ、再利用時の価値を高めることができる。
3.請求項3の発明によれば、化学的処理としてCa化合物及び/又はアルカリ剤を添加してリンと反応させる反応晶析処理を行うことにより、系外に排出されるリンを極めて含水率の高いリン酸カルシウム化合物(例えばヒドロキシアパタタイト)の粒子として回収することができる。従って、化学的処理によって生成する化合物を固液分離する工程を特に必要とせず、汚泥発生量を大幅に削減することができる。
さらに生物処理工程から発生する余剰汚泥を全量減量する場合には、脱水機等の汚泥処理設備を設置する必要がなくなる。また、この反応生成物は、リン酸肥料減量に再利用することができる。
【図面の簡単な説明】
【図1】本発明に係る有機性汚水の処理方法の1実施形態を示す全体系統図である。
【図2】従来の有機性汚水の処理方法を示す全体系統図である。
【符号の説明】
1 原水
2 曝気槽
3 嫌気槽
4 好気槽
5 膜分離装置
6 膜濾過水
7 真空ポンプ
8 循環水ポンプ
9 反応晶析槽
9a 流動床
9b リン鉱石
10 処理水
11 希釈水ポンプ
12 処理水槽
13 沈殿汚泥
14 返送汚泥
15 分岐汚泥
16 可溶化槽
17 可溶化汚泥[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating organic sewage containing organic matter such as sewage and phosphorus, and more specifically, suitable for a small-scale treatment facility, and reducing sludge generation while maintaining a high phosphorus removal rate. The present invention relates to a method for treating organic sewage.
[0002]
[Prior art]
A biological treatment method for purifying organic wastewater with microorganisms generates a large amount of excess sludge from a wastewater treatment facility such as sewage as a result of the microorganisms ingesting and growing organic matter in the wastewater.
[0003]
For this reason, recently, in the biological treatment method of organic sewage, a sludge reduction method that reduces the generation amount of excess sludge or hardly generates excess sludge has been adopted.
In this sludge reduction method, the sludge mixed solution or concentrated sludge in the biological treatment process is extracted, and the extracted sludge is solubilized by a mechanical, biological, chemical or physical method, or a combination thereof. This is a method of returning to the biological treatment process and decomposing and extinguishing all or a part of it by the microorganisms in the process.
[0004]
On the other hand, phosphorus in organic wastewater is said to cause water pollution due to eutrophication when it is discharged directly into public water areas and accumulated in lakes and inner bays in closed water areas. In addition, there is a need for a method for treating organic sewage that can remove phosphorus in the organic sewage.
[0005]
In order to meet these requirements, a method for treating organic sewage by combining the sludge reduction method and the phosphorus removal method is disclosed in, for example, Japanese Patent Application Laid-Open No. 11-188383.
In this method, as shown in FIG. 2, raw water 100 that is organic wastewater containing organic matter and phosphorus is first introduced into the anaerobic tank 102 of the biochemical dephosphorization activated sludge treatment step 101.
The raw water 100 introduced into the anaerobic tank 102 is subjected to anaerobic treatment, so that sludge contained in the raw water 100 discharges phosphorus into the liquid. The sludge mixed solution discharged from the anaerobic tank 102 is aerated in the aerobic tank 103 and supplied with oxygen. At this time, the sludge takes in excess of the amount of phosphorus in the liquid discharged from the anaerobic tank 102.
The sludge mixed solution aerated in the aerobic tank 103 is settled and separated in a subsequent settling tank 104, the supernatant water is taken out as treated water 105, and most of the precipitated sludge 106 precipitated in the settling tank 104 is The returned sludge 107 is returned to the anaerobic tank 102 of the biochemical dephosphorization activated sludge treatment step 101. The remaining precipitated sludge 106 is introduced into the sludge anaerobic retention tank 109 as a branched sludge 108.
[0006]
The branched sludge 108 introduced into the sludge anaerobic retention tank 109 is subjected to solid-liquid separation in the membrane separation tank 110 after discharging phosphate ions into the liquid, and the separated sludge 112 is ozone-oxidized in the ozone treatment tank 117. After that, it is returned to the anaerobic tank 102 of the biochemical dephosphorization activated sludge treatment step 101 as ozone oxidation sludge 118. On the other hand, the solid-liquid separated water 111 separated into the solid-liquid separation in the membrane separation tank 110 is added with calcium hydroxide 113 before the phosphorus chemical removal step 114, and the solid-liquid separated water 111 is added at the subsequent phosphorus chemical removal step 114. Hydroxyapatite 116 is produced by the reaction of phosphate ions and calcium ions therein. The produced hydroxyapatite 116 is separated and removed out of the system, and the separated water 115 contains BOD and ammonia, so that it is returned to the biochemical dephosphorization activated sludge treatment step 101 for purification.
[0007]
[Problems to be solved by the invention]
However, in such a method for treating organic sewage, the amount of phosphorus discharged out of the system is limited to phosphorus excessively taken into sludge. Therefore, in order to reduce the phosphorus contained in the treated water 105, it is necessary to control to increase the amount of phosphorus taken into the sludge in the biochemical dephosphorization activated sludge treatment step 101.
However, in small-scale treatment plants with large fluctuations in the raw water inflow load, it is difficult to appropriately control the intake of phosphorus into the sludge and the discharge of phosphorus in the sludge anaerobic retention tank 109 in response to the fluctuation in the raw water inflow load. It is. In such a small treatment plant, it is generally difficult to secure resident personnel for maintaining and managing the treatment facilities.
These have made it difficult to apply such treatment systems to small-scale treatment plants.
[0008]
The present invention has been made to solve the above-described problems, and is suitable for a small-scale treatment plant. The phosphorus removal rate is highly stable even if the inflow load of raw water into the biological treatment process varies. An object of the present invention is to provide a method for treating organic sewage that can be maintained.
[0009]
[Means for Solving the Problems]
The organic sewage treatment method according to claim 1, which has been made to solve the above-mentioned problems, includes a biological treatment process for biologically treating organic sewage in the organic sewage treatment method for purifying organic sewage by biological treatment, and A solubilization step for solubilizing at least a part of the sludge generated in the biological treatment step, a return step for returning the sludge solubilized in the solubilization step to the biological treatment step, and a living organism from the biological treatment step It is seen containing a solid-liquid separation step of separating the treated water solid solution and a dephosphorization step for separating and removing phosphorus by chemical treatment from the solid-liquid separated water obtained in the solid-liquid separation step, supplied to the biological treatment When the flow rate of the organic waste water is less than a predetermined flow rate, the solid-liquid separation step and the dephosphorization step are stopped, and only when the predetermined flow rate is obtained, the solid-liquid separation step and the dephosphorization step this operating the Which is a processing method characterized.
[0010]
According to the invention of claim 1, in the method for treating organic sewage by purifying organic sewage by biological treatment, a biological treatment step for biologically treating organic sewage, and at least a part of the sludge generated in the biological treatment step A solubilization step for solubilization, a return step for returning the sludge solubilized in the solubilization step to the biological treatment step, a solid-liquid separation step for solid-liquid separation of biological treatment water from the biological treatment step, and By including a dephosphorization step of separating and removing phosphorus from the solid-liquid separation water obtained in the solid-liquid separation step by chemical treatment, the following actions and effects can be obtained.
(1) The sludge generated from the biological treatment process is solubilized in the solubilization process and the solubilized sludge is returned to the biological treatment process, thereby significantly reducing excess sludge generated from the biological treatment process, or The total amount can be reduced.
(2) By chemically dephosphorizing the solid / liquid separated water obtained in the solid / liquid separation step for separating the biologically treated water into a solid / liquid, without paying special attention to the removal of biological phosphorus, The discharged water can stably maintain a high phosphorus treatment property (removal rate). Therefore, the present invention can be applied to a small-scale treatment plant where it is difficult to arrange resident maintenance management personnel.
Further, when the flow rate of the organic sewage supplied to the biological treatment is less than a predetermined flow rate, the solid-liquid separation step and the dephosphorization step are stopped, and the solid-liquid only when the predetermined flow rate is obtained. By operating the separation step and the dephosphorization step, a predetermined flow rate is always secured in the dephosphorization step during the operation of the solid-liquid separation step and the dephosphorization step. It is not necessary to give an extra capacity to the circulating water pump that circulates and supplies the process, and it is not necessary to perform complicated control in accordance with the flow rate fluctuation.
[0011]
The organic wastewater treatment method according to claim 2 is the organic wastewater treatment method according to claim 1, wherein the solid-liquid separation step is a membrane separation step.
[0012]
According to the invention of claim 2, since the solid-liquid separation step is a membrane separation step, a precipitation tank is conventionally provided downstream of the aerobic tank even if the load on the biological treatment tank (for example, BOD, SS, etc.) increases. It is not necessary to care about the sedimentation property of the sludge as when provided, and the MLSS (activated sludge suspended matter) in the tank can be kept high. By maintaining a high MLSS (activated sludge suspended matter) in the tank, the SRT (sludge retention time) can be made longer, so that the concentration of organic substances such as COD in the treated water can be reduced and the inside of the tank can be reduced. Can promote self-digestion and reduce the amount of ozone required for sludge reduction.
Moreover, in the chemical phosphorus removal step, the amount of chemicals used can be reduced by improving the quality of the water to be treated. As a result of the suppression of slime adhesion to the crystal seeds of the treatment with the adsorbent and crystallization dephosphorization, the activity of these adsorbents and crystal seeds can be kept high, and the life of the adsorbents and crystal seeds can be extended. be able to.
Furthermore, when the reaction crystallization process is applied to the chemical phosphorus removal step, the purity of the reaction product of the recovered calcium phosphate can be increased, and the value at the time of reuse can be increased.
[0013]
The organic sewage treatment method according to claim 3 is characterized in that the chemical treatment is a reaction crystallization treatment in which a Ca compound and / or an alkali agent is added to react with phosphorus. Item 3. A method for treating organic wastewater according to Item 2.
[0014]
According to the invention of claim 3, by performing a reaction crystallization treatment in which a Ca compound and / or an alkaline agent is added and reacted with phosphorus as a chemical treatment, phosphorus discharged out of the system is extremely water content. It can be recovered as particles of low calcium phosphate compounds (eg, hydroxyapatite). Therefore, a process for particularly solid-liquid separation of a compound produced by chemical treatment is not particularly required, and the amount of sludge generated can be greatly reduced.
Furthermore, when reducing the entire amount of excess sludge generated from the biological treatment process, it is not necessary to install a sludge treatment device such as a dehydrator. Furthermore, when the amount of excess sludge generated from the biological treatment process is reduced, it is not necessary to install sludge treatment equipment such as a dehydrator. Moreover, this reaction product can be reused as a phosphate fertilizer raw material.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
One embodiment of the processing method of organic sewage concerning the present invention is described with reference to drawings.
Initially, the chemical | medical agent used by this embodiment is demonstrated.
(1) The calcium compound and / or alkaline agent used in the dephosphorization step of this embodiment is one that reacts with phosphorus in waste water to produce a hardly soluble calcium salt, and is typically slaked lime. An example is Ca (OH) 2 slaked lime milk. However, the calcium compound used in the present invention is not limited to Ca (OH) 2 as long as it has a similar function, and other calcium compounds such as calcium chloride can also be used. In the embodiment of the present invention, Ca (OH) 2 will be exemplified and described as a representative compound. Since Ca (OH) 2 can function not only as a calcium ion supply source but also as an alkali agent, it is desirable to use Ca (OH) 2 as the calcium compound.
(2) As the crystal seeds containing calcium phosphate used in the crystallization reaction, crystal seeds generally used in the crystallization reaction can be used. For example, in addition to natural materials such as bone charcoal, calcium phosphate, ore, artificially An adjusted dephosphorizing material or the like can also be used.
In the present embodiment, phosphorus ore is exemplified as a representative compound.
The particle size of the phosphate ore varies depending on the reaction mode, and 0.3 mm or more can be used for the fixed bed type, and 1.0 mm or less can be used for the fluidized bed type. However, in the case of a fixed bed type, it is desirable that the particle size is about 0.5 mm to 1.0 mm from the relationship between the pressure loss of the particle packed part (reaction part) and the reaction rate. In the case of a fluidized bed type, the particle size is desirably about 0.15 mm to 0.3 mm from the reaction rate and the maintainability of the fluidized bed.
[0016]
As shown in FIG. 1, the method for treating organic sewage according to one embodiment of the present invention solubilizes at least a part of a biological treatment process for biologically treating organic sewage and sludge generated in the biological treatment process. A solubilization step, a return step for returning the sludge solubilized in the solubilization step to the biological treatment step, and a solid-liquid separation step for solid-liquid separation of the biologically treated water in the aerobic tank 4 of the biological treatment step And a dephosphorization step of separating and removing phosphorus by chemical treatment from the membrane filtrate obtained in the membrane separation step.
[0017]
Next, a method for treating organic sewage according to the present invention, the main part of which consists of these steps, will be described with reference to FIG.
Raw water 1 which is organic waste water containing organic matter and phosphorus is introduced into an aeration tank 2 of a biological treatment process. In FIG. 1, the aeration tank 2 is divided into an anaerobic tank 3 and an aerobic tank 4 in order to perform nitrification / denitrification, but the aeration tank 2 is divided particularly when nitrification / denitrification is not performed. The entire aerobic tank 4 may be used. When the aeration tank 2 is divided into the anaerobic tank 3 and the aerobic tank 4 in order to perform nitrification / denitrification treatment, the raw water 1 is first introduced into the anaerobic tank 3, and the nitrifying liquid is supplied from the aerobic tank 4 to the anaerobic tank 3. Cycle through.
The treatment liquid treated in the aeration tank 2 is introduced into the solid-liquid separation step and is separated into solid and liquid by the membrane separation device 5. The separated sludge separated in the solid-liquid separation step is extracted as precipitated sludge 13, and a part thereof is returned to the aeration tank 2 as return sludge 14. The remainder is introduced as a branched sludge 15 into a solubilization tank 16 which is a solubilization process.
In this embodiment, a membrane separation method is employed in the solid-liquid separation step. When the membrane separation device 5 is provided in the solid-liquid separation step, the membrane separation device 5 can be installed in the aerobic tank 4 and the precipitation tank can be omitted.
The membrane separator 5 may be installed outside the aerobic tank 4 or may be provided outside for membrane filtration. The shape of the membrane of the membrane separation device 5 is not particularly limited, and a flat membrane, a hollow fiber membrane, a spiral membrane or the like can be used.
When the membrane separation apparatus 5 is provided in the solid-liquid separation process, even if the load (for example, BOD, SS, etc.) of the aeration tank 2 is increased, the sedimentation property of the sludge is not minded as in the case of using the precipitation tank. The SRT (sludge retention time) can be increased by maintaining the MLSS (activated sludge suspended substance) in the aeration tank 2 high, so that the concentration of organic substances such as COD in the treated water can be reduced. In addition, self-digestion in the tank can be promoted, and the amount of ozone necessary for sludge reduction can be reduced.
[0018]
The solubilizing means of the branched sludge 15 includes crushing methods (mill method, rotating disk method, etc.), biological treatment methods (enzyme method, thermophilic bacteria method, etc.), chemical methods (pharmaceutical method, ozone method, chlorine method, etc.), There are various physical methods (heating method, pulverization method, etc.), but there is no particular limitation. However, when crushing and solubilizing with a mill or the like, it is desirable to install a concentration tank in the previous stage.
In the present embodiment, the ozone method of the chemical method is applied as the solubilizing means for the branched sludge 15. That is, the sludge introduced into the solubilization tank 16 is oxidized and decomposed into BOD components by ozone and solubilized. In addition, when using ozone as the solubilization method of the branched sludge 15, sludge can be sent to the ozone solubilization tank 16 directly from the aeration tank 2.
[0019]
The solubilized sludge 17 solubilized in the solubilization tank 16 of the solubilization process is returned to the aeration tank 2 of the biological treatment process through the return path of the return process. The solubilized sludge 17 that has been returned is decomposed or disappeared entirely or partly in the biological treatment process.
[0020]
On the other hand, the membrane filtrate 6 that has been solid-liquid separated by the membrane separation device 5 immersed in the aeration tank 2 in the biological treatment process is sucked into the vacuum pump 7 and the fluidized bed reaction in the dephosphorization process provided in the subsequent stage. It is supplied to the crystallization tank 9 and dephosphorized.
In the reaction crystallization tank 9, the flow rate of the membrane filtrate 6 extracted from the aeration tank 2 and supplied to the reaction crystallization tank 9 is confirmed by the flow meter FM of the raw water 1, and based on this value, the membrane separation step and The dephosphorization process can also be operated intermittently.
[0021]
Here, a method for intermittently operating the membrane separation step and the dephosphorization step will be described.
The operation method of the membrane separation step and the dephosphorization step is as follows. When the flow rate of the raw water 1 indicated by the flow meter FM provided in the pipe for supplying the raw water 1 to the aeration tank 2 is less than a predetermined flow rate, the membrane separation step and the dephosphorization step are performed. The membrane separation step and the dephosphorization step are operated only when the process is stopped and a predetermined flow rate is obtained.
[0022]
Thus, by operating the membrane separation step and the dephosphorization step intermittently based on the flow rate of the raw water 1 introduced into the dephosphorization step,
(1) Since the surface of the membrane is always purified by the gas-liquid mixed flow generated in the aeration tank 2 during the pause of the membrane separation step, the contamination and clogging of the membrane surface can be suppressed.
(2) When the dephosphorization process provided in the latter stage of the membrane separation process is a fluid type reaction crystallization tank 9, a predetermined flow rate is always maintained during the operation of the reaction crystallization tank 9 (during the operation of the membrane separation process). Therefore, without adding extra capacity to the circulating water pump 8 which circulates and supplies the dephosphorized treated water to the reaction crystallization tank 9, and without complicated control according to the flow rate fluctuation, The analyzer can be operated.
[0023]
When the membrane filtered water 6 is supplied to the reaction crystallization tank 9 in the dephosphorization step, the membrane filtered water 6 flows upward in the reaction crystallization tank 9 while forming the fluidized bed 9a of the phosphorus ore 9b serving as a crystal seed. Pass water through. At this time, the addition amount of the slaked lime milk to the fluidized bed 9a is adjusted so that the pH value of the treated water in the reaction crystallization tank 9 is 9 to 11, preferably 9.5 to 10.5, by the pH meter PM.
[0024]
Thus, by adding the slaked lime milk and forming the fluidized bed 9a of the phosphate ore 9b containing calcium phosphate, the membrane filtrate 6 is brought into contact with the phosphate ore 9b and subjected to the reaction crystallization treatment, thereby being discharged out of the system. It can be recovered as a calcium phosphate compound (for example, calcium hydroxyapatite) having a low water content. A fixed bed type can be used as the reaction crystallization tank 9 that can be used in the dephosphorization process. However, the fixed bed type requires a backwash operation to prevent sticking, and the fluidized bed type has a higher processing speed. The fluidized bed type is preferable because the calcium phosphate compound to be recovered can be obtained quickly and uniformly.
[0025]
In the dephosphorization step, a coagulation treatment tank is provided in place of the fluidized bed type reaction crystallization tank 9 and a flocculant such as iron salt, aluminum salt (PAC), lime or the like is used to remove phosphorus from the membrane filtrate 6. May be separated and removed.
Moreover, you may make it isolate | separate and remove phosphorus from the membrane filtrate 6 using the adsorption agent which has phosphorus adsorption capacity, for example, an alumina, iron hydroxide, and a zeolite.
[0026]
The treated water 10 that has been dephosphorized in the dephosphorization process is treated in a neutralization facility as necessary, and then discharged into a river.
[0027]
【Example】
Next, an embodiment in which the organic wastewater treatment method having such a configuration and action is actually applied will be described.
Example 1
1. Raw water (a) Raw water treatment amount: 3m 3 / hr
(B) Phosphorus concentration in raw water: 3.5 mg (PO4-P) / L
(C) BOD concentration: 200 mg / L
(D) SS concentration: 160 mg / L
2. Aeration tank (a) Aeration tank capacity: 36 m 3
(B) MLSS (activated sludge suspended solids): 6000 mg / L
3. Membrane separation step (a) Filter area: 120 m 2
(B) Membrane flux: 0.6 m 3 / m 2 · day (however, filtration is only performed during dephosphorization process operation)
(C) Membrane material: hydrophilic cellulose acetate (UF membrane)
4). Dephosphorization step (a) Fluidized bed type reaction crystallization tank (b) Superficial velocity SV: 10 / hr
(However, empty speed based on treated water)
(C) Linear velocity LV: 10 m / hr
(D) pH value: 9.8 to 10.2 (treated water)
(E) Calcium ion concentration: raw water 25-35 mg / L, treated water 35-60 mg / L
As a result of treating the raw water under such operating conditions, the phosphorous concentration in the treated water was 0.65 mg (PO4-P) / L on average. The phosphorus concentration in the treated water was able to sufficiently clear the phosphorus content of 1 mg (PO 4 -P) / L, which is the allowable limit of the discharged water from the newly installed sewage treatment plant.
[0028]
Example 2
Amount of drug used when membrane-separated water obtained by membrane separation of aerobic biological treatment water and sediment separation water obtained by precipitation separation of biological treatment water at the latter stage of the aerobic tank are subjected to dephosphorylation treatment in a typical dephosphorization process. The values of water BV are shown in Table 1. In addition, the water flow BV [L / L-adsorbent] in the table indicates the water flow doubled amount indicating how many times the amount of water passed through the adsorbent filling volume.
[0029]
[Table 1]
Figure 0003846562
[0030]
As you can see from Table 1,
(1) In the case where the membrane filtered water obtained by membrane separation of the biologically treated water in the aerobic tank is subjected to dephosphorization using a flocculant or slaked lime (reaction crystallization), it is separated by settling at the latter stage of the conventional aerobic tank. Compared with the case of dephosphorizing the treated water, the amount of drug used could be reduced.
(2) On the other hand, when the membrane filtered water obtained by membrane separation of the biologically treated water in the aerobic tank is dephosphorized by adsorbent or reaction crystallization, the membrane filtered water is sterile, so slime (microorganisms, bacteria, As a result of the suppression of adhesion of algae and its dead bodies, such as a viscous mud mass mixed with earth and sand and rust mixed from the air, the surface activity of the adsorbent and crystal seeds can be kept high, The life of the adsorbent could be extended.
[0031]
【The invention's effect】
According to the present invention composed of the steps and actions described above, the following effects can be obtained.
1. According to invention of Claim 1, in the processing method of the organic wastewater which purifies organic wastewater by biological treatment,
(1) The sludge generated from the biological treatment process is solubilized in the solubilization process, and the solubilized sludge is returned to the biological treatment process, thereby significantly reducing the total amount of excess sludge generated from the biological treatment process. Can disappear.
(2) The separation water obtained in the solid-liquid separation process for solid-liquid separation of biologically treated water is released by chemical dephosphorization without paying particular attention to the removal of biological phosphorus. Water can stably maintain a high phosphorus treatment property (removal rate). In addition, the present invention can be applied to a small-scale treatment plant where it is difficult to allocate resident maintenance management personnel.
When the flow rate of the organic wastewater supplied to the biological treatment is less than a predetermined flow rate, the solid-liquid separation step and the dephosphorization step are stopped, and only when the predetermined flow rate is obtained, the solid-liquid separation step. In addition, by operating the dephosphorization step, a predetermined flow rate is always secured in the dephosphorization step during the operation of the solid-liquid separation step and the dephosphorization step. There is no need to give an extra capacity to the circulating water pump to be circulated, and there is no need to perform complicated control according to the flow rate fluctuation.
2. According to the invention of claim 2, when the solid-liquid separation step is a membrane separation step for the treated water of the biological treatment step,
(1) Even if the load on the biological treatment tank (for example, BOD, SS, etc.) increases, compared with the conventional method in which a sedimentation tank is provided after the aerobic tank, the sedimentation property of the sludge is not concerned. In addition, since the SRT (sludge retention time) can be increased by maintaining the MLSS (activated sludge suspended matter) in the tank high, the concentration of organic substances such as COD in the treated water can be reduced. It can promote self-digestion in the tank and reduce the amount of ozone required for sludge reduction.
(2) In the chemical phosphorus removal step, the amount of chemical used can be reduced by improving the quality of the water to be treated. In the treatment with the adsorbent and the treatment with crystallization dephosphorization, slime adhesion to the adsorbent and the crystal dephosphorization crystal seeds is suppressed, so that the activity of these adsorbents and crystal seeds can be kept high. It is possible to extend the life of the adsorbent and crystal seeds. Furthermore, when a reaction crystallization treatment is applied to the chemical phosphorus removal step, the purity of the reaction product of the recovered calcium phosphate can be increased, and the value at the time of reuse can be increased.
3. According to the invention of claim 3, by performing a reaction crystallization treatment in which a Ca compound and / or an alkali agent is added and reacted with phosphorus as a chemical treatment, phosphorus discharged out of the system has an extremely high moisture content. It can be recovered as particles of a calcium phosphate compound (eg hydroxyapatite). Therefore, the process of solid-liquid separation of the compound produced by chemical treatment is not particularly required, and the amount of sludge generated can be greatly reduced.
Furthermore, when the amount of excess sludge generated from the biological treatment process is reduced, it is not necessary to install sludge treatment equipment such as a dehydrator. Moreover, this reaction product can be reused for phosphate fertilizer weight loss.
[Brief description of the drawings]
FIG. 1 is an overall system diagram showing one embodiment of a method for treating organic sewage according to the present invention.
FIG. 2 is an overall system diagram showing a conventional method for treating organic sewage.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw water 2 Aeration tank 3 Anaerobic tank 4 Aerobic tank 5 Membrane separator 6 Membrane filtration water 7 Vacuum pump 8 Circulating water pump 9 Reactive crystallization tank 9a Fluidized bed 9b Phosphorus ore 10 Treated water 11 Diluted water pump 12 Treated water tank 13 Precipitation Sludge 14 Return sludge 15 Branched sludge 16 Solubilization tank 17 Solubilized sludge

Claims (3)

有機性汚水を生物処理により浄化する有機性汚水の処理方法において、
有機性汚水を生物処理する生物処理工程と、
前記生物処理工程で発生した汚泥の少なくとも一部を可溶化する可溶化工程と、
前記可溶化工程で可溶化した汚泥を前記生物処理工程に返送する返送工程と、
前記生物処理工程からの生物処理水を固液分離する固液分離工程と、
前記固液分離工程で得られた固液分離水から化学的処理によりリンを分離・除去する脱リン工程とを含み、
前記生物処理に供給される前記有機性汚水の流量が、所定の流量未満の場合は前記固液分離工程及び前記脱リン工程を停止し、前記所定の流量が得られる場合のみ前記固液分離工程及び前記脱リン工程を運転することを特徴とする有機性汚水の処理方法。
In a method for treating organic sewage that purifies organic sewage by biological treatment,
A biological treatment process for biologically treating organic wastewater;
A solubilization step for solubilizing at least part of the sludge generated in the biological treatment step;
A return step for returning the sludge solubilized in the solubilization step to the biological treatment step;
A solid-liquid separation step for solid-liquid separation of the biologically treated water from the biological treatment step;
Look including the dephosphorization step for separating and removing phosphorus by chemical treatment from the solid-liquid separated water obtained in the solid-liquid separation step,
When the flow rate of the organic wastewater supplied to the biological treatment is less than a predetermined flow rate, the solid-liquid separation step and the dephosphorization step are stopped, and only when the predetermined flow rate is obtained, the solid-liquid separation step. And the processing method of the organic wastewater characterized by operating the said dephosphorization process .
前記固液分離工程が膜分離工程であることを特徴とする請求項1に記載の有機性汚水の処理方法。  The method for treating organic sewage according to claim 1, wherein the solid-liquid separation step is a membrane separation step. 前記化学的処理が、Ca化合物及び/又はアルカリ剤を添加してリンと反応させる反応晶析処理であることを特徴とする請求項1又は請求項2に記載の有機性汚水の処理方法。  The method for treating organic sewage according to claim 1 or 2, wherein the chemical treatment is a reaction crystallization treatment in which a Ca compound and / or an alkali agent is added to react with phosphorus.
JP2001383552A 2001-12-17 2001-12-17 Organic wastewater treatment method Expired - Fee Related JP3846562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001383552A JP3846562B2 (en) 2001-12-17 2001-12-17 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001383552A JP3846562B2 (en) 2001-12-17 2001-12-17 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2003181489A JP2003181489A (en) 2003-07-02
JP3846562B2 true JP3846562B2 (en) 2006-11-15

Family

ID=27593558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001383552A Expired - Fee Related JP3846562B2 (en) 2001-12-17 2001-12-17 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3846562B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513368B2 (en) * 2004-03-19 2010-07-28 栗田工業株式会社 Sewage treatment method and apparatus
CN100372784C (en) * 2006-02-08 2008-03-05 哈尔滨工业大学 Sludge outer circulation type sewage treatment method of denitrifying and recovering phosphor using composite membrane bioreactor
JP2007222830A (en) * 2006-02-27 2007-09-06 Kubota Corp Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it
JP6407052B2 (en) * 2015-02-02 2018-10-17 クボタ環境サ−ビス株式会社 Phosphorus recovery apparatus and phosphorus recovery method
JP2016221491A (en) * 2015-06-03 2016-12-28 オルガノ株式会社 Organic wastewater treatment method and organic wastewater treatment equipment

Also Published As

Publication number Publication date
JP2003181489A (en) 2003-07-02

Similar Documents

Publication Publication Date Title
JP2812640B2 (en) Wastewater treatment device and wastewater treatment method
JP3009535B2 (en) Method and apparatus for biologically purifying sewage
JP2007313508A (en) Installation for biological water treatment for production of drinking water
JPH01228599A (en) Two-stage batchwise waste water treatment
JPH1190483A (en) Method and apparatus for treating waste water
JP2006239536A (en) Sewage treatment apparatus and method
JP4216569B2 (en) Organic wastewater and sludge treatment method and treatment equipment
JP2002011498A (en) Device for treating leachate
JP3846562B2 (en) Organic wastewater treatment method
JPH0712477B2 (en) How to remove phosphorus in water
JP2002205077A (en) Method and apparatus for treating organic sewage
JPS6317513B2 (en)
JP3794736B2 (en) Treatment method of wastewater containing high concentration phosphorus and ammonia nitrogen
JP4313647B2 (en) Wastewater treatment equipment
JPH10286583A (en) Apparatus for treating phosphorus-containing organic water apparatus
JP2002326088A (en) Method and apparatus for treating phosphorous and cod- containing water
JP2001179273A (en) Sludge storage tank and septic tank having the sludge storage tank
JPH06496A (en) Advanced treatment of sewage
JP4647814B2 (en) Organic wastewater treatment equipment
JPS5990690A (en) Treatment of water containing organic substance and phosphate
CN209065679U (en) Integral biological filtering tower processing equipment
JP2001038370A (en) Waste water treatment device
JPH091187A (en) Waste water treating device and its operating method
JP3983865B2 (en) Biological treatment of wastewater
KR20190004168A (en) A waste water of stock raising disposal plant

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140901

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees