JP2002263688A - Method and device for treating organic polluted water - Google Patents

Method and device for treating organic polluted water

Info

Publication number
JP2002263688A
JP2002263688A JP2001060303A JP2001060303A JP2002263688A JP 2002263688 A JP2002263688 A JP 2002263688A JP 2001060303 A JP2001060303 A JP 2001060303A JP 2001060303 A JP2001060303 A JP 2001060303A JP 2002263688 A JP2002263688 A JP 2002263688A
Authority
JP
Japan
Prior art keywords
zeolite
biological
solid
ammonia
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001060303A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001060303A priority Critical patent/JP2002263688A/en
Publication of JP2002263688A publication Critical patent/JP2002263688A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for treating organic polluted water including a new biological regeneration method using zeolite. SOLUTION: The treatment includes the following steps A, B and C. In the step A, organic discharged water containing ammonia nitrogen and the regenerated discharged water from a zeolite packed layer are supplied to a biological denitrification part to be denitrified and then subjected to solid liquid separation. The separated water is supplied to a granular zeolite packed layer to adsorb and remove ammonia. In the step B, the zeolite adsorbing ammonia is biologically regenerated by nitrifying bacteria deposited on the granular zeolite and the regenerated discharged water is supplied to the biological denitrification part. In the step C, a part of the sludge in the above biological treatment process is drained, treated with an alkali and subjected to solid liquid separation. The separated liquid is supplied to the zeolite layer during the biological regeneration of the zeolite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水等のアンモニ
ア含有汚水を高度に浄化する技術に関し、特に、窒素を
従来技術よりも著しく高い除去率で除去可能な新規な技
術に関する。
The present invention relates to a technology for highly purifying ammonia-containing wastewater such as sewage, and more particularly to a novel technology capable of removing nitrogen at a significantly higher removal rate than conventional technologies.

【0002】[0002]

【従来の技術】下水等の汚水中に混入するアンモニア性
窒素を除去する方法として、最も代表的な技術は、硝化
液循環型生物学的硝化脱窒素法である。この技術は、有
機性汚水を生物学的脱窒素部に供給し、その脱窒素液を
硝化部に供給してアンモニアを硝化し、硝化液の一部を
前記脱窒素部に循環し、他部を沈殿槽に供給して活性汚
泥を分離することにより、処理水を得るものである。ま
た、硝化部に、硝化菌を固定したゲル担体を投入する技
術も最近実用化されている。この方法は、下水を処理す
る場合に窒素除去率80%程度が得られ、処理水にアン
モニアは殆ど残留しないが、硝化性窒素が10mg/リ
ットル程度残留するという問題点がある。従って、この
方法にあっては、窒素除去率を90%以上にすることは
原理的に不可能であり、放流水域の富栄養化を防止する
には極めて不十分であった。また、硝化速度が小さいた
め、容積が大な硝化槽を必要とし、その上、大容量の硝
化液を脱窒素槽に循環させるための循環ポンプの動力も
大とする必要があった。
2. Description of the Related Art The most typical technique for removing ammonia nitrogen contained in sewage such as sewage is a nitrification liquid circulation type biological nitrification denitrification method. This technology supplies organic wastewater to a biological denitrification unit, supplies the denitrification solution to a nitrification unit to nitrify ammonia, circulates a part of the nitrification solution to the denitrification unit, and Is supplied to a sedimentation tank to separate activated sludge, thereby obtaining treated water. In addition, a technique of introducing a gel carrier on which nitrifying bacteria are immobilized into a nitrification unit has recently been put to practical use. This method has a problem that when the sewage is treated, a nitrogen removal rate of about 80% is obtained, and almost no ammonia remains in the treated water, but about 10 mg / liter of nitrifying nitrogen remains. Therefore, in this method, it was theoretically impossible to make the nitrogen removal rate 90% or more, and it was extremely insufficient to prevent eutrophication of the discharge water area. Further, since the nitrification rate is low, a large-volume nitrification tank is required, and furthermore, the power of a circulation pump for circulating a large-capacity nitrification liquid to the denitrification tank needs to be large.

【0003】また、アンモニアの化学的除去方法とし
て、ゼオライトによる選択的イオン交換吸着法が公知で
あり、下水を生物学的硝化脱窒素が行われない通常の活
性汚泥法で処理した後、ゼオライトでアンモニアを吸着
除去する方法が過去に検討されているが、ゼオライトの
アンモニア吸着容量が非常に少なく、頻繁な再生を必要
とする他、塩化ナトリウム、アンモニアを高濃度に含む
再生廃液が多量に発生し、この廃液の処分も極めて困難
であり、これらの諸事情から実用化された例はなかっ
た。斯様な技術的背景から、本発明者は先に生物学的硝
化脱窒素法とゼオライト吸着法を結合した新規な技術
を、特開平8−52494公報にて提示した。しかし、
同公報にて開示した技術もゼオライトの再生廃液の処分
において、なお若干の難点を残し、高濃度の塩化ナトリ
ウム、アンモニアを含んだ再生廃液が発生するため、合
理的な処分ができない状況にあった。
[0003] As a method for chemically removing ammonia, a selective ion exchange adsorption method using zeolite is known, and sewage is treated by an ordinary activated sludge method without biological nitrification and denitrification, and then treated with zeolite. A method of adsorbing and removing ammonia has been studied in the past, but the ammonia adsorption capacity of zeolite is very small, requiring frequent regeneration, and a large amount of wastewater containing sodium chloride and ammonia in high concentration is generated. However, disposal of this waste liquid is also extremely difficult, and there have been no practical applications due to these circumstances. From such a technical background, the present inventor has previously disclosed a novel technique combining a biological nitrification denitrification method and a zeolite adsorption method in JP-A-8-52494. But,
The technology disclosed in the publication also has some difficulties in the disposal of the zeolite regenerated waste liquid, and a regenerated waste liquid containing high-concentration sodium chloride and ammonia is generated. .

【0004】[0004]

【発明が解決しようとする課題】本発明は、本発明者の
先の出願になる、特開平8−52494公報に記載の技
術的欠点を解決することを課題とするものであり、具体
的には、ゼオライトの新規生物再生法も含んだ、有機性
汚水の処理方法および装置を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the technical drawbacks described in Japanese Patent Application Laid-Open No. Hei 8-52494, filed earlier by the present inventor. The present invention provides a method and an apparatus for treating organic sewage, including a novel method for regenerating a biological zeolite.

【0005】[0005]

【課題を解決するための手段】本発明者は、アンモニア
性窒素を含有する有機性排水の生物学的脱窒素法のプロ
セス構成を変革して、ゼオライトによる選択的イオン交
換法、再生法を新規な態様で統合することにより、上記
課題を達成できることを見出した。即ち、本発明は以下
の構成からなる。
Means for Solving the Problems The present inventor has changed the process configuration of the biological denitrification method for organic wastewater containing ammoniacal nitrogen and has developed a selective ion exchange method and a regeneration method using zeolite. It has been found that the above-mentioned problems can be achieved by integrating in an appropriate manner. That is, the present invention has the following configurations.

【0006】(1)アンモニア性窒素を含有する有機性
排水とゼオライト充填層再生排水を生物学的脱窒素部に
供給して脱窒素した後固液分離し、該分離水を粒状ゼオ
ライト充填層に供給してアンモニアを吸着除去する工程
A、該アンモニア吸着ゼオライトを該粒状ゼオライトに
付着させた硝化菌によって生物学的に再生し、その再生
廃水を前記生物学的脱窒素部に供給する工程B、および
前記生物処理工程の汚泥の一部を引抜いてアルカリ処理
した後固液分離し、該分離液を前記ゼオライトの生物再
生時にゼオライト層に供給する工程Cを含むことを特徴
とする有機性汚水の処理方法。
(1) Organic wastewater containing ammoniacal nitrogen and zeolite-packed bed reclaimed wastewater are supplied to a biological denitrification unit to denitrify and then solid-liquid separated, and the separated water is added to a granular zeolite packed bed. A step A of supplying and adsorbing and removing ammonia, a step B of biologically regenerating the ammonia-adsorbed zeolite by nitrifying bacteria attached to the granular zeolite, and supplying the regenerated wastewater to the biological denitrification unit; And a step C of drawing out a part of the sludge in the biological treatment step, subjecting the sludge to alkali treatment, and then performing solid-liquid separation, and supplying the separated liquid to a zeolite layer during the biological regeneration of the zeolite. Processing method.

【0007】(2)アンモニア性窒素を含有する有機性
排水とゼオライト充填層再生排水を脱窒素処理するため
の生物学的脱窒素槽と、該生物学的脱窒素槽からの流出
スラリを固液分離するための手段と、該固液分離後の分
離水中のアンモニアを吸着除去するための粒状ゼオライ
ト充填層と、該固液分離後の分離汚泥の一部をアルカリ
処理するための手段と、該アルカリ処理した汚泥を固液
分離するための手段と、アンモニア吸着ゼオライトを生
物学的に再生するために該粒状ゼオライトに硝化菌を付
着させた粒状ゼオライト充填層に、前記アルカリ処理汚
泥を固液分離した後の液分であるアルカリ分離液を供給
するための手段とを有することを特徴とする有機性汚水
の処理装置。
(2) A biological denitrification tank for denitrifying the organic wastewater containing ammonia nitrogen and the regenerated wastewater of the zeolite packed bed, and a solid-liquid slurry discharged from the biological denitrification tank Means for separating, a granular zeolite packed bed for adsorbing and removing ammonia in the separated water after the solid-liquid separation, a means for alkali-treating a part of the separated sludge after the solid-liquid separation, A means for solid-liquid separation of the alkali-treated sludge, and a solid-liquid separation of the alkali-treated sludge in a granular zeolite packed layer obtained by adhering nitrifying bacteria to the granular zeolite for biologically regenerating the ammonia-adsorbed zeolite. And a means for supplying an alkali separation liquid, which is a liquid component after the separation.

【0008】本発明において、「ゼオライト」とは、ゼ
オライト、モルデナイト、クリノプチライトおよび合成
ゼオライト等のゼオライト系鉱物であるが、この他に
も、アンモニアに対する選択的イオン交換能を有するも
のを便宜上、ゼオライトと総称する。
In the present invention, "zeolite" refers to a zeolite-based mineral such as zeolite, mordenite, clinoptilite and synthetic zeolite. In addition, those having a selective ion exchange ability with respect to ammonia may be used for convenience. It is generically called zeolite.

【0009】[0009]

【発明の実施の形態】発明の実施の形態を図面を参照し
て説明する。図1は、本発明の処理方法の系統図を示
し、下水等のアンモニアを含有する有機性汚水1(以
下、有機性汚水1と略す)を生物学的脱窒素槽2(以
下、脱窒素槽2と略す)に供給する。この脱窒素槽2
で、後記するゼオライト生物再生廃液17中の硝酸性窒
素が、前記有機性汚水1中のBODを利用して窒素ガス
に還元される。脱窒素槽2からの流出スラリ2aは、沈
殿槽4に導入され、該沈殿汚泥の大部分7が脱窒素槽2
に返送される。尚、脱窒素槽2の後に、残留BODの除
去のための短時間滞留の曝気槽3を設けてもよい。沈殿
槽4の流出水4aは、ゼオライト充填槽5に供給して、
アンモニアを吸着除去する。この時、SSも濾過除去さ
れ、清澄な処理水6が得られる。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a system diagram of the treatment method of the present invention, in which an organic wastewater 1 containing ammonia such as sewage (hereinafter abbreviated as organic wastewater 1) is removed from a biological denitrification tank 2 (hereinafter, a denitrification tank). 2). This denitrification tank 2
Then, nitrate nitrogen in the zeolite biological regeneration waste liquid 17 described below is reduced to nitrogen gas using BOD in the organic wastewater 1. The slurry 2a discharged from the denitrification tank 2 is introduced into the settling tank 4, and most of the settled sludge 7 is removed from the denitrification tank 2.
Will be returned to In addition, after the denitrification tank 2, an aeration tank 3 of a short residence time for removing residual BOD may be provided. The effluent 4a of the settling tank 4 is supplied to the zeolite filling tank 5,
Ammonia is adsorbed and removed. At this time, SS is also removed by filtration, and clear treated water 6 is obtained.

【0010】沈殿槽4から流出する汚泥の一部となる汚
泥8は、アルカリ剤9、例えば水酸化ナトリウムを添加
して、アルカリ処理10をすることにより加水分解さ
れ、生物資化性が向上する。その後、固液分離処理11
をするとアルカリ分離液13が得られる。該分離液13
をゼオライトの生物再生中のゼオライト層14に供給
し、硝化活性維持のためのアルカリ分として利用する。
アルカリ処理汚泥12は、脱窒素槽2に返送されると生
物分解されるので、余剰汚泥発生量が減少する効果を奏
する。また、アルカリ処理によって汚泥から溶出したB
ODが、脱窒素菌の水素供与体となるので、脱窒素のた
めのBODが不足になることがない。
The sludge 8, which becomes a part of the sludge flowing out of the settling tank 4, is hydrolyzed by adding an alkali agent 9, for example, sodium hydroxide, and performing an alkali treatment 10, thereby improving the bioassimilation. . Thereafter, solid-liquid separation treatment 11
Then, an alkali separation liquid 13 is obtained. Separation liquid 13
Is supplied to the zeolite layer 14 during zeolite biological regeneration, and is used as an alkali component for maintaining nitrification activity.
Since the alkali-treated sludge 12 is biodegraded when returned to the denitrification tank 2, an effect of reducing the amount of surplus sludge is produced. In addition, B eluted from sludge by alkali treatment
Since OD serves as a hydrogen donor for denitrifying bacteria, BOD for denitrification does not become insufficient.

【0011】ゼオライト充填層5の運転を続けると、ゼ
オライトのアンモニア吸着量が飽和するので、この時点
で通水を止め、粒状ゼオライトの生物学的再生を行う。
ゼオライト充填層5は、2系列用意しておき、ゼオライ
トの生物再生中は沈殿槽4の流出水4aをもう一方のゼ
オライト充填層に通水してアンモニアを吸着除去するよ
うにする。即ち、沈殿池越流水の通水を停止して、ゼオ
ライト充填層5の処理水6の一部である再生用水15と
リン回収工程(固液分離処理11)のアルカリ分離液1
3をゼオライト層(生物再生中)14に通水(SV1〜
2程度が好ましい)しながら、ゼオライト充填層14の
下部から酸素含有ガス、例えば空気16を曝気する。こ
の結果、ゼオライトの表面に付着している硝化菌によっ
てゼオライトに吸着されたアンモニアが、下記の反応
(1)によって硝酸性窒素に酸化される。
When the operation of the zeolite packed bed 5 is continued, the amount of adsorbed ammonia on the zeolite is saturated. At this point, the flow of water is stopped, and biological regeneration of the granular zeolite is performed.
Two zeolite-packed layers 5 are prepared, and during the biological regeneration of zeolite, the effluent 4a of the sedimentation tank 4 is passed through the other zeolite-packed layer to adsorb and remove ammonia. That is, the flow of the overflow of the sedimentation basin is stopped, and the regeneration water 15 which is a part of the treatment water 6 of the zeolite packed bed 5 and the alkali separation liquid 1 in the phosphorus recovery step (solid-liquid separation treatment 11)
3 through the zeolite layer (during biological regeneration) 14
2 is preferable), while oxygen-containing gas, for example, air 16 is aerated from the lower part of the zeolite packed layer 14. As a result, the ammonia adsorbed on the zeolite by the nitrifying bacteria attached to the surface of the zeolite is oxidized to nitrate nitrogen by the following reaction (1).

【0012】[0012]

【化1】 Embedded image

【0013】この反応は、水素イオンを多量に生成する
ので、この水素イオンを中和しなければゼオライト層の
pH低下が生じて硝化菌の活性が低下し、再生効果が大
きく減少することになるので、従来はアルカリ剤を添加
する必要があった。これに対し、本発明にあっては余剰
汚泥の減量化のために用いられて生じたアルカリ分離液
13を利用するので、ゼオライト層14の生物再生用の
アルカリ剤を不要にできる。生成した硝酸性窒素は、ゼ
オライトに対する吸着性を有さないので、ゼオライトか
ら脱離して液側に移行し、ゼオライトが再生される。ゼ
オライト生物再生廃液17中の硝酸性窒素は、脱窒素槽
2に供給され、脱窒素菌により窒素ガスに還元されて除
去される。
This reaction produces a large amount of hydrogen ions. If the hydrogen ions are not neutralized, the pH of the zeolite layer is reduced, the activity of nitrifying bacteria is reduced, and the regeneration effect is greatly reduced. Therefore, conventionally, it was necessary to add an alkali agent. On the other hand, in the present invention, since the alkali separation liquid 13 generated for reducing excess sludge is used, an alkali agent for biological regeneration of the zeolite layer 14 can be eliminated. Since the generated nitrate nitrogen has no adsorptivity to zeolite, it is desorbed from zeolite and migrates to the liquid side to regenerate zeolite. The nitrate nitrogen in the zeolite biological regeneration waste liquid 17 is supplied to the denitrification tank 2 and reduced to nitrogen gas by the denitrification bacteria to be removed.

【0014】なお、ゼオライトへの硝化菌の付着を促進
し、生物再生が処理開始時から、直ちに円滑に進行する
ようにするためには、以下の方法が推奨される。即ち、
運転開始の当初にアンモニア含有汚水1を通水しなが
ら、ゼオライト充填層(生物再生中)14の下部から酸
素含有ガスとして空気16を曝気すると、所要時間の経
過後にゼオライト表面に硝化菌が高濃度に固定される。
この状態になってから曝気を止めて処理すると、アンモ
ニアのゼオライトへの吸着が行われ、かつ、ゼオライト
の生物再生時に速やかに硝化反応が進行する。ゼオライ
ト層(生物再生中)14の生物再生の所要時間は、ゼオ
ライトのアンモニアの吸着量によって変化し、再生を開
始する時点のゼオライトのアンモニア吸着量が多いほど
当然、再生時間が長くなるが、アンモニア吸着量が5〜
10mgN/g−ゼオライトの場合、本発明のアルカリ
性分離液を供給してpHの低下を防ぎ、曝気すると、8
〜12時間程度で十分な再生が可能であることが認めら
れた。この他の本発明の実施態様として、生物処理工程
脱窒素部に粒状ゲル等の微生物付着担体を共存させ、脱
窒素速度を向上させる方法を適用してもよい。
The following method is recommended in order to promote the attachment of nitrifying bacteria to zeolite and to allow the biological regeneration to proceed immediately and smoothly from the start of the treatment. That is,
When the air 16 is aerated as oxygen-containing gas from the lower part of the zeolite packed bed (during biological regeneration) 14 while passing the ammonia-containing sewage 1 at the beginning of the operation, the nitric acid bacterium has a high concentration on the zeolite surface after a required time. Fixed to
If aeration is stopped after this state is reached, the ammonia is adsorbed on the zeolite, and the nitrification reaction proceeds promptly during the biological regeneration of the zeolite. The time required for biological regeneration of the zeolite layer (during biological regeneration) 14 varies depending on the amount of ammonia adsorbed on the zeolite, and the greater the amount of ammonia adsorbed on the zeolite at the time of starting regeneration, naturally the longer the regeneration time becomes. Adsorption amount is 5
In the case of 10 mgN / g-zeolite, the alkaline separation solution of the present invention is supplied to prevent a decrease in pH, and when aerated, it becomes 8%.
It was recognized that sufficient reproduction was possible in about 12 hours. As another embodiment of the present invention, a method of improving the denitrification rate by coexisting a microorganism-adhering carrier such as a granular gel in the denitrification part of the biological treatment step may be applied.

【0015】[0015]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明は、この実施例により限定されるものでは
ない。 実施例1 図1の工程にしたがって、表1に示す平均水質の下水を
対象に、本発明の実証試験を行った。粒状ゼオライトに
は、ジークライト工業(株)製品である山形県産出天然
粒状ゼオライト(平均粒径2〜3mm)を使用した。試
験条件を表2に示す。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. Example 1 A proof test of the present invention was performed on sewage having an average water quality shown in Table 1 according to the process shown in FIG. As the granular zeolite, a natural granular zeolite (average particle size of 2 to 3 mm) produced by Yamagata Prefecture, which is a product of Zikulite Industry Co., Ltd. was used. Table 2 shows the test conditions.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】試験の結果、処理が定常状態になってから
のゼオライト層処理水6の平均水質は、表3に示すよう
に高度に窒素が除去されており、T−Nの濃度1mg/
リットルが安定して得られた。
As a result of the test, the average water quality of the treated water 6 of the zeolite layer after the treatment became in a steady state was as shown in Table 3 where nitrogen was highly removed and the TN concentration was 1 mg /
Liters were obtained stably.

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。 1.生物学的脱窒素技術とゼオライトによる選択的イオ
ン交換反応を新規な生物再生法によって再生し、再生排
水を生物学的脱窒素部で処分するようにしたので、処理
水にリン、アンモニア性窒素、硝酸性窒素が極めて微量
しか残留せず、高度の窒素除去率が安定して得られる。 2.ゼオライトを生物学的に再生することができるの
で、ゼオライトの再生薬剤(食塩水等)が不要になる。
従って、再生廃液の処分も簡単になる。
Since the present invention is configured as described above, it has the following effects. 1. The biological denitrification technology and the selective ion exchange reaction with zeolite were regenerated by a new biological regeneration method, and the reclaimed wastewater was disposed of in the biological denitrification section. Only a very small amount of nitrate nitrogen remains, and a high nitrogen removal rate can be stably obtained. 2. Since zeolite can be biologically regenerated, a zeolite regenerating agent (such as saline) is not required.
Therefore, disposal of the reclaimed waste liquid is also simplified.

【0021】3.ゼオライトの生物再生時の硝化活性の
維持に多量に必要なアルカリ分として、汚泥アルカリ処
理工程からの廃液を利用できる。 4.ゼオライト充填層でSS濾過も同時に行えるので、
砂濾過層のような他の濾過層が不要である。 5.従来の生物学的硝化脱窒素プロセスにおける大容積
の硝化槽が不要となり、かつ大量の硝化液循環操作のた
めのポンプが不要になるので省面積、省エネルギー効果
が大きい。 6.汚泥をアルカリ処理してから生物処理するので、余
剰汚泥の発生量が減少する。
3. The waste liquid from the sludge alkali treatment step can be used as a large amount of alkali required for maintaining the nitrification activity during zeolite biological regeneration. 4. Since SS filtration can be performed simultaneously with the zeolite packed bed,
No other filtration layer is required, such as a sand filtration layer. 5. In the conventional biological nitrification and denitrification process, a large-volume nitrification tank is not required, and a pump for circulating a large amount of nitrification liquid is not required. 6. Since sludge is subjected to biological treatment after alkali treatment, the amount of excess sludge generated is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機性汚水の処理方法を示す工程図で
ある。
FIG. 1 is a process chart showing a method for treating organic wastewater of the present invention.

【符号の説明】[Explanation of symbols]

1 アンモニア窒素を含有する有機性汚水 2 生物学的脱窒素槽 2a 流出スラリ 3 曝気槽 4 沈殿槽 4a 流出水 5 ゼオライト充填槽 6 処理水 7 返送汚泥 8 汚泥 9 アルカリ剤 10 アルカリ処理 11 固液分離処理 12 アルカリ処理汚泥 13 アルカリ分離液 14 ゼオライト層(生物再生中) 15 ゼオライト充填層処理水の一部 16 空気 17 ゼオライト生物再生廃液 DESCRIPTION OF SYMBOLS 1 Organic wastewater containing ammonia nitrogen 2 Biological denitrification tank 2a Outflow slurry 3 Aeration tank 4 Sedimentation tank 4a Outflow water 5 Zeolite filling tank 6 Treated water 7 Returned sludge 8 Sludge 9 Alkali agent 10 Alkali treatment 11 Solid-liquid separation Treatment 12 Alkali treated sludge 13 Alkali separation liquid 14 Zeolite layer (during biological regeneration) 15 Part of zeolite packed bed treated water 16 Air 17 Zeolite biological regeneration waste liquid

フロントページの続き Fターム(参考) 4D003 AA01 AB11 BA02 CA03 CA07 CA08 EA01 EA14 EA24 FA03 FA04 FA06 FA07 4D024 AA04 AB13 BA07 BB01 CA01 CA05 DA08 DB12 DB15 DB16 4D028 BD16 BE04 BE08 4D040 BB05 BB42 BB57 BB82 4D059 AA05 BK12 DA01 Continued on the front page F-term (reference) 4D003 AA01 AB11 BA02 CA03 CA07 CA08 EA01 EA14 EA24 FA03 FA04 FA06 FA07 4D024 AA04 AB13 BA07 BB01 CA01 CA05 DA08 DB12 DB15 DB16 4D028 BD16 BE04 BE08 4D040 BB05 BB42 BB57 AB024D0

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アンモニア性窒素を含有する有機性排水
とゼオライト充填層再生排水を生物学的脱窒素部に供給
して脱窒素した後固液分離し、該分離水を粒状ゼオライ
ト充填層に供給してアンモニアを吸着除去する工程A、
該アンモニア吸着ゼオライトを該粒状ゼオライトに付着
させた硝化菌によって生物学的に再生し、その再生廃水
を前記生物学的脱窒素部に供給する工程B、および前記
生物処理工程の汚泥の一部を引抜いてアルカリ処理した
後固液分離し、該分離液を前記ゼオライトの生物再生時
にゼオライト層に供給する工程Cを含むことを特徴とす
る有機性汚水の処理方法。
1. An organic wastewater containing ammoniacal nitrogen and a regenerated wastewater of a zeolite packed bed are supplied to a biological denitrification section to be denitrified and then subjected to solid-liquid separation, and the separated water is supplied to a granular zeolite packed bed. A to adsorb and remove ammonia
The ammonia-adsorbed zeolite is biologically regenerated by nitrifying bacteria attached to the granular zeolite, and the reclaimed wastewater is supplied to the biological denitrification step B, and part of the sludge of the biological treatment step is performed. A method for treating organic sewage, comprising a step C of drawing out and subjecting to alkali treatment, followed by solid-liquid separation, and supplying the separated liquid to a zeolite layer at the time of biological regeneration of the zeolite.
【請求項2】 アンモニア性窒素を含有する有機性排水
とゼオライト充填層再生排水を脱窒素処理するための生
物学的脱窒素槽と、該生物学的脱窒素槽からの流出スラ
リを固液分離するための手段と、該固液分離後の分離水
中のアンモニアを吸着除去するための粒状ゼオライト充
填層と、該固液分離後の分離汚泥の一部をアルカリ処理
するための手段と、該アルカリ処理した汚泥を固液分離
するための手段と、アンモニア吸着ゼオライトを生物学
的に再生するために該粒状ゼオライトに硝化菌を付着さ
せた粒状ゼオライト充填層に、前記アルカリ処理汚泥を
固液分離した後の液分であるアルカリ分離液を供給する
ための手段とを有することを特徴とする有機性汚水の処
理装置。
2. A biological denitrification tank for denitrifying an organic wastewater containing ammoniacal nitrogen and a regenerated wastewater of a zeolite packed bed, and a solid-liquid separation of a slurry discharged from the biological denitrification tank. A granular zeolite packed bed for adsorbing and removing ammonia in the separated water after the solid-liquid separation; a means for alkali-treating a part of the separated sludge after the solid-liquid separation; A means for solid-liquid separation of the treated sludge, and a granular zeolite packed layer obtained by attaching nitrifying bacteria to the granular zeolite for biologically regenerating the ammonia-adsorbed zeolite, the alkali-treated sludge was solid-liquid separated. A means for supplying an alkali separation liquid, which is a later liquid component.
JP2001060303A 2001-03-05 2001-03-05 Method and device for treating organic polluted water Pending JP2002263688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001060303A JP2002263688A (en) 2001-03-05 2001-03-05 Method and device for treating organic polluted water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001060303A JP2002263688A (en) 2001-03-05 2001-03-05 Method and device for treating organic polluted water

Publications (1)

Publication Number Publication Date
JP2002263688A true JP2002263688A (en) 2002-09-17

Family

ID=18919744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001060303A Pending JP2002263688A (en) 2001-03-05 2001-03-05 Method and device for treating organic polluted water

Country Status (1)

Country Link
JP (1) JP2002263688A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019857A2 (en) * 2009-08-11 2011-02-17 Kinder Morgan Operating L.P."C" Systems, apparatuses and methods for treating waste water
CN105540824A (en) * 2015-12-18 2016-05-04 华南理工大学 Removal method for ammonia nitrogen in low-temperature wastewater based on adsorption and biochemical regeneration of zeolite
JP5936774B2 (en) * 2013-06-13 2016-06-22 三菱重工メカトロシステムズ株式会社 Waste water treatment method and waste water treatment system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019857A2 (en) * 2009-08-11 2011-02-17 Kinder Morgan Operating L.P."C" Systems, apparatuses and methods for treating waste water
WO2011019857A3 (en) * 2009-08-11 2011-06-16 Kinder Morgan Operating L.P."C" Systems, apparatuses and methods for treating waste water
JP5936774B2 (en) * 2013-06-13 2016-06-22 三菱重工メカトロシステムズ株式会社 Waste water treatment method and waste water treatment system
CN105540824A (en) * 2015-12-18 2016-05-04 华南理工大学 Removal method for ammonia nitrogen in low-temperature wastewater based on adsorption and biochemical regeneration of zeolite

Similar Documents

Publication Publication Date Title
JP3767800B2 (en) Nitrogen-phosphorus-containing wastewater treatment method and apparatus
JP2002263689A (en) Method for treating ammonia-containing waste water and device
JP3555807B2 (en) Organic wastewater nitrogen removal method
JPH10277568A (en) Treatment of organic matter-containing waste water
JP2992692B2 (en) Sewage purification method and apparatus
JP2002263688A (en) Method and device for treating organic polluted water
JP3555812B2 (en) Advanced treatment method for organic wastewater
JP3715570B2 (en) Removal of radium in water
JP2003154390A (en) Method and apparatus for treating ammonia-containing sewage
JP2000325987A (en) Treatment of organic sewage
JP3496789B2 (en) Organic wastewater treatment method and treatment device
JPH0999293A (en) Treatment of organic sewage
JP3491794B2 (en) Advanced nitrogen removal method and apparatus for sewage
JP3837760B2 (en) Treatment method of flue gas desulfurization waste water
WO1987005592A1 (en) The use of hydrophobic zeolites as adsorption material at the biological purification of wastewater
JP3346690B2 (en) Method for removing nitrogen and phosphorus from organic wastewater
JPH0975987A (en) Method for removing nitrogen in high level from organic sewage
JP3348446B2 (en) Method and apparatus for removing nitrate ions and / or nitrite ions
JPH1099893A (en) Method for highly removing nitrogen of organic sewage
JP3156956B2 (en) Advanced treatment of organic wastewater
JP2000308895A (en) Treatment of organic sewage
JP2556409B2 (en) Treatment of organic wastewater containing nitrogen and phosphorus
JPH0417118B2 (en)
JPH06170388A (en) Treatment of sewage
JPH09117791A (en) Treatment of sewage