JPH069679B2 - Method for removing fluorine in flue gas desulfurization wastewater - Google Patents

Method for removing fluorine in flue gas desulfurization wastewater

Info

Publication number
JPH069679B2
JPH069679B2 JP10685885A JP10685885A JPH069679B2 JP H069679 B2 JPH069679 B2 JP H069679B2 JP 10685885 A JP10685885 A JP 10685885A JP 10685885 A JP10685885 A JP 10685885A JP H069679 B2 JPH069679 B2 JP H069679B2
Authority
JP
Japan
Prior art keywords
wastewater
flue gas
gas desulfurization
desulfurization wastewater
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10685885A
Other languages
Japanese (ja)
Other versions
JPS61268393A (en
Inventor
信一 荒尾
秀起 神吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10685885A priority Critical patent/JPH069679B2/en
Publication of JPS61268393A publication Critical patent/JPS61268393A/en
Publication of JPH069679B2 publication Critical patent/JPH069679B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、燃焼排ガスの排煙脱硫装置から排出される廃
水中のフツ素を消石灰などによつて一次処理を行なつた
のち、さらにフツ素濃度を低下させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention performs primary treatment of fluorine in wastewater discharged from a flue gas desulfurization apparatus for combustion exhaust gas with slaked lime, and then further The present invention relates to a method for reducing elementary concentration.

(従来の技術) 従来、排煙脱硫廃水中のフツ素濃度を15mg/以下
(全国一律規制)にする方法としては、第2図に示すよ
うな方法等がある。
(Prior Art) Conventionally, as a method for reducing the concentration of fluorine in flue gas desulfurization wastewater to 15 mg / or less (nationwide uniform regulation), there is a method as shown in FIG.

第2図において、石炭などを燃料とする燃焼排ガスは、
石灰−石膏法による脱硫装置により、ばいじんおよび硫
黄酸化物等が除去されたのち清浄ガスとして放出される
が、その燃料に起因するF、Cl、SO4、重金属類等を含
む排煙脱硫廃水1が排出される。この排煙脱硫廃水1を
pH調整工程aに導き、消石灰4を加えてpH7〜11に調
整し、廃水1中のFおよび重金属類をそれぞれ難溶性の
フツ化カルシウム(CaF2)および水酸化物等として析出さ
せるが、同時に廃水1中のSO4に起因して石膏(CaSO4・2
H2O)も析出する。その際、凝集沈殿工程cで沈降分離
されたCaF2、CaSO4・2H2O等を含む凝沈汚泥3の一部をpH
調整工程aに循環して、CaF2およびCaSO4・2H2Oの結晶粗
大化をはかり、後続の凝集沈殿工程cの沈降分離および
脱水工程dの脱水を容易にするとともに、石膏の過飽和
度を低減させ、スケーリングの緩和をはかつている。続
いて、熟成工程bのおいて、Fの除去性向上のためCaF2
の晶析および結晶成長を行なつたのち、凝集沈殿工程c
に導き、高分子凝集剤5を添加してCaF2および水酸化物
等を粗大フロツク化したのち、沈降分離する。沈降分離
した凝沈汚泥3は、脱水工程dに導き、脱水したのち処
分する。そして、F等を除去した凝集沈殿工程cからの
排水2aは、なお石膏の過飽和が解消されておらず、次
工程(例えば過など)において石膏スケーリングの障
害を起こすため、調整工程eにおいて、調整水6を添加
して過飽和を解消するか、もしくはNaOHおよびNa2CO3
添加して高pH(pH10.0以上)とし、カルシウムを除
去操作をした後、次工程に送るか、あるいは直接処理水
2として排出される。
In FIG. 2, combustion exhaust gas using coal or the like as fuel is
The lime-gypsum desulfurization device removes soot and sulfur oxides and the like and then releases them as clean gas. Flue gas desulfurization wastewater containing F, Cl, SO 4 , heavy metals, etc. due to the fuel 1 Is discharged. This flue gas desulfurization wastewater 1
Leading to the pH adjusting step a, adding slaked lime 4 to adjust the pH to 7 to 11, and precipitating F and heavy metals in the wastewater 1 as sparingly soluble calcium fluoride (CaF 2 ) and hydroxide, respectively. due to the SO 4 in the wastewater 1 gypsum (CaSO 4 · 2
H 2 O) also precipitates. At that time, a part of the coagulation sludge 3 containing CaF 2 , CaSO 4 .2H 2 O, etc., which has been separated by sedimentation in the coagulation sedimentation step c, is adjusted to pH.
It is circulated to the adjusting step a to measure the crystal coarsening of CaF 2 and CaSO 4 .2H 2 O, to facilitate the sedimentation separation of the subsequent coagulating sedimentation step c and the dehydration of the dehydration step d, and to reduce the degree of supersaturation of gypsum. It has been reduced and mitigated in scaling. Then, in the aging step b, CaF 2 was added to improve the F removal property.
After performing crystallization and crystal growth,
Then, the polymer flocculant 5 is added to coarsely flocculate CaF 2, hydroxide, etc., and then sedimentation is performed. The coagulated sludge 3 that has been separated by settling is guided to a dehydration step d, dehydrated, and then disposed. Then, the wastewater 2a from the flocculation-precipitation step c from which F and the like have been removed does not have the supersaturation of the gypsum still solved and causes an obstacle of gypsum scaling in the next step (for example, excess). Water 6 is added to eliminate supersaturation, or NaOH and Na 2 CO 3 are added to make it a high pH (pH 10.0 or higher), and after removing calcium, it is sent to the next step or is directly treated. It is discharged as water 2.

しかしながら、上記従来方法は、下記の欠点を有する。However, the above conventional method has the following drawbacks.

排煙脱硫廃水1は、F以外にもCaF2の析出・熟成・分離
に影響(錯塩の形成によるCaF2析出阻害、晶析速度の低
下など)を与える重金属類等の不純物を他種類含んでお
り、かつその水質は、燃料条件および排ガス処理システ
ムの構成並びにその操作条件等により大巾に変動するた
め、従来の方法では、処理水F濃度を安定して15mg/
以下にすることは困難であり、さらに規制の厳しい一
部都道府県条例にみられる基準値8mg/以下とするこ
とは、不可能であつた。
Flue gas desulfurization wastewater 1, (CaF 2 precipitation inhibition by formation of complex salts, crystallization etc.析速degree drop in) effect on precipitation and aging and separation of CaF 2 in addition to F contain other kinds of heavy metal impurities, etc. to give However, since the water quality of the treated water fluctuates greatly depending on the fuel conditions, the configuration of the exhaust gas treatment system, the operating conditions thereof, etc., the conventional method has a stable F concentration of treated water of 15 mg /
It was difficult to set below, and it was impossible to set below the standard value of 8 mg / which is seen in some ordinances with strict regulations.

一方、凝集沈殿工程cの小澄水は、石膏過飽和度が高く
(例えば過飽和度1.2〜2.0)、次工程以下の石膏
スケールの障害を防止するため、後続の調製工程が不可
決である。たとえば、炭酸ソーダで脱カルシウムをする
場合においては、石膏過飽和度を下げるため多量の炭酸
ソーダとNaOHを必要とし、そのためpHが10以上とな
り、放流水基準に適合するように再びpHを再調整しなけ
ればならない。さらに、それによつて生じた多量の沈殿
物(炭酸カルシウム)の処分が問題であつた。また、石
膏過飽和度の解消のために単に希釈する場合は、希釈水
量が廃水量とほぼ同量も必要なケースがあり、廃水量が
大巾に上積みされる問題があつた。
On the other hand, the small clear water of the coagulation-sedimentation step c has a high gypsum supersaturation degree (for example, a supersaturation degree of 1.2 to 2.0), and in order to prevent the gypsum scale from the next step onward, the subsequent preparation step cannot be decided. is there. For example, when decalcifying with sodium carbonate, a large amount of sodium carbonate and NaOH are required to reduce the degree of gypsum supersaturation, so the pH becomes 10 or higher, and the pH is readjusted again to meet the discharge water standard. There must be. Furthermore, the disposal of the large amount of precipitate (calcium carbonate) generated thereby was a problem. Further, in the case of simply diluting to eliminate the degree of supersaturation of gypsum, there is a case in which the amount of dilution water needs to be almost the same as the amount of waste water, and the amount of waste water is significantly increased.

そこで、上記問題を解決するため、本発明者らは、排水
の水質分析結果から『カルシウム指数(Ica)』を算定
し、その値が適正範囲よりも低い場合、廃水または廃水
処理工程中で、Icaが適正値となるように、塩酸(HCl)、
塩化カルシウム(CaCl2)、さらには塩化アルミニウム(Al
Cl3)、ポリ塩化アルミニウム(PAC)等の塩素含有物質を
添加することにより、石灰乳または消石灰粉中和法によ
る廃水中のF処理において、処理水中のFを安定して1
5mg/以下とすることを提案した。しかし、この処理
法においても、処理水中のFを8mg/以下にすること
は困難である。
Therefore, in order to solve the above problems, the present inventors calculated the "calcium index ( Ica )" from the water quality analysis results of the wastewater, and if the value is lower than the appropriate range, during the wastewater or the wastewater treatment process. , I ca to have an appropriate value, hydrochloric acid (HCl),
Calcium chloride (CaCl 2 ) and aluminum chloride (Al
Cl 3 ), polyaluminum chloride (PAC) and other chlorine-containing substances are added to stabilize the F in the treated water during the F treatment of wastewater by the lime milk or slaked lime powder neutralization method.
It was proposed that the amount be 5 mg / or less. However, even in this treatment method, it is difficult to reduce F in the treated water to 8 mg / or less.

また、本発明者らは、凝集沈殿工程の上澄水に、フツ化
カルシウム(CaF2)および石膏(CaSO4・2H2O)からなる種晶
を添加・混合したのち、該種晶を分離すれば、処理水中
のFを安定して8mg/以下とすることができると同時
に、次工程以降のスケーリング障害がほぼ解消すること
を提案した(特願昭58−2343)。しかしながら、
この方法では、本来難沈降性のCaF2沈降性のよいCaSO4
2H2Oと共沈させることにより、処理性に支障(浮遊性Ca
F2が高く、処理水中のF濃度が高くなる)を来すことな
く該種晶を効果的に利用するものであつが、CaF2を一定
の比率以上に増すと、共沈作用を失われ処理性に支障を
来たす傾向にあつた。さらに、系外よりCaF2を添加する
ため、沈殿物量が増えるという欠点があつた。
In addition, the present inventors, after adding and mixing seed crystals consisting of calcium fluoride (CaF 2 ) and gypsum (CaSO 4 .2H 2 O) to the supernatant water of the flocculation-precipitation step, the seed crystals are separated. For example, it has been proposed that F in the treated water can be stably kept at 8 mg / or less and, at the same time, the scaling failure in the subsequent steps is almost eliminated (Japanese Patent Application No. 58-2343). However,
In this way, CaSO 4 · good CaF 2 precipitation of a poorly precipitating original
Coprecipitation with 2H 2 O hinders processability (floating Ca
F 2 is high, the thickness intended to effectively utilize the seed crystal without causing the F concentration is increased) in the treated water, when increasing the CaF 2 over a certain ratio, is lost for co沈作There was a tendency to impair the processability. Furthermore, since CaF 2 is added from outside the system, there is a drawback that the amount of precipitate increases.

(発明が解決しようとする問題点) 従来の方法では、全国一律基準F15mg/以下を安定
して得られない欠点があり、特に塩素含有量の低い石炭
を燃料とする、排煙脱硫廃水は、廃水中のアルミニウム
とFのモル比、pH調整工程でのpH等を満足な条件に設定
しても、F15mg/以下とならないだけでなく、8mg
/以下にすることは不可能な事態に直面し、問題解決
のため鋭意検討の結果本発明に至つた。
(Problems to be Solved by the Invention) The conventional method has a drawback that the national uniform standard of F15 mg / or less cannot be stably obtained. Particularly, the flue gas desulfurization wastewater using coal having a low chlorine content as fuel is Even if the molar ratio of aluminum and F in the wastewater and the pH in the pH adjustment process are set to satisfying conditions, not only does it not fall below 15 mg / F, but 8 mg / F.
/ Faced with a situation where it is impossible to make it below, the present invention has been achieved as a result of intensive studies for solving the problem.

(問題点を解決するための手段) 本発明は、排煙脱硫酸廃水のフツ素を固定除去する廃水
処理方法において、前記廃水に消石灰を添加してpH2〜
4に調整する第1工程、さらに消石灰を添加してpH7〜
9に調整する第2工程、前記2工程で生成された沈殿物
を分離する第3工程、第3工程で得られる上澄水に溶解
性炭酸アルカリ化合物を添加する第4工程、前記第4工
程で生成された沈殿物を分離する第5工程、該沈殿物を
鉱酸酸性で分解する第6工程からなり、前記第6工程で
発生する気体は前記第4工程の混合液と接触させ、かつ
前記第6工程で得られる分解液は前記第1工程に返送す
ることを特徴とする排煙脱硫廃水中のフツ素の除去方法
に関する。
(Means for Solving Problems) The present invention relates to a wastewater treatment method of fixing and removing fluorine from wastewater desulfurization wastewater, wherein slaked lime is added to the wastewater to adjust the pH to
The first step to adjust to 4, pH of 7 ~ by adding slaked lime
In the second step of adjusting to 9, the third step of separating the precipitate produced in the second step, the fourth step of adding a soluble alkali carbonate compound to the supernatant water obtained in the third step, the fourth step It comprises a fifth step of separating the generated precipitate and a sixth step of decomposing the precipitate with a mineral acid acidity, and the gas generated in the sixth step is brought into contact with the mixed liquid of the fourth step, and The decomposition solution obtained in the sixth step is returned to the first step, which relates to a method for removing fluorine in flue gas desulfurization wastewater.

すなわち、本発明は、以下の点を特徴とする。That is, the present invention is characterized by the following points.

(1) 廃水の水質分析結果から『カルシウム指数
(Ica)』を算定し、その値が適正範囲よりも低い場
合、廃水または廃水処理工程中でIcaが適正値となるよ
うに、後述の塩化カルシウム(CaCl2)を含む酸分解液を
添加することにより、石灰乳または消石灰粉中和法によ
る廃水中のF処理において、処理水中のFを安定して1
5mg/以下とする。
(1) Calculate the “calcium index (I ca )” from the water quality analysis results of the wastewater, and if the value is lower than the appropriate range, make sure that the Ica will be the appropriate value during the wastewater treatment process or the wastewater treatment process described below. By adding an acid decomposition solution containing calcium chloride (CaCl 2 ), in the treatment of F in wastewater by the lime milk or slaked lime powder neutralization method, F in treated water can be stabilized to 1
The amount should be 5 mg or less.

(2) 上記F処理安定操作条件として、Ica値に着目する
ことにより、脱硫廃水の性状から高い信頼度で石灰乳ま
たは消石灰粉中和法による廃水中のF処理水質を推定で
きる。
(2) By paying attention to the I ca value as the F treatment stable operation condition, the F treated water quality in the waste water by the lime milk or slaked lime powder neutralization method can be estimated with high reliability from the properties of the desulfurization waste water.

(3) さらに、Fが15mg/以下となつた上記処理水
を放流水質基準内のpH8.0〜8.6で溶解性炭酸アル
カリで脱カルシウムを行なうことにより、Fを安定して
8mg/以下にすることができる。さらに、脱カルシウ
ムに必要な溶解性炭酸アルカリ量が少なくて済むだけで
なく、処理水を放流水質基準内のpH5.8〜8.6とす
るためにpHを再調整する必要がない。
(3) Further, the treated water having F of 15 mg / or less is decalcified with a soluble alkali carbonate at a pH of 8.0 to 8.6 within the standard of discharged water quality to stably stabilize F of 8 mg / or less. Can be Furthermore, not only does the amount of soluble alkali carbonate required for decalcification be small, but there is no need to readjust the pH in order to bring the treated water to a pH of 5.8 to 8.6 within the standard of discharged water quality.

(4) 上記(3)項の脱カルシウム操作により生成された汚
泥の酸分解液を、上記(1)項の工程に利用することによ
り、汚泥発生量が減る。
(4) The amount of sludge generated is reduced by using the acid decomposition solution of sludge produced by the calcium removal operation of (3) above in the step of (1) above.

(5) 汚泥の酸分解により発生するガスを上記脱カルシ
ウム操作で再利用することにより、溶解性炭酸アルカリ
の注入量が少くて済む。
(5) By reusing the gas generated by the acid decomposition of sludge in the above calcium removal operation, the injection amount of the soluble alkali carbonate can be reduced.

(6) 最終処理水の石膏過飽和度が解消され、次工程以
降のスケーリング障害が生じない。
(6) The gypsum supersaturation degree of the final treated water is eliminated, and the scaling failure in the subsequent process does not occur.

(作用) 第1図に、本発明に係る廃水処理工程の構成を示す。(Operation) FIG. 1 shows the configuration of the wastewater treatment process according to the present invention.

F、SO4、重金属類等を含む排煙脱硫廃水1は、先ずpH
調整工程aに導き、消石灰4および後述する酸分解液9
によりpHを2〜4に調整し、廃水1中のSO4を下記(1)式
に示すように反応させ、CaSO4・2H2Oとして析出させる。
Flue gas desulfurization wastewater 1 containing F, SO 4 , heavy metals
Leading to the adjusting step a, slaked lime 4 and acid decomposition liquid 9 described later
The pH is adjusted to 2 to 4 by means of the method, and SO 4 in the wastewater 1 is reacted as shown in the following formula (1) to precipitate as CaSO 4 .2H 2 O.

SO4 2-+Ca2++2H2OCaSO4・2H2O (1) この場合、酸分解液9には、後述するように過剰のHC
l、Ca2+、Cl-およびFが多量に含まれている。同時に、
凝集沈殿工程cから返送される凝集沈澱汚泥3中の金属
水酸化物が低pH雰囲気にさらされることにより、下記
(2)式に従つて再溶解し、従来法では水酸化物により表
面を汚染され、低減した凝集沈殿汚泥3中のCaSO4・2H2
Oの種晶効果が回復し、後段の熟成工程b、凝集沈殿工
程cおよび処理水2aのCaSO4・2H2Oの過飽和度を低減す
る作用がある。
SO 4 2− + Ca 2+ + 2H 2 OCaSO 4・ 2H 2 O (1) In this case, the acid decomposition solution 9 contains excess HC as described later.
It contains a large amount of l, Ca 2+ , Cl and F. at the same time,
By exposing the metal hydroxide in the coagulation sedimentation sludge 3 returned from the coagulation sedimentation step c to a low pH atmosphere,
Re-dissolved according to the formula (2), the surface was contaminated with hydroxide in the conventional method, and CaSO 4・ 2H 2 in the reduced coagulation sediment sludge 3 was reduced.
The seed crystal effect of O is recovered, and it has an action of reducing the supersaturation degree of CaSO 4 .2H 2 O in the subsequent aging step b, the coagulating sedimentation step c, and the treated water 2a.

M(OH)m+mH+Hm++mH2O (2) ここで、Mは金属、mはMの電荷数である。M (OH) m + mH + H m + + mH 2 O (2) where M is a metal and m is the number of charges of M.

また、pH調整工程aのpH2〜4は、Fと共に廃水中に含
まれかつ難処理性であるホウフツ化物(例えばBF4 -
を、もともと廃水中に存在するか、もしくは外部添加す
るアルミニウム(Al)によりCaF2として除去可能なAl−F
錯体(例えばAF2 +)に変換する下記(3)式に示す反応の
ための適正範囲であり、F処理性能を安定させる作用が
ある。
Further, pH adjustors step pH2~4 of a is included and refractory properties in the waste water with F reminiscent product (eg BF 4 -)
Al-F which is originally present in wastewater or can be removed as CaF 2 by externally added aluminum (Al)
It is an appropriate range for the reaction shown in the following formula (3) for converting into a complex (for example, AF 2 + ), and has an action of stabilizing the F processing performance.

BF4 -+2Al3++3H2O2AlF2 ++H3BO3+3H (3) ここで、上記(3)式の反応完結のため、AlとFのモル比
は、0.5(好ましくは0.6)以上を要する。
BF 4 + 2Al 3+ + 3H 2 O 2AlF 2 + + H 3 BO 3 + 3H + (3) Here, since the reaction of the above formula (3) is completed, the molar ratio of Al and F is 0.5 (preferably 0. 6) The above is required.

ついで、熟成工程bに導き、消石灰4aを添加してpH7
〜9(好ましくは7.5〜8.5)に調整し、廃水中の
FおよびAlF2 +をそれぞれ下記(4)式および(5)式に示す
ように反応させ、水に難溶性のCaF2として、また金属類
は、上記(2)式の左向きの反応により、水に難溶性の水
酸化物等として析出させる。
Then, lead to the aging step b, add slaked lime 4a to adjust the pH to 7
To 9 (preferably 7.5 to 8.5), and F and AlF 2 + in the waste water are reacted as shown in the following formulas (4) and (5), respectively. As the metal 2 , the metal is precipitated as a sparingly water-soluble hydroxide or the like by the leftward reaction of the above formula (2).

2F-+Ca2+CaF2 (4) AlF2 ++Ca2++30H-CaF2+Al(OH)3 (5) 一方、CaF2の析出は、下記(6)式により制限される。2F + Ca 2+ CaF 2 (4) AlF 2 + + Ca 2+ + 30H CaF 2 + Al (OH) 3 (5) On the other hand, precipitation of CaF 2 is limited by the following formula (6).

〔Ca2+〕〔F-2=Ks1 (6) ここで〔〕はそれぞれのモル濃度(以下同じ)、Ks1はC
aF2の濃度基準の溶解度積(M/l)である。
[Ca 2+] [F -] 2 = K s1 (6) where [] each molar concentration (hereinafter the same), K s1 is C
It is a concentration-based solubility product (M 3 / l 3 ) of aF 2 .

即ち、Fの処理性能は、熟成工程bおよび凝集沈殿工程
cにおける液中の溶存Ca濃度に支配され、溶存Ca濃度に
或るレベル以上でないと、Fの処理性能は悪化する。そ
して、この溶存Ca濃度は、仮に『カルシウム指数Ica(m
eq/またはepm)』と呼称して提案する値によつて一義
的に決定される。熟成工程bおよび凝集沈殿工程cの液
中では、金属類は沈殿物中に移行し、Fも他のイオン種
に比べて十分に小さいので、それぞれ無視することがで
きるものとすると、下記(7)式に示すイオン収支が成り
立つ。
That is, the processing performance of F is dominated by the dissolved Ca concentration in the liquid in the aging step b and the coagulation sedimentation step c, and the processing performance of F deteriorates unless the dissolved Ca concentration exceeds a certain level. Then, this dissolved Ca concentration is temporarily calculated as "calcium index I ca (m
eq / or epm) ”and is uniquely determined by the proposed value. In the liquids of the aging step b and the coagulating sedimentation step c, the metals migrate into the precipitate and F is sufficiently smaller than other ionic species. ) The ion balance shown in the equation is established.

〔Na+〕+〔K+〕+2{〔Ca2+〕+〔Mg2+〕}=〔Cl-〕+2
〔SO4 2-〕(7) また、Ica(meq/)を、下記(8)式に示すように定義す
る。
[Na +] + [K +] + 2 {[Ca 2+] + [Mg 2+]} = [Cl -] +2
[SO 4 2- ] (7) Further, I ca (meq /) is defined as shown in the following formula (8).

Ica=〔Cl-〕−{〔Na+〕+〔K+〕+2〔Mg2+〕} =2{〔Ca2+〕−〔SO4 2-〕 (8) ここで、〔Ca2+〕は、(8)式とCaSO4・2H2Oの濃度基準の
溶解度積ks2(M2/l2)から、下記(9)式のように与えら
れる。
I ca = [Cl ] − {[Na + ] + [K + ] +2 [Mg 2+ ]} = 2 {[Ca 2+ ] − [SO 4 2− ] (8) where [Ca 2+ ] Is given by the following formula (9) from the formula (8) and the concentration-based solubility product k s2 (M 2 / l 2 ) of CaSO 4 · 2H 2 O.

以上から明らかなように、カルシウム指数Icaは、廃水
のNa、K、MgおよびClがわかれば算定できるが、これら
4成分は、消石灰による中和操作では殆んど濃度変化を
起さないため、熟成工程bや凝集沈殿工程cの液中の濃
度計測によらなくても、排煙脱硫廃水1の計測値から算
定でき、さらには、石炭の性状・消費量、排ガス量およ
び廃水量等の緒元から予測することができる。したがつ
て、廃水のIcaをあらかじめ把握し、Icaが負または+30
epm以下のときは、Icaが+30epm以上になるように酸分
解液9をpH調整工程aに返送することにより、凝集沈殿
処理水2aの溶存Ca濃度を1400〜2500mg/程
度に保持することができ、安定したF処理性能が得られ
る。
As is clear from the above, the calcium index I ca can be calculated by knowing Na, K, Mg, and Cl of the wastewater, but these four components hardly change the concentration in the neutralization operation with slaked lime. It is possible to calculate from the measured value of the flue gas desulfurization wastewater 1 without measuring the concentration in the liquid in the aging step b and the coagulation-sedimentation step c, and further, the properties and consumption of coal, the amount of exhaust gas, the amount of wastewater, etc. It can be predicted from the specifications. It was but connexion, previously grasped I ca wastewater, I ca negative or +30
When the epm is less than or equal to epm, the dissolved Ca concentration of the coagulation-sedimentation-treated water 2a can be maintained at about 1400 to 2500 mg / by returning the acid decomposition solution 9 to the pH adjusting step a so that I ca becomes +30 epm or more. It is possible to obtain stable F processing performance.

CaF2、CaSO4・2H2Oおよび金属水酸化物等の沈殿物を含む
熟成工程bの廃水は、凝集沈殿工程cに導き、高分子凝
集剤5を添加して沈殿物を粗大フロック化したのち、沈
降分離する。沈降分離した凝集汚泥3の一部は、pH調整
工程aに返送し、残りは脱水工程dに導き、脱水したの
ち処分する。
The wastewater of the aging step b containing precipitates such as CaF 2 , CaSO 4 · 2H 2 O and metal hydroxide was led to the coagulating sedimentation step c, and the polymer coagulant 5 was added to coarsely flocculate the precipitate. After that, sedimentation is performed. A part of the sedimented coagulated sludge 3 is returned to the pH adjusting step a, and the rest is guided to the dehydration step d, dehydrated and then disposed.

凝沈処理水2aは、後段の反応工程fに導き、溶解性炭
酸アルカリ7、および後述する酸分解工程hで発生する
炭酸ガス(CO2)を含む回収ガス10と混合される。な
お、溶解性炭酸アルカリ7としては、炭酸ソーダ(Na2CO
3)、炭酸カリ(K2CO3)などが使用できる。
The coagulation / precipitation treated water 2a is led to a subsequent reaction step f and mixed with a soluble alkali carbonate 7 and a recovery gas 10 containing carbon dioxide gas (CO 2 ) generated in an acid decomposition step h described later. As the soluble alkali carbonate 7, sodium carbonate (Na 2 CO 2
3 ), potassium carbonate (K 2 CO 3 ) and the like can be used.

反応工程fでは、下記(10)式に示す反応に従い、凝沈処
理水2a中の溶存Caと溶解性炭酸アルカリ7および回収
ガス10中にCO2により炭酸カルシウム(CaCO3)が生ず
る。
In the reaction step f, calcium carbonate (CaCO 3 ) is generated by CO 2 in the dissolved Ca, the soluble alkali carbonate 7 and the recovered gas 10 in the coagulation-treated water 2a according to the reaction represented by the following formula (10).

Ca2++CO3 2-CaCO3 (10) 同時に、凝沈処理水2a中のFが生成されたCaCO3に取
り込まれて、さらに低下する。また、石膏は、ボウ硝(N
a2CO4)となり、凝沈処理水2aの石膏過飽和度も解消す
る。さらに、この時凝沈処理水2aのpHが7〜9(好ま
しくは7.5〜8.5)に設定されていれば、反応工程
fのpHは高々8.6程度で平衡に達するため、pHコント
ロールは不要である。なお、溶解性炭酸アルカリ7の注
入量は、石膏過飽和度を解消する程度で十分である。
Ca 2+ + CO 3 2- CaCO 3 (10) At the same time, F in the coagulation-treated water 2a is taken into the generated CaCO 3 and further decreases. In addition, gypsum is Glauber's salt (N
a 2 CO 4 ), and the gypsum supersaturation degree of the coagulation treated water 2a is also eliminated. Further, at this time, if the pH of the coagulation treated water 2a is set to 7 to 9 (preferably 7.5 to 8.5), the pH of the reaction step f reaches equilibrium at about 8.6 at most, No pH control is required. The injection amount of the soluble alkali carbonate 7 is sufficient to eliminate the degree of supersaturation of gypsum.

CaCO3汚泥を含む廃水は次いで後段の沈降分離工程gに
導き、高分子凝集剤5aを添加して沈殿物を粗大フロッ
ク化したのち、沈降分離する。沈降分離した沈殿物8
は、酸分解工程hに導き、鉱酸11と混合される。ここ
で使用される鉱酸11としては、塩酸(HCl)が好まし
い。酸分解工程hでは、pH4以下(好ましくは2以下)
となるように鉱酸11の添加量を設定する。このとき、
沈殿物8中のCaCO3は、上記(10)式の左方向の反応によ
りCa2+とCO3 2-に分解される。Ca2+は、CaCl2として分解
液中に残るが、CO3 2-は、低pH雰囲気下でさらにCO2ガス
となり、回収ガス10として反応工程fに返送される。
また、酸分解工程hで得られたCO2+とFを含む液は、酸
分解液9としてpH調整工程aに返送される。
The wastewater containing CaCO 3 sludge is then introduced to the subsequent settling separation step g, where the polymer flocculant 5a is added to coarsely flocculate the precipitate, and then the sediment is separated. Sediment separated by sedimentation 8
Is led to the acid decomposition step h and mixed with the mineral acid 11. The mineral acid 11 used here is preferably hydrochloric acid (HCl). In the acid decomposition step h, pH is 4 or less (preferably 2 or less)
The addition amount of the mineral acid 11 is set so that At this time,
CaCO 3 in the precipitate 8 is decomposed into Ca 2+ and CO 3 2− by the reaction in the left direction of the above formula (10). Ca 2+ remains as CaCl 2 in the decomposition liquid, but CO 3 2− further becomes CO 2 gas in the low pH atmosphere and is returned to the reaction step f as the recovered gas 10.
Further, the liquid containing CO 2+ and F obtained in the acid decomposition step h is returned to the pH adjusting step a as the acid decomposition solution 9.

なお、沈降分離工程gで得られた上澄水である処理水2
は、Fが安定して8mg/以下になつており、後処理工
程(過、イオン交換によるCOD除去など)に送る
か、あるいはそのまま放流する。
The treated water 2 which is the supernatant water obtained in the sedimentation separation step g
Has a stable F content of 8 mg / or less, and is sent to a post-treatment step (excess, COD removal by ion exchange, etc.) or discharged as it is.

(発明の効果) 本発明により、次の効果が得られる。(Effects of the Invention) The present invention has the following effects.

(1) 脱硫廃水のカルシウム指数Icaをあらかじめ把握
し、該Icaが+30epm以上となるように、酸分解液を返
送することにより、凝沈処理水中のFを十分に安定して
15mg/以下にすることができる。
(1) By grasping the calcium index I ca of desulfurization wastewater in advance and returning the acid decomposition solution so that the I ca becomes +30 epm or more, F in the coagulation-treated water is stably stabilized at 15 mg / or less. Can be

(2) 凝沈処理水のF濃度レベルに対応したIcaを適切な
範囲に選択することができ、後段の反応工程および沈降
分離工程における脱カルシウム操作を安定させることが
できる。
(2) I ca corresponding to the F concentration level of the coagulation-treated water can be selected within an appropriate range, and the calcium removal operation in the subsequent reaction step and sedimentation separation step can be stabilized.

(3) さらに、Fが15mg/以下となつた上記処理水
を放流水質基準内のpH8.0〜8.6で溶解性炭酸アル
カリで脱カルシウムを行なうことにより、Fを安定して
8mg/以下にすることができる。さらに、脱カルシウ
ムに必要な溶解性炭酸アルカリ量が少なくて済むだけで
なく、処理水を放流水質基準内pH8.6以下とするため
に、pHを再調整する必要がない。
(3) Further, the treated water having F of 15 mg / or less is decalcified with a soluble alkali carbonate at a pH of 8.0 to 8.6 within the standard of discharged water quality to stably stabilize F of 8 mg / or less. Can be Furthermore, not only does the amount of soluble alkali carbonate required for decalcification be small, but there is no need to readjust the pH in order to bring the treated water to pH 8.6 or less within the standard of discharged water quality.

(4) 脱カルシウム操作により生成された汚泥を酸分解
することによつて、固形物質が減少し、汚泥発生量が減
る。
(4) By acid-decomposing the sludge generated by the calcium removal operation, solid substances are reduced and the amount of sludge generated is reduced.

(5) 汚泥の酸分解の際に発生するガスを、上記脱カル
シウム操作で再利用することにより、溶解性炭酸アルカ
リの注入量が少くて済む。
(5) By reusing the gas generated during the acid decomposition of sludge in the above calcium removal operation, the injection amount of the soluble alkali carbonate can be reduced.

(6) 処理水の石膏過飽和度が解消され、次工程以降の
スケーリング障害が生じない。
(6) The gypsum supersaturation degree of treated water is eliminated, and scaling failure in the subsequent process does not occur.

本発明に係わる実施例を、以下に示す。Examples of the present invention will be shown below.

実施例 本実施例は、石炭梵火力発電設備の排ガスを石炭−石膏
法で脱硫した際に発生する排煙脱硫廃水1を、第1図に
示す処理工程で処理したものである。その結果を、第1
表に示す。
Example In this example, the flue gas desulfurization wastewater 1 generated when the exhaust gas of the coal brazing power generation facility was desulfurized by the coal-gypsum method was treated in the treatment process shown in FIG. The result is the first
Shown in the table.

なお、本実施例の排煙脱硫廃水1の水質は、以下のとお
りである。
The water quality of the flue gas desulfurization wastewater 1 of this example is as follows.

pH 1.8 SS 24000 mg/ F 305 mg/ Al 345 mg/ 〔Al〕/〔F〕 0.8 (モル比) Ica -14.8 epm 第1表で、テストNo.1は、pH調整工程1のカルシウム
指数Icaが30epm、テストNo.2は+50epmとなるよう
に酸分解液9の液量を調節したものである。
pH 1.8 SS 24000 mg / F 305 mg / Al 345 mg / [Al] / [F] 0.8 (molar ratio) I ca -14.8 epm In Table 1, test No. 1 is the calcium index I of the pH adjusting step 1. The amount of the acid decomposition solution 9 was adjusted so that ca was 30 epm and Test No. 2 was +50 epm.

比較例 比較例として、上記実施例と同じ性状の脱硫廃水1を、
第2図に示す処理工程で処理した結果を、第1表に併記
した。
Comparative Example As a comparative example, the desulfurization wastewater 1 having the same properties as those in the above-mentioned example was used.
The results of the treatment steps shown in FIG. 2 are also shown in Table 1.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に係る排煙脱硫廃水の処理工程の構成
を示すフローダイアグラムであり、第2図は、従来の処
理工程の構成を示すフローダイアグラムである。
FIG. 1 is a flow diagram showing the constitution of a treatment process of flue gas desulfurization wastewater according to the present invention, and FIG. 2 is a flow diagram showing the constitution of a conventional treatment process.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】排煙脱硫廃水のフツ素を固定除去する廃水
処理方法において、前記廃水に消石灰を添加してpH2〜
4に調整する第1工程、さらに消石灰を添加してpH7〜
9に調整する第2工程、前記二工程で生成された沈殿物
を分離する第3工程、第3工程で得られる上澄水に溶解
性炭酸アルカリ化合物を添加する第4工程、前記第4工
程で生成された沈殿物を分離する第5工程、該沈澱物を
鉱酸酸性で分解する第6工程からなり、前記第6工程で
発生する気体は前記第4工程の混合液と接触させ、かつ
前記第6工程で得られる分解液は前記第1工程に返送す
ることを特徴とする排煙脱硫廃水中のフツ素の除去方
法。
1. A wastewater treatment method for fixing and removing fluorine from flue gas desulfurization wastewater, wherein slaked lime is added to the wastewater to adjust the pH to 2 to 5.
The first step to adjust to 4, pH of 7 ~ by adding slaked lime
In the second step of adjusting to 9, the third step of separating the precipitate generated in the two steps, the fourth step of adding a soluble alkali carbonate compound to the supernatant water obtained in the third step, the fourth step The method comprises a fifth step of separating the formed precipitate and a sixth step of decomposing the precipitate with a mineral acid acidity, and the gas generated in the sixth step is brought into contact with the mixed liquid of the fourth step, and A method for removing fluorine in flue gas desulfurization wastewater, wherein the decomposition liquid obtained in the sixth step is returned to the first step.
JP10685885A 1985-05-21 1985-05-21 Method for removing fluorine in flue gas desulfurization wastewater Expired - Lifetime JPH069679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10685885A JPH069679B2 (en) 1985-05-21 1985-05-21 Method for removing fluorine in flue gas desulfurization wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10685885A JPH069679B2 (en) 1985-05-21 1985-05-21 Method for removing fluorine in flue gas desulfurization wastewater

Publications (2)

Publication Number Publication Date
JPS61268393A JPS61268393A (en) 1986-11-27
JPH069679B2 true JPH069679B2 (en) 1994-02-09

Family

ID=14444276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10685885A Expired - Lifetime JPH069679B2 (en) 1985-05-21 1985-05-21 Method for removing fluorine in flue gas desulfurization wastewater

Country Status (1)

Country Link
JP (1) JPH069679B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542679B2 (en) * 2000-07-21 2010-09-15 オルガノ株式会社 Method for removing target component from water to be treated and crystallization apparatus
JP4666905B2 (en) * 2003-12-03 2011-04-06 株式会社フジタ Calcium removal method and calcium removal system

Also Published As

Publication number Publication date
JPS61268393A (en) 1986-11-27

Similar Documents

Publication Publication Date Title
JPH09276875A (en) Treatment of waste water
WO2018092396A1 (en) Treatment method and treatment apparatus for waste water containing sulfuric acid, fluorine and heavy metal ions
KR20010071946A (en) Method for treating a fluorine-containing waste water and treating apparatus
US5451327A (en) Compound and method for treating water containing metal ions and organic and/or inorganic impurities
JP4042169B2 (en) Cement production equipment extraction dust processing method
JP6269651B2 (en) Method and apparatus for treating borofluoride-containing water
JP4631425B2 (en) Method and apparatus for treating fluorine-containing wastewater containing phosphoric acid
US5762807A (en) Composition and process for treating water and gas streams containing heavy metals and other pollutants
JPH069679B2 (en) Method for removing fluorine in flue gas desulfurization wastewater
JP2912237B2 (en) Treatment method for fluorine-containing wastewater
JP2002346573A (en) Exhaust gas desulfurization wastewater treatment method
JP2018130717A (en) Processing method and system for treatment of desulfurization waste water
JP4756415B2 (en) Gas processing method
JPH0510993B2 (en)
JP3157347B2 (en) Treatment of wastewater containing fluorine compounds
JPH11267662A (en) Method of removing fluorine in waste water of flue gas desulfurization
JP2822453B2 (en) Method of removing fluorine from flue gas desulfurization wastewater
KR100349154B1 (en) Composition for eliminating fluorine from wastewater and method for eliminating fluorine from wastewater using the same
JPH0651186B2 (en) Method for treating fluorine in flue gas desulfurization wastewater
KR20040095610A (en) Method of wastewater treatment
JP3282648B2 (en) Treatment method for fluorine-containing wastewater
JP4034218B2 (en) Wastewater treatment method
JP4136194B2 (en) Fluorine-containing wastewater treatment method
JPS60166085A (en) Treatment of waste water from stack gas desulfurization
JPS60150890A (en) Treatment of fluorine in waste water from stack gas desulfurizer