JP4026057B2 - Water quality simulation equipment - Google Patents

Water quality simulation equipment Download PDF

Info

Publication number
JP4026057B2
JP4026057B2 JP2002288345A JP2002288345A JP4026057B2 JP 4026057 B2 JP4026057 B2 JP 4026057B2 JP 2002288345 A JP2002288345 A JP 2002288345A JP 2002288345 A JP2002288345 A JP 2002288345A JP 4026057 B2 JP4026057 B2 JP 4026057B2
Authority
JP
Japan
Prior art keywords
water quality
concentration
data
setting
setting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002288345A
Other languages
Japanese (ja)
Other versions
JP2004121952A (en
Inventor
高明 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2002288345A priority Critical patent/JP4026057B2/en
Publication of JP2004121952A publication Critical patent/JP2004121952A/en
Application granted granted Critical
Publication of JP4026057B2 publication Critical patent/JP4026057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、都市下水や産業廃水のように、汚水を浄化する活性汚泥法、嫌気・好気汚泥処理法などの汚水廃水処理プラントに利用される水質シミュレーション装置に関する。
【0002】
【従来の技術】
近年、閉鎖性水域の富栄養化が問題となっている。これまで、CODの総量規制により閉鎖性水域に流入する有機物量を減らし水質向上に向けた施策が実施されてきたが、これまでの取り組みだけでは、目標とした水質基準を十分達成できない。水域中に存在する窒素やりんは、プランクトンの栄養源となり赤潮被害の原因となることが知られており、そこで、水質保全のために水域へ流入する窒素とりんの総量規制が実施されようとしている。
【0003】
これに伴い有機物のみならず窒素やりんが除去できる、より高度な水質処理が求められている。そして、窒素やりん除去が可能な下水処理プロセスの開発や下水処理プラント等の導入が進められている。前述のような下水処理プロセスにおいては、水中の有機物の状況や気候(特に雨水の流入)などから水質を予測して運転方法を決定する必要がある。
【0004】
下水処理施設の運転は、流入水量や水質が経時的に変動し、かつ水理学的滞留時間が長いプラントであることから運転制御が難しく、これまで、運転員の経験と勘に基づいてポンプなどの操作量を決定している。一方で、近年International Water Associationから発表された活性汚泥のシミュレーション技術を使って下水処理場の運転状態を模擬するものがある。即ち、下水処理プラントの運転状況の把握や運転方針の検討を行うために、シミュレータが使用されることがある。
【0005】
このシミュレータを使用するためには、以下の4項目に関して事前に決定する必要がある。まず1つ目は、下水処理プラントの水槽の数と水路の設定やポンプの流量や溶存酸素濃度や温度などの運転条件である。2つ目は、測定した流入水質(TOC濃度、溶解性TOC濃度CODcr濃度溶解性CODcr濃度、全窒素濃度、溶解性窒素濃度、全りん濃度、溶解性りん濃度、りん酸態りん濃度、硝酸態窒素濃度、アンモニア態窒素濃度)をシミュレータが物質として扱う公知の状態変数(SI、SA、SF、SPO4、SNH4、SNO3、SN2、XFeP、XS、XAUT、XPHA、XPP、XPAO、XH、XI)に分画する必要がある。3つ目は、活性汚泥が行う生物反応の反応速度や収率を示すパラメータを設定する必要がある。4つ目は、各水槽内の物質の初期値を設定する必要がある(Henze, M, et al.:Activated Sludge Model No.2、IAWQ Scientific and Technical Report No.3(1995)参照)。
【0006】
特に、前記2つ目の項目は、シミュレーションを開始する段階で、入力値はその後のシミュレーションの精度に大きく影響する。
【0007】
下水道の流入水質データを提供する先行技術としては、日変動データを算出するための係数と日代表値の積から日変動データを計算する手法や、雨天日データを作成するために雨天日の係数と水質分析データから雨天日の水質データを算出する手法が公表されている。
【0008】
例えば、下記特許文献1は、種々の水質シミュレーションを高精度に行なうことを目的として、図6(特許文献1の図1の部番を一部変更した図)に示すような装置を開示している。図6は、水質シミュレーション装置とその周辺との接続状況を示すブロック図であり、本件発明と共通する構成部分も多いので、本図について、特許文献1の記載に基づいて、以下にその概要を述べる。
【0009】
図6において、1は最初沈殿池、2は反応槽、3は最終沈殿池である。先ず、下水処理プラントの概要について述べる。下水処理プラントでは、流入した下水は、最初沈殿池1、反応槽2、最終沈殿池3の順に流れて処理される。汚濁物質を含む下水は、最初沈殿池1に導入され、汚濁物質の中の沈降しやすいものを沈降分離して上澄水を反応槽2に流出する。反応槽2には最終沈殿池3の汚泥の一部が返送汚泥ポンプによって返送されており、反応槽2はその返送汚泥と最初沈殿池1の上澄水を処理する。反応槽2では、ブロワー(図示せず)から圧送された空気が曝気槽内の散気管によって放出されており、汚濁物質は活性汚泥により吸着、分解されて最終沈殿池3に導かれる。最終沈殿池3では活性汚泥を沈降分離し、沈降汚泥は余剰汚泥ポンプ(図示せず)により汚泥処理系(図示せず)に排出され、清澄水は処理水として滅菌槽(図示せず)を経て放流される。
【0010】
次に、図6における水質シミュレーション装置について述べる。図6のシミュレーション装置は、特許文献1の記載によれば、「下水処理場の水質データを蓄積するデータ蓄積装置1aと、土木構造などの処理場仕様を設定する処理場仕様設定装置2aと、運転条件を設定する運転条件設定装置3aと、水質モデルパラメータを設定するモデルパラメータ設定装置4aと、日変動データを算出するための係数を設定する係数設定装置7aと、係数設定装置の係数と日代表値との積から日変動データを計算する日変動データ計算装置8aと、各装置からのデータを受け取り処理場の水質を予測するシミュレーション計算装置9aとを備えており、データ蓄積装置1aと係数設定装置7aとの間に日変動の係数を自動的に演算する係数演算装置5aと、データ蓄積装置1aからのデータに基づき雨天日の水質データを作成しシミュレーション計算装置に送る雨天日データ作成装置6aとを設けた構成」とし、
さらに、「前記係数演算装置5aは、日変動のパターン係数を計算する基本係数演算装置51と補間係数を計算する補間係数演算装置52とを有し、また、前記雨天日データ作成装置6aは、雨天日の雨量によってパターン係数を計算する雨天日係数作成装置61および雨天日データを計算する雨天日データ計算装置62とを有する構成とした」ことを特徴としている。
【0011】
上記構成により、「日変動のデータおよび雨天日のデータを数分単位で作成することができ、種々の状況に対応したシミュレーションを極めて高精度に行える効果がある」旨、特許文献1に記載されている。(詳細は、特許文献1参照)。
【0012】
また、特許文献1とは異なる先行技術として、下記特許文献2は、「流入水質の計測方法としてオンラインUV計を用い、流入量が既定値を超えた場合、雨天モードと判断し、流入水質濃度の換算方法を切り替える手法」を開示している(詳細は、特許文献2参照)。
【0013】
【特許文献1】
特開2002−1370号公報(第1〜2頁、第5頁、図1)
【特許文献2】
特開2000−107796号公報(第5頁、図7)
【0014】
【発明が解決しようとする課題】
上述した特許文献1および2の方法によれば、運転員の経験や勘によることなく、晴天日と雨天日の水質データの切替が自動的に設定できるようになるため運転員の負担軽減を図ることができるものの、下記のような問題点がある。
【0015】
現実の降雨時流入水質変化は、降雨初期には下水管や地表に蓄えられた汚濁物質が一気に流入するため流入水質濃度が上昇し、降雨が続くと雨による希釈効果で流入水質濃度が低下する。前記特許文献1における実施形態の説明によれば、雨天時の水質は、晴天時の水質に雨天日と晴天日の水質データの差を加えているが、雨の降り始めからの経過時間に関して考慮されていないので降雨が継続した場合の流入水質変化が現実と乖離する部分が生ずる問題がある。
【0016】
前記特許文献2において、降雨モードと晴天モードを切り替える理由は、雨天の場合、流入量の増加によって下水管や地表に蓄えられた汚濁物質が一気に流入するためUV計データとBOD濃度の相関が変化し、下水処理シミュレータへの流入有機物濃度に誤差が生じるためである。この方法でも同様に、降雨が継続した場合の雨の希釈効果による流入水質濃度低下を再現できない問題がある。
【0017】
この発明は、上記従来の問題点に鑑みてなされたもので、この発明の課題は、諸設定を自動的に行い使用者の負担を軽減すると共に、降雨時の流入水質変化の現実とシミュレーション演算結果との誤差を低減させ、精度の高いシミュレーションを可能とした水質シミュレーション装置を提供することにある。
【0018】
【課題を解決するための手段】
前述の課題を解決するために、この発明は、水質データ及び運転状態記憶装置と、運転条件を設定する運転条件設定装置と、プラントの化学反応に関する定数を設定するパラメータ設定装置と、処理場の土木構造やプロセスフローを設定するプラント土木条件設定装置と、未来の流入水状態を設定する未来データ設定装置と、前記各設定装置の設定値に基づき、プロセス各部の水質予測演算を行なうシミュレーション演算装置とを備えた水質シミュレーション装置において、
前記未来データ設定装置は、過去の運転データに基づき変動する流入水状態を予測演算する流入水変動係数演算装置を有し、この演算結果と現時点のデータとに基づき未来の流入水量水質データを設定するものとし、
さらに、前記未来データ設定装置の設定値に基づき、流入水の有機成分としては、全 TOC 濃度と溶解性 TOC 濃度、または全 CODcr 濃度と溶解性 CODcr 、窒素成分としては、全窒素濃度と、溶解性窒素濃度と硝酸態窒素濃度とアンモニア態窒素濃度、りん成分としては、全りん濃度と溶解性りん濃度とりん酸態りん濃度、および浮遊物質濃度の測定結果と一致するようにシミュレーションで定義している有機物への分画比やその分画された各有機物に含まれる物質の含有比を演算する流入水質演算装置と、前記分画された各有機物に含まれる物質の含有比を前記シミュレーション演算装置に設定する流入水質設定装置とを備え、
前記流入水変動係数演算装置は、日変動数値を作成する日変動演算装置と、最初沈殿池の上流側に接続された管路に蓄積した物質の量を物質濃度として入力設定するための管路蓄積物質設定装置と、前記管路内に蓄積または流出される物質の濃度変化特性を表す所定のパラメータの値を入力設定するための管路パラメータ設定装置と、予想降雨量設定装置と、前記各設定装置の設定値に基づき、管路に蓄積した物質が未来の流量および水質に及ぼす影響を所定の演算式により演算する降雨影響演算装置とを備えたものとする(請求項1の発明)。
【0019】
上記未来データ設定装置および流入水質設定装置を備えた構成によれば、降雨が継続した場合の流入水質変化の現実との誤差が低減され、精度の高いシミュレーションを可能となる。なお、上記において、管路パラメータ設定装置における所定のパラメータとは、後述する Qstayinmax Qstayoutmax V1 V2 Kstayin Kstayout である。また、上記降雨影響演算装置における所定の演算式とは、後述する[数1]である。詳細は、実施例とともに詳述する。
【0020】
前記請求項1の発明の実施態様としては、下記請求項2の発明が好ましい。即ち、請求項1に記載の水質シミュレーション装置において、前記水質データ及び運転状態記憶装置に対する水質データの入力値は、オンライン水質測定装置の測定値とする(請求項2の発明)。
【0021】
上記オンライン水質測定装置により、例えば30分毎に計測すれば、一日1回もしくは数回の計測に比べて、降雨影響が精度よく反映された自動化水質シミュレーションが可能となる。
【0022】
【発明の実施の形態】
図面に基づき、本発明の実施例について以下にのべる。
【0023】
図1は、本発明の水質シミュレーション装置5の構成と、対象としている下水処理プラントとの接続状況を示した実施例の構成図である。図1において、図6に示した部材と同一機能を有する部材には、同一番号を付してその詳細説明を省略する。
【0024】
図1において、4はオンライン水質測定装置であり、サンプリング地点a、b、c、dの水質をオンラインで測定するものである。測定項目としては、TOC濃度、溶解性TOC濃度CODcr濃度、溶解性CODcr濃度、全窒素濃度、溶解性窒素濃度、全りん濃度、溶解性りん濃度、りん酸態りん濃度、硝酸態窒素濃度、アンモニア態窒素濃度、浮遊物質濃度などである。
【0025】
水質データおよび運転状態記憶装置6は、前記の水質、プラントに流入する水量、各種ポンプ流量、水温などのデータを蓄積する。未来データ設定装置7は、流入水変動係数演算装置8により演算された未来の流入水量データと水質データとを流入水質演算装置9およびシミュレーション演算装置14に設定する。
【0026】
前記流入水変動係数演算装置8は、過去の運転データや予想降雨量から未来の流量や水質を予測する演算装置である。流入水変動係数演算装置8において、81は、日変動演算装置であり、過去の運転データから1週間毎の流入水量や水質を水質データおよび運転状態記憶装置6から抽出し、移動平均を計算する演算装置である。82は、管路蓄積物質設定装置であり、最初沈殿池1の上流側に接続された管路に蓄積した物質の量を物質濃度として、装置の使用者が入力設定するための装置である。
【0027】
83は、管路パラメータ設定装置であり、前記管路内に蓄積または流出される物質の濃度変化特性を表す所定のパラメータの値を入力設定するための装置である。所定のパラメータとは、後述する Qstayinmax Qstayoutmax V1 V2 Kstayin Kstayout であり、装置の使用者が入力する。この管路パラメータの設定により、管路内に蓄積または流出される物質の濃度が変化する。84は、予想降雨量設定装置であり、シミュレーション演算装置14により計算させる期間の降雨量を天気予報等の情報から設定する装置である。85は、降雨影響演算装置であり、未来の時系列データを算出する装置である。即ち、降雨影響演算装置85は、前記日変動演算装置81から、後述する Qin,CINi を設定し、前記管路蓄積物質設定装置82から C1i,C2i 濃度を設定し、前記管路パラメータ設定装置83から Qstayinmax,Qstayoutmax,V1,V2,Kstayin,Kstayout を設定し、予想降雨量設定装置84から Qrain を設定し、後述する[数1]に従って演算するものである。なお、 i は、水質項目の違いを表している。具体的な水質項目は、全 TOC 濃度、溶解性 TOC 濃度、全 CODcr 濃度、溶解性 CODcr 濃度、全窒素濃度、溶解性窒素濃度、全りん濃度、溶解性りん濃度、りん酸態りん濃度、硝酸態窒素濃度、アンモニア態窒素濃度、浮遊物質濃度などである。
【0028】
未来の時系列データは、後述する連立微分方程式から計算できる。この連立微分方程式においては、最初沈殿池1の上流側に接続された管路を図4に示すように模擬している。即ち、最初沈殿池1には、下廃水と雨水とが、仮想管路18を経由して最初沈殿池1に流入するが、仮想管路18中の流れが淀んだ部分を仮想管路滞留域19として設定して、模擬管路を構成している。この仮想管路滞留域19内の水質は、常時は淀んでいるために濃度が高いが、降雨により、徐々に淀みがなくなり、仮想管路18内の水と仮想管路滞留域19内の水とが混ざり合って、濃度が低減し、仮想管路18内の濃度に近づく。詳細は、後述するデータにより述べる。
【0029】
前記未来の時系列データの計算は、下記の連立微分方程式から計算できる。
【0030】
【数1】

Figure 0004026057
ただし、前記式において、各記号の意味は次の通りである。
C1i:仮想管路18の水質iの濃度(g/m3)
C2i:仮想管路滞留域19の水質iの濃度(g/m3)
CINi:下廃水の水質iの濃度(g/m3)
V1:仮想管路18の体積(m3)
V2:仮想管路滞留域19の体積(m3)
Qin:下廃水の流量(m3/h)
Qrain:雨水の流量(m3/h)
Qstayin:仮想管路18から仮想管路滞留域19への流量(m3/h)
Qstayout:仮想管路滞留域19から仮想管路18への流量(m3/h)
Qstayinmax:仮想管路18から仮想管路滞留域19への飽和流量(m3/h)
Qstayoutmax:仮想管路滞留域19から仮想管路18への飽和流量(m3/h)
Kstayin:Qstayinの飽和係数
Kstayout:Qstayoutの飽和係数
前記[数1]において、式(1)は図4における仮想管路18の水質を、式(2)は仮想管路滞留域19の水質変化を数式で表現したものである。
【0031】
次に、図1において、9は、流入水質演算装置であり、水質データおよび運転状態記憶装置6に蓄積された過去の水質の時系列データと、未来データ設定装置7により設定された未来の時系列データとを基にして、図2に示したCODcr濃度や全窒素濃度や全りん濃度やりん酸態りん濃度や硝酸態窒素濃度やアンモニア態窒素濃度などの流入水質もしくは、図3に示したTOC濃度や全窒素濃度や全りん濃度やりん酸態りん濃度や硝酸態窒素濃度やアンモニア態窒素濃度などの流入水質から、シミュレーションで定義されている各有機物質への分画比と、各有機物質にふくまれる窒素やりんの含有比とを最小二乗法などの最適化手法を用いて全有機物濃度と全窒素濃度と全りん濃度を近似的に一致させる装置である。
【0032】
なお、この手法および装置は、公知の技術であり、図2および図3に示す記号は、前述のように、シミュレータが物質として扱う公知の状態変数(SI、SA、SF、SPO4、SNH4、SNO3、SN2、XFeP、XS、XAUT、XPHA、XPP、XPAO、XH、XIなど)である。
【0033】
次に、図1における流入水質設定装置10は、流入水質演算装置9で演算した数値をシミュレーション演算装置14に設定する。運転条件設定装置11は、返送率、SRT、制御目標溶存酸素濃度など、水処理プロセスを運転する上で不可欠な運転条件を設定する。パラメータ設定装置12は、シミュレーションで使用するモデルの反応速度定数や化学量論係数などのパラメータを設定する。シミュレーション演算装置14は、未来データ設定装置7、流入水質設定装置10、運転条件設定装置11、パラメータ設定装置12、プラント土木条件設定装置13からのデータを入力値として水処理プラントの各部の水質を予測する。
【0034】
次に、図5に、図1の実施例によりシミュレーションした演算例として、未来の時系列データのグラフの一例を示す。図5は、横軸に時間を示し、縦軸には、最初沈殿池に流入する水質濃度(C1濃度)、具体的にはCODcr濃度と、降雨量(Qrain)の経時変化を示す。図示(a)で示すC1濃度は、(b)で示す降雨の初期には下水管や地表に蓄えられた汚濁物質が一気に流入するため流入水質濃度が上昇し、降雨が続くと雨による希釈効果で流入水質濃度が低下し、降雨の終焉に伴って降雨開始前の濃度に戻る経過を示している。
【0035】
なお、図5においては図示を省略しているが、図4における仮想管路滞留域19の水質濃度(C2濃度)は、降雨開始後、仮想管路滞留域19の水が仮想管路18の水と混合して、徐々にC1濃度に接近する。
【0036】
【発明の効果】
上記のとおり、この発明によれば、水質データ及び運転状態記憶装置と、運転条件を設定する運転条件設定装置と、プラントの化学反応に関する定数を設定するパラメータ設定装置と、処理場の土木構造やプロセスフローを設定するプラント土木条件設定装置と、未来の流入水状態を設定する未来データ設定装置と、前記各設定装置の設定値に基づき、プロセス各部の水質予測演算を行なうシミュレーション演算装置とを備えた水質シミュレーション装置において、
前記未来データ設定装置は、過去の運転データに基づき変動する流入水状態を予測演算する流入水変動係数演算装置を有し、この演算結果と現時点のデータとに基づき未来の流入水量水質データを設定するものとし、
さらに、前記未来データ設定装置の設定値に基づき、流入水の有機成分としては、全 TOC 濃度と溶解性 TOC 濃度、または全 CODcr 濃度と溶解性 CODcr 濃度、窒素成分としては、全窒素濃度と溶解性窒素濃度と硝酸態窒素濃度とアンモニア態窒素濃度、りん成分としては、全りん濃度と溶解性りん濃度とりん酸態りん濃度、および浮遊物質濃度の測定結果と一致するようにシミュレーションで定義している有機物への分画比やその分画された各有機物に含まれる物質の含有比を演算する流入水質演算装置と、前記分画された各有機物に含まれる物質の含有比を前記シミュレーション演算装置に設定する流入水質設定装置とを備え
前記流入水変動係数演算装置は、日変動数値を作成する日変動演算装置と、最初沈殿池の上流側に接続された管路に蓄積した物質の量を物質濃度として入力設定するための管路蓄積物質設定装置と、前記管路内に蓄積または流出される物質の濃度変化特性を表す所定のパラメータの値を入力設定するための管路パラメータ設定装置と、予想降雨量設定装置と、前記各設定装置の設定値に基づき、管路に蓄積した物質が未来の流量および水質に及ぼす影響を所定の演算式により演算する降雨影響演算装置とを備えたものとしたので、
降雨時の流入水質変化の現実とシミュレーション演算結果との誤差を低減させ、精度の高いシミュレーションを可能とした自動化水質シミュレーション装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明の実施例に関わる水質シミュレーション装置の構成図
【図2】 各有機物質の分画比と含有する窒素やりんの比を求める模式図
【図3】 各有機物質の分画比と含有する窒素やりんの比を求める図2とは異なる模式図
【図4】 最初沈殿池の上流側に接続された管路の模擬管路構成図
【図5】 図1の実施例によりシミュレーションした演算例を示す図
【図6】 従来の水質シミュレーション装置の一例を示す構成図
【符号の説明】
1:最初沈殿池、2:生物反応槽、3:最終沈殿池、4:オンライン水質測定装置、5:水質シミュレーション装置、6:水質データおよび運転状態記憶装置、7:未来データ設定装置、8:流入水変動係数演算装置、9:流入水質演算装置、10:流入水質設定装置、11:運転条件設定装置、12:パラメータ設定装置、13:プラント土木条件設定装置、14:シミュレーション演算装置、81:日変動演算装置、82:管路蓄積物質設定装置、83:管路パラメータ設定装置、84:予想降雨量設定装置、85:降雨影響演算装置。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water quality simulation apparatus used in a sewage wastewater treatment plant such as an activated sludge method for purifying sewage and an anaerobic / aerobic sludge treatment method, such as municipal sewage and industrial wastewater.
[0002]
[Prior art]
In recent years, eutrophication of closed waters has become a problem. So far, measures have been implemented to reduce the amount of organic matter that flows into closed waters due to the total COD regulations, but with the efforts so far, the target water quality standards cannot be achieved sufficiently. Nitrogen and phosphorus present in the water area are known to cause nutrients for plankton and cause red tide damage. Therefore, in order to protect the water quality, the total amount of nitrogen and phosphorus flowing into the water area is going to be implemented. Yes.
[0003]
Along with this, there is a demand for more advanced water quality treatment that can remove not only organic substances but also nitrogen and phosphorus. Development of a sewage treatment process capable of removing nitrogen and phosphorus and introduction of a sewage treatment plant and the like are being promoted. In the sewage treatment process as described above, it is necessary to determine the operation method by predicting the water quality from the state of the organic matter in the water and the climate (especially inflow of rainwater).
[0004]
Operation of sewage treatment facilities is difficult to control due to the fact that the amount of influent water and water quality change over time and the hydraulic residence time is long. So far, pumps, etc. based on the experience and intuition of operators The amount of operation is determined. On the other hand, there is one that simulates the operating state of a sewage treatment plant using activated sludge simulation technology recently announced by the International Water Association. That is, a simulator may be used to grasp the operation status of the sewage treatment plant and to examine the operation policy.
[0005]
In order to use this simulator, it is necessary to determine in advance the following four items. The first is the operating conditions such as the number of water tanks and channels in the sewage treatment plant, pump flow rate, dissolved oxygen concentration, and temperature. Second, the inflow water (total TOC concentration measured solubility TOC concentration, total CODcr concentration, solubility CODcr concentration, total nitrogen concentration, solubility of nitrogen concentration, total phosphorus concentration, solubility phosphorus concentration, phosphorus Santai phosphorus Known state variables (S I , S A , S F , S PO4 , S NH4 , S NO3 , S N2 , X FeP , X S , etc.) X AUT , X PHA , X PP , X PAO , X H , X I ) must be fractionated. Third, it is necessary to set parameters indicating the reaction rate and yield of biological reactions performed by activated sludge. Fourth, it is necessary to set the initial value of the substance in each tank (see Henze, M, et al .: Activated Sludge Model No. 2, IAWQ Scientific and Technical Report No. 3 (1995)).
[0006]
In particular, the second item is a stage where simulation is started, and the input value greatly affects the accuracy of the subsequent simulation.
[0007]
Prior art that provides inflow water quality data for sewers includes methods for calculating daily fluctuation data from the product of daily fluctuation data and daily representative values, and rainy day coefficients to create rainy day data. A method for calculating water quality data on rainy days from water quality analysis data has been published.
[0008]
For example, the following Patent Document 1 discloses an apparatus as shown in FIG. 6 (a part of FIG. 1 in FIG. 1 is partially changed) for the purpose of performing various water quality simulations with high accuracy. Yes. FIG. 6 is a block diagram showing the connection status between the water quality simulation apparatus and its surroundings, and since there are many components common to the present invention, the outline of this figure will be described below based on the description of Patent Document 1. State.
[0009]
In FIG. 6, 1 is an initial settling tank, 2 is a reaction tank, and 3 is a final settling tank. First, the outline of the sewage treatment plant will be described. In the sewage treatment plant, the sewage that has flowed in flows in the order of the first settling tank 1, the reaction tank 2, and the final settling tank 3 in order. The sewage containing the pollutant is first introduced into the settling basin 1, and the easily settled sediment in the pollutant is settled and the supernatant water flows out to the reaction tank 2. A part of the sludge in the final sedimentation tank 3 is returned to the reaction tank 2 by a return sludge pump, and the reaction tank 2 processes the return sludge and the supernatant water of the first sedimentation tank 1. In the reaction tank 2, air pumped from a blower (not shown) is released by the air diffuser in the aeration tank, and the pollutant is adsorbed and decomposed by the activated sludge and guided to the final sedimentation tank 3. In the final sedimentation basin 3, activated sludge is settled and separated, the settled sludge is discharged to a sludge treatment system (not shown) by an excess sludge pump (not shown), and the clarified water is treated as a sterilization tank (not shown). It is released after that.
[0010]
Next, the water quality simulation apparatus in FIG. 6 will be described. According to the description of Patent Document 1, the simulation apparatus of FIG. 6 is described as “a data storage device 1a for storing water quality data of a sewage treatment plant, a treatment plant specification setting device 2a for setting treatment plant specifications such as civil engineering structure, An operating condition setting device 3a for setting operating conditions, a model parameter setting device 4a for setting water quality model parameters, a coefficient setting device 7a for setting coefficients for calculating daily fluctuation data, and coefficients and dates of the coefficient setting device It includes a daily fluctuation data calculation device 8a that calculates daily fluctuation data from the product with the representative value, and a simulation calculation device 9a that receives data from each device and predicts the water quality of the treatment plant, and includes a data storage device 1a and a coefficient A coefficient calculator 5a that automatically calculates a coefficient of daily fluctuation with the setting device 7a, and a water quality data on a rainy day based on data from the data storage device 1a. And a rainy day data generating device 6a to send to create a data simulation calculation device and the structure provided "
Furthermore, “the coefficient calculation device 5a includes a basic coefficient calculation device 51 that calculates a daily variation pattern coefficient and an interpolation coefficient calculation device 52 that calculates an interpolation coefficient, and the rainy day data creation device 6a includes: It is characterized by having a rainy day coefficient creating device 61 that calculates a pattern coefficient according to the amount of rain on a rainy day and a rainy day data calculating device 62 that calculates rainy day data.
[0011]
According to the above configuration, Patent Document 1 states that “the daily fluctuation data and the rainy day data can be created in units of several minutes, and simulation corresponding to various situations can be performed with extremely high accuracy”. ing. (For details, see Patent Document 1).
[0012]
Further, as a prior art different from Patent Document 1, the following Patent Document 2 states, “When using an on-line UV meter as an inflow water quality measurement method, if the inflow amount exceeds a predetermined value, it is determined that it is rainy mode, and the inflow water concentration is Is disclosed "(for details, refer to Patent Document 2).
[0013]
[Patent Document 1]
JP 2002-1370 A (pages 1 and 2, page 5, FIG. 1)
[Patent Document 2]
Japanese Patent Laid-Open No. 2000-107796 (5th page, FIG. 7)
[0014]
[Problems to be solved by the invention]
According to the methods of Patent Documents 1 and 2 described above, it is possible to automatically set the water quality data on a sunny day and a rainy day without depending on the experience and intuition of the operator, so the burden on the operator is reduced. However, there are the following problems.
[0015]
The actual change in inflow water quality during rainfall is that in the beginning of the rain, pollutants stored in the sewer pipes and the ground surface flow in at a stretch, so the inflow water concentration increases, and if the rain continues, the inflow water concentration decreases due to the dilution effect of rain. . According to the description of the embodiment in Patent Document 1, the water quality in the rainy weather is obtained by adding the difference between the water quality data in the rainy day and the weather on a sunny day to the water quality in the fine weather, but considering the elapsed time from the start of raining. As a result, there is a problem that the influent water quality changes when the rain continues.
[0016]
In Patent Document 2, the reason for switching between the rain mode and the clear sky mode is that, in the case of rain, the correlation between the UV meter data and the BOD concentration changes because the pollutant accumulated in the sewage pipes and the ground surface flows in at once due to the increase in inflow amount. This is because an error occurs in the concentration of organic substances flowing into the sewage treatment simulator. Similarly, this method has a problem that it is impossible to reproduce the decrease in influent water quality due to the dilution effect of rain when rain continues.
[0017]
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to automatically perform various settings to reduce the burden on the user, and to realize the reality of the inflow water quality change during the rain and the simulation calculation. It is an object of the present invention to provide a water quality simulation apparatus that can reduce an error from the result and enable a highly accurate simulation.
[0018]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a water quality data and operation state storage device, an operation condition setting device for setting operation conditions, a parameter setting device for setting constants for plant chemical reactions, and a treatment plant Plant civil engineering condition setting device for setting civil engineering structure and process flow, future data setting device for setting the future inflow water state, and simulation arithmetic device for performing water quality prediction calculation for each part of the process based on the set values of each setting device In the water quality simulation device equipped with
The future data setting device has a influent variation coefficient calculating unit for prediction calculation of the influent condition which varies based on historical operating data, and the water quality data inflow water amount in the future based on the calculation result and the current data And set
Furthermore, based on the set value of the future data setting device, as the organic component of the influent water, the total TOC concentration and soluble TOC concentration or total CODcr concentration solubility CODcr, as the nitrogen component, and the total nitrogen concentration, dissolution The basic nitrogen concentration, nitrate nitrogen concentration, ammonia nitrogen concentration, and phosphorus component are defined by simulation so as to match the measurement results of total phosphorus concentration, soluble phosphorus concentration, phosphate phosphorus concentration, and suspended solids concentration. Inflow water quality calculation device for calculating the fractional ratio to the organic matter and the content ratio of the substance contained in each fractionated organic matter, and the simulation computation of the content ratio of the substance contained in each fractionated organic matter An influent water quality setting device to be set in the device,
The inflow water fluctuation coefficient computing device includes a daily fluctuation computing device for creating a daily fluctuation numerical value, and a pipe accumulation for inputting and setting the amount of the substance accumulated in the pipe connected to the upstream side of the first settling basin as a substance concentration. A substance setting device, a pipe parameter setting device for inputting and setting a predetermined parameter value representing a concentration change characteristic of a substance accumulated or discharged in the pipe, an expected rainfall setting device, and each of the settings It is provided with a rainfall influence calculation device that calculates the influence of the substance accumulated in the pipeline on the future flow rate and water quality based on the set value of the device by a predetermined calculation formula (invention of claim 1).
[0019]
According to the configuration including the future data setting device and the inflow water quality setting device, an error from the actual change in the inflow water quality when rain continues is reduced, and a highly accurate simulation is possible. In the above, the predetermined parameters in the pipeline parameter setting device are Qstayinmax , Qstayoutmax , V1 , V2 , Kstayin , and Kstayout described later . Further, the predetermined calculation formula in the rain influence calculation device is [Expression 1] described later. Details will be described together with the examples.
[0020]
As an embodiment of the invention of claim 1, the invention of claim 2 below is preferable. That is, in the water quality simulation apparatus according to claim 1, the input value of the water quality data to the water quality data and the operation state storage device is a measurement value of the online water quality measurement apparatus (invention of claim 2 ).
[0021]
If the above-mentioned online water quality measurement device is measured , for example, every 30 minutes, an automated water quality simulation in which the influence of rainfall is accurately reflected can be performed as compared with measurement once or several times a day.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described below with reference to the drawings.
[0023]
FIG. 1 is a configuration diagram of an embodiment showing a configuration of a water quality simulation device 5 of the present invention and a connection state with a target sewage treatment plant. In FIG. 1, members having the same functions as those shown in FIG. 6 are given the same reference numerals, and detailed descriptions thereof are omitted.
[0024]
In FIG. 1, 4 is an on-line water quality measuring device, which measures the water quality at sampling points a, b, c, and d online. The measurement item, the total TOC concentration, solubility TOC concentration, total CODcr concentration, solubility CODcr concentration, total nitrogen concentration, solubility of nitrogen concentration, total phosphorus concentration, solubility phosphorus concentration, phosphoric acid status phosphorus concentration, nitrate nitrogen Concentration, ammonia nitrogen concentration, suspended solids concentration, etc.
[0025]
The water quality data and operation state storage device 6 accumulates data such as the water quality, the amount of water flowing into the plant, various pump flow rates, and the water temperature. The future data setting device 7 sets the future inflow water amount data and the water quality data calculated by the influent water fluctuation coefficient calculating device 8 in the inflow water quality calculating device 9 and the simulation calculating device 14 .
[0026]
The influent water variation coefficient calculating unit 8 is a Starring SanSo location to predict the future flow and water from the past operation data and expected rainfall. In the influent water fluctuation coefficient computing device 8, 81 is a daily fluctuation computing device, which extracts the inflow water amount and water quality for each week from the past operation data from the water quality data and the operation state storage device 6 and calculates a moving average. Arithmetic unit. Reference numeral 82 denotes a pipe accumulated substance setting device, which is an apparatus for the user of the apparatus to input and set the amount of the substance accumulated in the pipe connected to the upstream side of the sedimentation tank 1 as a substance concentration .
[0027]
83 is a pipe parameter setting apparatus, a device for inputting set values of a predetermined parameter representing the density change characteristics of the accumulation or efflux the substance in the conduit. The predetermined parameters are Qstayinmax , Qstayoutmax , V1 , V2 , Kstayin , and Kstayout , which will be described later , and are input by the user of the apparatus. By setting the pipeline parameters, the concentration of the substance accumulated or discharged in the pipeline changes. Reference numeral 84 denotes an expected rainfall setting device that sets the rainfall during a period to be calculated by the simulation calculation device 14 from information such as a weather forecast. 85, Ri rain effect calculation unit der is a device for calculating the time-series data not yet come. That is, the rainfall influence calculation device 85 sets Qin and CINi, which will be described later, from the daily fluctuation calculation device 81, sets C1i and C2i concentrations from the pipeline accumulation material setting device 82 , and sets the pipeline parameter setting device 83. set Qstayinmax, Qstayoutmax, V1, V2, Kstayin, the Kstayout from, sets the Qrain from the expected rainfall setting device 84 is for calculating according to later-described Expression 1. In addition, i represents the difference between the water quality items. Specific water quality items are total TOC concentration, soluble TOC concentration, total CODcr concentration, soluble CODcr concentration, total nitrogen concentration, soluble nitrogen concentration, total phosphorus concentration, soluble phosphorus concentration, phosphate phosphorus concentration, nitric acid The nitrogen concentration, the ammonia nitrogen concentration, the suspended solid concentration, and the like.
[0028]
Future time-series data can be calculated from simultaneous differential equations described later. In this simultaneous differential equation, the pipe connected to the upstream side of the first settling basin 1 is simulated as shown in FIG. That is, sewage wastewater and rainwater flow into the first sedimentation basin 1 via the virtual pipeline 18 into the first sedimentation basin 1, but the portion where the flow in the virtual pipeline 18 stagnates is the virtual pipeline retention area. 19 is set to constitute a simulated pipeline. The water quality in the virtual pipeline staying area 19 is high in concentration because it is always stagnant, but the water gradually disappears due to rainfall, and the water in the virtual pipe staying area 19 and the water in the virtual pipe staying area 19 are lost. Are mixed with each other to reduce the concentration and approach the concentration in the virtual pipe 18. Details will be described with data to be described later.
[0029]
The future time series data can be calculated from the following simultaneous differential equations.
[0030]
[Expression 1]
Figure 0004026057
However, in the above formula, the meaning of each symbol is as follows.
C1 i : Concentration of water quality i in the virtual pipeline 18 (g / m 3 )
C2 i : Concentration of water quality i in the virtual pipeline retention zone 19 (g / m 3 )
CIN i : Concentration of water quality i of sewage wastewater (g / m 3 )
V1: Volume of virtual pipe 18 (m 3 )
V2: Volume of virtual pipe staying area 19 (m 3 )
Q in : Wastewater flow rate (m 3 / h)
Q rain : Flow rate of rainwater (m 3 / h)
Q stayin : Flow rate from the virtual pipeline 18 to the virtual pipeline retention zone 19 (m 3 / h)
Q stayout : Flow rate from the virtual pipeline retention zone 19 to the virtual pipeline 18 (m 3 / h)
Q stayinmax : Saturation flow rate from the virtual pipeline 18 to the virtual pipeline retention zone 19 (m 3 / h)
Q stayoutmax : Saturation flow rate from the virtual pipeline retention zone 19 to the virtual pipeline 18 (m 3 / h)
K stayin : Q stayin saturation coefficient
K stayout : Saturation coefficient of Q stayout In the above [Equation 1], equation (1) expresses the water quality of the virtual pipeline 18 in FIG. 4 and equation (2) expresses the water quality change of the virtual pipeline retention area 19 by a mathematical formula. Is.
[0031]
Next, in FIG. 1, reference numeral 9 denotes an influent water quality calculation device, which is a time series data of past water quality accumulated in the water quality data and the operation state storage device 6 and a future time set by the future data setting device 7. Based on the series data, inflow water quality such as total CODcr concentration , total nitrogen concentration , total phosphorus concentration , phosphate phosphorus concentration, nitrate nitrogen concentration, ammonia nitrogen concentration shown in Fig. 2 or shown in Fig. 3 The fraction ratio of each organic substance defined in the simulation from the influent water quality such as total TOC concentration , total nitrogen concentration , total phosphorus concentration , phosphate phosphorus concentration, nitrate nitrogen concentration and ammonia nitrogen concentration, It is an apparatus that approximates the total organic matter concentration, the total nitrogen concentration, and the total phosphorus concentration by using an optimization method such as a least square method for the content ratio of nitrogen and phosphorus contained in each organic material.
[0032]
This technique and apparatus are known techniques, and the symbols shown in FIGS. 2 and 3 are known state variables (S I , S A , S F , S PO4) that the simulator treats as substances as described above. a S NH4, S NO3, S N2 , X FeP, X S, X AUT, X PHA, X PP, X PAO, X H, X I , etc.).
[0033]
Next, the inflow water quality setting device 10 in FIG. 1 sets the numerical value calculated by the inflow water quality calculation device 9 in the simulation calculation device 14. The operation condition setting device 11 sets operation conditions indispensable for operating the water treatment process, such as a return rate, SRT, and control target dissolved oxygen concentration. The parameter setting device 12 sets parameters such as a reaction rate constant and a stoichiometric coefficient of a model used in the simulation. The simulation calculation device 14 uses the data from the future data setting device 7, the inflow water quality setting device 10, the operating condition setting device 11, the parameter setting device 12, and the plant civil engineering condition setting device 13 as input values to determine the water quality of each part of the water treatment plant. Predict.
[0034]
Next, FIG. 5 shows an example of a graph of future time series data as a calculation example simulated by the embodiment of FIG. In FIG. 5, the horizontal axis represents time, and the vertical axis represents the time-dependent changes in the water quality concentration (C1 concentration) flowing into the first sedimentation basin, specifically the CODcr concentration and the rainfall (Q rain ). The C1 concentration shown in the figure (a) is the dilution effect of rain when the inflow water quality concentration rises at the beginning of the rainfall shown in (b) because the pollutants stored on the sewage pipes and the ground surface flow in at a stretch. The inflow water quality concentration decreases and shows the process of returning to the concentration before the start of rainfall with the end of the rain.
[0035]
Although not shown in FIG. 5, the water quality concentration (C2 concentration) of the virtual pipe staying area 19 in FIG. 4 is the water concentration of the virtual pipe staying area 19 after the start of rainfall. Mix with water and gradually approach C1 concentration.
[0036]
【The invention's effect】
As described above, according to the present invention, the water quality data and operation state storage device, the operation condition setting device for setting the operation conditions, the parameter setting device for setting constants related to the chemical reaction of the plant, the civil engineering structure of the treatment plant, A plant civil condition setting device for setting a process flow, a future data setting device for setting a future influent water state, and a simulation calculation device for performing water quality prediction calculation for each part of the process based on the set values of the setting devices. In water quality simulation equipment,
The future data setting device has a influent variation coefficient calculating unit for prediction calculation of the influent condition which varies based on historical operating data, and the water quality data inflow water amount in the future based on the calculation result and the current data And set
Furthermore, based on the set value of the future data setting device, as the organic component of the influent water, the total TOC concentration and soluble TOC concentration or total CODcr concentration solubility CODcr concentration, the nitrogen component, dissolved and total nitrogen concentration The basic nitrogen concentration, nitrate nitrogen concentration, ammonia nitrogen concentration, and phosphorus component are defined by simulation so as to match the measurement results of total phosphorus concentration, soluble phosphorus concentration, phosphate phosphorus concentration, and suspended solids concentration. The inflow water quality calculation device that calculates the fractional ratio to the organic matter and the content ratio of the substance contained in each fractionated organic matter, and the simulation computation of the content ratio of the substance contained in each fractionated organic matter An influent water quality setting device to be set in the device ,
The inflow water fluctuation coefficient computing device includes a daily fluctuation computing device for creating a daily fluctuation numerical value, and a pipe accumulation for inputting and setting the amount of the substance accumulated in the pipe connected to the upstream side of the first settling basin as a substance concentration. A substance setting device, a pipe parameter setting device for inputting and setting a value of a predetermined parameter representing a concentration change characteristic of a substance accumulated or discharged in the pipe, an expected rainfall setting device, and each of the settings Based on the set value of the device, because it was equipped with a rain influence calculation device that calculates the effect of substances accumulated in the pipeline on the future flow rate and water quality by a predetermined calculation formula ,
It is possible to provide an automated water quality simulation apparatus capable of reducing the error between the actual change in inflow water quality at the time of rainfall and the simulation calculation result and enabling a highly accurate simulation.
[Brief description of the drawings]
FIG. 1 is a block diagram of a water quality simulation apparatus according to an embodiment of the present invention. FIG. 2 is a schematic diagram for determining the fractional ratio of each organic substance and the ratio of nitrogen and phosphorus contained therein. Fig. 4 is a schematic diagram different from Fig. 2 for determining the ratio of nitrogen and phosphorus contained in the ratio. Fig. 4 Simulated pipe configuration diagram of the pipe connected to the upstream side of the first sedimentation basin. FIG. 6 is a block diagram showing an example of a conventional water quality simulation apparatus.
1: First sedimentation basin, 2: Biological reaction tank, 3: Final sedimentation basin, 4: Online water quality measurement device, 5: Water quality simulation device, 6: Water quality data and operation state storage device, 7: Future data setting device, 8: Inflow water fluctuation coefficient calculation device, 9: Inflow water quality calculation device, 10: Inflow water quality setting device, 11: Operating condition setting device, 12: Parameter setting device, 13: Plant civil engineering condition setting device, 14: Simulation calculation device, 81: Daily fluctuation calculation device, 82: pipeline accumulated substance setting device, 83: pipeline parameter setting device, 84: expected rainfall setting device, 85: rainfall influence calculation device.

Claims (2)

水質データ及び運転状態記憶装置と、運転条件を設定する運転条件設定装置と、プラントの化学反応に関する定数を設定するパラメータ設定装置と、処理場の土木構造やプロセスフローを設定するプラント土木条件設定装置と、未来の流入水状態を設定する未来データ設定装置と、前記各設定装置の設定値に基づき、プロセス各部の水質予測演算を行なうシミュレーション演算装置とを備えた水質シミュレーション装置において、
前記未来データ設定装置は、過去の運転データに基づき変動する流入水状態を予測演算する流入水変動係数演算装置を有し、この演算結果と現時点のデータとに基づき未来の流入水量水質データを設定するものとし、
さらに、前記未来データ設定装置の設定値に基づき、流入水の有機成分としては、全 TOC 濃度と溶解性 TOC 濃度、または全 CODcr 濃度と溶解性 CODcr 濃度、窒素成分としては、全窒素濃度と溶解性窒素濃度と硝酸態窒素濃度とアンモニア態窒素濃度、りん成分としては、全りん濃度と溶解性りん濃度とりん酸態りん濃度、および浮遊物質濃度の測定結果と一致するようにシミュレーションで定義している有機物への分画比やその分画された各有機物に含まれる物質の含有比を演算する流入水質演算装置と、前記分画された各有機物に含まれる物質の含有比を前記シミュレーション演算装置に設定する流入水質設定装置とを備え
前記流入水変動係数演算装置は、日変動数値を作成する日変動演算装置と、最初沈殿池の上流側に接続された管路に蓄積した物質の量を物質濃度として入力設定するための管路蓄積物質設定装置と、前記管路内に蓄積または流出される物質の濃度変化特性を表す所定のパラメータの値を入力設定するための管路パラメータ設定装置と、予想降雨量設定装置と、前記各設定装置の設定値に基づき、管路に蓄積した物質が未来の流量および水質に及ぼす影響を所定の演算式により演算する降雨影響演算装置とを備えたことを特徴する水質シミュレーション装置。
Water quality data and operation state storage device, operation condition setting device for setting operation conditions, parameter setting device for setting constants related to chemical reaction of plant, plant civil engineering condition setting device for setting civil engineering structure and process flow of treatment plant And a water quality simulation device comprising a future data setting device for setting a future inflow water state, and a simulation operation device for performing water quality prediction calculation of each part of the process based on the set value of each setting device.
The future data setting device has a influent variation coefficient calculating unit for prediction calculation of the influent condition which varies based on historical operating data, and the water quality data inflow water amount in the future based on the calculation result and the current data And set
Furthermore, based on the set value of the future data setting device, as the organic component of the influent water, the total TOC concentration and soluble TOC concentration or total CODcr concentration solubility CODcr concentration, the nitrogen component, dissolved and total nitrogen concentration The basic nitrogen concentration, nitrate nitrogen concentration, ammonia nitrogen concentration, and phosphorus component are defined by simulation so as to match the measurement results of total phosphorus concentration, soluble phosphorus concentration, phosphate phosphorus concentration, and suspended solids concentration. The inflow water quality calculation device that calculates the fractional ratio to the organic matter and the content ratio of the substance contained in each fractionated organic matter, and the simulation computation of the content ratio of the substance contained in each fractionated organic matter An influent water quality setting device to be set in the device ,
The inflow water fluctuation coefficient computing device includes a daily fluctuation computing device for creating a daily fluctuation numerical value, and a pipe accumulation for inputting and setting the amount of the substance accumulated in the pipe connected to the upstream side of the first settling basin as a substance concentration. A substance setting device, a pipe parameter setting device for inputting and setting a predetermined parameter value representing a concentration change characteristic of a substance accumulated or discharged in the pipe, an expected rainfall setting device, and each of the settings A water quality simulation apparatus comprising: a rainfall influence calculation device that calculates an influence of a substance accumulated in a pipeline on a future flow rate and water quality based on a set value of the device by a predetermined calculation formula .
請求項1に記載の水質シミュレーション装置において、前記水質データ及び運転状態記憶装置に対する水質データの入力値は、オンライン水質測定装置の測定値とすることを特徴とする水質シミュレーション装置。The water quality simulation apparatus according to claim 1 , wherein an input value of the water quality data to the water quality data and operation state storage device is a measurement value of an online water quality measurement apparatus.
JP2002288345A 2002-10-01 2002-10-01 Water quality simulation equipment Expired - Fee Related JP4026057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002288345A JP4026057B2 (en) 2002-10-01 2002-10-01 Water quality simulation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288345A JP4026057B2 (en) 2002-10-01 2002-10-01 Water quality simulation equipment

Publications (2)

Publication Number Publication Date
JP2004121952A JP2004121952A (en) 2004-04-22
JP4026057B2 true JP4026057B2 (en) 2007-12-26

Family

ID=32280865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288345A Expired - Fee Related JP4026057B2 (en) 2002-10-01 2002-10-01 Water quality simulation equipment

Country Status (1)

Country Link
JP (1) JP4026057B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ566779A (en) * 2005-10-06 2011-03-31 Siemens Water Tech Corp Controlling aeration gas flow and mixed liquor circulation rate using an algorithm
JP5022610B2 (en) * 2006-02-27 2012-09-12 株式会社東芝 Sewage treatment plant operation support equipment
CN108996742A (en) * 2018-07-17 2018-12-14 徐州益康环保科技有限公司 A kind of waste water automation environment-friendly disposal system

Also Published As

Publication number Publication date
JP2004121952A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
Arif et al. Cost analysis of activated sludge and membrane bioreactor WWTPs using CapdetWorks simulation program: Case study of Tikrit WWTP (middle Iraq)
Abbasi et al. Quality and cost analysis of a wastewater treatment plant using GPS-X and CapdetWorks simulation programs
JP2001252691A (en) Water quality controlling device for sewage treatment plant
Sklarz et al. Mathematical model for analysis of recirculating vertical flow constructed wetlands
Olsson et al. Operation and control of wastewater treatment—a Scandinavian perspective over 20 years
JP2003200190A (en) Device for controlling quality of water at sewage treatment plant
JP2005125229A (en) Sewerage treatment system
Moragaspitiya et al. Simulation of dynamic behaviour of a biological wastewater treatment plant in South East Queensland, Australia using bio-win software
JP4026057B2 (en) Water quality simulation equipment
EP3504163B1 (en) Treatment of wastewater
JP6643086B2 (en) Monitoring and control system using activated sludge method
JP2006315004A (en) Water quality control unit for sewage disposal plant
Ingildsen et al. Exploiting online in-situ ammonium, nitrate and phosphate sensors in full-scale wastewater plant operation
CN104609559B (en) The organic chemicals exposure level Forecasting Methodology of anaerobic waste water-Aerobic Process for Treatment system
Verma et al. Water quality management by enhancing assimilation capacity with flow augmentation: a case study for the Yamuna River, Delhi
JP4552393B2 (en) Biological water treatment facility operation support device
JP3985180B2 (en) Water quality simulation equipment
JP2002336889A (en) Water quality simulation system
JP2002331283A (en) Operation support system
JP2004066119A (en) Operation support apparatus
Dairi et al. Dynamic simulation for the requirements of oxygen about the Municipal Wastewater Treatment Plant-Case of Souk-Ahras/Algeria
JP2004105952A (en) Sewage treatment operation support system
Roman et al. Considerations regarding the control of biochemical oxygen demand and chemical oxygen demand from Dej wastewater treatment plant
Mhlanga Modelling of the Marianridge Wastewater Treatment Plant
Girbaciu et al. OPTIMISATION OF WASTE WATER TREATMENT PLANTS

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4026057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees