JPS6345275B2 - - Google Patents

Info

Publication number
JPS6345275B2
JPS6345275B2 JP56034228A JP3422881A JPS6345275B2 JP S6345275 B2 JPS6345275 B2 JP S6345275B2 JP 56034228 A JP56034228 A JP 56034228A JP 3422881 A JP3422881 A JP 3422881A JP S6345275 B2 JPS6345275 B2 JP S6345275B2
Authority
JP
Japan
Prior art keywords
calcium
water
phosphorus
denitrification
dephosphorization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56034228A
Other languages
Japanese (ja)
Other versions
JPS57150492A (en
Inventor
Izumi Hirasawa
Katsuyuki Kataoka
Kazuo Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP56034228A priority Critical patent/JPS57150492A/en
Publication of JPS57150492A publication Critical patent/JPS57150492A/en
Publication of JPS6345275B2 publication Critical patent/JPS6345275B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、最も合理的なリンとアンモニア性窒
素の除去方法を提供することを目的としており、
特に、下水の2次処理水の高度処理に好適な除去
プロセスである。 従来、アンモニア性窒素の生物学的硝化脱窒素
を粒状濾材充填層で行なうことは知られており、
また、リン酸カルシウム含有粒状固体によつてリ
ンを除去する方法も知られているが、各々、無関
係なプロセスとして、別固に実施されていたにす
ぎず、両者のプロセスの有機的関連性に着目し合
理的に結合するという概念には、全く到達してい
なかつたのが現状である。 本発明は、リン酸カルシウム含有固体の存在下
で生物学的脱窒素反応を生起させると極めて、効
果的にリンの除去が並行して進行することを見出
して完成されたものである。すなわち本発明は、
リン及びアンモニア性窒素を含有する廃水を、硝
化菌を付着せしめた粒状固体充填層に導入し、好
気的雰囲気で流過せしめることによつて、少なく
とも硝化反応を行なう第一工程と、該工程流出水
をカルシウムイオン及び有機炭素源の存在下で、
リン酸カルシウム含有固体と嫌気的条件下で接触
せしめる第二工程とからなることを特徴とするリ
ン,窒素の除去方法である。 次に本発明の一実施態様を第1図を参照しつつ
説明すれば、下水の活性汚泥処理水などのアンモ
ニア性窒素とリンを含有する廃水1は、砂,アン
スラサイト,活性炭などの粒状固体2を充填材と
する充填槽3に流入させる。 充填槽3の下部には散気管4が設けられており
空気などの酸素含有ガス5が充填槽3内に供給さ
れ、槽内は好気的条件に保たれている。 流入水は粒状固体2の充填槽3内を流過するこ
とによつて、SSが除去されると同時に充填層内
に繁殖した硝化菌の生物学的作用により、アンモ
ニア性窒素が酸化されて硝酸イオンとなる。この
硝化菌による硝化反応の代表的な反応式を次に示
す。 NH+ 4+202+OH-+HCO3 -→NO3 -+3H2O+
CO2 ……(1) 硝化反応に於ては(1)式に示されているように、
重炭酸イオン(HCO3 -)も消費されて炭酸ガス
を生ずるが、この炭酸ガスは充填槽3に供給され
る酸素含有ガス5の気泡に同伴されて大気中に放
散される。また硝化反応では水酸イオン(OH-
も同時に消費されるため、アンモニア性窒素の含
有量が多い場合には、液中にアルカリ剤1′の添
加が必要となる。 アルカリ剤1′としては、通常苛性ソーダ
(NaOH),炭酸ソーダ(Na2CO3)等が使用され
ているか、消石灰〔Ca(OH)2〕,生石灰(CaO)
等のカルシウム含有アルカリ剤を使用すること
は、次のリン除去工程で必要とするカルシウムイ
オンの補給の目的にもかなつており効果的であ
る。充填槽3の流出水は、脱窒素,脱リン槽8内
に流入し、槽内に充填されたリン酸カルシウム含
有固体9に嫌気的に接触することによつて、液中
の硝酸イオン(NO3 -),亜硝酸イオン(NO2 -
及びリン酸イオン(PO4 3-)の除去を行なう。流
入水には必要に応じて有機炭素源7(水素供与
体)及びカルシウム剤6を加える。脱窒素,脱リ
ン槽8の流入水となる充填槽3の流出水は、SS
が除去されており、アンモニア性窒素(NH4
N)も減少し、硝酸性窒素(NO3−N)に変化
し、硝化反応に伴つて炭酸物質が減少している。 したがつて充填槽3の流出水に有機炭素源7と
カルシウム剤6を添加して、脱窒素,脱リン槽8
にて嫌気状態を保つと、槽内に充填されたリン酸
カルシウム含有固体9の表面には硝酸イオン
(NO3 -)を窒素ガス(N2)に還元する脱窒素菌
が繁殖し、脱窒素菌の微生物膜が形成される。 この微生物膜の形成に伴ない、生物膜内部には
脱窒素反応が進行し、液中の硝酸イオン
(NO3 -)が窒素ガス(N2)に還元除去される。
この反応を次式に示す。 2NO3 -+5H2→N2↑+2OH-+4H2O ……(2) この反応では(2)式に示されるように、脱窒素に
伴なつて水酸イオンが生成されるため生物膜内部
には、液中よりもPHが上昇する。これに伴つてリ
ン酸カルシウム含有固体表面のリン酸カルシウム
塩の溶解度が減少する。 したがつて液中のリン酸イオン及びカルシウム
イオンは、脱窒素・脱リン槽8内にてリン酸カル
シウム含有固体9表面の微生物膜を通つて内部の
リン酸カルシウム含有固体表面まで拡散し、この
表面でリン酸イオンが液相より固相に移動し、液
中のリン酸イオンは減少する。このリン酸イオン
の析出反応を次式に示す。 5Ca2++OH-+3PO3- 4→Ca5(OH)(PO43
……(3) このリン除去反応に伴なつて、水酸イオン
(OH-)が消費されるため、前記(2)式の脱窒素反
応も右方向に進行し、脱窒素反応も促進されるた
め、本発明では脱窒素,脱リンが効果的に行なわ
れるわけである。 本願発明の脱窒素・脱リン槽8への流入水に存
在しなければならないカルシウム量は液中のリン
酸イオン濃度の0.7倍以上である必要がある。し
たがつて液中にそれだけカルシウムが存在しない
場合はカルシウム剤の添加が必要となる。カルシ
ウムの添加量は前式(3)に示すように液のリン濃度
の0.7倍以上であり、添加するカルシウム剤の種
類は塩化カルシウム(CaCl2),硝酸カルシウム
(CaSO4)あるいは消石灰〔Ca(OH)2〕のような
水溶性のものであれば良い。このうちCa(OH)2
はPHを上昇し過ぎないように酸との併用も良い。
また充填槽3の流入水に添加するアルカリ剤とし
て生石灰(CaO),消石灰〔Ca(OH)2〕等のカル
シウム含有アルカリ剤を用いれば更に有利であ
る。 アルカリ剤の添加位置は充填槽3の内部に直接
でも、充填層3に流入する配管内でも良い。 カルシウム剤は、脱窒素・脱リン槽8内に直接
または流入配管中に添加しても良い。前述のごと
く、アルカリ剤として充填槽3の流入水にカルシ
ウム含有アルカリ剤を添加しても良い。 有機炭素源7(水素供与体)の添加は、脱窒
素・脱リン槽8内に直接または流入配管中でも良
く、添加量はNO3−N1モルに対して水素供与体
5.0モルで、メタノールの場合CH3OH/NO3−N
=2.0〜3.0〔g/g〕である。 充填槽3の上記説明では、流入水を下向流で通
水したが、SSが除去できれば、つまり充填物の
流動化によりSSのリークがなければ上向流でも
よい。 また脱窒素・脱リン槽8内における流入水と、
リン酸カルシウム含有固体9との接触方法は、上
向流でも下向流でも良い。 さらにリン酸カルシウム含有固体9は粒状でも
板状でも良く、その種類はリン鉱石や骨炭などの
リン酸カルシウムを含有する鉱物でも、リン酸カ
ルシウムを含有しない固体表面にリン酸カルシウ
ムまたはこれを含有するものを担持させたもので
も効果は変わらない。 本願発明の骨子はリン酸カルシウム含有固体の
存在下で生物学的脱窒素反応を生起させると極め
て効率的にリン及び窒素の除去が並行して進行
し、それぞれ反応を加速するものである。 実施にあたつては、まず第一工程において、ア
ンモニア性窒素(NH4−N)とSSの除去を第二
工程で脱窒素と脱リンの除去を行ない、第二工程
に於てカルシウムイオンと有機炭素源の存在が必
須であり、それらの操作条件をたくみに選定した
ことによつて絶大な効果を導き出したものであ
る。 すなわち第一工程では、硝化反応とともに、
SSの除去と重炭酸イオンの除去が同時に行なわ
れる。SSの除去は第二工程の目詰りを抑制し、
また重炭酸の除去はカルシウムイオンが反応し炭
酸カルシウムが生成することによりカルシウムが
消費されることを防止する効果を有する。 第二工程では、脱窒素と脱リン工程を同一槽で
行うことによつて、(3)式に示したように脱リン工
程で消費する水酸イオンを(2)式に示した脱窒素反
応によつて供給し、相互の反応をそれぞれ加速し
得るものである。 本発明によれば次に示すような重要な利益を得
ることができ廃水中のリン,窒素の除去を極めて
合理的に行うことがきる。 (1) 従来の処理工程の一例を第2図、第3図に、
本発明の処理工程の一例を第4図に示す。第2
図は、粒状媒体を用いた生物学的硝化処理を行
なつた後、粒状媒体脱窒素処理を行なうもので
あるが、この工程ではリンはまつたく除去され
ない。 さらに第3図は、第2図の処理工程の後に、
リン酸カルシウム含有固体と接触せしめる脱リ
ン工程を設置したものであるが、ここでは、脱
窒素工程と脱リン工程の間に砂濾過工程が必要
である。また脱リン工程への流入水のPHを上昇
させるために多量のアルカリ剤を必要とした。 本発明では第4図に示すように、第一工程で
硝化とSSの除去を行い、また第二工程で脱窒
素と脱リンを同時に行えるため、装置が簡単で
アルカリ剤も節約できる。また本発明を第5図
に示すような処理工程に適用すると、第一脱窒
素工程の有機炭素源には排水中の有機物が利用
でき、第一脱窒素工程で生成するアルカリが硝
化工程のアルカリ源として利用できるため、ア
ルカリ源と有機炭素源がさらに節約可能であ
る。 (2) また通常リン酸イオンを含有する廃水をリン
酸カルシウム含有固体と接触させてリンを除去
する方法においては、アルカリ剤等を添加して
液のPHを8〜9に上昇させるとリンが効率的に
除去されるが、本発明では、廃水のPHが6〜7
でも、脱窒素生物膜を付着せしめるとリン酸カ
ルシウム含有固体表面ではPHが8〜9に調整さ
れるため、リンが効率的に除去される。 (3) 通常液中のリン酸を処理する場合、不溶化し
たリン酸の固形物が汚泥として大量に生成し、
これの処理処分が問題となるが、本発明ではリ
ンは固体表面に析出するため、汚泥の発生はな
い。 さらにリン酸カルシウム含有固体の表面に
は、脱窒素菌の微生物膜が付着してクツシヨン
となつているため、リン酸カルシウム含有固体
が相互にこすれあつても析出したリン化合物が
剥離して系外に流出することはない。 (4) 固体に生物膜を付着させ脱窒素を行うと、生
物膜が過剰に付着することによつて粒子の密度
が小さくなり、しばしば装置外に流出する問題
が起るが、本発明では粒状固体状にリン化合物
が析出することによつて、生物膜付着による密
度の減少を抑制する。 以上のように本発明によつて得られる利益をま
とめると次のようになる。 (1) 処理工程が簡略化できる。すなわち脱リンと
脱窒素が同一槽で行なわれ、しかもそれぞれの
反応が相互に加速し合うため、処理に要する時
間を短縮できる。 (2) 脱リン脱窒素工程流入水のPH調整が不要であ
る。 (3) 不溶化したリン化合物はリン酸カルシウム含
有固体上に析出し、またこれが剥離しないた
め、脱リン処理における汚泥の発生はない。 (4) 生物膜の過剰付着による担体の流出トラブル
を抑制できる。 次に実施例を示す。 実施例 1 小型下水処理場の二次処理水を用いて、脱窒
素,脱リン処理を行なつた。処理工程を第1図に
示す。原水に消石灰40mg/を添加した後、1mm
の砂を2m充填した径400mm、高さ3000mmのカラ
ムにLV=60m/日で下向流通水した。カラムの
下部より空気を原水流量の1/2供給した。 流出水にメタノールをNO3−Nの3倍量添加
した後、北アフリカ産リン鉱石0.4mmを2m充填
し、上部を密閉した脱リン槽径380mm高さ3000mm
にLV5m/時〜6m/時で下向流通水した。該工
程に生物膜が付着し、定常状態になつた後の原水
の水質と、処理水質を表―1に示す。
The purpose of the present invention is to provide the most rational method for removing phosphorus and ammonia nitrogen.
In particular, this removal process is suitable for advanced treatment of secondary treated sewage water. Conventionally, it is known that biological nitrification and denitrification of ammonia nitrogen is carried out using a bed packed with granular filter media.
Additionally, a method for removing phosphorus using granular solids containing calcium phosphate is also known, but these were only carried out separately as unrelated processes, and we focused on the organic relationship between the two processes. At present, the concept of rational combination has not been reached at all. The present invention was completed based on the discovery that when a biological denitrification reaction occurs in the presence of a calcium phosphate-containing solid, phosphorus removal proceeds in parallel extremely effectively. That is, the present invention
A first step of carrying out at least a nitrification reaction by introducing wastewater containing phosphorus and ammonia nitrogen into a granular solid packed bed to which nitrifying bacteria are attached and allowing it to flow through in an aerobic atmosphere; The effluent was treated in the presence of calcium ions and organic carbon sources.
This is a method for removing phosphorus and nitrogen, which comprises a second step of contacting a solid containing calcium phosphate under anaerobic conditions. Next, one embodiment of the present invention will be described with reference to FIG. 1. Wastewater 1 containing ammonia nitrogen and phosphorus, such as activated sludge treated water of sewage, is made of granular solids such as sand, anthracite, and activated carbon. 2 is made to flow into a filling tank 3 which uses it as a filling material. A diffuser pipe 4 is provided at the bottom of the filling tank 3, and an oxygen-containing gas 5 such as air is supplied into the filling tank 3, so that the inside of the tank is maintained under aerobic conditions. As the inflow water flows through the packed tank 3 filled with granular solids 2, SS is removed, and at the same time, ammonia nitrogen is oxidized to nitrate due to the biological action of nitrifying bacteria that have grown in the packed bed. It becomes an ion. A typical reaction formula for the nitrification reaction by nitrifying bacteria is shown below. NH + 4 +20 2 +OH - +HCO 3 - →NO 3 - +3H 2 O+
CO 2 ...(1) In the nitrification reaction, as shown in equation (1),
Bicarbonate ions (HCO 3 ) are also consumed to produce carbon dioxide gas, which is entrained in the bubbles of the oxygen-containing gas 5 supplied to the filling tank 3 and dissipated into the atmosphere. Also, in the nitrification reaction, hydroxide ions (OH - )
Since ammonia nitrogen is also consumed at the same time, if the content of ammonia nitrogen is large, it is necessary to add alkaline agent 1' to the liquid. As the alkali agent 1', caustic soda (NaOH), soda carbonate (Na 2 CO 3 ), etc. are usually used, or slaked lime [Ca(OH) 2 ], quicklime (CaO), etc.
The use of a calcium-containing alkaline agent such as the following is effective and also serves the purpose of replenishing calcium ions required in the next phosphorus removal step. The effluent water from the filling tank 3 flows into the denitrification and dephosphorization tank 8, and anaerobically contacts the calcium phosphate-containing solid 9 filled in the tank, thereby removing nitrate ions (NO 3 - ), nitrite ion (NO 2 - )
and removal of phosphate ions (PO 4 3- ). An organic carbon source 7 (hydrogen donor) and calcium agent 6 are added to the inflow water as necessary. The outflow water from the filling tank 3, which becomes the inflow water to the denitrification and dephosphorization tank 8, is
is removed, and ammonia nitrogen (NH 4
N) also decreases and changes to nitrate nitrogen (NO 3 -N), and carbonic substances decrease with the nitrification reaction. Therefore, an organic carbon source 7 and a calcium agent 6 are added to the outflow water from the filling tank 3, and a denitrification and dephosphorization tank 8 is added.
When an anaerobic condition is maintained in the tank, denitrifying bacteria that reduce nitrate ions (NO 3 - ) to nitrogen gas (N 2 ) will grow on the surface of the calcium phosphate-containing solid 9 filled in the tank, and the denitrifying bacteria will grow. A microbial film is formed. Along with the formation of this microbial film, a denitrification reaction progresses inside the biofilm, and nitrate ions (NO 3 ) in the liquid are reduced and removed to nitrogen gas (N 2 ).
This reaction is shown in the following formula. 2NO 3 - +5H 2 →N 2 ↑+2OH - +4H 2 O ……(2) In this reaction, as shown in equation (2), hydroxyl ions are generated as denitrification occurs, and therefore hydroxide ions are generated inside the biofilm. , the pH will be higher than in the liquid. Along with this, the solubility of the calcium phosphate salt on the surface of the calcium phosphate-containing solid decreases. Therefore, the phosphate ions and calcium ions in the liquid diffuse through the microbial membrane on the surface of the calcium phosphate-containing solid 9 in the denitrification/dephosphorization tank 8 to the internal surface of the calcium phosphate-containing solid, and on this surface, phosphate ions are removed. Ions move from the liquid phase to the solid phase, and the phosphate ions in the liquid decrease. This precipitation reaction of phosphate ions is shown in the following equation. 5Ca 2+ +OH - +3PO 3- 4 →Ca 5 (OH) (PO 4 ) 3
...(3) Along with this phosphorus removal reaction, hydroxide ions (OH - ) are consumed, so the denitrification reaction in equation (2) above also proceeds in the right direction, and the denitrification reaction is also promoted. Therefore, denitrification and dephosphorization are effectively carried out in the present invention. The amount of calcium that must be present in the water flowing into the denitrification/dephosphorization tank 8 of the present invention must be 0.7 times or more the phosphate ion concentration in the liquid. Therefore, if there is not enough calcium in the liquid, it is necessary to add a calcium agent. The amount of calcium added is at least 0.7 times the phosphorus concentration of the liquid, as shown in the previous equation (3), and the types of calcium agents added are calcium chloride (CaCl 2 ), calcium nitrate (CaSO 4 ), or slaked lime [Ca( Any water-soluble material such as OH) 2 ] may be used. Of these, Ca(OH) 2
It is also good to use it in combination with an acid so as not to raise the pH too much.
Further, it is more advantageous to use a calcium-containing alkali agent such as quicklime (CaO) or slaked lime [Ca(OH) 2 ] as the alkaline agent added to the inflow water of the filling tank 3. The alkaline agent may be added directly into the filling tank 3 or within a pipe flowing into the filling bed 3. The calcium agent may be added directly into the denitrification/dephosphorization tank 8 or into the inflow pipe. As mentioned above, a calcium-containing alkaline agent may be added to the water flowing into the filling tank 3 as an alkaline agent. The organic carbon source 7 (hydrogen donor) may be added directly into the denitrification/dephosphorization tank 8 or in the inflow pipe, and the amount of addition is the hydrogen donor per mol of NO 3 -N.
5.0 mol, for methanol CH3OH / NO3 -N
=2.0 to 3.0 [g/g]. In the above description of the filling tank 3, the inflow water was passed in a downward flow, but it may be passed in an upward flow as long as SS can be removed, that is, as long as there is no leakage of SS due to fluidization of the filling. In addition, the inflow water in the denitrification/dephosphorization tank 8,
The method of contact with the calcium phosphate-containing solid 9 may be an upward flow or a downward flow. Further, the calcium phosphate-containing solid 9 may be in the form of granules or plates, and its type may be minerals containing calcium phosphate such as phosphate rock or bone char, or it may be a solid that does not contain calcium phosphate and supports calcium phosphate or a substance containing it. remains unchanged. The gist of the present invention is that when a biological denitrification reaction occurs in the presence of a calcium phosphate-containing solid, phosphorus and nitrogen removal proceed in parallel extremely efficiently, accelerating each reaction. In the first step, ammonia nitrogen (NH 4 -N) and SS are removed, in the second step denitrification and dephosphorization are performed, and in the second step, calcium ions and The presence of an organic carbon source is essential, and the great effects were achieved by carefully selecting the operating conditions. In other words, in the first step, along with the nitrification reaction,
SS removal and bicarbonate ion removal occur simultaneously. Removal of SS suppresses clogging in the second process,
Removal of bicarbonate also has the effect of preventing calcium ions from reacting and producing calcium carbonate, thereby preventing calcium from being consumed. In the second step, by performing the denitrification and dephosphorization processes in the same tank, the hydroxide ions consumed in the dephosphorization process as shown in equation (3) are converted to the denitrification reaction shown in equation (2). and can accelerate each other's reactions. According to the present invention, the following important benefits can be obtained, and phosphorus and nitrogen can be removed from wastewater in an extremely rational manner. (1) An example of the conventional treatment process is shown in Figures 2 and 3.
An example of the processing steps of the present invention is shown in FIG. Second
The figure shows biological nitrification using granular media followed by granular media denitrification treatment, but phosphorus is not completely removed in this process. Furthermore, FIG. 3 shows that after the processing steps in FIG.
A dephosphorization step is installed in which the dephosphorization step is brought into contact with a calcium phosphate-containing solid, but here a sand filtration step is required between the denitrification step and the dephosphorization step. Also, a large amount of alkaline agent was required to increase the pH of the water flowing into the dephosphorization process. In the present invention, as shown in FIG. 4, nitrification and SS removal are performed in the first step, and denitrification and dephosphorization can be performed simultaneously in the second step, so the equipment is simple and the amount of alkaline agents can be saved. Furthermore, when the present invention is applied to the treatment process shown in Figure 5, the organic matter in the wastewater can be used as the organic carbon source in the first denitrification process, and the alkali produced in the first denitrification process can be used as the alkali in the nitrification process. Alkaline sources and organic carbon sources can be further saved. (2) In addition, in the method of removing phosphorus by bringing wastewater containing phosphate ions into contact with a solid containing calcium phosphate, increasing the pH of the liquid to 8 to 9 by adding an alkaline agent etc. increases the efficiency of phosphorus removal. However, in the present invention, the pH of the wastewater is 6 to 7.
However, when a denitrifying biofilm is attached, the pH of the calcium phosphate-containing solid surface is adjusted to 8 to 9, so phosphorus is efficiently removed. (3) When treating phosphoric acid in normal liquid, a large amount of insolubilized solid phosphoric acid is produced as sludge.
Treatment and disposal of this is a problem, but in the present invention, phosphorus is deposited on the solid surface, so no sludge is generated. Furthermore, since a microbial film of denitrifying bacteria adheres to the surface of the calcium phosphate-containing solid and forms a cushion, even if the calcium phosphate-containing solids rub against each other, the precipitated phosphorus compounds will peel off and flow out of the system. There isn't. (4) When denitrification is performed by attaching a biofilm to a solid, the density of the particles decreases due to excessive biofilm attachment, which often causes the problem of the particles flowing out of the device. By precipitating a phosphorus compound in a solid state, the decrease in density due to biofilm adhesion is suppressed. The benefits obtained by the present invention as described above can be summarized as follows. (1) The processing process can be simplified. That is, dephosphorization and denitrification are performed in the same tank, and each reaction accelerates each other, so the time required for the treatment can be shortened. (2) There is no need to adjust the pH of the influent water in the dephosphorization and denitrification process. (3) Since the insolubilized phosphorus compound precipitates on the calcium phosphate-containing solid and does not peel off, no sludge is generated during the dephosphorization process. (4) Trouble with carrier outflow due to excessive biofilm adhesion can be suppressed. Next, examples will be shown. Example 1 Denitrification and dephosphorization treatments were performed using secondary treated water from a small sewage treatment plant. The processing steps are shown in FIG. After adding slaked lime 40mg/ to raw water, 1mm
Water was flowed downward at a LV of 60 m/day into a column with a diameter of 400 mm and a height of 3000 mm filled with 2 m of sand. Air was supplied from the bottom of the column to 1/2 of the raw water flow rate. After adding methanol in an amount three times the amount of NO 3 -N to the effluent water, the dephosphorization tank was filled with 0.4 mm of North African phosphate rock for 2 m, and the top was sealed to create a dephosphorization tank with a diameter of 380 mm and a height of 3000 mm.
Water was flowing downward at a LV of 5m/hour to 6m/hour. Table 1 shows the quality of the raw water and the quality of the treated water after biofilm is attached to the process and a steady state has been reached.

【表】 実施例 2 実施例1において、原水のカルシウム濃度をあ
らかじめ0mg/に調整した液にNaOH40mg/
添加し、該硝化工程に通水した後、流出水にメ
タノールと同時に塩化カルシウムを添加し脱リン
工程へ通水した。塩化カルシウムの添加量を変化
させ脱リン工程流入水のカルシウム濃度と処理水
リン濃度の関係を求め第6図に示した。カルシウ
ムイオンを添加しないと、リンは1.8mg/とほ
とんど処理されなかつたが、脱リン槽流入水のカ
ルシウムイオンの存在量をリンの約2倍(リン酸
イオンの0.7倍)以上にすることによつて、処理
水リン濃度は1.0mg/以下になつた。 実施例 3 都市下水二次処理水を対象に処理水量500m3
日で脱窒素・脱リン処理を行なつた。 原水にNaOHを40mg/添加した後、1mの
アンスラサイトを2mm厚に充填した径2400mm高さ
6000mmのカラムにLV約60m/日で通水した。カ
ラムの下部より空気を原水流量の1.5倍量を供給
した。さらに流出水にNO3−Nの3倍量のメタ
ノールを添加した後、0.3mmの北アフリカ産リン
鉱石を2m3充填し、上部を密閉した径1000mm高さ
4300mmのカラムに上向流で通水速度20m/時にて
通水した。リン鉱石は流動層状態で浮遊した。 通水開始後、該カラム内の固体粒子に生物膜が
付着し始め、定常状態になつた後の原水、及び処
理水水質を表―2に示す。
[Table] Example 2 In Example 1, 40mg/NaOH was added to the solution in which the calcium concentration of the raw water was adjusted to 0mg/
After adding methanol and passing water through the nitrification process, calcium chloride was added to the effluent water at the same time as methanol, and the water was passed through the dephosphorization process. The relationship between the calcium concentration of the inflow water during the dephosphorization process and the phosphorus concentration of the treated water was determined by varying the amount of calcium chloride added and is shown in FIG. Without the addition of calcium ions, phosphorus was hardly treated at 1.8 mg per liter, but we decided to increase the amount of calcium ions in the inflow to the dephosphorization tank to more than twice that of phosphorus (0.7 times that of phosphate ions). As a result, the phosphorus concentration in the treated water was below 1.0mg/. Example 3 Treated water amount 500m 3 / for secondary treated urban sewage water
Denitrification and dephosphorization treatments were carried out within days. Diameter 2400mm height filled with 1m of anthracite 2mm thick after adding 40mg/NaOH to raw water
Water was passed through the 6000 mm column at a LV of approximately 60 m/day. Air was supplied from the bottom of the column at an amount 1.5 times the flow rate of raw water. Furthermore, after adding methanol three times the amount of NO 3 -N to the effluent water, 2 m 3 of 0.3 mm phosphate rock from North Africa was filled, and the top was sealed to form a 1000 mm diameter container.
Water was passed through the 4300 mm column in an upward flow at a water flow rate of 20 m/hour. The phosphate rock was suspended in a fluidized bed. After the water flow started, biofilms started to adhere to the solid particles in the column, and the quality of the raw water and treated water after reaching a steady state is shown in Table 2.

【表】 実施例 4 実施例1の硝化処理水を3m3/日分取して、
NO3−Nの3倍量のメタノールを添加した後塩
ビ板のハニコム(肉厚0.3mm,対辺距離10mm)200
を充填した径400mm×高さ2000mの上部を密閉
したカラムの塔頂よりデイストリビユーターによ
り散水し、通水速度1.0m/hで通水した。これ
と並行して、塩ビ板ハニコムをリン酸水素カリウ
ムのアルカリ溶液(リン50mg/、PH8.5)と塩
化カルシウムのアルカリ溶液(Ca200mg/,PH
8.5)に交互に浸漬し、ハニコムの表面に人工的
にリン酸カルシウムの結晶を析出させたものを充
填したカラムに同条件で通水に処理を行なつた。
処理結果を表―3に示す。通常のハニコムでは脱
窒素は起るがリンはほとんど除去されなかつた
が、リン酸カルシウムを担持させたハニコムでは
処理水リン濃度は0.8〜1.2mg/と良好な水質が
得られた。
[Table] Example 4 The nitrified water of Example 1 was collected at 3 m 3 /day,
After adding 3 times the amount of methanol as NO 3 -N, honeycomb of PVC board (thickness 0.3 mm, distance across flats 10 mm) 200
Water was sprinkled from the top of the column, which was packed with 400 mm in diameter and 2000 m in height, with a sealed top, using a distributor, and water was passed through the column at a water flow rate of 1.0 m/h. In parallel, a PVC honeycomb was prepared using an alkaline solution of potassium hydrogen phosphate (50 mg phosphorus/, PH 8.5) and an alkaline solution of calcium chloride (Ca 200 mg/, PH 8.5).
8.5) and water was passed under the same conditions through a column filled with artificially precipitated calcium phosphate crystals on the honeycomb surface.
The processing results are shown in Table 3. With normal honeycomb, denitrification occurred but almost no phosphorus was removed, but with honeycomb loaded with calcium phosphate, the treated water had a phosphorus concentration of 0.8 to 1.2 mg/, and good water quality was obtained.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図……本発明の一実施態様を示す説明図、
第2,3図……従来法の工程説明図、第4図……
本発明の工程説明図、第5図……本発明の他の工
程説明図、第6図……脱リン工程におけるカルシ
ウム添加量と処理水リン濃度の関係。 1……廃水、2……粒状固体、3……充填槽、
4……散気管、5……酸素含有ガス、1′……ア
ルカリ剤、6……カルシウム剤、7……有機炭素
源、8……脱リン槽、9……リン酸カルシウム含
有固体。
FIG. 1...An explanatory diagram showing one embodiment of the present invention,
Figures 2 and 3...Explanatory diagram of the process of the conventional method, Figure 4...
An explanatory diagram of the process of the present invention, Fig. 5. An explanatory diagram of another process of the present invention, Fig. 6. Relationship between the amount of calcium added and the phosphorus concentration of treated water in the dephosphorization process. 1... Wastewater, 2... Granular solid, 3... Filling tank,
4... Diffuser pipe, 5... Oxygen-containing gas, 1'... Alkaline agent, 6... Calcium agent, 7... Organic carbon source, 8... Dephosphorization tank, 9... Calcium phosphate-containing solid.

Claims (1)

【特許請求の範囲】 1 リン及びアンモニア性窒素を含有する廃水
を、硝化菌を付着せしめた粒状固体充填層に導入
し、好気的雰囲気で流過せしめることによつて、
少なくとも硝化反応を行なう第一工程と、該工程
流出水をカルシウムイオン及び有機炭素源の存在
下で、リン酸カルシウム含有固体と嫌気的条件下
で接触せしめる第二工程とからなることを特徴と
するリン,窒素の除去方法。 2 前記第一工程流入水にアルカリ剤を添加する
特許請求の範囲第1項記載の方法。 3 前記のアルカリ剤がカルシウム含有アルカリ
剤である特許請求の範囲第2項記載の方法。 4 前記第二工程流入水にカルシウム剤を添加す
るものである特許請求の範囲第1項又は第2項記
載の方法。 5 前記液中のカルシウムイオンの存在量が該液
中のリン酸イオン濃度の0.7倍以上である特許請
求の範囲第1項,第2項,第3項又は第4項記載
の方法。
[Claims] 1. By introducing wastewater containing phosphorus and ammonia nitrogen into a granular solid packed bed to which nitrifying bacteria are attached, and allowing it to flow through in an aerobic atmosphere,
Phosphorus, characterized in that it consists of a first step of at least carrying out a nitrification reaction, and a second step of contacting the effluent of the step with a calcium phosphate-containing solid under anaerobic conditions in the presence of calcium ions and an organic carbon source. How to remove nitrogen. 2. The method according to claim 1, wherein an alkaline agent is added to the first step inflow water. 3. The method according to claim 2, wherein the alkaline agent is a calcium-containing alkaline agent. 4. The method according to claim 1 or 2, wherein a calcium agent is added to the second step inflow water. 5. The method according to claim 1, 2, 3 or 4, wherein the amount of calcium ions present in the liquid is 0.7 times or more the concentration of phosphate ions in the liquid.
JP56034228A 1981-03-10 1981-03-10 Removing method for phosphorus and nitrogen in waste water Granted JPS57150492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56034228A JPS57150492A (en) 1981-03-10 1981-03-10 Removing method for phosphorus and nitrogen in waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56034228A JPS57150492A (en) 1981-03-10 1981-03-10 Removing method for phosphorus and nitrogen in waste water

Publications (2)

Publication Number Publication Date
JPS57150492A JPS57150492A (en) 1982-09-17
JPS6345275B2 true JPS6345275B2 (en) 1988-09-08

Family

ID=12408282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56034228A Granted JPS57150492A (en) 1981-03-10 1981-03-10 Removing method for phosphorus and nitrogen in waste water

Country Status (1)

Country Link
JP (1) JPS57150492A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145740U (en) * 1983-03-18 1984-09-28 日本ビクター株式会社 Idler mechanism for reel drive
KR100459950B1 (en) * 2002-11-21 2004-12-03 황규대 Apparatus and mode of transformed sequential batch reactor with separating nitrification basin for purifying sewage and wastewater
JP4578278B2 (en) * 2005-03-02 2010-11-10 クリオン株式会社 Sewage treatment apparatus and treatment method
JP5118358B2 (en) * 2007-02-23 2013-01-16 一般財団法人石油エネルギー技術センター Organic wastewater treatment method
JP5174360B2 (en) * 2007-02-23 2013-04-03 一般財団法人石油エネルギー技術センター Organic wastewater treatment method
JP5174359B2 (en) * 2007-02-23 2013-04-03 一般財団法人石油エネルギー技術センター Organic wastewater treatment method

Also Published As

Publication number Publication date
JPS57150492A (en) 1982-09-17

Similar Documents

Publication Publication Date Title
US5228997A (en) Aerobic biological nitrification using biomass granulates
JP2000015287A (en) Waste water treatment method and apparatus
JP2001276851A (en) Drain treatment equipment
JPS6345275B2 (en)
JP4685224B2 (en) Waste water treatment method and waste water treatment equipment
KR100722655B1 (en) Advanced wastewater treatment system with alkalinity-added sulfur media and submerged membrane module
JPS6317513B2 (en)
JP4101348B2 (en) Biological nitrogen removal method
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
KR20010026410A (en) Advanced sewage and wastewater treatment process applied with filtration bed
JP4101498B2 (en) Nitrogen and phosphorus-containing wastewater treatment method and apparatus
JPH04141293A (en) Dephosphorization apparatus
JPH08318292A (en) Waste water treatment method and apparatus
JPH0133237B2 (en)
JP3955478B2 (en) Nitrogen and phosphorus-containing wastewater treatment method and apparatus
JPS59162997A (en) Organic filthy water disposal
JPH0975992A (en) Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen
JP4390959B2 (en) Wastewater treatment equipment
JP2005095758A (en) Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus
JPH08141591A (en) Treatment of organic waste water
JPH0739889A (en) Treatment of high concentration ammonia waste liquid
JPS5867396A (en) Removing method for nitrogen and phosphorus in waste water
JP6407052B2 (en) Phosphorus recovery apparatus and phosphorus recovery method
JPH08318293A (en) Treatment of waste water
JPH08299986A (en) Treatment of selenium-containing water