JP2000308895A - Treatment of organic sewage - Google Patents

Treatment of organic sewage

Info

Publication number
JP2000308895A
JP2000308895A JP11118270A JP11827099A JP2000308895A JP 2000308895 A JP2000308895 A JP 2000308895A JP 11118270 A JP11118270 A JP 11118270A JP 11827099 A JP11827099 A JP 11827099A JP 2000308895 A JP2000308895 A JP 2000308895A
Authority
JP
Japan
Prior art keywords
phosphorus
ammonia
sludge
biological treatment
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11118270A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP11118270A priority Critical patent/JP2000308895A/en
Publication of JP2000308895A publication Critical patent/JP2000308895A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a treatment method of organic sewage for removing phosphorus and ammonia from the organic sewage, enabling to recover them as valuable resources, greatly reduce generation quantities of coagulated sludge and excessive sludge, and also reduce a use quantity of an inorganic coagulant. SOLUTION: This treatment method of the organic sewage consists of a biological treatment process A for adsorbing and removing the phosphorus and ammonia by allowing iron hydroxide and zeolite to coexist when the organic sewage containing the phosphorus and ammonia is treated biologically, a process B by which a portion of activated sludge in the biological treatment process A is taken out and added with an alkali chemical, and the phosphorus and ammonia are eluted from the activated sludge, and the activated sludge is made dissolvable, and later, the solid is separated from the solution, and a process C by which the separated liquid from the solid-liquid separation is added with a magnesium chemical to recover the phosphorus and ammonia as magnesium ammonium phosphate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、し尿系汚水、工場
廃水、下水などの有機性汚水の処理方法に関し、更に詳
しくは、有機性汚水中のリン、アンモニアを資源回収す
ることができ、かつ生物処理にともなって発生する余剰
汚泥量を減少することができる有機性汚水の処理方法に
関する。
The present invention relates to a method for treating organic wastewater such as human wastewater, industrial wastewater, and sewage, and more particularly to a method for recovering phosphorus and ammonia from organic wastewater, and The present invention relates to a method for treating organic wastewater, which can reduce the amount of excess sludge generated during biological treatment.

【0002】[0002]

【従来の技術】下水などの有機性汚水中の汚染物質の一
つとしてリンがある。該汚水中のリンを除去する技術と
して種々研究開発されている。中でも、有機性汚水を脱
リン処理する有効な方法の1つとして、活性汚泥法の曝
気槽等の生物処理工程に無機凝集剤を添加してリンを除
去する「凝集剤添加活性汚泥法」が知られている。しか
し、これらの方法では有機性汚水中のリン、アンモニア
を資源として回収することができなかった。また、リン
を凝集させた凝集汚泥の発生量が多量であるため、汚泥
処理に大きな負担を与えていた。更に、生物処理工程で
発生する余剰活性汚泥の発生量も多量であり、その処理
処分に苦慮しているのが実情である。アンモニアの除去
法として代表的な生物学的脱窒素法はアンモニアを窒素
ガスとして放出してしまうため窒素資源を回収できなか
った。また運転管理が面倒であり、硝化速度が小さいた
め生物処理槽の所要容積が過大であった。
2. Description of the Related Art Phosphorus is one of the pollutants in organic wastewater such as sewage. Various researches and developments have been made on technologies for removing phosphorus from the wastewater. Among them, as one of the effective methods for dephosphorizing organic sewage, there is a "coagulant-added activated sludge method" in which an inorganic coagulant is added to a biological treatment process such as an aeration tank of an activated sludge method to remove phosphorus. Are known. However, these methods could not recover phosphorus and ammonia in organic wastewater as resources. In addition, since the amount of coagulated sludge obtained by coagulating phosphorus is large, a large burden is imposed on the sludge treatment. Furthermore, the amount of surplus activated sludge generated in the biological treatment process is also large, and it is a fact that it is difficult to dispose of it. As a typical method for removing ammonia, a biological denitrification method releases ammonia as nitrogen gas, and thus cannot recover nitrogen resources. Moreover, operation management was troublesome, and the nitrification rate was low, so that the required volume of the biological treatment tank was excessive.

【0003】[0003]

【発明が解決しようとする課題】本発明は、「凝集剤添
加活性汚泥法」に新規着想を加えたもので、本発明の目
的は、上記の従来技術の課題を解決することにある。有
機性汚水からリン、アンモニアを除去し、且つ貴重な資
源として回収できるようにし、凝集汚泥及び余剰汚泥の
発生量を大きく減少でき、更に無機凝集剤の使用量も削
減できるような有機性汚水の処理方法を提供する。
The object of the present invention is to add a new idea to the "coagulant-added activated sludge method", and an object of the present invention is to solve the above-mentioned problems of the prior art. Organic sewage that removes phosphorus and ammonia from organic sewage and can be recovered as a valuable resource, can greatly reduce the amount of coagulated sludge and excess sludge, and can also reduce the amount of inorganic coagulant used. Provide a processing method.

【0004】[0004]

【課題を解決するための手段】本発明は、以下の手段に
より上記の課題を達成した。 (1)リン、アンモニアを含む有機性汚水を生物処理す
る際に、水酸化鉄、ゼオライトを共存させて、リン、ア
ンモニアを吸着除去する生物処理工程Aと、生物処理工
程Aの活性汚泥の一部を引抜いてアルカリ剤を添加し、
該活性汚泥からリン、アンモニアを溶出させ、且つ該活
性汚泥を可溶化し、その後固液分離する工程Bと、該固
液分離からの分離液にマグネシウム化合物を添加してリ
ン及びアンモニアをリン酸マグネシウムアンモニウムと
して回収する工程Cを有することを特徴とする有機性汚
水の処理方法。 (2)前記B工程で固液分離により得た分離汚泥を共存
する水酸化鉄、ゼオライトとともに、前記生物処理工程
Aに供給することを特徴とする請求項1記載の有機性汚
水の処理方法。
According to the present invention, the above objects have been attained by the following means. (1) When biologically treating organic wastewater containing phosphorus and ammonia, a biological treatment step A in which iron hydroxide and zeolite coexist to adsorb and remove phosphorus and ammonia, and one of activated sludge in the biological treatment step A Pull out the part and add the alkaline agent,
A step B of eluting phosphorus and ammonia from the activated sludge and solubilizing the activated sludge and then solid-liquid separation, and adding a magnesium compound to the separated liquid from the solid-liquid separation to convert phosphorus and ammonia into phosphoric acid A method for treating organic wastewater, comprising a step C of recovering as magnesium ammonium. (2) The method for treating organic wastewater according to claim 1, wherein the separated sludge obtained by the solid-liquid separation in the step B is supplied to the biological treatment step A together with coexisting iron hydroxide and zeolite.

【0005】上記の本発明の構成により、以下のような
作用が生ずる。本発明においては、生物処理工程Aにお
いて、水酸化鉄とゼオライトが共存することにより、有
機性汚水中のリンが水酸化鉄に吸着され、またアンモニ
アがゼオライトに高速に吸着されて活性汚泥とともに沈
殿分離される。その後、工程Bにおいてアルカリ処理に
よってリンとアンモニアが沈殿汚泥から溶出され、さら
に工程Cで、マグネシウム化合物の添加によって該溶出
液からリンがリン酸マグネシウムアンモニウム(MA
P)として回収される。これにより、有機性汚水中のリ
ンを有効に除去し、リンを資源として回収できるように
なる。その際アンモニアも固定され、液から分離され
る。生物汚泥はアルカリによって加水分解され、大部分
は可溶化してBOD成分に変わる。これを曝気槽等の生
物処理工程に供給すると、該BODは分解されるので、
余剰汚泥発生量が減少する。
[0005] The above-described configuration of the present invention has the following effects. In the present invention, in the biological treatment step A, the coexistence of iron hydroxide and zeolite allows phosphorus in the organic wastewater to be adsorbed on the iron hydroxide, and ammonia is rapidly adsorbed on the zeolite to precipitate with activated sludge. Separated. Thereafter, in step B, phosphorus and ammonia are eluted from the settled sludge by alkali treatment, and in step C, phosphorus is added from the eluate to magnesium ammonium phosphate (MA) by the addition of a magnesium compound.
Collected as P). Thereby, the phosphorus in the organic sewage can be effectively removed, and the phosphorus can be recovered as a resource. At that time, the ammonia is also fixed and separated from the liquid. Biosludge is hydrolyzed by alkali and is largely solubilized and converted to BOD components. When this is supplied to a biological treatment process such as an aeration tank, the BOD is decomposed,
Excess sludge generation is reduced.

【0006】また、本発明においては水酸化鉄やゼオラ
イト微粒子を用いることにより、リン、アンモニアは、
この水酸化鉄やゼオライト微粒子にいったん吸着させ
る。その後、アルカリ処理により、リン、アンモニアを
溶出・脱着させる。リンが溶出した水酸化鉄及びアンモ
ニアが脱着したゼオライトは、生物処理工程にリサイク
ルする。これによってリン、アンモニアの吸着に再利用
することができる。新しい、水酸化鉄、ゼオライトの補
充必要量は大きく減少し、ランニングコストが低減でき
る。
In the present invention, the use of iron hydroxide or zeolite fine particles allows phosphorus and ammonia to be
The iron hydroxide and the zeolite particles are once adsorbed. Thereafter, phosphorus and ammonia are eluted and desorbed by alkali treatment. The zeolite to which phosphorus hydroxide has been eluted and the iron hydroxide to which ammonia has been desorbed is recycled to the biological treatment step. Thereby, it can be reused for the adsorption of phosphorus and ammonia. The required replenishment of new iron hydroxide and zeolite is greatly reduced, and running costs can be reduced.

【0007】[0007]

【発明の実施の形態】図1は、本発明の方法の一実施態
様を示す概念図である。以下、図1を参照しながら本発
明を詳しく説明する。本発明の方法の一態様を示した図
1に示すように、生物処理工程Aとしての生物処理用曝
気槽1と、沈殿槽2と、リン、アンモニア回収手段であ
る脱着槽3、固液分離部4、MAP生成槽5、固液分離
部6とからなる方法について説明する。生物処理として
は通常の活性汚泥法、生物膜法、ゲル等の微生物固定化
担体を用いる方法等を適用することができる。
FIG. 1 is a conceptual diagram showing one embodiment of the method of the present invention. Hereinafter, the present invention will be described in detail with reference to FIG. As shown in FIG. 1 showing one embodiment of the method of the present invention, an aeration tank 1 for biological treatment as a biological treatment step A, a sedimentation tank 2, a desorption tank 3 as a phosphorus and ammonia recovery means, a solid-liquid separation, The method including the section 4, the MAP generation tank 5, and the solid-liquid separation section 6 will be described. As the biological treatment, an ordinary activated sludge method, a biofilm method, a method using a microorganism-immobilized carrier such as a gel, or the like can be applied.

【0008】有機性汚水11は、曝気槽1に導入され、
曝気槽1には水酸化鉄微粒子、ゼオライト微粒子12が
添加され、有機性汚水11中のリン、アンモニアが吸着
によって除去される。ここで、水酸化鉄微粒子としては
FeCl3 、Fe2(SO4)3、FeSO4 、ポリ硫酸鉄
(ポリ鉄)等にアルカリを添加して生成させた水酸化第
2鉄微粒子が挙げられる。なお塩化第2鉄などの鉄塩を
汚水に添加して汚水中のアルカリ度を利用して水酸化鉄
を生成されるようにしてもよい。ここで、水酸化鉄微粒
子、及びゼオライト微粒子の添加量としては、例えば1
000〜5000mg/リットル程度である。ゼオライ
トは粒径の大きいものを使用すると曝気槽の底に沈殿し
てしまうので、粒径数ミクロンの微粒子を用いる。水酸
化鉄微粒子、ゼオライト微粒子は活性汚泥に共存して沈
殿槽2に送られ、沈殿汚泥14として沈殿分離され、ま
た処理水13が分離される。処理水13はBOD、S
S、リン、アンモニアが除去された清澄な処理水であ
る。
The organic sewage 11 is introduced into the aeration tank 1,
Iron hydroxide fine particles and zeolite fine particles 12 are added to the aeration tank 1, and phosphorus and ammonia in the organic wastewater 11 are removed by adsorption. Here, examples of the iron hydroxide fine particles include ferric hydroxide fine particles generated by adding an alkali to FeCl 3 , Fe 2 (SO 4 ) 3 , FeSO 4 , polyiron sulfate (polyiron), or the like. Note that an iron salt such as ferric chloride may be added to the sewage to make use of the alkalinity in the sewage to generate iron hydroxide. Here, the addition amount of the iron hydroxide fine particles and the zeolite fine particles is, for example, 1
It is about 000-5000 mg / liter. If a zeolite having a large particle size is used, it will precipitate at the bottom of the aeration tank. Therefore, fine particles having a particle size of several microns are used. The iron hydroxide fine particles and the zeolite fine particles coexist with the activated sludge and are sent to the sedimentation tank 2, where they are separated as sedimented sludge 14 and the treated water 13 is separated. Treated water 13 is BOD, S
It is clear treated water from which S, phosphorus and ammonia have been removed.

【0009】分離汚泥14の大部分は返送汚泥15とし
て曝気槽1に返送される。それ以外のリン、アンモニア
回収対象である回収汚泥16は、カセイソーダ等のアル
カリ17の添加を受けてリン、アンモニアは脱着槽3に
流入する。ここで、アルカリとしては、水酸化ナトリウ
ム、水酸化カリウム等を挙げることができる。このアル
カリをリン、アンモニア脱着槽3へpHが10以上好ま
しくは11になるよう添加する。リン、アンモニア脱着
槽3では、回収汚泥16で水酸化鉄に吸着されていたリ
ンがアルカリ性条件にされることによって液側に溶出す
る。ゼオライトに吸着されていたアンモニアもアルカリ
条件下で脱着する。さらに回収汚泥16に含まれる生物
汚泥が加水分解を受けて可溶化する。該生物汚泥の可溶
化を更に促進するには温度50℃以上に加温するのが好
ましい。リン、アンモニア脱着槽3の温度は0〜90℃
が好ましく、pHは10〜12が好ましい。滞留時間は
1〜6時間程度が好ましい。尚、曝気槽1の汚泥の一部
を引き抜いてオゾン処理してから曝気槽1に返送する
と、水酸化鉄、ゼオライトのオゾン酸化の触媒効果のた
めか、余剰汚泥の減量効果が顕著に起きることが判っ
た。
Most of the separated sludge 14 is returned to the aeration tank 1 as returned sludge 15. Recovered sludge 16 from which phosphorus and ammonia are to be recovered receives the addition of alkali 17 such as caustic soda, and phosphorus and ammonia flow into the desorption tank 3. Here, examples of the alkali include sodium hydroxide and potassium hydroxide. This alkali is added to the phosphorus / ammonia desorption tank 3 so that the pH becomes 10 or more, preferably 11. In the phosphorus / ammonia desorption tank 3, the phosphorus adsorbed on the iron hydroxide in the recovered sludge 16 is eluted to the liquid side by the alkaline condition. Ammonia adsorbed on zeolite also desorbs under alkaline conditions. Further, the biological sludge contained in the recovered sludge 16 is hydrolyzed and solubilized. In order to further promote the solubilization of the biological sludge, it is preferable to heat the temperature to 50 ° C. or higher. The temperature of the phosphorus and ammonia desorption tank 3 is 0 to 90 ° C
Is preferred, and the pH is preferably 10-12. The residence time is preferably about 1 to 6 hours. When a part of the sludge in the aeration tank 1 is withdrawn and treated with ozone, and then returned to the aeration tank 1, the effect of reducing the amount of surplus sludge is remarkable due to the catalytic effect of ozone oxidation of iron hydroxide and zeolite. I understood.

【0010】リン、アンモニア脱着槽3に供給する回収
汚泥16の流量qは、有機性汚水11(流量Q)中のリ
ン濃度をCとし、回収汚泥16中に含まれるリン含有率
をaとすると、概略q≒QC/aに設定すればよい。リ
ン、アンモニア脱着槽3からの流出スラリは、遠心分離
機などの固液分離部4に於いて分離液18と分離汚泥1
9に分離される。分離液18にはMAP生成槽5におい
てマグネシウム化合物20が添加される。これにより
(MAP)リン酸マグネシウムアンモニウム沈殿が析出
する。この沈殿を固液分離部6において分離し、リン資
源21として回収する。ここで、マグネシウム化合物2
0としては、MgCl2 、MgSO4 、Mg(O
H)2 、MgOなどが挙げられる。尚MAP生成のため
にリン分が不足する場合はマグネシウムとともにリン酸
化合物(リン酸ナトリウムなど)を添加する。MAP生
成槽5の滞留時間は30分〜1時間で充分である。MA
P生成槽5に添加するマグネシウム、リン化合物の量
は、分離液18のなかのアンモニア濃度に対しモル比で
1〜1.5倍で良い。また、MAP生成の適正pHは9
〜10.5であるので、この範囲にpH調整することが
好ましい。
The flow rate q of the recovered sludge 16 to be supplied to the phosphorus / ammonia desorption tank 3 is as follows: C is the concentration of phosphorus in the organic waste water 11 (flow rate Q), and a is the phosphorus content contained in the recovered sludge 16. , Approximately q ≒ QC / a. The slurry discharged from the phosphorus / ammonia desorption tank 3 is separated from the separated liquid 18 and separated sludge 1 in the solid-liquid separation section 4 such as a centrifuge.
9 is separated. A magnesium compound 20 is added to the separated liquid 18 in the MAP generation tank 5. This precipitates (MAP) magnesium ammonium phosphate precipitate. This precipitate is separated in the solid-liquid separation section 6 and collected as phosphorus resources 21. Here, magnesium compound 2
As 0, MgCl 2 , MgSO 4 , Mg (O
H) 2 , MgO and the like. If phosphorus content is insufficient due to MAP generation, a phosphoric acid compound (such as sodium phosphate) is added together with magnesium. A residence time in the MAP generation tank 5 of 30 minutes to 1 hour is sufficient. MA
The amount of the magnesium and phosphorus compounds to be added to the P generation tank 5 may be 1 to 1.5 times the molar concentration of the ammonia in the separated liquid 18. The appropriate pH for MAP generation is 9
Therefore, it is preferable to adjust the pH to this range.

【0011】上記方法において、分離汚泥19には、リ
ン、アンモニア吸着能力が再生された水酸化鉄微粒子、
ゼオライト微粒子が含まれ、固液分離部6からの分離液
22には生物汚泥が可溶化したBOD成分が多量に含ま
れているので、分離汚泥19と該分離液22を曝気槽1
に返送すると、生物汚泥の減量化ができる。尚分離汚泥
19はpH11程度のアルカリ性であるが量が少ないた
め、そのままpH調製せずに曝気槽1に戻しても特に支
障はなく、生物処理に悪影響を及ぼす心配はない。固液
分離部6はリン酸マグネシウムアンモニウム沈殿の沈降
性が良いので沈殿槽で充分である。
In the above method, the separated sludge 19 contains fine particles of iron hydroxide having regenerated phosphorus and ammonia adsorption ability,
Since the zeolite fine particles are contained and the separation liquid 22 from the solid-liquid separation section 6 contains a large amount of the BOD component in which the biological sludge is solubilized, the separation sludge 19 and the separation liquid 22 are separated into the aeration tank 1
When returned to, biological sludge can be reduced. The separated sludge 19 is alkaline at a pH of about 11, but is in a small amount. Therefore, even if the sludge is returned to the aeration tank 1 without adjusting the pH, there is no particular problem, and there is no fear of adversely affecting biological treatment. Since the solid-liquid separation section 6 has good sedimentation of magnesium ammonium phosphate precipitate, a sedimentation tank is sufficient.

【0012】[0012]

【実施例】以下、実施例を示して、本発明を具体的に説
明するが、本発明の内容がこれらに限定されるものでは
ない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

【0013】実施例1 下水(BOD120mg/リットル、SS110mg/
リットル、リンの濃度4.6mg/リットル、アンモニ
ア性窒素15.7mg/リットル)を対象として本発明
の実証試験を行なった。下記第1表にその実験条件を示
した。
Example 1 Sewage (BOD 120 mg / liter, SS 110 mg /
Liter, a phosphorus concentration of 4.6 mg / liter, and an ammoniacal nitrogen of 15.7 mg / liter). Table 1 below shows the experimental conditions.

【0014】[0014]

【表1】 [Table 1]

【0015】この条件で実験を行なったところ、下水中
のリンが肥料として利用可能なMAP無水物として、下
水1m3 当たり約20g回収された。また余剰活性汚泥
発生量は、下水1m3 当たり39gと少量であった。処
理水の水質は、BOD5mg/リットル、SS8mg/
リットル、リン濃度0.12mg/リットル、アンモニ
ア性窒素0.2mg/リットルと良好であった。水酸化
ナトリウムの添加量としては、リン脱着槽3のpHが1
1になるように設定された。
[0015] When an experiment was conducted in this condition, phosphorus in the sewage as an available MAP anhydride as fertilizer, was about 20g collected per sewer 1 m 3. The amount of excess activated sludge generated was as small as 39 g / m 3 of sewage. The quality of the treated water is BOD 5 mg / liter, SS 8 mg /
Liter, the phosphorus concentration was 0.12 mg / liter, and the ammoniacal nitrogen was 0.2 mg / liter. The amount of sodium hydroxide added is such that the pH of the phosphorus desorption tank 3 is 1
It was set to be 1.

【0016】比較例 通常の標準活性汚泥法により比較実験を行なった。処理
水水質は、BOD7mg/リットル、SS9mg/リッ
トル、リン濃度0.4mg/リットル、アンモニア性窒
素12mg/リットルであり、処理水質のリン、アンモ
ニアが本発明より大幅に悪かった。余剰汚泥発生量は下
水1m3 当たり110gであり、上記実施例1より著し
く多量であった。
Comparative Example A comparative experiment was carried out by a standard activated sludge method. The quality of the treated water was 7 mg / L for BOD, 9 mg / L for SS, 0.4 mg / L for phosphorus concentration, and 12 mg / L for ammoniacal nitrogen. The amount of surplus sludge generated was 110 g per m 3 of sewage, which was significantly larger than that in Example 1.

【0017】[0017]

【発明の効果】本発明によれば、有機性汚水の処理方法
において、有機性汚水からリン、アンモニアを除去し、
且つ貴重な資源として回収でき、凝集汚泥及び余剰汚泥
の発生量を大きく減少させ、更に無機凝集剤の使用量も
削減できる。本発明において、リン、アンモニアを含む
有機性汚水を生物処理する工程に、水酸化鉄微粒子、ゼ
オライト微粒子を添加してリン、アンモニア分を除去
し、且つ回収することで、該汚水中のリンを有効に除去
し、且つリン資源として回収できる。また、活性汚泥か
らリンを溶出させる工程で汚泥の量が減少すため、余剰
生物汚泥の発生量及び凝集汚泥の発生量が減少するの
で、汚泥処理が著しく合理化される。水酸化鉄、ゼオラ
イトは吸着剤として再利用できるため、水酸化鉄、ゼオ
ライトに使用量が少なくてすむ。さらにアンモニア分の
除去に反応速度の遅い生物学的硝化脱窒素法を適用する
必要がなく、ゼオライト微粒子が活性汚泥の沈降促進剤
として機能する。曝気槽のMLVSSを高くできるので
生物処理を高速で行なえる。
According to the present invention, in the method for treating organic wastewater, phosphorus and ammonia are removed from the organic wastewater,
In addition, it can be recovered as a valuable resource, greatly reducing the amount of coagulated sludge and excess sludge generated, and further reducing the amount of inorganic coagulant used. In the present invention, phosphorus and fine particles of zeolite are added to the step of biologically treating organic wastewater containing phosphorus and ammonia to remove phosphorus and ammonia, and to recover phosphorus in the wastewater. It can be effectively removed and recovered as phosphorus resources. In addition, since the amount of sludge is reduced in the step of eluting phosphorus from activated sludge, the amount of surplus biological sludge and the amount of coagulated sludge are reduced, so that sludge treatment is significantly streamlined. Since iron hydroxide and zeolite can be reused as an adsorbent, a small amount of iron hydroxide and zeolite can be used. Further, there is no need to apply a biological nitrification denitrification method having a slow reaction rate to remove the ammonia content, and the zeolite fine particles function as a sedimentation accelerator for activated sludge. Since the MLVSS in the aeration tank can be increased, biological treatment can be performed at high speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の態様の一例を示す概念図であ
る。
FIG. 1 is a conceptual diagram showing an example of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 曝気槽 2 沈殿槽 3 脱着槽 4 固液分離部 5 MAP生成槽 6 固液分離部 11 有機性汚水 12 水酸化鉄、ゼオライト微粒子 13 処理水 14 沈殿汚泥 15 返送汚泥 16 回収汚泥 17 アルカリ 18 分離液 19 分離汚泥 20 マグネシウム化合物 21 回収MAP 22 分離液 REFERENCE SIGNS LIST 1 aeration tank 2 sedimentation tank 3 desorption tank 4 solid-liquid separation unit 5 MAP generation tank 6 solid-liquid separation unit 11 organic wastewater 12 iron hydroxide, zeolite fine particles 13 treated water 14 settled sludge 15 return sludge 16 recovered sludge 17 alkali 18 separation Liquid 19 Separated sludge 20 Magnesium compound 21 Recovered MAP 22 Separated liquid

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D028 AA08 AC01 BB06 BC28 BD11 BD16 BE01 BE04 BE08 4D038 AA08 AB28 AB29 AB43 BA02 BA04 BB06 BB13 BB18 BB19 BB20 4D059 AA06 AA19 BE00 BE53 BF02 BF14 CA24 CA28 CC01 DA08 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D028 AA08 AC01 BB06 BC28 BD11 BD16 BE01 BE04 BE08 4D038 AA08 AB28 AB29 AB43 BA02 BA04 BB06 BB13 BB18 BB19 BB20 4D059 AA06 AA19 BE00 BE53 BF02 BF14 CA24 CA28 CC08 DA08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リン、アンモニアを含む有機性汚水を生
物処理する際に、水酸化鉄、ゼオライトを共存させて、
リン、アンモニアを吸着除去する生物処理工程Aと、生
物処理工程Aの活性汚泥の一部を引抜いてアルカリ剤を
添加し、該活性汚泥からリン、アンモニアを溶出させ、
且つ該活性汚泥を可溶化し、その後固液分離する工程B
と、該固液分離からの分離液にマグネシウム化合物を添
加してリン及びアンモニアをリン酸マグネシウムアンモ
ニウムとして回収する工程Cを有することを特徴とする
有機性汚水の処理方法。
When biological treatment of organic wastewater containing phosphorus and ammonia, iron hydroxide and zeolite coexist,
Biological treatment step A for adsorbing and removing phosphorus and ammonia, a part of the activated sludge of biological treatment step A is withdrawn and an alkaline agent is added, and phosphorus and ammonia are eluted from the activated sludge,
And a step B of solubilizing the activated sludge and thereafter performing solid-liquid separation.
And a step C of adding a magnesium compound to the separated liquid from the solid-liquid separation to recover phosphorus and ammonia as magnesium ammonium phosphate.
【請求項2】 前記B工程で固液分離により得た分離汚
泥を共存する水酸化鉄、ゼオライトとともに、前記生物
処理工程Aに供給することを特徴とする請求項1記載の
有機性汚水の処理方法。
2. The organic wastewater treatment according to claim 1, wherein the separated sludge obtained by the solid-liquid separation in the step B is supplied to the biological treatment step A together with coexisting iron hydroxide and zeolite. Method.
JP11118270A 1999-04-26 1999-04-26 Treatment of organic sewage Withdrawn JP2000308895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11118270A JP2000308895A (en) 1999-04-26 1999-04-26 Treatment of organic sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11118270A JP2000308895A (en) 1999-04-26 1999-04-26 Treatment of organic sewage

Publications (1)

Publication Number Publication Date
JP2000308895A true JP2000308895A (en) 2000-11-07

Family

ID=14732494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11118270A Withdrawn JP2000308895A (en) 1999-04-26 1999-04-26 Treatment of organic sewage

Country Status (1)

Country Link
JP (1) JP2000308895A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263676A (en) * 2001-03-09 2002-09-17 Sumitomo Heavy Ind Ltd Waste water treatment method and facility
CN102639450A (en) * 2009-07-08 2012-08-15 沙特阿拉伯石油公司 Low concentration wastewater treatment system and process
US9290399B2 (en) 2009-07-08 2016-03-22 Saudi Arabian Oil Company Wastewater treatment process including irradiation of primary solids
CN111186971A (en) * 2020-01-08 2020-05-22 上海海洋大学 Recoverable bottom mud covering device and application

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263676A (en) * 2001-03-09 2002-09-17 Sumitomo Heavy Ind Ltd Waste water treatment method and facility
JP4680403B2 (en) * 2001-03-09 2011-05-11 住友重機械エンバイロメント株式会社 Wastewater treatment method and apparatus
CN102639450A (en) * 2009-07-08 2012-08-15 沙特阿拉伯石油公司 Low concentration wastewater treatment system and process
CN104386816A (en) * 2009-07-08 2015-03-04 沙特阿拉伯石油公司 Low concentration wastewater treatment system and process
CN102639450B (en) * 2009-07-08 2015-06-03 沙特阿拉伯石油公司 Low concentration wastewater treatment system and process
US9073764B2 (en) 2009-07-08 2015-07-07 Saudi Arabian Oil Company Low concentration wastewater treatment system and process
US9290399B2 (en) 2009-07-08 2016-03-22 Saudi Arabian Oil Company Wastewater treatment process including irradiation of primary solids
US9340441B2 (en) 2009-07-08 2016-05-17 Saudi Arabian Oil Company Wastewater treatment system including irradiation of primary solids
CN111186971A (en) * 2020-01-08 2020-05-22 上海海洋大学 Recoverable bottom mud covering device and application

Similar Documents

Publication Publication Date Title
JP2003126887A (en) Method and device for treating water containing phosphorus and ammonia
JPH09108690A (en) Treatment of phosphorus containing sewage
JP5128735B2 (en) Recovery and reuse of phosphorus and flocculant in wastewater
JPH1190165A (en) Treatment of waste water from flue gas desulfurization
JP3442205B2 (en) Treatment method for phosphorus-containing wastewater
JP3516309B2 (en) Method and apparatus for treating phosphorus-containing organic wastewater
US4416779A (en) Method for producing an aqueous solution of high phosphorous content
JP2002159977A (en) Method and equipment for removing and recovering phosphoric acid ion from phosphorus-containing water
JP2000308895A (en) Treatment of organic sewage
JP2002205077A (en) Method and apparatus for treating organic sewage
JPH0929280A (en) Wastewater treatment method
JP2002143883A (en) Method for treating organic polluted water containing phosphorus
JP2004008957A (en) Phosphorus and nitrogen recovery method and apparatus therefor
JP2002326088A (en) Method and apparatus for treating phosphorous and cod- containing water
JP2003300095A (en) Method and apparatus for sewage treatment
JP3620659B2 (en) Method and apparatus for removing and recovering ammonia nitrogen and phosphate ions in water
JP2002316192A (en) Method and apparatus for treating organic foul water
JP2003010861A (en) Method and apparatus for coagulation and separation of phosphorus- and suspended solids-containing water
JP2001232372A (en) Treatment process for water containing boron
JPH0975925A (en) Treatment of flue gas desulfurization waste water
JP2010069413A (en) Organic waste water treatment method
JP3526140B2 (en) Biological phosphorus removal method and apparatus for organic wastewater
JP2002316191A (en) Method and apparatus for treating organic foul water
JP3449855B2 (en) Biological phosphorus removal method and apparatus for organic wastewater
JP2004330039A (en) Recovery method of phosphorus and coagulant

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060628

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060628

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20061018