JP6643086B2 - Monitoring and control system using activated sludge method - Google Patents

Monitoring and control system using activated sludge method Download PDF

Info

Publication number
JP6643086B2
JP6643086B2 JP2016000331A JP2016000331A JP6643086B2 JP 6643086 B2 JP6643086 B2 JP 6643086B2 JP 2016000331 A JP2016000331 A JP 2016000331A JP 2016000331 A JP2016000331 A JP 2016000331A JP 6643086 B2 JP6643086 B2 JP 6643086B2
Authority
JP
Japan
Prior art keywords
sewage
activated sludge
amount
control system
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016000331A
Other languages
Japanese (ja)
Other versions
JP2017121595A (en
Inventor
伊智朗 圓佛
伊智朗 圓佛
一郎 山野井
一郎 山野井
佳記 西田
佳記 西田
田所 秀之
秀之 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016000331A priority Critical patent/JP6643086B2/en
Publication of JP2017121595A publication Critical patent/JP2017121595A/en
Application granted granted Critical
Publication of JP6643086B2 publication Critical patent/JP6643086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、活性汚泥法による下水処理設備の監視制御システムに係り、特に雨天時に流入下水流量が増加する合流式下水道における監視制御システムに関する。   The present invention relates to a monitoring and control system for sewage treatment equipment by an activated sludge method, and more particularly to a monitoring and control system for a combined sewerage system in which an inflow sewage flow rate increases in rainy weather.

国内外で広く導入されている下水道システムは、雨水への対応の観点で合流式下水道と分流式下水道に大別される。雨水排除ラインが下水集水ラインに繋がっているものを合流式、繋がっておらず別ラインで排除されるものを分流式と呼称している。前者の合流式は、日本国内の場合、下水道インフラ整備が先行して実施された大規模都市部を中心に導入されている。合流式下水道の特徴は、雨水が下水に混入してくるため、雨天時に下水処理場への流入下水量が大きく増加する点である。降雨量が多い場合には、雨水を含んだ流入下水量が下水処理場の施設設計上の計画処理量(Qsh:時間最大汚水量と呼称)を越えてしまい、その全量を適正に処理できなくなる問題が発生している。下水処理プロセスとして最も広く導入されている標準活性汚泥プロセスにおいては、時間最大汚水量Qshを超過した分の流入下水に対しては、最初沈殿池による簡易処理のみを実施し、その後段の生物反応槽には流入させずに、簡易放流を行うのが一般的であった。このため、水質が不十分な簡易放流水が河川や湖沼などの公共用水域に放流されてしまい、水質汚濁の大きな要因となってきた。   Sewerage systems widely introduced in Japan and abroad are broadly classified into combined sewers and split sewers from the viewpoint of handling rainwater. The one where the rainwater removal line is connected to the sewage collection line is called a merged type, and the one that is not connected and is removed by another line is called a split type. In Japan, the former merger ceremony has been introduced mainly in large urban areas where sewerage infrastructure development was implemented in advance. The characteristic of the combined sewer is that rainwater is mixed into the sewage, so that the amount of sewage flowing into the sewage treatment plant during rainy weather is greatly increased. If the amount of rainfall is large, the amount of inflowed sewage including rainwater exceeds the planned treatment amount (Qsh: maximum hourly sewage amount) in the facility design of the sewage treatment plant, and the entire amount cannot be properly treated. There is a problem. In the standard activated sludge process, which is most widely introduced as a sewage treatment process, only the simple treatment by the sedimentation basin is performed for the inflow sewage that exceeds the maximum amount of wastewater Qsh, and the biological reaction in the subsequent stage In general, simple discharge was performed without flowing into the tank. For this reason, simple effluent with insufficient water quality is discharged into public water bodies such as rivers and lakes, which has become a major cause of water pollution.

これに対して、簡易放流を低減する手段として、例えば、後述の技術文献1に示されている雨天時活性汚泥法の導入が進められてきた。この方法では、時間最大汚水量Qshを超過した分を簡易放流せずに、最大でQshの2倍量までの流入下水を活性汚泥プロセスの生物反応槽後段にステップ流入させる方式をとっている。ステップ流入させた流入下水は、生物反応槽入口より流入させて通常処理した水に比べると水質は劣るが、生物反応槽後段の活性汚泥による生物吸着により、流入下水中の汚濁物質(主に有機物)の一部が除去されて、簡易処理の場合よりも処理水質を向上させることができる。これにより、簡易放流量を低減することができ、放流先への水質汚濁負荷を小さくすることができるとしている。   On the other hand, as a means for reducing the simple discharge, for example, the introduction of an activated sludge method in rainy weather, which is described in Technical Document 1 described below, has been advanced. This method adopts a method in which the inflow sewage of up to twice the amount of Qsh is step-inflowed to the latter stage of the biological reaction tank of the activated sludge process without simply discharging the amount exceeding the time maximum wastewater amount Qsh. The inflowed sewage flowed in step is inferior in water quality to the water treated from the inlet of the biological reaction tank and usually treated, but the pollutants (mainly organic matter) Is removed, and the quality of treated water can be improved as compared with the case of simple treatment. It is stated that this makes it possible to reduce the simple discharge flow rate and reduce the water pollution load on the discharge destination.

山本高弘ほか、大阪市における既存施設を利用した合流式下水道の改善、環境システム計測制御学会誌、第10巻第2号(2006年)Takahiro Yamamoto et al., Improvement of combined sewerage using existing facilities in Osaka City, Journal of the Society of Environmental System Measurement and Control, Vol. 10, No. 2, 2006

雨天時活性汚泥法では、時間最大汚水量Qshを超過した分を生物反応槽後段へステップ流入させることで、簡易放流量を低減することができる。前述の非特許文献1などに開示されている運転制御方法においては、生物反応槽入口から流入させる下水量Qfrontは、時間最大汚水量Qshで一定としており、また、生物反応槽後段にステップ流入させる流量Qbackは最大量で2×Qshまでとしている。しかしながら、これらの流量QfrontとQbackは、本来、各処理時点での流入下水中の汚濁物質量や生物反応槽内の活性汚泥の状態を反映して適正化されるべきである。例えば、流入下水中の汚濁物質量が通常よりも多い場合には、活性汚泥による生物吸着量の上限量を越えてしまい、処理水質が著しく悪化するケースが発生する。また、生物反応槽内の活性汚泥量が少ない場合にも同様のケースの発生を避けることができない課題を有している。   In the case of the activated sludge method in rainy weather, the amount of excess wastewater exceeding the time maximum wastewater amount Qsh can be step-flowed into the latter stage of the biological reaction tank, so that the simple discharge amount can be reduced. In the operation control method disclosed in the above-mentioned Non-Patent Document 1, the sewage amount Qfront flowing from the biological reaction tank inlet is constant at the time maximum sewage amount Qsh, and the sewage is flowed stepwise into the latter stage of the biological reaction tank. The flow rate Qback is up to 2 × Qsh. However, these flow rates Qfront and Qback should originally be optimized to reflect the amount of pollutants in the incoming sewage and the state of activated sludge in the biological reactor at each treatment point. For example, if the amount of pollutants in the inflowing sewage is larger than usual, the amount of biological adsorption by activated sludge will exceed the upper limit, which may cause a case where the quality of treated water is significantly deteriorated. In addition, there is a problem that a similar case cannot be avoided even when the amount of activated sludge in the biological reaction tank is small.

本発明は、このような課題を鑑みて為されたものであり、雨天時活性汚泥法の実用上の課題である、流入下水中の汚濁物質量や生物反応槽内の活性汚泥量などに変動が有った際の処理水質の悪化を合理的な指標に基づく適切な制御によって抑制することを目的とする。   The present invention has been made in view of such problems, and fluctuates in the amount of pollutants in influent sewage and the amount of activated sludge in a biological reaction tank, which are practical problems of the activated sludge method in rainy weather. The purpose of the present invention is to suppress the deterioration of treated water quality when there is a problem by appropriate control based on a rational index.

本発明の監視制御システムは、活性汚泥法による監視制御システムにおいて、流入下水の流量と水質を計測する計測手段と、生物反応槽後段で生物吸着することが可能な生物吸着量上限値算出する演算手段と、前記計測手段で計測した流入下水水質と前記演算手段で算出した前記生物吸着量上限値に基づいて、生物反応槽前段と後段にステップ流入させる下水供給量を決定する制御手段と、を具備することを特徴とする。 The monitoring control system according to the present invention, in the monitoring control system based on the activated sludge method, calculates a measuring means for measuring the flow rate and the water quality of the inflow sewage, and calculates the upper limit of the amount of bioadsorption that can be bioadsorbed in the latter stage of the bioreactor. calculation means, on the basis of the said biosorption amount upper limit value calculated by the calculating means and the inflow sewage water measured by the measuring means, and control means for determining a sewage supply amount to the step flow into the front and rear stages bioreactor, It is characterized by having.

本発明によれば、生物反応槽の活性汚泥による生物吸着量を推定し、これに基づいて、生物反応槽入口と生物反応槽後段に供給する下水流量を適正に制御することにより、流入下水中の汚濁負荷量や生物反応槽内の活性汚泥の状態に変動があった場合にも、処理水質の悪化を抑制することが可能となる。これにより、下水処理水の放流先である公共用水域への汚濁負荷を低減することも可能となる。   According to the present invention, the amount of living organisms adsorbed by the activated sludge in the biological reaction tank is estimated, and based on this, by appropriately controlling the flow rate of the sewage supplied to the biological reaction tank inlet and the latter stage of the biological reaction tank, the inflow sewage is reduced. It is possible to suppress the deterioration of the treated water quality even when there is a change in the pollutant load and the state of the activated sludge in the biological reaction tank. As a result, it becomes possible to reduce the pollution load on the public water area to which the treated sewage is discharged.

本発明による下水処理プロセスの制御方法を説明する図である。It is a figure explaining a control method of a sewage treatment process by the present invention. 制御モジュールの構成を説明する図である。FIG. 3 is a diagram illustrating a configuration of a control module. 制御手段の処理フローを説明する図である。FIG. 6 is a diagram illustrating a processing flow of a control unit. 生物反応槽の活性汚泥濃度と生物吸着量の最大値との相関関係の一例を示す図である。It is a figure which shows an example of the correlation between the activated sludge density | concentration of a biological reaction tank, and the maximum value of the amount of biological adsorption.

雨天時活性汚泥法での処理水質は、生物反応槽後段の生物吸着現象に大きく影響を受ける。このため、処理水質を所定レベルに維持するためには、各処理時点での状態に応じて変化する生物吸着量上限値を越えない範囲内で、生物反応槽後段へのステップ流入量を決定する必要がある。   The treated water quality by the activated sludge method in rainy weather is greatly affected by the biological adsorption phenomenon at the latter stage of the biological reaction tank. For this reason, in order to maintain the treated water quality at a predetermined level, the step inflow amount to the latter stage of the biological reaction tank is determined within a range that does not exceed the upper limit of the amount of bioadsorption that changes according to the state at each treatment time. There is a need.

本発明では、この生物吸着量上限値を活性汚泥モデルに基づいたシミュレーションによって算出する。活性汚泥モデルは、汚濁物質の生物吸着や代謝分解の現象を数値モデルで定式化したものである。下水処理プロセスの運転制御の場面でシミュレーションを行うためには、連続計測、もしくは定期的に分析可能な水質項目をベースとした活性汚泥モデルを適用する。具体的には、活性汚泥量を生物反応槽内の浮遊物質濃度(MLSS;混合液浮遊物質濃度)で評価する。また、活性汚泥の状態(生物活性)を水温などの関数で評価するものとする。このようなモデルに算出した生物吸着量上限値に対して、これを越えない範囲のステップ流入量を流入下水中の汚濁物質量、例えば、有機物濃度(BOD;生物化学的酸素要求量)またはその代替水質項目に基づいて算出する。これによって、生物反応槽後段へのステップ流入で供給される汚濁負荷量が過剰にならないようにステップ流入量を適正に制御することで前述の課題を解決する。本発明では、複数の実現手段を含んでいるが、その一例を以下に挙げる。   In the present invention, the upper limit of the amount of biosorption is calculated by a simulation based on the activated sludge model. The activated sludge model is a model in which the phenomenon of biosorption and metabolic decomposition of pollutants is formulated by a numerical model. In order to perform a simulation in the operation control scene of a sewage treatment process, an activated sludge model based on water quality items that can be continuously measured or analyzed periodically is applied. Specifically, the amount of activated sludge is evaluated by the suspended solids concentration (MLSS; mixed liquid suspended solids concentration) in the biological reaction tank. In addition, the state (biological activity) of the activated sludge is evaluated by a function such as water temperature. The upper limit of the amount of bioadsorption calculated in such a model is not exceeded, and the step inflow in a range not exceeding this is the amount of pollutants in the inflowing sewage, for example, organic matter concentration (BOD; biochemical oxygen demand) or its Calculated based on alternative water quality items. Thus, the above-described problem is solved by appropriately controlling the step inflow amount so that the pollutant load supplied in the step inflow to the latter stage of the biological reaction tank does not become excessive. The present invention includes a plurality of realizing means, one example of which is described below.

(実施例)
以下、図面を用いて実施例を説明する。
(Example)
Hereinafter, embodiments will be described with reference to the drawings.

本実施例では、活性汚泥プロセスのうち、雨天時に流入下水量が増加する合流式下水道などに対応する雨天時活性汚泥法に対する制御方法およびそのシステムの例を説明する。   In the present embodiment, an example of a control method and a system for an activated sludge method in rainy weather corresponding to a combined sewerage system in which the amount of inflowed sewage increases in rainy weather among activated sludge processes will be described.

図1は、本実施例の対象となる活性汚泥プロセスの構成と監視制御システム200による下水処理設備100の制御方法を説明する図である。制御対象となる下水処理設備100の主要構成要素は、最初沈殿池150、生物反応槽160、および最終沈殿池170である。ここでの被処理下水101は、下水の他に雨水が混入したものを想定している。被処理下水101は、最初沈殿池150に流入し、比重の大きい懸濁物質などが沈殿除去された後に、生物反応槽160に流入する。生物反応槽160には活性汚泥が馴致されており、被処理水101に含まれる溶解性の汚濁物質(主に有機物など)を生物吸着した後に代謝分解することで、下水を浄化する機能を有する。所定の滞留時間で生物反応槽160において処理された被処理下水101は、最終沈殿池170に流入し、ここで活性汚泥が沈殿除去された上澄みが処理水107となる。最終沈殿池170に沈殿した活性汚泥の一部が余剰汚泥として系外に排除されるが、残りの活性汚泥は返送汚泥109として、生物反応槽109の前段に還流される。   FIG. 1 is a diagram illustrating a configuration of an activated sludge process that is an object of the present embodiment and a method of controlling a sewage treatment facility 100 by a monitoring control system 200. The main components of the sewage treatment equipment 100 to be controlled are a first settling tank 150, a biological reaction tank 160, and a final settling tank 170. The sewage 101 to be treated here is assumed to be sewage mixed with rainwater. The sewage 101 to be treated first flows into the sedimentation basin 150, and then flows into the biological reaction tank 160 after suspended substances having a large specific gravity are removed by settling. Activated sludge is used in the biological reaction tank 160, and has a function of purifying sewage by metabolizing and decomposing a soluble pollutant (mainly, an organic substance, etc.) contained in the water to be treated 101 after biological adsorption. . The treated sewage 101 that has been treated in the biological reaction tank 160 for a predetermined residence time flows into the final sedimentation basin 170, where the supernatant from which the activated sludge has been removed is the treated water 107. A part of the activated sludge settled in the final sedimentation tank 170 is removed out of the system as surplus sludge, but the remaining activated sludge is returned to the preceding stage of the biological reaction tank 109 as returned sludge 109.

雨天時活性汚泥法においては、被処理下水101が下水処理設備100の施設設計上の計画処理量(Qsh:時間最大汚水量)を超過した場合には、前段供給水103の流量をQshとし、残りを後段供給水105として生物反応槽160の後段にステップ流入させるような運転が行われるのが一般的であったが、本発明においては、前段供給水103と後段供給水105の流量を、後述する制御ロジックにより、各処理時点での状況に応じて適正に制御するものである。生物反応槽160での処理容量を越える分については、簡易放流水106として、公共用水域などの系外へ放流される。これらの流量の制御は、流量制御弁120の開度調整によって行われる。なお、流量制御は、ここで述べた流量制御弁120の開度調整を行う方法以外にも、ポンプ本体(図示せず)の流量調整によって実現することも可能である。   In the rainy day activated sludge method, when the sewage to be treated 101 exceeds a planned treatment amount (Qsh: hourly maximum sewage amount) in the facility design of the sewage treatment equipment 100, the flow rate of the upstream supply water 103 is set to Qsh, In general, an operation is performed in which the remainder is flown into the subsequent stage of the biological reaction tank 160 as the latter stage feedwater 105, but in the present invention, the flow rates of the former stage feedwater 103 and the latter stage feedwater 105 are reduced. Appropriate control is performed according to the situation at each processing point by a control logic described later. Excess of the processing capacity in the biological reaction tank 160 is discharged as simple discharge water 106 to the outside of the system such as a public water body. The control of these flow rates is performed by adjusting the opening of the flow control valve 120. The flow rate control can be realized by adjusting the flow rate of a pump body (not shown), in addition to the method of adjusting the opening of the flow rate control valve 120 described above.

監視制御システム200は、下水処理設備100に設置された水質計110と流量計115による計測値302に基づいて、前述の流量制御に必要な演算を活性汚泥モデルシミュレータ210と制御モジュール250によって行い、制御信号301を出力して、流量調整弁120などを動作させる機能を有する。ここでの水質計110は、被処理下水101に含まれる汚濁物質を計測するもので、具体的には、生物化学的酸素要求量(BOD)、または化学的酸素要求量(COD)、あるいはBODやCODを間接的に推定できる他の水質項目、例えば、紫外線吸光度、濁度、浮遊物質量(SS)などを計測できるものとする。   The monitoring and control system 200 performs the above-mentioned calculation necessary for the flow rate control by the activated sludge model simulator 210 and the control module 250 based on the measured value 302 by the water quality meter 110 and the flow meter 115 installed in the sewage treatment equipment 100, It has a function of outputting the control signal 301 to operate the flow control valve 120 and the like. The water quality meter 110 here measures a pollutant contained in the sewage 101 to be treated, and specifically, biochemical oxygen demand (BOD), chemical oxygen demand (COD), or BOD And other water quality items that can indirectly estimate COD, such as ultraviolet absorbance, turbidity, and suspended solids (SS).

図2は、本発明の特徴となる制御モジュール250を含む監視制御システム200の構成を説明する図である。この監視制御システム200は、活性汚泥モデルシミュレータ210と制御モジュール250が主な構成要素であり、この他にディスプレイなどの表示手段201とキーボード202を含むものとし、ユーザへの入出力の機能を有している。   FIG. 2 is a diagram illustrating the configuration of the monitoring control system 200 including the control module 250 which is a feature of the present invention. The monitoring and control system 200 includes an activated sludge model simulator 210 and a control module 250 as main components, and further includes a display unit 201 such as a display and a keyboard 202, and has a function of input / output to a user. ing.

活性汚泥モデルシミュレータ210は、制御モジュール250からの演算指示に従って、生物反応槽160における活性汚泥の挙動を演算することができる。モデルデータベース220には、活性汚泥モデルが格納されている。このモデルは、本発明による制御で必要となる生物反応槽での生物吸着量を計算できるものとする。ここでの生物吸着量の演算対象は、処理水107の水質規制項目となるBODなどの有機物であって、また、必要によっては窒素、リンも対象となるモデルを含むことが望ましい。活性汚泥モデルの形態は、数式または数値テーブル(離散的な数値データセット)とする。モデルエンジン230は、計測値302を用いて、モデルデータベース220に格納されている活性汚泥モデルを実行し、演算結果を制御モジュール250に出力する機能を有する。   The activated sludge model simulator 210 can calculate the behavior of the activated sludge in the biological reaction tank 160 according to a calculation instruction from the control module 250. The model database 220 stores an activated sludge model. This model can calculate the amount of bioadsorption in the bioreactor required for the control according to the present invention. The calculation target of the amount of biosorption here is an organic substance such as BOD which is a water quality regulation item of the treated water 107, and it is desirable that a model that also targets nitrogen and phosphorus is included if necessary. The form of the activated sludge model is a mathematical expression or a numerical table (discrete numerical data set). The model engine 230 has a function of executing the activated sludge model stored in the model database 220 using the measured value 302 and outputting a calculation result to the control module 250.

監視制御システム200のもう一つの主要な構成要素である制御モジュール250は、信号出力手段255、信号入力手段260、制御手段270、および制御データベース290から構成される。制御出力手段255は、制御手段270で算出されて制御データベース290に格納された制御指示値に基づいて、流量調整弁120などを操作するための信号を出力する機能を有する。また、信号入力手段260は、水質計110、流量計115のほか、下水処理設備100に設置された計測器からの計測データを受け取り、制御データベース290に格納する機能を有している。   The control module 250, which is another main component of the monitoring and control system 200, includes a signal output unit 255, a signal input unit 260, a control unit 270, and a control database 290. The control output unit 255 has a function of outputting a signal for operating the flow regulating valve 120 and the like based on the control instruction value calculated by the control unit 270 and stored in the control database 290. Further, the signal input means 260 has a function of receiving measurement data from a measuring instrument installed in the sewage treatment facility 100 in addition to the water quality meter 110 and the flow meter 115 and storing the measurement data in the control database 290.

制御手段270においては、所定の制御周期ごとに、後述する処理フローに従って、前段供給水103と後段供給水105の流量を決定する。ここでの演算は、活性汚泥モデルシミュレータ210に起動をかけて行い、演算結果を制御用データベース290に格納する。また、制御周期や制御上の各種パラメータなどは、制御用データベース290に格納されているデータを参照する。   The control means 270 determines the flow rates of the first-stage supply water 103 and the second-stage supply water 105 in accordance with a processing flow described later for each predetermined control cycle. The calculation here is performed by activating the activated sludge model simulator 210, and the calculation result is stored in the control database 290. The control cycle and various parameters for control refer to data stored in the control database 290.

図3は、制御手段270の処理フロー例を示している。制御データベース290とデータのやり取りをしながら、モデルエンジン230への起動指示を行い、ここでの制御対象となる前段供給水103と後段供給水105の流量を算出していく。最初のデータ読み込み工程272では、制御データベース290から下水処理設備100の現時点での各種計測データ、例えば、被処理下水101の流量や水質のデータを読み込んで、次工程での演算に利用可能な状態とする。   FIG. 3 shows an example of a processing flow of the control means 270. While exchanging data with the control database 290, a start instruction is given to the model engine 230, and the flow rates of the upstream supply water 103 and the downstream supply water 105 to be controlled here are calculated. In the first data reading step 272, various measurement data at the present time of the sewage treatment equipment 100, for example, the flow rate and water quality data of the sewage 101 to be treated are read from the control database 290, and the data can be used for calculation in the next step. And

次の生物吸着量算出工程274では、モデルエンジン230を起動し、現時点で生物反応層160の後段で生物吸着することが可能な汚濁負荷量(Lmax:生物吸着量上限値)を算出する。ここでの汚濁負荷量は、一般的には有機物量(例えば、BOD)である。また、BOD以外に留意したい水質項目(例えば、窒素、リンなど)がある場合には、算出する汚濁負荷量を窒素量、リン量としてもよい。Lmaxの算出は、モデルデータベース220に格納された活性汚泥モデルを用いて、モデルエンジン230によって行われる。   In the next bioadsorption amount calculation step 274, the model engine 230 is activated to calculate a pollution load amount (Lmax: bioadsorption amount upper limit value) at which biosorption can be performed at a stage subsequent to the bioreaction layer 160 at this time. The pollution load here is generally an organic matter amount (for example, BOD). In addition, when there is a water quality item (for example, nitrogen, phosphorus, etc.) to be noted other than the BOD, the calculated pollution load may be the nitrogen amount and the phosphorus amount. The calculation of Lmax is performed by the model engine 230 using the activated sludge model stored in the model database 220.

活性汚泥モデルによって算出されるLmaxとその影響因子との相関関係の一例を図4に示している。この例での影響因子は、生物反応槽160における活性汚泥濃度(MLSS:混合液浮遊物質量)と水温である。横軸はMLSSの相対値、縦軸がLmaxの相対値を示している。MLSSが高い、すなわち単位容積当たりの活性汚泥菌体量が多いほど、一般的には生物吸着の能力が高く、Lmaxが大きくなるという傾向を示すものである。また、水温が所定値までの範囲では、水温が高いほど、一般的には菌体の活性が高くなり、生物吸着の能力が高く、相対的にLmaxが大きくなる傾向を示している。このような相関関係を算出できる活性汚泥モデルと制御データベース290に格納された現時点のMLSS、水温の計測データを用いて、Lmax相対値を算出することができる。標準条件(例えば、MLSS=2000mg/L、水温20度)におけるLmaxの標準絶対値をあらかじめ格納しておくことで、現時点での条件に対応するLmaxの絶対値を求めることができる。ここでの例では、影響因子をMLSSと水温として説明したが、これらに限定されるものではなく、対象となる下水処理設備100の実情や関連する知見の内容に合わせて、これ以外の影響因子を考慮することも可能である。   FIG. 4 shows an example of the correlation between Lmax calculated by the activated sludge model and its influencing factors. Influencing factors in this example are the activated sludge concentration (MLSS: amount of suspended solids in the mixed liquid) and the water temperature in the biological reaction tank 160. The horizontal axis shows the relative value of MLSS, and the vertical axis shows the relative value of Lmax. In general, the higher the MLSS, that is, the greater the amount of activated sludge cells per unit volume, the higher the biosorption ability and the larger the Lmax. In addition, when the water temperature is in a range up to a predetermined value, the higher the water temperature, the higher the activity of the bacteria generally, the higher the ability of biosorption, and the higher the Lmax. Using the activated sludge model capable of calculating such a correlation and the current MLSS and water temperature measurement data stored in the control database 290, the Lmax relative value can be calculated. By storing in advance the standard absolute value of Lmax under standard conditions (for example, MLSS = 2000 mg / L, water temperature of 20 ° C.), the absolute value of Lmax corresponding to the current condition can be obtained. In this example, the influence factors are described as the MLSS and the water temperature. However, the influence factors are not limited to these, and other influence factors may be adjusted according to the actual situation of the target sewage treatment equipment 100 and the contents of related knowledge. It is also possible to consider

下水流量チェック工程276では、制御データベース290を参照し、被処理下水101の流量Qinが時間最大汚水量Qshを超過していないかどうかを判定する。超過していない場合には、非雨天時算出工程278に移行する。また、超過している場合には、雨天時算出工程280に移行する。非雨天時算出工程278では、後段供給水105および簡易放流水106の流量Qwは0(ゼロ)とし、前段供給水103を被処理下水101の流量と同一に設定される。   In the sewage flow rate check step 276, it is determined whether or not the flow rate Qin of the sewage 101 to be treated exceeds the time maximum sewage amount Qsh with reference to the control database 290. If not exceeded, the process proceeds to the non-rainy weather calculation step 278. If it has exceeded, the process proceeds to the rainy weather calculation step 280. In the non-rainy weather calculation step 278, the flow rate Qw of the downstream supply water 105 and the simple discharge water 106 is set to 0 (zero), and the upstream supply water 103 is set to be the same as the flow rate of the sewage 101 to be treated.

他方、雨天時算出工程280では、被処理下水101の流量がQshを超過しているため、生物反応槽160の後段にステップ流入させる後段供給水105の流量Qbackを算出する。Qbackは、Lmaxを水質計110で計測した汚濁物質濃度Cinで割った値に設定する。また、前段供給水103の流量Qfrontは、QinからQbackを除した値に設定し、Qwは0とする。但し、QfrontがQshを超過している場合には、QfrontはQshと同一に設定し、QwはQinからQfrontとQbackの合計を除した値に設定する。   On the other hand, in the rainy day calculation step 280, since the flow rate of the sewage 101 to be treated exceeds Qsh, the flow rate Qback of the post-supply water 105 to be flown into the post-stage of the biological reaction tank 160 is calculated. Qback is set to a value obtained by dividing Lmax by the pollutant concentration Cin measured by the water quality meter 110. In addition, the flow rate Qfront of the upstream supply water 103 is set to a value obtained by dividing Qback from Qin, and Qw is set to 0. However, when Qfront exceeds Qsh, Qfront is set to be the same as Qsh, and Qw is set to a value obtained by dividing Qin by the sum of Qfront and Qback.

最後の制御出力工程282では、非雨天時算出工程278または雨天時算出工程280で算出されたQfront、Qback、およびQwの設定値を制御データベース290に出力して、1回分の処理フローを終了する。この処理フローは、所定の制御周期で繰り返されて、その都度、制御データベース290に格納された設定値に基づいて、各種流量の制御が実行される。   In the last control output step 282, the set values of Qfront, Qback, and Qw calculated in the non-rainy weather calculation step 278 or the rainy weather calculation step 280 are output to the control database 290, and the processing flow for one time is ended. . This processing flow is repeated at a predetermined control cycle, and each time, the flow rate is controlled based on the set value stored in the control database 290.

上述した機能に加えて、下水処理設備100の運転者を支援する機能として、運転状態や制御状態を可視化する手段を有することが望ましい。具体的には、水質計110や流量計115で計測された水質と流量データや、制御モジュール250にて算出する各種の流量設定値などを監視制御システム200の表示手段201に表示するものとする。これにより、現在の運転状態と制御状態を正確に把握し、必要な対策をとることが容易となる効果が期待される。   In addition to the functions described above, it is desirable to have a means for visualizing the operating state and the control state as a function for assisting the driver of the sewage treatment facility 100. Specifically, the water quality and flow rate data measured by the water quality meter 110 and the flow meter 115, and various flow rate set values calculated by the control module 250 are displayed on the display unit 201 of the monitoring control system 200. . As a result, it is expected that the current operation state and control state can be accurately grasped, and necessary measures can be easily taken.

以上が本発明の特徴である制御手段270の機能と動作に関する代表的な実施例の説明である。   The above is a description of a typical embodiment relating to the function and operation of the control unit 270 which is a feature of the present invention.

101 被処理下水
103 生物反応槽前段供給水
105 生物反応槽後段供給水
107 処理水
108 簡易放流水
100 下水処理設備
110 水質計
115 流量計
120 流量調整弁
150 最初沈殿池
160 生物反応槽
170 最初沈殿池
200 監視制御システム
201 表示手段
202 キーボード
210 活性汚泥モデルシミュレータ
220 モデルデータベース
230 モデルエンジン
250 制御モジュール
255 信号出力手段
260 信号入力手段
270 制御手段
290 制御データベース
301 制御信号
302 計測値
101 Sewage to be treated 103 Biological reaction tank upstream supply water 105 Biological reaction tank downstream supply water 107 Treated water 108 Simple discharge water 100 Sewage treatment equipment 110 Water quality meter 115 Flow meter 120 Flow control valve 150 First sedimentation tank 160 Biological reaction tank 170 First sedimentation Pond 200 Monitoring control system 201 Display means 202 Keyboard 210 Activated sludge model simulator 220 Model database 230 Model engine 250 Control module 255 Signal output means 260 Signal input means 270 Control means 290 Control database 301 Control signal 302 Measured value

Claims (4)

活性汚泥法による監視制御システムにおいて、
流入下水の流量と水質を計測する計測手段と、
生物反応槽後段で生物吸着することが可能な生物吸着量上限値算出する演算手段と、
前記計測手段で計測した流入下水水質と前記演算手段で算出した前記生物吸着量上限値に基づいて、生物反応槽前段と後段にステップ流入させる下水供給量を決定する制御手段と、
を具備することを特徴とする監視制御システム。
In the monitoring and control system by the activated sludge method,
Measuring means for measuring the inflow sewage flow rate and water quality,
Calculating means for calculating an upper limit of the amount of bioadsorption that can be bioadsorbed in the latter stage of the bioreactor,
Wherein based on the biosorption amount upper limit value calculated in the inflow sewage water measured by the measuring means and said calculating means, and control means for determining a sewage supply amount to the step flow into the front and rear stages bioreactor,
A supervisory control system comprising:
請求項1において、前記計測手段が少なくとも流入下水中の汚濁有機物を計測する水質計測手段を具備することを特徴とする監視制御システム。 2. The monitoring control system according to claim 1, wherein said measuring means includes a water quality measuring means for measuring at least polluted organic matter in the inflow sewage. 請求項1において、前記生物吸着量上限値の推定は、生物吸着量と、少なくとも活性汚泥濃度または水温と、の関係を表す活性汚泥モデルを用いることを特徴とする監視制御システム。 According to claim 1, estimated before Kisei was adsorbed amount upper limit value, the monitoring control system, which comprises using a biological adsorption, the activated sludge model representing at least the activated sludge concentration or temperature, the relationship. 請求項1において、さらに、表示手段を具備し、前記表示手段は、前記計測手段で計測した流入下水の流量、水質及び前記制御手段で決定した生物反応槽前段と後段にステップ流入させる下水供給量を可視化することを特徴とする監視制御システム。 2. The apparatus according to claim 1, further comprising a display unit, wherein the display unit supplies the flow rate and the water quality of the inflow sewage measured by the measuring unit and the amount of sewage supplied to the biological reaction tank before and after the biological reaction tank determined by the control unit. A supervisory control system characterized by visualizing information.
JP2016000331A 2016-01-05 2016-01-05 Monitoring and control system using activated sludge method Active JP6643086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016000331A JP6643086B2 (en) 2016-01-05 2016-01-05 Monitoring and control system using activated sludge method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016000331A JP6643086B2 (en) 2016-01-05 2016-01-05 Monitoring and control system using activated sludge method

Publications (2)

Publication Number Publication Date
JP2017121595A JP2017121595A (en) 2017-07-13
JP6643086B2 true JP6643086B2 (en) 2020-02-12

Family

ID=59306342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016000331A Active JP6643086B2 (en) 2016-01-05 2016-01-05 Monitoring and control system using activated sludge method

Country Status (1)

Country Link
JP (1) JP6643086B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6845775B2 (en) * 2017-09-19 2021-03-24 株式会社日立製作所 Water treatment control device and water treatment system
JP7103598B2 (en) * 2018-07-04 2022-07-20 株式会社日立製作所 Water treatment control device and water treatment system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115025B2 (en) * 1987-01-16 1995-12-13 株式会社明電舎 Bulking control method using SVI
JP4513368B2 (en) * 2004-03-19 2010-07-28 栗田工業株式会社 Sewage treatment method and apparatus
JP2005279386A (en) * 2004-03-29 2005-10-13 Kurita Water Ind Ltd Waste water treatment apparatus
JP2007083153A (en) * 2005-09-21 2007-04-05 Kurita Water Ind Ltd Method and apparatus for treating sewage

Also Published As

Publication number Publication date
JP2017121595A (en) 2017-07-13

Similar Documents

Publication Publication Date Title
Arif et al. Cost analysis of activated sludge and membrane bioreactor WWTPs using CapdetWorks simulation program: Case study of Tikrit WWTP (middle Iraq)
Bachis et al. Modelling and characterization of primary settlers in view of whole plant and resource recovery modelling
Nuhoglu et al. Mathematical modelling of the activated sludge process—the Erzincan case
JP2003200190A (en) Device for controlling quality of water at sewage treatment plant
Dalmau et al. Development of a decision tree for the integrated operation of nutrient removal MBRs based on simulation studies and expert knowledge
Jiang et al. Estimation of costs of phosphorus removal in wastewater treatment facilities: adaptation of existing facilities
Suh et al. Investigation of the effects of membrane fouling control strategies with the integrated membrane bioreactor model
CN101693573B (en) Optimal design method of AAO process reaction tank
Chen et al. Optimal strategies evaluated by multi-objective optimization method for improving the performance of a novel cycle operating activated sludge process
Gu et al. Optimization and control strategies of aeration in WWTPs: A review
Liu et al. Online control of biofilm and reducing carbon dosage in denitrifying biofilter: pilot and full-scale application
JP6643086B2 (en) Monitoring and control system using activated sludge method
JP2019051497A (en) Water treatment control device and water treatment system
EP3504163B1 (en) Treatment of wastewater
Makowska et al. Organic Compounds Fractionation for Domestic Wastewater Treatment Modeling.
JP6805002B2 (en) Water treatment control device and water treatment system
Rajaei et al. Improving wastewater treatment plant performance based on effluent quality, operational costs, and reliability using control strategies for water and sludge lines
JPH07115025B2 (en) Bulking control method using SVI
JP4026057B2 (en) Water quality simulation equipment
Gao et al. Operation and management of Liaoning waste water treatment plants by STOAT Simulation
Saagi et al. Model-based evaluation of a full-scale wastewater treatment plant for future influent and operational scenarios
JP2002336889A (en) Water quality simulation system
Sarkar et al. Process design and application of aerobic hybrid bioreactor in the treatment of municipal wastewater
JP2004000986A (en) Method for controlling biological water treatment apparatus
CN117819702B (en) Module combined type nutrient supply control method in sewage treatment process

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200106

R150 Certificate of patent or registration of utility model

Ref document number: 6643086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150