JP4513368B2 - Sewage treatment method and apparatus - Google Patents

Sewage treatment method and apparatus Download PDF

Info

Publication number
JP4513368B2
JP4513368B2 JP2004080607A JP2004080607A JP4513368B2 JP 4513368 B2 JP4513368 B2 JP 4513368B2 JP 2004080607 A JP2004080607 A JP 2004080607A JP 2004080607 A JP2004080607 A JP 2004080607A JP 4513368 B2 JP4513368 B2 JP 4513368B2
Authority
JP
Japan
Prior art keywords
biological treatment
tank
supernatant water
flow rate
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004080607A
Other languages
Japanese (ja)
Other versions
JP2005262140A (en
Inventor
光春 寺嶋
ラジブ ゴエル
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004080607A priority Critical patent/JP4513368B2/en
Publication of JP2005262140A publication Critical patent/JP2005262140A/en
Application granted granted Critical
Publication of JP4513368B2 publication Critical patent/JP4513368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、下水流量が所定流量以下のときには下水を嫌気性生物処理した後、好気性生物処理する方法及び装置に関するものであり、詳しくは、降雨等により下水流量が増大した場合の汚泥流出を少なくするようにした下水処理方法及び装置に関する。   The present invention relates to a method and apparatus for anaerobic biological treatment of sewage after anaerobic biological treatment when the sewage flow rate is less than or equal to a predetermined flow rate. The present invention relates to a sewage treatment method and apparatus that are reduced in number.

下水を曝気処理して好気性生物処理し、次いで沈降分離処理し、汚泥の一部を生物処理部に返送する下水処理方法において、曝気処理の前段で嫌気性処理することにより、好気性処理後の活性汚泥の沈降性が向上することは周知である。   In the sewage treatment method in which sewage is aerobically treated by aerobic treatment and then settled and separated, and part of the sludge is returned to the biological treatment unit, anaerobic treatment is performed before the aerobic treatment. It is well known that the settling property of activated sludge is improved.

なお、特開平5−192688号公報には、下水を嫌気槽にて嫌気処理した後、好気槽にて好気処理する下水の活性汚泥処理装置において、前段の嫌気槽と並列に緩衝槽を設け、嫌気槽流出液と緩衝槽の流出液をいずれも好気槽に導入すること;好気槽での酸素利用速度に基づいて嫌気槽と緩衝槽への分流比を決定すること;これにより下水流量が急に増加した場合でも嫌気槽及び好気槽の負荷が急激に高くなることが防止されることが記載されている。
特開平5−192688号公報
In JP-A-5-192688, in an activated sludge treatment apparatus for sewage in which sewage is anaerobically treated in an anaerobic tank and then aerobically treated in an aerobic tank, a buffer tank is provided in parallel with the anaerobic tank in the previous stage. Providing anaerobic tank effluent and buffer effluent both to the aerobic tank; determining the diversion ratio between the anaerobic tank and the buffer tank based on the oxygen utilization rate in the aerobic tank; It is described that even when the sewage flow rate suddenly increases, the load on the anaerobic tank and the aerobic tank is prevented from rapidly increasing.
JP-A-5-192688

下水を好気性生物処理した後、最終沈殿池(終沈)にて固液分離する活性汚泥処理方法において、好気性処理の前段において嫌気性処理を行うことにより、終沈での汚泥の沈降性が向上するが、降雨等により下水流量が増大した場合、嫌気生物処理部からの汚泥流出量が増大し、終沈からの流出水に汚泥が混入するようになる。特開平5−192688号の下水処理方法では、好気槽の酸素利用速度を計測し、その結果に基づいて緩衝槽と嫌気槽とへの分流比を制御するものであるため、急激に下水流量が増大したときには制御遅れが生じ、沈殿池から汚泥が多量に流出してしまう。   In the activated sludge treatment method in which sewage is treated with aerobic organisms and then solid-liquid separated in the final sedimentation basin (final settling), the anaerobic treatment is carried out before the aerobic treatment, so However, when the sewage flow rate increases due to rainfall or the like, the amount of sludge outflow from the anaerobic organism treatment section increases, and the sludge enters the outflow water from the final settlement. In the sewage treatment method disclosed in JP-A-5-192688, the oxygen utilization rate of the aerobic tank is measured, and the diversion ratio between the buffer tank and the anaerobic tank is controlled based on the result. When this increases, a control delay occurs, and a large amount of sludge flows out of the sedimentation basin.

本発明は、上記従来の問題点を解決し、降雨等により下水流量が急激に増加した場合でも終沈からの汚泥流出が少ない下水処理方法及び装置を提供することを目的とする。   An object of the present invention is to solve the above-mentioned conventional problems and to provide a sewage treatment method and apparatus in which sludge outflow from final settlement is small even when the sewage flow rate is rapidly increased due to rainfall or the like.

発明の下水処理方法は、下水を沈殿処理した後、その上澄水を生物処理部で生物処理し、その処理液を処理水と汚泥とに固液分離し、分離汚泥の一部を生物処理部の入口側に返送する下水処理方法において、該生物処理部として、嫌気処理及び好気処理のいずれもが可能な前段生物処理部と、好気処理用の後段生物処理部とが設けられており、該上澄水の流量が所定流量以下のときには、該前段生物処理部を嫌気処理状態とし、前記上澄水の全量を該前段生物処理部と後段生物処理部とにこの順で流通させ、該上澄水の流量が該所定流量を超えるときには、該前段生物処理部を好気処理状態とすると共に、該上澄水の一部を該前段生物処理部と後段生物処理部とにこの順で流通させ、該上澄水の残部は前段生物処理部を経ることなく後段生物処理部に流入させることを特徴とするものである。 In the sewage treatment method of the present invention, after sewage is precipitated, the supernatant water is biologically treated in a biological treatment unit, the treated liquid is solid-liquid separated into treated water and sludge, and a part of the separated sludge is biologically treated. In the sewage treatment method to be returned to the inlet side of the part, as the biological treatment part, a pre-stage biological treatment part capable of both anaerobic treatment and aerobic treatment and a post-stage biological treatment part for aerobic treatment are provided. When the flow rate of the supernatant water is equal to or lower than a predetermined flow rate, the front biological treatment unit is placed in an anaerobic treatment state, and the entire amount of the supernatant water is circulated in this order through the front biological treatment unit and the rear biological treatment unit, When the flow rate of the supernatant water exceeds the predetermined flow rate, the pre-stage biological treatment section is brought into an aerobic treatment state, and a part of the supernatant water is circulated in this order through the pre-stage biological treatment section and the post-stage biological treatment section. The remainder of the supernatant water is not passed through the previous biological treatment section. It is characterized in that to flow into the processing unit.

なお、この前段生物処理部で好気処理を行うための散気部材としては、内部に空気が吹き込まれると共にこの空気を外周面に導く通路を有した筒状の支持体と、該支持体の外周を取り巻いている弾力性被包体と、該被包体に設けられた、空気吹出用スリットと、を備えてなるものが好適である In addition, as an aeration member for performing an aerobic treatment in this pre-stage biological treatment unit, air is blown into the inside and a cylindrical support body having a passage for guiding the air to the outer peripheral surface, and the support body A thing provided with the elastic envelope which surrounds the outer periphery, and the slit for air blowing provided in this envelope is suitable .

上記発明のための下水処理装置は、最初沈殿池と、該最初沈殿池からの上澄水を受け入れる嫌気性及び好気性のいずれの生物処理も可能な前段生物処理槽と、該前段生物処理槽の生物処理水を受け入れる好気性の後段生物処理槽と、該後段生物処理槽の生物処理水を受け入れる最終沈殿池とを有する下水処理装置において、該最初沈殿池からの上澄水が所定流量以下のときには、該前段生物処理槽を嫌気処理状態とし、前記上澄水の全量を該前段生物処理部と後段生物処理部とにこの順で流通させる手段と、該最初沈殿池からの上澄水が該所定流量を超過する場合には、該前段生物処理槽を好気性とすると共に、該所定流量の上澄水を該前段生物処理部と後段生物処理部とにこの順で流通させ、該上澄水の残部は、該前段生物処理槽を経ることなく後段生物処理槽へ導く手段とを設けたことを特徴とするものである。 Sewage treatment apparatus for the onset Ming, a primary sedimentation, and any biological treatment also possible preceding biological treatment tank anaerobic and aerobic accept supernatant water from the primary sedimentation, the front stage biological treatment tank In a sewage treatment apparatus having an aerobic post-stage biological treatment tank that accepts the biological treatment water and a final sedimentation basin that accepts the biological treatment water of the post-stage biological treatment tank, the supernatant water from the first sedimentation basin has a predetermined flow rate or less. Sometimes, the pre-stage biological treatment tank is placed in an anaerobic treatment state, and the whole amount of the supernatant water is circulated in this order through the pre-stage biological treatment section and the post-stage biological treatment section, and the supernatant water from the first sedimentation basin is When the flow rate is exceeded, the pre-stage biological treatment tank is made aerobic, and the predetermined flow rate of the supernatant water is circulated in this order through the pre-stage biological treatment section and the post-stage biological treatment section, and the remaining portion of the supernatant water Is passed through the previous biological treatment tank. In which it characterized in that a means for guiding the subsequent biological treatment tank without.

本発明の下水処理方法においては、年間の大部分の期間は上澄水流量が所定流量以下のときであり、上澄水は嫌気処理された後、好気処理されるため、この下水処理系に保持される汚泥は沈降性が良好となる In the sewage treatment method of the present invention, most of the year is when the flow rate of the supernatant water is equal to or lower than the predetermined flow rate, and the supernatant water is anaerobically treated after being anaerobically treated. The sludge produced has good sedimentation properties .

発明において、上澄水流量が所定流量を超過するときには、上澄水の一部は前段生物処理部に流通させるとともに、残部は第1発明と同様にして前段生物処理部を経ることなく後段生物処理部に導入する。この場合も、後段生物処理部からの流出水中の固形分濃度が低く、上澄水流量が所定流量以下のときに形成された沈降性の良好な活性汚泥が保持されているので、固液分離により固形分濃度の低い処理水が得られる。 In the present invention, when the supernatant water flow rate exceeds a predetermined flow rate, a part of the supernatant water is circulated to the preceding biological treatment section, and the remaining portion is passed through the preceding biological treatment section without passing through the previous biological treatment section as in the first invention. Introduce to the department. Also in this case, the activated sludge with good sedimentation formed when the solid content concentration in the effluent from the latter biological treatment section is low and the supernatant water flow rate is below the predetermined flow rate is retained. A treated water having a low solid content is obtained.

の発明においては、上澄水流量が所定流量を超えるときには、前段生物処理部においても好気処理を行う。これにより前段生物処理部においてもBOD成分の好気性処理が行われることになり、処理水の溶解性BOD濃度が低下する。 In inventions of this, when the upper supernatant water flow exceeds a predetermined flow rate, it performs aerobic treatment even in front biological treatment unit. Thus will be aerobic treatment of BOD components even in front biological treatment section is carried out, the solubility BOD concentration in the treated water is low down.

の発明において、前段生物処理部で好気処理を行う場合、前段生物処理部に設けられた散気部材から散気を行う。この散気部材は、前段生物処理部を嫌気処理状態とするときには使用(通気)されないものであり、非使用時に汚泥が内部で固結して閉塞するおそれがある。そこで、この散気部材としては、非通気時に内部に水が入り込まない構造のものが好適であり、具体的には内部に空気が吹き込まれると共にこの空気を外周面に導く通路を有した筒状の支持体と、該支持体の外周を取り巻いている弾力性被包体と、該被包体に設けられた、空気吹出用スリットとを備えてなるものが好適である。 In inventions of this, when performing aerobic treatment in the preceding paragraph biological treatment unit performs air diffusion from the air diffuser member provided in the preceding stage biological treatment unit. This aeration member is not used (vented) when the previous biological treatment section is in an anaerobic treatment state, and there is a possibility that sludge is solidified inside and clogged when not in use. Therefore, the air diffuser is preferably a structure that does not allow water to enter inside when it is not ventilated. Specifically, air is blown into the inside and a cylindrical shape having a passage that guides the air to the outer peripheral surface. And the elastic enveloping body surrounding the outer periphery of the supporting body, and the air blowing slit provided in the enveloping body are suitable.

以下、図面を参照して本発明についてさらに詳細に説明する。図1(a)は参考例に係る下水処理方法及び装置の系統図であり、図1(b)は発明の実施の形態に係る下水処理方法及び装置の系統図である。 Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1A is a system diagram of a sewage treatment method and apparatus according to a reference example , and FIG. 1B is a system diagram of a sewage treatment method and apparatus according to an embodiment of the present invention.

図1(a)において、下水は最初沈殿池(初沈)1に導入されて固液分離され、上澄水が配管2を介して前段生物処理部としての嫌気処理用の第1槽3に導入される。この第1槽3には撹拌機4が設けられている。第1槽3にて嫌気処理された水は、後段生物処理部としての第2槽5に導入され、散気管6からの散気により好気処理される。好気処理された水は、最終沈殿池(終沈)7に導入され、固液分離処理され、上澄水が処理水として流出する。終沈7で沈降した汚泥の一部は汚泥返送管8を介して第1槽3へ返送され、余剰の汚泥は配管8aより余剰汚泥として排出される。   In FIG. 1A, sewage is introduced into a first sedimentation basin (primary sedimentation) 1 and separated into solid and liquid, and supernatant water is introduced into a first tank 3 for anaerobic treatment as a pre-stage biological treatment section via a pipe 2. Is done. The first tank 3 is provided with a stirrer 4. The water that has been anaerobically treated in the first tank 3 is introduced into the second tank 5 as a post-stage biological treatment unit, and is subjected to aerobic treatment by aeration from the aeration tube 6. The water subjected to aerobic treatment is introduced into a final sedimentation basin (final sedimentation) 7 and subjected to solid-liquid separation treatment, and the supernatant water flows out as treated water. Part of the sludge settled in the final sedimentation 7 is returned to the first tank 3 through the sludge return pipe 8, and the excess sludge is discharged as excess sludge from the pipe 8a.

上澄水流量が所定流量以下のときには、上記のフローに従って上澄水の全量が第1槽3にて嫌気処理された後、第2槽5にて好気処理される。上澄水流量が所定流量を超えるのは、一般的には降雨によるものであるため、年間の大部分の期間は、嫌気処理した後、好気処理することになるため、好気槽(第2槽5)の流出水中の汚泥の沈降性が良好なものとなる。   When the supernatant water flow rate is equal to or lower than the predetermined flow rate, the whole supernatant water is anaerobically treated in the first tank 3 and then aerobically treated in the second tank 5 according to the above flow. Since it is generally due to rainfall that the supernatant water flow rate exceeds the predetermined flow rate, the aerobic tank (second tank) is used for the most part of the year after anaerobic treatment. Sedimentation of sludge in the effluent of tank 5) will be good.

上澄水流量が所定流量を超過した場合には、上澄水の一部は配管2から分岐したバイパス配管9を介して、第1槽3を経ることなく直接に第2槽5へ導入される。なお、この配管9には流量調節弁10が設けられている。   When the supernatant water flow rate exceeds a predetermined flow rate, a part of the supernatant water is directly introduced into the second tank 5 via the bypass pipe 9 branched from the pipe 2 without passing through the first tank 3. The pipe 9 is provided with a flow rate adjusting valve 10.

この上澄水流量が所定流量を超えるのは、一般的には、降雨によるものであるため、バイパス配管9を流れる水は下水が雨水で希釈され、固形分濃度が極めて低い水となっている。そのため、第1槽3から第2槽5へ流入する混合液は、バイパス流入する上澄液で希釈され、固形分濃度は低くなり、第2槽5から流出する流量は、増加するものの、流出水中の固形分濃度は低いので、終沈7の固形分負荷は大きく増加せず、終沈7からの処理水中の固形分濃度も、降雨前と大差のない低いものとなる。汚泥の沈降性も、一時的な処理フローの変更では良好に維持される。   The flow rate of the supernatant water exceeding the predetermined flow rate is generally due to rain. Therefore, the water flowing through the bypass pipe 9 is diluted with rain water and has a very low solid content. Therefore, the mixed liquid flowing into the second tank 5 from the first tank 3 is diluted with the supernatant liquid flowing in by bypass, the solid content concentration becomes low, and the flow rate flowing out from the second tank 5 increases, but the outflow Since the solid content concentration in water is low, the solid content load of the final sediment 7 does not increase greatly, and the solid content concentration in the treated water from the final sediment 7 is also low, which is not much different from that before rainfall. The sedimentation property of sludge is also well maintained by a temporary change in the processing flow.

図1(b)は発明の実施の形態を示すものである。 FIG. 1 (b) shows an embodiment of the present invention.

この実施の形態では、前段生物処理部として、第1槽3の代わりに、撹拌機4と散気管11とを備えた第1槽13が設けられている。その他の構成は図1(a)と同一である。   In this embodiment, instead of the first tank 3, a first tank 13 including a stirrer 4 and an air diffuser 11 is provided as a pre-stage biological treatment unit. Other configurations are the same as those in FIG.

この図1(b)のフローでは、上澄水流量が所定流量以下のときには、図1(a)と全く同一の処理が行われる。即ち、上澄水の全量が第1槽13へ送られる。また、第1槽13では、散気は全く行われず、第1槽13は第1槽3と同じく嫌気槽となる。従って、下水は、全量が嫌気処理された後、好気処理されるので、終沈7での汚泥沈降性が良好となる。   In the flow of FIG. 1 (b), when the supernatant water flow rate is equal to or lower than the predetermined flow rate, the same processing as in FIG. 1 (a) is performed. That is, the entire amount of the supernatant water is sent to the first tank 13. Moreover, in the 1st tank 13, aeration is not performed at all and the 1st tank 13 becomes an anaerobic tank like the 1st tank 3. FIG. Therefore, since the whole amount of sewage is subjected to an aerobic treatment after being subjected to an anaerobic treatment, the sludge settling property at the final settling 7 is improved.

上澄水流量が所定流量を超過した場合には、図1(a)と同じく上澄水の一部はバイパス管9を介して第2槽5へ直接に導入される。   When the supernatant water flow rate exceeds the predetermined flow rate, a part of the supernatant water is directly introduced into the second tank 5 through the bypass pipe 9 as in FIG.

この図1(b)での処理が図1(a)での処理と異なるのは、この上澄水流量が所定流量を超過する場合に、散気管11から散気し、第1槽13にて好気処理を行う点にある。このように第1槽にて好気処理を行うと、第1槽13を経て第2槽5へ流れる水は、2段にわたって好気処理を受けることになり、終沈7から流出する処理水中の溶解性BOD濃度が低下する。なお、この場合、第1槽13では嫌気処理は行われないが、上澄水流量が所定流量以下である期間に、上澄水は嫌気処理された後、好気処理されるために、汚泥の沈降性は良好に維持されるとともに、上記の通り処理水中の溶解性BOD濃度は図1(a)よりも低下する。   The processing in FIG. 1B is different from the processing in FIG. 1A because when the supernatant water flow rate exceeds a predetermined flow rate, air is diffused from the air diffusing pipe 11 and the first tank 13 An aerobic process is performed. When the aerobic treatment is performed in the first tank in this way, the water flowing to the second tank 5 through the first tank 13 is subjected to the aerobic treatment over two stages, and the treated water flowing out from the final settling 7 The soluble BOD concentration of the is reduced. In this case, anaerobic treatment is not performed in the first tank 13, but the supernatant water is anaerobically treated after being anaerobically treated during a period in which the supernatant water flow rate is equal to or lower than a predetermined flow rate. As described above, the solubility BOD concentration in the treated water is lower than that in FIG.

図1(b)は本発明の下水処理方法の簡明な構成例であり、本発明は槽を多段に設ける構成など、他の態様をもとりうる。図2(a),(b)は前段生物処理部及び後段生物処理部をそれぞれ2槽で構成したものであり、図2(a)は参考例に係り、図2(b)は発明の実施の形態に係る。 FIG. 1 (b) is a simple configuration example of the sewage treatment method of the present invention, and the present invention can take other modes such as a configuration in which tanks are provided in multiple stages. 2 (a) and 2 (b) show that the former biological treatment section and the latter biological treatment section are each composed of two tanks, FIG. 2 (a) relates to a reference example , and FIG. 2 (b) shows the present invention. According to the embodiment.

図2(a)では、第1槽3の流出水を撹拌機4を有した嫌気槽3Aに導入して第2段目の嫌気処理を行った後、好気槽5Aに導入して好気処理し、この流出水を第2槽5に導入している。初沈1からの上澄水流量が所定流量以下のときにはバイパス配管9へは上澄水は分岐されず、上澄水流量が所定流量を超過するときには、上澄水の一部が配管2からバイパス配管9を介して第2槽5へ導入される。図2(a)のその他の構成は図1(a)と同一であり、同一符号は同一部分を示している。   In FIG. 2A, the effluent from the first tank 3 is introduced into the anaerobic tank 3A having the stirrer 4 and subjected to the second stage anaerobic treatment, and then introduced into the aerobic tank 5A. This effluent is treated and introduced into the second tank 5. When the supernatant water flow rate from the first sedimentation 1 is less than or equal to the predetermined flow rate, the supernatant water is not branched to the bypass pipe 9, and when the supernatant water flow rate exceeds the predetermined flow rate, a part of the supernatant water passes from the pipe 2 to the bypass pipe 9. Through the second tank 5. The other configuration in FIG. 2A is the same as that in FIG. 1A, and the same reference numerals denote the same parts.

この図2(a)の下水処理方法でも図1(a)と同様の作用効果が奏される。なお、嫌気処理及び好気処理をそれぞれ多段に行うことにより、処理水の水質が向上する。   This sewage treatment method shown in FIG. 2 (a) also has the same effects as those shown in FIG. 1 (a). In addition, the quality of treated water improves by performing anaerobic treatment and aerobic treatment in multiple stages.

図2(b)では、第1槽13の流出水の全量を、該第1槽13と同じく撹拌機4及び散気管11を備えた槽13Aに導入し、この槽13Aの流出水を好気槽5Aに導入する。この好気槽5Aの流出水を第2槽5に導入する。   In FIG. 2 (b), the entire amount of the effluent from the first tank 13 is introduced into a tank 13A equipped with the stirrer 4 and the air diffuser 11 as in the first tank 13, and the effluent from the tank 13A is aerobic. Introduce into tank 5A. The outflow water from the aerobic tank 5A is introduced into the second tank 5.

この図2(a)においても、初沈1からの上澄水流量が所定流量以下のときにはバイパス配管9へは上澄水は分岐されず、また、槽13,13Aは散気されず嫌気処理を行う。   Also in FIG. 2 (a), when the supernatant water flow rate from the initial sedimentation 1 is equal to or lower than the predetermined flow rate, the supernatant water is not branched to the bypass pipe 9, and the tanks 13 and 13A are not diffused and anaerobic treatment is performed. .

上澄水流量が所定流量を超過するときには、上澄水の一部がバイパス配管9から第2槽5へ導入される。そして、槽13,13Aは散気管11から散気が行われ、好気処理を行う。図2(b)のその他の構成は図1(b)と同一であり、同一符号は同一部分を示している。   When the supernatant water flow rate exceeds a predetermined flow rate, a part of the supernatant water is introduced into the second tank 5 from the bypass pipe 9. And the tanks 13 and 13A are diffused from the diffuser tube 11, and perform aerobic treatment. The other structure of FIG.2 (b) is the same as FIG.1 (b), and the same code | symbol has shown the identical part.

この図2(b)の下水処理方法でも図1(b)と同様の作用効果が奏される。なお、好気処理をさらに多段に行うことにより、処理水の溶解性BOD濃度が低くなる
図2(a),(b)では、前段生物処理部を槽13,13Aの2槽で構成しているが、1槽でもよく、3槽以上でもよい。後段生物処理部も、1槽又は3槽以上でもよい。
This sewage treatment method in FIG. 2B also provides the same operational effects as in FIG. In addition, the solubility BOD density | concentration of treated water will become low by performing an aerobic process in multistage further. In FIG. However, there may be one tank or three or more tanks. The latter biological treatment section may also be one tank or three or more tanks.

図2(a),(b)では、上澄水の一部をバイパス配管9から第2槽5にのみ導入しているが、槽5Aにも導入してもよく、槽5Aのみに導入してもよい。また、図示はしないが、後段生物処理部を3槽以上で構成した場合、第1槽13のほかにこれらの槽のうちの任意の一部にのみ上澄水を分割注入してもよく、全槽に上澄水を分割注入してもよい。   In FIGS. 2 (a) and (b), a part of the supernatant water is introduced only from the bypass pipe 9 into the second tank 5, but it may be introduced into the tank 5A or only into the tank 5A. Also good. Although not shown, when the latter biological treatment section is composed of three or more tanks, the supernatant water may be divided and injected into only a part of these tanks in addition to the first tank 13. The supernatant water may be divided and injected into the tank.

図1,2では、各槽が独立したものである様に図示されているが、1つの槽体を仕切ることにより各槽を形成してもよい。   In FIGS. 1 and 2, each tank is illustrated as being independent, but each tank may be formed by partitioning one tank body.

なお、散気管6としては各種のものを用いることができる。図1(b)と図2(b)の槽13,13Aには、攪拌機4および散気管11の両方の機能を備えた装置として、空気供給機能付きの攪拌装置を用いることができる。   Various kinds of diffuser tubes 6 can be used. In the tanks 13 and 13A of FIG. 1B and FIG. 2B, a stirrer with an air supply function can be used as a device having both functions of the stirrer 4 and the diffuser tube 11.

上記図1(b),図2(b)の槽13,13Aに用いられる散気管11は、該槽13,13Aで嫌気処理を行うときには通気されないものである。上澄水流量が所定流量以下である状態が継続するときには、該散気管は長期にわたり通気されず、そのため、内部において汚泥が固化して次回の通気時の散気に支障が生じるおそれがある。そこで、この散気管11としては、非通気時には内部に槽内の汚泥が入り込まない構成のものが好適である。図3はこのような汚泥侵入防止特性を有した散気管の一例を示している。   The diffuser tube 11 used in the tanks 13 and 13A shown in FIGS. 1B and 2B is not vented when anaerobic treatment is performed in the tanks 13 and 13A. When the state where the supernatant water flow rate is equal to or lower than the predetermined flow rate continues, the air diffuser is not vented over a long period of time. Therefore, sludge is solidified inside, and there is a possibility that the air diffuser during the next venting may be hindered. Therefore, the air diffuser 11 is preferably configured so that the sludge in the tank does not enter inside when not vented. FIG. 3 shows an example of an air diffuser having such a sludge invasion preventing characteristic.

図示のように一端が閉じ、他端に送気ヘッダ5に接続する接続口22が設けられた中空筒状の支持体21を有し、この支持体は両端部の間に、軸方向にほぼ半周が切割られた切欠き開放部23を有する。この支持体の外周のほぼ全長を、多数の微細なスリット25が刻まれた弾力性があるチューブ(被包体)24が包む。26は上記チューブの各端部を支持体の各端部の外周に固定する留め輪を示す。   As shown in the figure, a hollow cylindrical support body 21 having one end closed and a connection port 22 connected to the air feeding header 5 at the other end is provided between the both end portions. It has the notch opening part 23 by which the half circumference was cut. An elastic tube (encapsulated body) 24 in which a large number of fine slits 25 are engraved wraps almost the entire length of the outer periphery of the support. Reference numeral 26 denotes a retaining ring for fixing each end of the tube to the outer periphery of each end of the support.

チューブ24に形成されたスリット25は、(b),(c)図に示したように、円周方向Eに対し正側に角度α(30〜60°)で配列されたスリット25bと、負側に角度α(30〜60°)で配列されたスリット25bとからなり、スリット25a同志、及びスリット25bは夫々平行で、スリット25aの延長方向に隣接してスリット25bが配置され、スリット25bの延長方向に隣接してスリット25aが配置されたパターンであることが好ましい。それは、支持体内に空気が供給されたチューブ24が膨らむと、各スリット25a,25bは円周方向に対して同一角度を有するため各スリットは同程度に開口し、全スリットから均等に気泡が発生すること、又、全スリットが有効なスリットとして作用し、均等に通気するので、通気抵抗が低下すること、更に、各スリット当りの通気量が小さいので、微細な気泡が連続して発生すること、スリットの方向が集中した局所的な脆弱部が生じないため、チューブは円周方向、及び軸方向共に引張強度が全般的に高くなること等の理由による。尚、チューブの材質は軟質塩化ビニール系樹脂、肉厚は0.8mm、スリット25a,25bの円周方向に対する角度αは45°、各スリットの長さは1.0mm、スリットの間隔はX=3.7mm、Y=3.2mm、チューブの長さ、及び肉径は支持体の長さ、及び外径に対応させることが好ましい。   The slits 25 formed in the tube 24 are negatively connected to the slits 25b arranged at an angle α (30 to 60 °) on the positive side with respect to the circumferential direction E, as shown in FIGS. The slits 25b are arranged at an angle α (30 to 60 °) on the side, the slits 25a and the slits 25b are parallel to each other, and the slits 25b are arranged adjacent to the extending direction of the slits 25a. A pattern in which slits 25a are arranged adjacent to the extending direction is preferable. That is, when the tube 24 supplied with air is expanded into the support body, the slits 25a and 25b have the same angle with respect to the circumferential direction, so that the slits are opened to the same extent, and bubbles are generated uniformly from all the slits. In addition, since all the slits act as effective slits and ventilate evenly, the airflow resistance is reduced, and furthermore, since the airflow per each slit is small, fine bubbles are continuously generated. This is because, since the local weakened portion where the slit direction is concentrated does not occur, the tube generally has a high tensile strength in both the circumferential direction and the axial direction. The tube material is soft vinyl chloride resin, the wall thickness is 0.8 mm, the angle α with respect to the circumferential direction of the slits 25 a and 25 b is 45 °, the length of each slit is 1.0 mm, and the interval between the slits is X = It is preferable that 3.7 mm, Y = 3.2 mm, the length of the tube, and the wall diameter correspond to the length of the support and the outer diameter.

従って、支持体21の接続口22を送気ヘッダ(図示略)に連結し、送気ヘッダから支持体21の内部に空気を供給すると、支持体の切欠き開放部23から出る空気によってスリット25を有するチューブ24は膨らみ、チューブの回りに刻まれた全部のスリットは空気で押し開かれ、空気はそのスリットを通じチューブの全長、全周から気泡となって噴出する。空気供給を停止すると、スリット25は閉口し、汚泥が入り込まないので、スリットや散気管内部が汚泥などにより閉塞されることがない。   Therefore, when the connection port 22 of the support 21 is connected to an air supply header (not shown) and air is supplied from the air supply header to the inside of the support 21, the air that exits from the notch opening 23 of the support causes the slit 25. The tube 24 having swells, and all slits carved around the tube are pushed open by air, and air is blown out as bubbles from the entire length of the tube through the slit. When the air supply is stopped, the slit 25 is closed and the sludge does not enter, so that the slit and the inside of the air diffuser are not blocked by the sludge.

以下、実施例、参考例及び比較例について説明する。 Examples , reference examples and comparative examples will be described below.

参考例1
図2(a)の構成の下水処理方法において、各槽の面積ないし容積を次の通りとした。
最初沈殿槽面積:100m2
前段生物処理部,槽3容積 :150m3
槽3A容積:150m3
後段生物処理部,槽5A容積:300m3
槽5容積 :300m3
最終沈殿槽面積:150m2
Reference example 1
In the sewage treatment method shown in FIG. 2A, the area or volume of each tank was as follows.
Initial sedimentation tank area: 100m2
Pre-stage biological treatment section, tank 3 volume: 150 m3
Tank 3A volume: 150m3
Subsequent biological treatment section, tank 5A volume: 300 m3
Tank 5 volume: 300m3
Final sedimentation tank area: 150m2

2ヶ月間晴天が継続し、この間平均してCODcr125mg/L,第2槽5のMLSS1400mg/Lであり、上澄水流量は160m3/Hrであった。   The clear sky continued for 2 months. During this period, CODcr was 125 mg / L on average, MLSS was 1400 mg / L in the second tank 5, and the supernatant water flow rate was 160 m3 / Hr.

各槽5A,5における散気量を1.1m3/m3・hr(25℃で)とした。バイパス配管9の流量はゼロとした。散気管は多孔質セラミックス管とした。   The amount of aeration in each tank 5A, 5 was 1.1 m3 / m3 · hr (at 25 ° C.). The flow rate of the bypass pipe 9 was set to zero. The diffuser tube was a porous ceramic tube.

この晴天期間中の処理水質等は次の通りであった。
SVI(汚泥の沈降性) 170[−]
曝気槽(第2槽5)出口のSS濃度 1400[mg/L]
終沈流出処理水のSS濃度 2.7[mg/L]
終沈流出処理水のBOD濃度 1.1[mg/L]
終沈流出処理水の溶解性BOD濃度 0.52[mg/L]
The quality of the treated water during this fine weather period was as follows.
SVI (sludge sedimentation) 170 [-]
SS concentration at the outlet of the aeration tank (second tank 5) 1400 [mg / L]
SS concentration of final settled runoff water 2.7 [mg / L]
BOD concentration of final runoff effluent 1.1 [mg / L]
Dissolvable BOD concentration of final sediment runoff water 0.52 [mg / L]

その後、降雨があり、上澄水流量が320m3/Hrに増加したので、そのうちの200m3/Hrについては第1槽3へ送り、残りの120m3/Hrをバイパス配管9から第2槽5へ直接に送った。このときの運転結果を表1に示す。   After that, there was rain and the supernatant water flow increased to 320m3 / Hr. Of that, 200m3 / Hr was sent to the first tank 3, and the remaining 120m3 / Hr was sent directly from the bypass pipe 9 to the second tank 5. It was. Table 1 shows the operation results at this time.

比較例1
参考例1と同一構成の下水処理装置を参考例1の下水処理装置と並設し、同一時期に同一流入下水流量にて運転した。ただし、この比較例1では、降雨時にもバイパス流量をゼロとした。図4(a)はこの比較例1のフローを示している。このときの降雨時の運転結果を表1に示す。なお、晴天時の運転結果は参考例1の場合と同一であった。
Comparative Example 1
Reference Example 1 sewage treatment apparatus having the same configuration as the juxtaposed and sewage treatment device of Reference Example 1, was operated at the same flow into the sewage flow in the one time. However, in this comparative example 1, the bypass flow rate was set to zero even during rainfall. FIG. 4A shows the flow of the comparative example 1. Table 1 shows the operation results during the rain. In addition, the driving result at the time of fine weather was the same as the case of the reference example 1.

実施例
参考例1の下水処理装置と並設して設けられた図2(b)に示す下水処理装置に参考例1と同一流量にて下水を流して処理した。この下水処理装置は、参考例1(図2(a))の下水処理装置において、槽3,3Aにそれぞれ散気管11を設置して槽13,13Aとしたこと以外は参考例1と同一構成のものである。なお、各槽13,13Aの散気管11への送気量はそれぞれ1.1m3/m3・hr(25℃で)とした。降雨時のバイパス流量も参考例1と同一とした。降雨時の運転結果を表1に示す。なお、晴天時の運転結果は参考例1と同一であった。
Example 1
Was treated by passing the sewage in Reference Example 1 and the same flow rate sewage treatment apparatus shown in FIG. 2 (b) provided in parallel with sewage treatment apparatus of Example 1. This sewage treatment apparatus has the same configuration as that of Reference Example 1 except that in the sewage treatment apparatus of Reference Example 1 (FIG. 2 (a)), aeration pipes 11 are installed in tanks 3 and 3A to form tanks 13 and 13A, respectively. belongs to. The amount of air supplied to the air diffuser 11 in each of the tanks 13 and 13A was 1.1 m 3 / m 3 · hr (at 25 ° C.). The bypass flow rate during rainfall was the same as in Reference Example 1. Table 1 shows the operation results during rainfall. In addition, the driving result at the time of fine weather was the same as the reference example 1.

比較例2
実施例の下水処理装置と並設された下水処理装置において、同一時期に運転を行った。図4(b)はこのときのフローを示している。降雨時の運転結果を表1に示す。なお、晴天時には全槽好気運転とし、降雨時には全槽好気運転のまま、実施例と同様に上澄水のうち120m3/hrをバイパス配管9から第2槽5へ送給した。
Comparative Example 2
In the sewage treatment apparatus provided side by side with the sewage treatment apparatus of Example 1 , the operation was performed at the same time. FIG. 4B shows a flow at this time. Table 1 shows the operation results during rainfall. In addition, it was set as the all tank aerobic operation at the time of fine weather, and 120 m <3> / hr of the supernatant water was sent to the 2nd tank 5 from the bypass piping 9 similarly to Example 1 with the aerobic operation of the whole tank at the time of raining.

Figure 0004513368
Figure 0004513368

実施例1、参考例1、比較例1,2の結果についての考察は次の通りである。
(1) 比較例1では、雨天時流量が増加し最終沈殿池の流量負荷が増大したとき、曝気槽出口のMLSS濃度が晴天時と変わらないために、固形物負荷も増加した。このため、晴天時に嫌気好気運転をしているために汚泥の沈降性は良好であるが、最終沈殿池からSSが流出した。SS由来のBOD成分により処理水のBODも高くなった。
(2) 比較例2では、雨天時流量が増加し最終沈殿池の流量負荷が増大したとき、バイパスフィードにより曝気槽出口のMLSS濃度が晴天時よりも減少し、固形物負荷の増加はわずかであるが、晴天時に全槽好気運転をしているために汚泥の沈降性が良好で無く、最終沈殿池からSSが流出した。SS由来のBOD成分により処理水のBODも高くなった。
(3) 参考例1では、雨天時流量が増加し最終沈殿池の流量負荷が増大したとき、バイパスフィードにより曝気槽出口のMLSS濃度が晴天時よりも減少し、固形物負荷の増加はわずかである。また、晴天時に嫌気好気運転をしていて汚泥の沈降性は良好であるため、処理水のSS濃度は僅かである。好気的な処理時間が短いために処理水の溶解性BODは比較例に比べてやや高くなったが、SS由来のBOD成分が低く抑えられたため、処理水のBODは比較例1及び比較例2に比べ低く抑えられた。
(4) 実施例では、雨天時流量が増加し最終沈殿池の流量負荷が増大したとき、バイパスフィードにより曝気槽出口のMLSS濃度が晴天時よりも減少し、固形物負荷の増加はわずかである。また、晴天時に嫌気好気運転をしていて汚泥の沈降性は良好であるため、処理水のSS濃度は僅かである。また、全槽を好気槽にしたため、好気的な処理時間が長くなり、処理水の溶解性BODは低く抑えられた。SS由来のBOD成分及び溶解性BOD成分の両方が低く抑えられたため、処理水のBODは極めて低く抑えられた。
Considerations on the results of Example 1 , Reference Example 1, and Comparative Examples 1 and 2 are as follows.
(1) In Comparative Example 1, when the flow rate during rain increased and the flow load of the final sedimentation basin increased, the MLSS concentration at the outlet of the aeration tank was not different from that during fine weather, so the solid load also increased. For this reason, since the aerobic and aerobic operation is performed in fine weather, the sedimentation property of the sludge is good, but SS flows out from the final sedimentation basin. The BOD of the treated water was also increased by the SS-derived BOD component.
(2) In Comparative Example 2, when the flow rate during rain increases and the flow load of the final sedimentation basin increases, the MLSS concentration at the outlet of the aeration tank decreases from that during clear weather due to the bypass feed, and the solid load increases slightly. There was aerobic operation of the entire tank during fine weather, but sludge sedimentation was not good, and SS flowed out from the final sedimentation basin. The BOD of the treated water was also increased by the SS-derived BOD component.
(3) In Reference Example 1, when the flow rate during rain increases and the flow load of the final sedimentation basin increases, the MLSS concentration at the outlet of the aeration tank decreases by a bypass feed than when it is clear, and the increase in solid load is slight. is there. In addition, since the anaerobic and aerobic operation is performed in fine weather and the sedimentation property of the sludge is good, the SS concentration of the treated water is slight. Since the aerobic treatment time was short, the solubility BOD of the treated water was slightly higher than that of the comparative example, but the BOD component derived from SS was kept low, so the BOD of the treated water was comparative example 1 and comparative example. Compared to 2, it was kept low.
(4) In Example 1 , when the flow rate during rainy weather increases and the flow load of the final sedimentation basin increases, the MLSS concentration at the outlet of the aeration tank decreases from that during clear weather due to the bypass feed, and the solid load increases slightly. is there. In addition, since the anaerobic and aerobic operation is performed in fine weather and the sedimentation property of the sludge is good, the SS concentration of the treated water is slight. Moreover, since all the tanks were made into the aerobic tank, the aerobic processing time became long and the solubility BOD of the treated water was suppressed low. Since both the SS-derived BOD component and the soluble BOD component were kept low, the BOD of the treated water was kept very low.

なお、実施例において、散気管11として多孔質セラミック管の代りに図3の構成のものを用いたところ、処理水中のBOD濃度及び溶解性BOD濃度がいずれも1mg/Lずつ減少し、その他はほぼ同等の処理水質が得られた。 In addition, in Example 1 , when the thing of the structure of FIG. 3 was used instead of the porous ceramic pipe | tube as the diffuser pipe | tube 11, both the BOD density | concentration and soluble BOD density | concentration in treated water decreased by 1 mg / L, and others Almost the same treated water quality was obtained.

実施例
実施例においては、前段生物処理部として2個の槽3,3Aが設けられているが、1個の槽3のみを設けたものを実施例の装置とし、同型の槽を3連に設けたものを実施例の装置とした。ただし、前段生物処理部の槽の合計の容積は実施例1〜3で同一とした。
Examples 2 and 3
In Example 1 , two tanks 3 and 3A are provided as the pre-stage biological treatment unit, but only one tank 3 is provided as the apparatus of Example 2 , and three tanks of the same type are provided in series. The provided apparatus was used as the apparatus of Example 3 . However, the total volume of the tank of the former biological treatment unit was the same in Examples 1 to 3 .

これらの実施例の装置も実施例の装置と並設され、同時期に同条件にて運転が行われた。 The devices of Examples 2 and 3 were also installed in parallel with the device of Example 1 , and were operated under the same conditions at the same time.

晴天時における最終沈殿池での汚泥の沈降性と降雨時における処理水中のSS濃度を計測した。その結果、晴天時の沈降性(SVI)は実施例(1槽)では250、実施例(2槽)では170、実施例(3槽)では150であった。また、降雨時SS濃度は、実施例(1槽)では18mg/L、実施例(2槽)では8.5mg/L、実施例(3槽)では8.3mg/Lであった。 Sludge sedimentation in the final sedimentation basin during fine weather and SS concentration in the treated water during rainfall were measured. As a result, the settling property (SVI) in fine weather was 250 in Example 2 (1 tank), 170 in Example 1 (2 tanks), and 150 in Example 3 (3 tanks). In addition, the SS concentration during rain was 18 mg / L in Example 2 (1 tank), 8.5 mg / L in Example 1 (2 tanks), and 8.3 mg / L in Example 3 (3 tanks). .

この実施例1〜3の対比より、前段生物処理部の槽の数は2以上が好ましいことが認められた。これは、後述するように、過剰に基質が存在する状態の後に、飢餓状態を作ることによって沈降性のよい活性汚泥が形成されるためと考えられる。 From the comparison of Examples 1 to 3 , it was found that the number of tanks in the former biological treatment section is preferably 2 or more. This is considered to be because activated sludge with good sedimentation is formed by creating a starvation state after a state in which the substrate is excessively present, as will be described later.

実施例
実施例においては、後段生物処理部として2個の槽5A,5が設けられているが、1個の槽5のみを設けたものを実施例の装置とした。ただし、実施例の槽5の容積は実施例の槽5,5Aの合計と同一とした。
Example 4
In Example 1 , the two tanks 5A and 5 are provided as the latter-stage biological treatment unit. However, only one tank 5 is provided as the apparatus of Example 4 . However, the volume of the tank 5 of Example 4 was the same as the sum of the tanks 5 and 5A of Example 1 .

この実施例の装置も実施例の装置と並設され、同時期に同条件にて運転が行われた。 The apparatus of Example 4 was also installed side by side with the apparatus of Example 1 , and was operated under the same conditions at the same time.

晴天時における最終沈殿池での汚泥の沈降性、曝気槽流出水及び処理水中のSS濃度、処理水BOD濃度を計測したところ、沈降性(SVI)は実施例(1槽)では240、実施例(2槽)では170であった。また、曝気槽流出水中のSS濃度は、実施例(1槽)では1150mg/Lであり、実施例(2槽)では1010mg/Lであった。 Sedimentation of sludge in the final sedimentation basin in fine weather, SS concentration in aeration tank effluent and treated water, and treated water BOD concentration were measured, and sedimentation (SVI) was 240 in Example 4 (one tank). In Example 1 (2 tanks), it was 170. The SS concentration in the aeration tank effluent was 1150 mg / L in Example 4 (1 tank) and 1010 mg / L in Example 1 (2 tanks).

処理水中のSS濃度は実施例(1槽)では18mg/L、実施例(2槽)では8.5mg/Lであった。処理水中のBOD濃度は実施例(1槽)では10mg/L、実施例(2槽)では7mg/Lであった。処理水中の溶解性BOD濃度は実施例(1槽)では1mg/L、実施例(2槽)では2mg/Lであった。 The SS concentration in the treated water was 18 mg / L in Example 4 (1 tank) and 8.5 mg / L in Example 1 (2 tanks). The BOD concentration in the treated water was 10 mg / L in Example 4 (1 tank) and 7 mg / L in Example 1 (2 tanks). The soluble BOD concentration in the treated water was 1 mg / L in Example 4 (1 tank) and 2 mg / L in Example 1 (2 tanks).

実施例の対比より明らかな通り、好気槽を2槽としたときには、好気槽を1槽としたときに比べ、SVIが改善した。好気槽を2槽としたときには曝気槽汚泥が、バイパス配管9からの未処理水により、小さい槽サイズの槽内で希釈されるために、曝気槽出口のSSがより小さくなった。好気槽を2槽としたときにはバイパス配管9からの水と曝気槽汚泥との好気的接触時間が小さくなるために処理水の溶解性BODは悪くなったが、SSに由来するBODの占める割合が大きいために、全BOD濃度は改善した。 As is clear from the comparison between Examples 1 and 4 , when two aerobic tanks were used, SVI was improved compared to when one aerobic tank was used. When two aerobic tanks were used, the aeration tank sludge was diluted in the tank of a small tank size by the untreated water from the bypass pipe 9, so that the SS at the outlet of the aeration tank became smaller. When there are two aerobic tanks, the aerobic contact time between the water from the bypass pipe 9 and the aeration tank sludge is reduced, so the solubility BOD of the treated water deteriorates, but the BOD derived from SS occupies it. Due to the large proportion, the total BOD concentration improved.

実施例
実施例の装置において、嫌気槽の大きさを変化させ、好気槽の大きさは一定とした。晴天時の平均流量は160m/Hrである。この装置も、実施例と同一時期に同一条件にて運転した。晴天時におけるHRTと汚泥沈降との関係を図5に示し、晴天時におけるHRTと終沈出口SS濃度との関係を図6に示す。
Example 5
In the apparatus of Example 1 , the size of the anaerobic tank was changed, and the size of the aerobic tank was fixed. The average flow rate in fine weather is 160 m 3 / Hr. This apparatus was also operated under the same conditions at the same time as Example 1 . FIG. 5 shows the relationship between HRT and sludge sedimentation during fine weather, and FIG. 6 shows the relationship between HRT and final sedimentation outlet SS concentration during fine weather.

図5の通り、晴天時における嫌気槽の水理的滞留時間HRTが1.9[Hr]の場合及び3.0[Hr]の場合にはSVIが極めて良好となり、雨天時に最終沈殿池から流出するSSも低かった。   As shown in Fig. 5, when the hydraulic residence time HRT of the anaerobic tank in fine weather is 1.9 [Hr] and 3.0 [Hr], the SVI is very good, and it flows out of the final sedimentation basin when it rains. The SS to do was also low.

これに対し、図6の通り、嫌気槽HRTが1.0[Hr]の場合及び4.0[Hr]の場合にはSVIが比較的悪く、雨天時に最終沈殿池から流出するSSも高かった。   On the other hand, as shown in FIG. 6, when the anaerobic tank HRT was 1.0 [Hr] and 4.0 [Hr], the SVI was relatively poor, and the SS flowing out of the final sedimentation basin was high when it rained. .

好ましいHRTの理由は次の通りであると考えられる。
(1) 溶解性の基質が存在する好気条件で増殖する微生物はSVIを悪化させる一因であり、嫌気好気処理において、後段の好気槽に溶解性の基質を供給させない条件を作ることによってSVIが改善するといわれている。嫌気槽の大きさが小さいと好気槽に溶解性の基質が供給されるために沈降性が悪化する。
(2) 過剰に基質が存在する状態の後に、基質があまり存在しない飢餓状態を作ることによって、体内に基質を貯蔵する能力を有する微生物を選択的に増殖させるセレクターとして知られている。これらの微生物は活性汚泥のフロックを形成する微生物であり、この結果沈降性のよい活性汚泥が形成される。(Martins et al.2004)。このため、嫌気槽の容量が大きくなると、体内に基質を貯蔵する能力を有する微生物が育たないために、沈降性の良い汚泥が形成されない。
The reason for the preferred HRT is considered as follows.
(1) Microorganisms that grow under aerobic conditions in which a soluble substrate exists are a cause of worsening SVI, and in anaerobic aerobic treatment, create conditions that do not allow the supply of soluble substrates to the subsequent aerobic tank. SVI is said to improve. If the size of the anaerobic tank is small, the solubility is deteriorated because a soluble substrate is supplied to the aerobic tank.
(2) It is known as a selector that selectively proliferates microorganisms having the ability to store a substrate in the body by creating a starvation state in which the substrate does not exist so much after a state in which the substrate exists excessively. These microorganisms are microorganisms that form activated sludge flocs, and as a result, activated sludge with good sedimentation is formed. (Martins et al. 2004). For this reason, when the capacity | capacitance of an anaerobic tank becomes large, since the microorganisms which have the capability to store a substrate in a body do not grow, sludge with good sedimentation property is not formed.

実施の形態及び参考例に係る下水処理方法の系統図である。It is a systematic diagram of the sewage treatment method which concerns on embodiment and a reference example . 実施の形態及び参考例に係る下水処理方法の系統図である。It is a systematic diagram of the sewage treatment method which concerns on embodiment and a reference example . 散気管の構成を示すものであり、(a)図は一部を断面とした断面図、(b)及び(c)図は被包体(チューブ)の展開図である。The structure of a diffuser tube is shown, (a) A figure is sectional drawing which made one part a cross section, (b) And (c) figure is an expanded view of a covering body (tube). 比較例の下水処理方法の系統図である。It is a systematic diagram of the sewage treatment method of a comparative example. 晴天時嫌気槽HRTとSVIの関係を示すグラフである。It is a graph which shows the relationship between the anaerobic tank HRT and SVI at the time of fine weather. 晴天時嫌気槽HRTと最終沈殿池出口SSの関係を示すグラフである。It is a graph which shows the relationship between the anaerobic tank HRT at the time of fine weather, and the last sedimentation tank exit SS.

1 最初沈殿池
3 第1槽
5 第2槽
6,11 散気管
7 最終沈殿池
9 バイパス配管
10 流量調節弁
1 First sedimentation tank 3 First tank 5 Second tank 6,11 Aeration pipe 7 Final sedimentation tank 9 Bypass piping 10 Flow control valve

Claims (4)

下水を沈殿処理した後、その上澄水を生物処理部で生物処理し、その処理液を処理水と汚泥とに固液分離し、分離汚泥の一部を生物処理部の入口側に返送する下水処理方法において、
該生物処理部として、嫌気処理及び好気処理のいずれもが可能な前段生物処理部と、好気処理用の後段生物処理部とが設けられており、
該上澄水の流量が所定流量以下のときには、該前段生物処理部を嫌気処理状態とし、前記上澄水の全量を該前段生物処理部と後段生物処理部とにこの順で流通させ、
該上澄水の流量が該所定流量を超えるときには、該前段生物処理部を好気処理状態とすると共に、該上澄水の一部を該前段生物処理部と後段生物処理部とにこの順で流通させ、該上澄水の残部は前段生物処理部を経ることなく後段生物処理部に流入させることを特徴とする下水処理方法。
After precipitating sewage, the supernatant water is biologically treated in the biological treatment unit, the treated liquid is solid-liquid separated into treated water and sludge, and part of the separated sludge is returned to the inlet side of the biological treatment unit. In the processing method,
As the biological treatment unit, a pre-stage biological treatment unit capable of both anaerobic treatment and aerobic treatment and a post-stage biological treatment unit for aerobic treatment are provided,
When the flow rate of the supernatant water is equal to or lower than a predetermined flow rate, the front biological treatment unit is in an anaerobic treatment state, and the whole amount of the supernatant water is circulated in this order through the front biological treatment unit and the rear biological treatment unit,
When the flow rate of the supernatant water exceeds the predetermined flow rate, the front biological treatment unit is brought into the aerobic treatment state, and a part of the supernatant water is circulated in this order to the front biological treatment unit and the rear biological treatment unit. And the remaining part of the supernatant water is allowed to flow into the subsequent biological treatment section without passing through the previous biological treatment section.
請求項において、該前段生物処理部に散気部材が設けられており、該散気部材は
内部に空気が吹き込まれると共にこの空気を外周面に導く通路を有した筒状の支持体と、
該支持体の外周を取り巻いている弾力性被包体と、
該被包体に設けられた、空気吹出用スリットと、
を備えてなり、該前段生物処理部にて好気処理を行うときに該散気部材から散気を行うことを特徴とする下水処理方法。
In Claim 1 , a diffuser member is provided in the preceding stage biological treatment section, and the diffuser member has a cylindrical support body having a passage through which air is blown and guided to the outer peripheral surface.
An elastic envelope surrounding the outer periphery of the support;
An air blowing slit provided in the envelope;
A sewage treatment method comprising: performing aeration from the aeration member when an aerobic treatment is performed in the upstream biological treatment unit.
請求項又はにおいて、該上澄水が所定流量以下である場合における前段生物処理部の水理的滞留時間が1.5〜3.5Hrであることを特徴とする下水処理方法。 According to claim 1 or 2, sewage treatment method upper supernatant water is hydraulic retention time of the pre biological treatment unit in the case where the predetermined flow rate or less characterized in that it is a 1.5~3.5Hr. 最初沈殿池と、該最初沈殿池からの上澄水を受け入れる嫌気性及び好気性のいずれの生物処理も可能な前段生物処理槽と、該前段生物処理槽の生物処理水を受け入れる好気性の後段生物処理槽と、該後段生物処理槽の生物処理水を受け入れる最終沈殿池とを有する下水処理装置において、
該最初沈殿池からの上澄水が所定流量以下のときには、該前段生物処理槽を嫌気処理状態とし、前記上澄水の全量を該前段生物処理部と後段生物処理部とにこの順で流通させる手段と、
該最初沈殿池からの上澄水が該所定流量を超過する場合には、該前段生物処理槽を好気性とすると共に、該上澄水の一部を該前段生物処理部と後段生物処理部とにこの順で流通させ、該上澄水の残部は、該前段生物処理槽を経ることなく後段生物処理槽へ導く手段と
を設けたことを特徴とする下水処理装置。
A first sedimentation basin, a pre-stage biological treatment tank capable of accepting both anaerobic and aerobic biological treatment receiving supernatant water from the first sedimentation basin, and an aerobic latter-stage organism receiving biological treatment water in the previous biological treatment tank In a sewage treatment apparatus having a treatment tank and a final sedimentation basin for receiving biological treatment water of the subsequent biological treatment tank,
When the supernatant water from the first sedimentation basin is below a predetermined flow rate, the first biological treatment tank is placed in an anaerobic treatment state, and the whole amount of the supernatant water is circulated in this order through the first biological treatment unit and the second biological treatment unit. When,
When the supernatant water from the first sedimentation basin exceeds the predetermined flow rate, the pre-stage biological treatment tank is made aerobic and a part of the supernatant water is transferred to the pre-stage biological treatment section and the post-stage biological treatment section. A sewage treatment apparatus characterized in that it is circulated in this order, and a means for guiding the remainder of the supernatant water to the subsequent biological treatment tank without passing through the previous biological treatment tank.
JP2004080607A 2004-03-19 2004-03-19 Sewage treatment method and apparatus Expired - Fee Related JP4513368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004080607A JP4513368B2 (en) 2004-03-19 2004-03-19 Sewage treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004080607A JP4513368B2 (en) 2004-03-19 2004-03-19 Sewage treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2005262140A JP2005262140A (en) 2005-09-29
JP4513368B2 true JP4513368B2 (en) 2010-07-28

Family

ID=35087230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004080607A Expired - Fee Related JP4513368B2 (en) 2004-03-19 2004-03-19 Sewage treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP4513368B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663686A (en) * 2013-11-12 2014-03-26 同济大学 Hydrolytic acidification-catalyzed iron/anaerobic-aerobic biological dephosphorization coupling process

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4892917B2 (en) * 2005-10-12 2012-03-07 栗田工業株式会社 Biological treatment method and apparatus for organic wastewater
JP5315118B2 (en) * 2009-04-20 2013-10-16 神鋼環境メンテナンス株式会社 Operation method of organic wastewater treatment facility
CN101570379B (en) * 2009-06-08 2012-08-08 陈明 Communicated adjustment type sewage treatment equipment
JP5334740B2 (en) * 2009-08-11 2013-11-06 株式会社クボタ Membrane diffuser
JP5366785B2 (en) * 2009-12-17 2013-12-11 株式会社クボタ Diffuser
CN103118991B (en) * 2011-02-09 2015-09-23 株式会社久保田 Membrane air diffuser
JP5557949B2 (en) * 2013-07-29 2014-07-23 株式会社クボタ Membrane diffuser
JP6643086B2 (en) * 2016-01-05 2020-02-12 株式会社日立製作所 Monitoring and control system using activated sludge method
JP2017225918A (en) * 2016-06-21 2017-12-28 株式会社日立製作所 Water treatment system
CN106976978A (en) * 2017-05-22 2017-07-25 江苏中路交通科学技术有限公司 A kind of green high road service area sewage disposal system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853589A (en) * 1996-06-05 1998-12-29 Eco Equipment Fep, Inc. Advanced biological phosphorus removal using a series of sequencing batch reactors
JP2001029991A (en) * 1999-07-23 2001-02-06 Nissin Electric Co Ltd Water treatment method
JP2001259682A (en) * 2000-03-22 2001-09-25 Hitachi Plant Eng & Constr Co Ltd Waste water treating apparatus
JP2002263686A (en) * 2001-03-06 2002-09-17 Nissin Electric Co Ltd Method for computing amount of circulating water and method for controlling operation of biological device for removing nitrogen in discharged water
JP2003154388A (en) * 2001-11-21 2003-05-27 Yokogawa Electric Corp Organic matter injection apparatus
JP2003181489A (en) * 2001-12-17 2003-07-02 Kurita Water Ind Ltd Method for treating organic sewage water
JP2003245684A (en) * 2002-02-27 2003-09-02 Hiroyasu Ogawa Sewage treatment method by intermittent air diffusion using membrane type air diffusing tube

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853589A (en) * 1996-06-05 1998-12-29 Eco Equipment Fep, Inc. Advanced biological phosphorus removal using a series of sequencing batch reactors
JP2001029991A (en) * 1999-07-23 2001-02-06 Nissin Electric Co Ltd Water treatment method
JP2001259682A (en) * 2000-03-22 2001-09-25 Hitachi Plant Eng & Constr Co Ltd Waste water treating apparatus
JP2002263686A (en) * 2001-03-06 2002-09-17 Nissin Electric Co Ltd Method for computing amount of circulating water and method for controlling operation of biological device for removing nitrogen in discharged water
JP2003154388A (en) * 2001-11-21 2003-05-27 Yokogawa Electric Corp Organic matter injection apparatus
JP2003181489A (en) * 2001-12-17 2003-07-02 Kurita Water Ind Ltd Method for treating organic sewage water
JP2003245684A (en) * 2002-02-27 2003-09-02 Hiroyasu Ogawa Sewage treatment method by intermittent air diffusion using membrane type air diffusing tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663686A (en) * 2013-11-12 2014-03-26 同济大学 Hydrolytic acidification-catalyzed iron/anaerobic-aerobic biological dephosphorization coupling process
CN103663686B (en) * 2013-11-12 2014-11-05 同济大学 Hydrolytic acidification-catalyzed iron/anaerobic-aerobic biological dephosphorization coupling process

Also Published As

Publication number Publication date
JP2005262140A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP4513368B2 (en) Sewage treatment method and apparatus
AU2002301606B2 (en) Batch Style Wastewater Treatment Apparatus Using Biological Filtering Process and Wastewater Treatment Method Using The Same
US6126829A (en) Biofilm carrier for water and waste water purification
JP4780552B2 (en) Biological wastewater treatment method
US6787035B2 (en) Bioreactor for treating wastewater
CN101643269A (en) Biological aerated filter and process
CN209010338U (en) Domestic sewage in rural areas integrated treatment unit
CN210103554U (en) Chemical industry tail water strengthens denitrification facility
US6004456A (en) Equalization basin-reactor system
CN100431984C (en) Mixed aeration type biological treating system
CN102198971B (en) Upward flow biological aerated filter and aeration method thereof
WO2021074307A1 (en) Wastewater treatment system
JP2007083153A (en) Method and apparatus for treating sewage
KR800000035B1 (en) Integral circular wastewater treatment plant
CN208762361U (en) A kind of sewage treatment unit
US5741417A (en) System for biologically treating wastewater
CN215327188U (en) CAST technology integration reaction tank for rural domestic sewage treatment
CN212102192U (en) Rural sewage integrated treatment equipment switched to operate in AAO or SBBR mode
JPH08187494A (en) Purifying tank
WO2019163424A1 (en) Aerobic biological treatment device and method for operating same
CN112142253A (en) Sewage treatment method and sewage treatment device thereof
JP2006218435A (en) Activated sludge treatment system
CN214327269U (en) Multistage oxygen deficiency aerobic treatment device based on MABR
CN115403151B (en) Sedimentation-tank-free peristaltic bed type HEDN reactor and sewage treatment method
CN214653943U (en) Sewage treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees