JPH0133237B2 - - Google Patents

Info

Publication number
JPH0133237B2
JPH0133237B2 JP12471181A JP12471181A JPH0133237B2 JP H0133237 B2 JPH0133237 B2 JP H0133237B2 JP 12471181 A JP12471181 A JP 12471181A JP 12471181 A JP12471181 A JP 12471181A JP H0133237 B2 JPH0133237 B2 JP H0133237B2
Authority
JP
Japan
Prior art keywords
water
effluent
phosphorus
tank
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12471181A
Other languages
Japanese (ja)
Other versions
JPS5827696A (en
Inventor
Izumi Hirasawa
Kazuo Shimada
Yoshiro Hayashi
Juichi Fuchu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP56124711A priority Critical patent/JPS5827696A/en
Publication of JPS5827696A publication Critical patent/JPS5827696A/en
Publication of JPH0133237B2 publication Critical patent/JPH0133237B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、廃水中の窒素及びリンを除去する方
法に関するものである。 従来、アンモニア性窒素の生物的硝化脱窒素を
粒状材充填槽で行なうことは知られており、ま
たリン酸カルシウム含有固体によつてリンを除去
する方法も知られているが、各々無関係なプロセ
スとして別個に実施されていたにすぎず、両プロ
セスの有機的関連性に着目し合理的に結合すると
いう概念には全く到達していなかつたのが現状で
ある。 本発明は、粒状固体を用いた生物的照化工程と
粒状固体を用いた生物的脱窒素工程の間に、リン
酸カルシウム含有固体と接触せしめて処理する脱
リン工程を設けることにより極めて効率的にリ
ン、窒素が除去できることを見出して完成された
ものであり、合理的なリンと窒素の除去方法、特
にリン、窒素を含む排水の高度処理に好適なプロ
セスを提供することを目的とするものである。 すなわち本発明は、リン、アンモニア性窒素を
含有する廃水を、粒状固体充填層に導入し好気的
条件下で流過せしめる工程を含む第一工程と、該
第一工程流出水をカルシウムイオンの存在下でリ
ン酸カルシウム含有固体と接触させる第二工程
と、該第二工程流出水を有機炭素源の存在下で粒
状固体と嫌気的に接触せしめる第三工程とからな
ることを特徴とする廃水中の窒素、リンの除去方
法である。 次に本発明の一実施態様を第1図を参照しつつ
説明すれば、下水の活性汚泥処理水(二次処理
水)など、窒素とリンを含有する廃水1は、第一
工程として砂等の粒状固体4を充填した充填層3
頂部より流入させる。充填槽3の底部には散気管
が設けられており、空気などの酸素含有ガス5が
充填槽3内に供給され槽内は好気的条件に保たれ
ている。 廃水1は充填槽3内を流過することによつて、
SSが除去されると同時に充填槽3内に繁殖した
硝化菌の生物学的作用によりアンモニア性窒素が
酸化されて硝酸イオンとなる。この硝化菌による
硝化反応の代表的な反応式を次に示す。 NH4 ++2O2+OH-+HCO3 - →NO3 -+3H2O+CO2 ……(1) この硝化反応に於ては(1)式に示されているよう
に、重炭酸イオン(HCO3 -)も除去されて炭酸
ガスを生ずるが、この炭酸ガスは充填槽3に供給
される酸素含有ガス5の気泡に同伴されて大気中
に放散される。また、この硝化反応では水酸イオ
ンも同時に消費されるため、アンモニア窒素の含
有量が多い場合には第一工程の流入水すなわち廃
水1にアルカリ剤2の添加が必要となる。アルカ
リ剤2としては、苛酸ソーダ、炭酸ソーダを使用
できるが、消石灰、生石灰等のカルシウム含有ア
ルカリ剤を使用すると次の脱リン工程(第二工
程)で必要とするカルシウムイオンの補給の目的
にもかなつており効果的である。 次に第二工程では、第一工程からの流出水6に
必要に応じてカルシウム剤7を加えた後脱リン槽
8に導入し、槽内に充填されたリン鉱石などの、
リン酸カルシウムを含有する接触材9と接触さ
せることによつてリンの除去が行なわれる。通常
この接触材9によりリンを効率的に除去するに
は、流入水のSS及び炭酸物質を除去する前処理
工程を必要とするが、すでに第一工程の流出水6
はSS、炭酸物質が除去されているため、いわゆ
る前処理工程を必要としない。したがつて、リン
酸カルシウム含有固体の表面は常に清浄に保たれ
ており、この表面で以下の反応が効率的に進行し
リンが除去される。 5Ca2++OT-+3PO4 3- →Ca5(OH)(PO43 ……(2) 次の第三工程では、第二工程からの流出水10
にメタノールなどの有機炭素源(水素供与体)1
1を添加して砂などの粒状固体13を充填した脱
窒素槽12頂部に嫌気的雰囲気下で通水すると、
該粒状固体表面に硝酸イオンを窒素ガスに変える
脱窒素菌が繁殖し、生物膜が形成される。 この生物膜の形成に伴い生物膜内部において脱
窒素反応が進行し、液中の硝酸イオンは窒素ガス
に還元除去される。この反応を次式に示す。 2NO3 -+5H2→N2↑+2OH-+4H2O ……(3) また、第三工程においては脱窒素生物膜形成の
際に、液中のリンを取り込むので、第二工程の流
出水10中の残存リンをさらに除去できる。な
お、第1図14は処理水である。 前記第二工程への流入水に添加するカルシウム
剤の種類は、塩化カルシウム、硫酸カルシウム、
消石灰のような水溶性のものであれば良い。カル
シウム剤の添加位置は第二工程の内部に直接また
は流入配管中に添加しても良い。なお、第一工程
に添加するアルカリ剤として消石灰、生石灰を用
いると第二工程で必要とするカルシウムの補給に
目的にもかなつており効果的である。一方、有機
炭素源の添加は第三工程内に直接または流入配管
中でも良く、添加量はNO3−N1モルに対して水
素供与体3.5モル以上で、メタノールの場合
CH3OH/NO3−N=2.0〜3.0〔g/g〕以上が好
ましい。また、前記第一工程の充填槽は粒状固体
を浸液したものが好ましく、流過する液の流れは
上向流でも下向流でも良い。該粒状固体としては
砂のほかアンスラサイト、活性炭が使用できる。 第二工程で使用するリン酸カルシウム含有固体
は粒状でも板状でも良く、その種類はリン鉱石や
骨炭などのリン酸カルシウムを含有する鉱物で
も、リン酸カルシウムを含有しない固体にリン酸
カルシウム、またはこれを含有する物質を担持さ
せたものでも良い。液の流れは上向流でも下向流
でも良く、液がリン酸カルシウム含有固体と接触
するものであれば良い。該含有固体の状態は固定
層、流動層、懸濁状態のいずれでも良い。 さらに、第三工程は液を粒状固体と接触せしめ
る工程で、粒状固体は固定層、流動層、懸濁状態
のいずれでも良い。ただし第三工程でSSも除去
する必要がある場合においても第一工程と同様に
粒状固体を浸液した充填層が好ましい。第三工程
用に粒状固体としては砂、アンスラサイト、ある
いは活性炭が使用できる。 前記第1図示例は第一〜第三の工程から成る
が、通常脱窒素を行なう第三工程の流出水中の
BODを除去するために、第三工程の後に再曝気
槽を設けることが好ましいが、これも本発明の具
体例の一つであり、本発明の技術思想に含まれる
ものである。 このように本発明によれば、次に示すような顕
著な効果を得ることができ、廃水中のリン、窒素
の除去を極めて合理的に行なうことができる。 (1) 従来の処理工程を著しく簡略化できる。すな
わち、従来の処理工程は第2図に示すように粒
状固体を用いた生物的硝化、脱窒素工程の後に
脱リン工程を設けたものである。この場合リン
除去率を高く維持するには硫酸を添加して空気
と接触させる脱炭酸工程とSSを除去する砂
過工程が必要となる。 これに対し、本発明では第3図に示すよう
に、脱リンのための前処理が不要となるため、
わずか3つの工程でリン、窒素の除去を効率的
に行なうことができる。 また、本発明では第4図に示すような処理工
程にすると、さらにアルカリ、有機炭素源が節
約できる。この窒素工程は脱リン工程前の第一
工程を、前記第1図例の第三工程と同様に処理
する前段工程としての脱窒素工程と後段工程と
しての硝化過工程によつて構成したものであ
る。この場合、脱窒素を行なう第一工程ではア
ルカリが遊離するため、次の第二工程で必要と
するPH制御用のアルカリ剤を節約できる。ま
た、第一工程の水素供与体として廃水中BOD
成分が利用できるので水素供与体として添加す
る薬品量が節約される。さらには第一工程で有
機物が硝酸呼吸により酸化分解されるので硝化
を行なう第二工程にかかるBODの負荷が軽減
され、その分第二工程で供給すべき酸素量が軽
減される。 (2) 処理装置がコンパクトにできる。すなわち、
生物処理を行なう工程はいずれも装置容積当た
りの微生物濃度を高くできるので高い窒素負荷
がとれ、また脱リン工程においてもリン酸カル
シウム含有固体による高いリン除去性能によつ
てリンの負荷を高くとれる。しかも脱リン工程
では汚泥の発生がないため、汚泥の処理が不要
となる。 (3) 脱リン工程に充填されたリン酸カルシウム含
有固体の表面は常に清浄に保たれ、該固体にリ
ン除去性能の低下は無く、半永久的に使用でき
る。 (4) 脱窒素を行なう第三工程で、第二工程からの
残存リンをさらに生物的に除去できる。 次に、本発明実施例を示す。 実施例 小型下水処理場の二次処理水を用いて脱窒素、
脱リン処理を行なつた。処理工程は第3図のとお
りである。 原水に消石灰40mg/を添加した後、粒径3mm
の砂を2m充填した径400mm、高さ3000mmの槽に
LV2.5m/hで下向流に通水した。槽の底部より
空気を原水流量と等量で供給した。該槽の流出水
を粒径0.44mmの北アフリカ産リン鉱石を2m充填
した径280mm、高さ3000mmの脱リン槽にLV5〜6
m/hで下向流通水した。該流出水にメタノール
をNO3濃度の3倍量すなわち30mg/添加した
後粒径3mmの砂を2m充填し頂部を密閉した径
200mm、高さ3000mmの脱窒素槽にLV5〜6m/h
で下向流通水した。全工程の滞留時間はわずか
1.6時間であつた。原水水質と処理水水質を下表
に示す。
The present invention relates to a method for removing nitrogen and phosphorus from wastewater. Conventionally, it has been known to carry out biological nitrification and denitrification of ammonia nitrogen in a tank filled with granular material, and it is also known to remove phosphorus using a calcium phosphate-containing solid, but each is a separate and unrelated process. The current situation is that the concept of focusing on the organic relationship between the two processes and rationally combining them has not been reached at all. The present invention provides extremely efficient phosphorization by providing a dephosphorization step in which a calcium phosphate-containing solid is brought into contact between the biological irradiation process using granular solids and the biological denitrification process using granular solids. It was completed after discovering that nitrogen can be removed, and the purpose is to provide a rational method for removing phosphorus and nitrogen, especially a process suitable for advanced treatment of wastewater containing phosphorus and nitrogen. . That is, the present invention provides a first step that includes a step of introducing wastewater containing phosphorus and ammonia nitrogen into a granular solid packed bed and allowing it to flow under aerobic conditions, and a step of converting the first step effluent into calcium ions. a second step of contacting said second step effluent with a solid containing calcium phosphate in the presence of an organic carbon source; and a third step of contacting said second step effluent anaerobically with particulate solids in the presence of an organic carbon source. This is a method for removing nitrogen and phosphorus. Next, one embodiment of the present invention will be described with reference to FIG. 1. Wastewater 1 containing nitrogen and phosphorus, such as activated sludge treated water (secondary treated water) of sewage, is treated with sand as a first step. A packed bed 3 filled with granular solids 4 of
Let it flow from the top. An aeration pipe is provided at the bottom of the filling tank 3, and an oxygen-containing gas 5 such as air is supplied into the filling tank 3 to maintain an aerobic condition inside the tank. By flowing the wastewater 1 through the filling tank 3,
At the same time as SS is removed, ammonia nitrogen is oxidized to nitrate ions by the biological action of nitrifying bacteria that have grown in the filling tank 3. A typical reaction formula for the nitrification reaction by nitrifying bacteria is shown below. NH 4 + +2O 2 +OH - +HCO 3 - →NO 3 - +3H 2 O + CO 2 ...(1) In this nitrification reaction, as shown in equation (1), bicarbonate ion (HCO 3 - ) is also removed to produce carbon dioxide, which is entrained in the bubbles of the oxygen-containing gas 5 supplied to the filling tank 3 and dissipated into the atmosphere. Further, in this nitrification reaction, hydroxide ions are also consumed at the same time, so if the content of ammonia nitrogen is large, it is necessary to add an alkali agent 2 to the influent water of the first step, that is, the wastewater 1. As the alkaline agent 2, sodium caustic acid or soda carbonate can be used, but if an alkaline agent containing calcium such as slaked lime or quicklime is used, it can be used for the purpose of replenishing the calcium ions required in the next dephosphorization process (second process). It is also effective. Next, in the second step, a calcium agent 7 is added to the effluent water 6 from the first step as necessary, and then introduced into a dephosphorization tank 8 to remove phosphorus ore etc. filled in the tank.
Phosphorus is removed by contacting with a contact material 9 containing calcium phosphate. Normally, in order to efficiently remove phosphorus with this contact material 9, a pre-treatment step is required to remove SS and carbonic substances from the inflow water, but the effluent water 6 of the first step has already been removed.
Since SS and carbonic substances have been removed, there is no need for a so-called pre-treatment process. Therefore, the surface of the calcium phosphate-containing solid is always kept clean, and the following reaction proceeds efficiently on this surface to remove phosphorus. 5Ca 2+ +OT - +3PO 4 3- →Ca 5 (OH) (PO 4 ) 3 ...(2) In the next third step, the effluent water from the second step 10
Organic carbon source (hydrogen donor) such as methanol 1
When water is passed under an anaerobic atmosphere to the top of the denitrification tank 12 filled with granular solids 13 such as sand with the addition of
Denitrifying bacteria that convert nitrate ions into nitrogen gas grow on the surface of the granular solid, forming a biofilm. As this biofilm is formed, a denitrification reaction progresses within the biofilm, and nitrate ions in the liquid are reduced to nitrogen gas and removed. This reaction is shown in the following formula. 2NO 3 - +5H 2 →N 2 ↑+2OH - +4H 2 O ...(3) In addition, in the third step, when denitrifying biofilm is formed, phosphorus in the liquid is taken in, so the effluent water of the second step 10 The remaining phosphorus inside can be further removed. Note that FIG. 14 shows treated water. The types of calcium agents added to the inflow water to the second step include calcium chloride, calcium sulfate,
Any water-soluble material such as slaked lime may be used. The calcium agent may be added directly into the second step or into the inflow pipe. Note that using slaked lime or quicklime as an alkali agent added in the first step is effective and suitable for replenishing the calcium required in the second step. On the other hand, the organic carbon source may be added directly into the third step or in the inflow pipe, and the amount added is at least 3.5 moles of hydrogen donor per 1 mole of NO 3 -N.
CH3OH / NO3 -N=2.0-3.0 [g/g] or more is preferable. Further, the filling tank in the first step is preferably one filled with granular solid, and the flow of the liquid passing therethrough may be either an upward flow or a downward flow. As the granular solid, in addition to sand, anthracite and activated carbon can be used. The calcium phosphate-containing solid used in the second step may be granular or plate-like, and its type may be minerals containing calcium phosphate such as phosphate rock or bone char, or calcium phosphate or a substance containing calcium phosphate supported on a solid that does not contain calcium phosphate. It's okay to have something like that. The flow of the liquid may be upward or downward, as long as the liquid contacts the calcium phosphate-containing solid. The solid contained therein may be in a fixed bed, fluidized bed, or suspended state. Further, the third step is a step of bringing the liquid into contact with the granular solids, and the granular solids may be in a fixed bed, fluidized bed, or suspended state. However, even when it is necessary to remove SS in the third step, a packed bed soaked with granular solids is preferable as in the first step. Sand, anthracite or activated carbon can be used as the granular solid for the third step. The first illustrated example consists of the first to third steps.
In order to remove BOD, it is preferable to provide a reaeration tank after the third step, but this is also one of the specific examples of the present invention and is included in the technical idea of the present invention. As described above, according to the present invention, the following remarkable effects can be obtained, and phosphorus and nitrogen from wastewater can be removed in an extremely rational manner. (1) Conventional processing steps can be significantly simplified. That is, in the conventional treatment process, as shown in FIG. 2, a dephosphorization process is provided after a biological nitrification and denitrification process using granular solids. In this case, in order to maintain a high phosphorus removal rate, a decarboxylation process in which sulfuric acid is added and brought into contact with air and a sand filtration process in which SS is removed are required. On the other hand, in the present invention, as shown in FIG. 3, pretreatment for dephosphorization is not necessary.
Phosphorus and nitrogen can be efficiently removed in just three steps. Furthermore, in the present invention, by using the treatment steps as shown in FIG. 4, the alkali and organic carbon sources can be further saved. This nitrogen step consists of the first step before the dephosphorization step, a denitrification step as a first step, and a nitrification step as a second step, which are performed in the same manner as the third step in the example shown in Fig. 1 above. be. In this case, since alkali is liberated in the first step of denitrification, it is possible to save the alkaline agent for pH control required in the second step. In addition, BOD in wastewater is used as a hydrogen donor in the first step.
The availability of components saves the amount of chemicals added as hydrogen donors. Furthermore, since the organic matter is oxidized and decomposed by nitric acid respiration in the first step, the BOD load on the second step of nitrification is reduced, and the amount of oxygen to be supplied in the second step is correspondingly reduced. (2) The processing equipment can be made compact. That is,
In any process that uses biological treatment, the concentration of microorganisms per device volume can be increased, so a high nitrogen load can be achieved, and in the dephosphorization process, a high phosphorus load can be achieved due to the high phosphorus removal performance of calcium phosphate-containing solids. Moreover, since no sludge is generated during the dephosphorization process, sludge treatment is not necessary. (3) The surface of the calcium phosphate-containing solid filled in the dephosphorization process is always kept clean, the solid has no deterioration in phosphorus removal performance, and can be used semi-permanently. (4) In the third step of denitrification, residual phosphorus from the second step can be further removed biologically. Next, examples of the present invention will be shown. Example: Denitrification using secondary treated water from a small sewage treatment plant.
Dephosphorization treatment was performed. The processing steps are shown in Figure 3. After adding 40 mg of slaked lime to raw water, the particle size is 3 mm.
A tank with a diameter of 400 mm and a height of 3000 mm filled with 2 m of sand.
Water was passed downward at a LV of 2.5 m/h. Air was supplied from the bottom of the tank in an amount equal to the raw water flow rate. The effluent water from the tank was transferred to a dephosphorization tank with a diameter of 280 mm and a height of 3000 mm filled with 2 m of North African phosphate rock with a particle size of 0.44 mm, LV5-6.
Water was flowing downward at a speed of m/h. After adding methanol to the effluent water in an amount three times the NO 3 concentration, that is, 30 mg, the top was sealed and filled with 2 m of sand with a particle size of 3 mm.
LV5~6m/h in a denitrification tank with a height of 200mm and a height of 3000mm
The water flowed downward. The residence time of the whole process is small
It was hot for 1.6 hours. The raw water quality and treated water quality are shown in the table below.

【表】 比較例 実施例1と同一の原水を用いて脱窒素、脱リン
処理を行なつた。処理工程は第2図のとおりであ
る。 原水に消石灰20mg/を添加した後、粒径3mm
の砂を2m充填した径400mm、高さ3000mmのカラ
ムにLV2.5m/hで下向流通水した。カラムの底
部より空気を原水流量と等量で供給した。該カラ
ムの流出水にメタノールを30mg/添加した後、
粒径3mmの砂を2m充填し頂部を密閉した径200
mm、高さ3000mmの脱窒素槽にLV5〜6m/hで下
向流通水した。さらに、該脱窒素槽からの流出水
に硫酸70mg/を添加した後、径300mm、高さ
1000mmの脱炭酸槽に流入させ、槽底部より空気を
原水流量の3倍量で吹き込んだ。さらに該脱炭酸
槽の流出水に消石灰40mg/を添加した後、有効
径0.6mmの砂を1m充填した径280mm、高さ2mの
砂過槽にLV5m/hで下向流に通水した。さら
にこの流出水を有効径0.44mmの北アフリカ産リン
鉱石を2m充填した径280mm、高さ3000mmの脱リ
ン槽にLV5〜6m/hで下向流通水した。処理結
果を前記の表に併記した。なお、全工程の滞留時
間は2.4時間であつた。
[Table] Comparative Example Using the same raw water as in Example 1, denitrification and dephosphorization treatments were performed. The processing steps are shown in Figure 2. After adding 20 mg of slaked lime to raw water, the particle size is 3 mm.
Water was flowed downward at a LV of 2.5 m/h into a column with a diameter of 400 mm and a height of 3000 mm filled with 2 m of sand. Air was supplied from the bottom of the column in an amount equal to the raw water flow rate. After adding 30 mg/methanol to the effluent water of the column,
Diameter 200 filled with 2m of sand with a grain size of 3mm and sealed at the top.
Water was flowed downward at a LV of 5 to 6 m/h into a denitrification tank with a height of 3,000 mm and a height of 3,000 mm. Furthermore, after adding 70 mg of sulfuric acid to the outflow water from the denitrification tank,
The water was allowed to flow into a 1000 mm decarbonation tank, and air was blown into the bottom of the tank at a rate three times the flow rate of the raw water. Furthermore, after adding 40 mg of slaked lime to the water flowing out of the decarbonation tank, the water was passed downward at a LV of 5 m/h into a sand filter tank with a diameter of 280 mm and a height of 2 m, filled with 1 m of sand with an effective diameter of 0.6 mm. Furthermore, this runoff water was passed downward at a LV of 5 to 6 m/h into a dephosphorization tank with a diameter of 280 mm and a height of 3000 mm, which was filled with 2 m of North African phosphate ore with an effective diameter of 0.44 mm. The treatment results are also listed in the table above. Note that the residence time of the entire process was 2.4 hours.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図及び第4図は本発明の各実施態
様を示す系統説明図、第2図は従来法を示す系統
説明図である。 1……廃水、2……アルカリ剤、3……充填
槽、4……粒状固体、5……酸素含有ガス、6…
…流出水、7……カルシウム剤、8……脱リン
槽、9……接触材、10……流出水、11……
有機炭素源、12……脱窒素槽、13……粒状固
体、14……処理水。
FIGS. 1, 3, and 4 are system explanatory diagrams showing each embodiment of the present invention, and FIG. 2 is a system explanatory diagram showing a conventional method. 1...Wastewater, 2...Alkaline agent, 3...Filled tank, 4...Particulate solid, 5...Oxygen-containing gas, 6...
... Effluent water, 7 ... Calcium agent, 8 ... Dephosphorization tank, 9 ... Contact material, 10 ... Effluent water, 11 ...
Organic carbon source, 12... denitrification tank, 13... granular solid, 14... treated water.

Claims (1)

【特許請求の範囲】 1 リン、アンモニア性窒素を含有する廃水を、
粒状固体充填層に導入し好気的条件下で流過せし
める工程を含む第一工程と、該第一工程流出水を
カルシウムイオンの存在下でリン酸カルシウム含
有固体と接触させる第二工程と、該第二工程流出
水を有機炭素源の存在下で粒状固体と嫌気的に接
触せしめる第三工程とからなることを特徴とする
廃水中の窒素、リンの除去方法。 2 前記第一工程が、廃水を粒状固体と嫌気的に
接触せしめる前段工程と該前段工程流出水を粒状
固体充填層に導入し好気的条件下で流過せしめる
後段工程とからなるものであつて、該後段工程流
出水の一部を前記前段工程に返送して処理するも
のである特許請求の範囲第1項記載の方法。
[Claims] 1. Wastewater containing phosphorus and ammonia nitrogen,
a first step comprising introducing the water into a bed of granular solids and allowing it to flow under aerobic conditions; a second step of contacting the first step effluent with a calcium phosphate-containing solid in the presence of calcium ions; A method for removing nitrogen and phosphorus from wastewater, comprising a third step of bringing the effluent of the second step into anaerobic contact with particulate solids in the presence of an organic carbon source. 2. The first step consists of a first step in which the wastewater is brought into contact with granular solids in an anaerobic manner, and a second step in which the effluent from the first step is introduced into a bed filled with granular solids and allowed to flow under aerobic conditions. 2. The method according to claim 1, wherein a part of the water effluent from the latter step is returned to the earlier step for treatment.
JP56124711A 1981-08-11 1981-08-11 Removal of nitrogen and phosphorus in waste water Granted JPS5827696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56124711A JPS5827696A (en) 1981-08-11 1981-08-11 Removal of nitrogen and phosphorus in waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56124711A JPS5827696A (en) 1981-08-11 1981-08-11 Removal of nitrogen and phosphorus in waste water

Publications (2)

Publication Number Publication Date
JPS5827696A JPS5827696A (en) 1983-02-18
JPH0133237B2 true JPH0133237B2 (en) 1989-07-12

Family

ID=14892208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56124711A Granted JPS5827696A (en) 1981-08-11 1981-08-11 Removal of nitrogen and phosphorus in waste water

Country Status (1)

Country Link
JP (1) JPS5827696A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105886A (en) * 1982-12-07 1984-06-19 Kurita Water Ind Ltd Apparatus for phosphate-contg. water disposal
JPH0295498A (en) * 1988-09-30 1990-04-06 Nikko Eng Kk Method and apparatus for treating water
KR100673832B1 (en) 2006-01-27 2007-01-25 (주)전테크 Removal reactor of ammonia , phosphorous and solid in wastewater
GB0821880D0 (en) * 2008-12-01 2009-01-07 Jowett E C Sewage nitrate removal by asphyxiant absorbent filtration and carbon additions

Also Published As

Publication number Publication date
JPS5827696A (en) 1983-02-18

Similar Documents

Publication Publication Date Title
US4294706A (en) Process for treating waste water
US5228997A (en) Aerobic biological nitrification using biomass granulates
US4721569A (en) Phosphorus treatment process
US3956129A (en) Waste treatment apparatus
US3985859A (en) Vacuum stripping of ammonia
Rahmani et al. Use of ion exchange for removal of ammonium: a biological regeneration of zeolite
JPH0133237B2 (en)
KR20030008416A (en) Advanced wastewater treatment system with alkalinity-added sulfur media and submerged membrane module
JP2007117948A (en) Method and apparatus for treating high-concentration organic waste liquid
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JPS6345275B2 (en)
RU2225366C2 (en) Transition biological-abiotic waste treatment
JPH08318292A (en) Waste water treatment method and apparatus
JP4101498B2 (en) Nitrogen and phosphorus-containing wastewater treatment method and apparatus
JPH0975992A (en) Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen
JPH0253117B2 (en)
JPS62225294A (en) Biological denitrification device
JP3658802B2 (en) Method for treating selenium-containing water
JPS58146495A (en) Treatment of organic waste liquid
JPS5867396A (en) Removing method for nitrogen and phosphorus in waste water
JP2590474B2 (en) Wastewater treatment method
KR102101020B1 (en) Nitrogen Removal Methods of Sewage Using Autotrophic microorganism immobilized in Bead
JPS6274496A (en) Method for treating waste water
JPH08141591A (en) Treatment of organic waste water
JPH0975987A (en) Method for removing nitrogen in high level from organic sewage