JP2002159977A - Method and equipment for removing and recovering phosphoric acid ion from phosphorus-containing water - Google Patents

Method and equipment for removing and recovering phosphoric acid ion from phosphorus-containing water

Info

Publication number
JP2002159977A
JP2002159977A JP2000357728A JP2000357728A JP2002159977A JP 2002159977 A JP2002159977 A JP 2002159977A JP 2000357728 A JP2000357728 A JP 2000357728A JP 2000357728 A JP2000357728 A JP 2000357728A JP 2002159977 A JP2002159977 A JP 2002159977A
Authority
JP
Japan
Prior art keywords
phosphorus
iron oxide
containing water
oxide particles
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000357728A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000357728A priority Critical patent/JP2002159977A/en
Publication of JP2002159977A publication Critical patent/JP2002159977A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish a novel technology capable of removing phosphoric acid ions at a high degree from water containing the phosphoric acid ions of a dilute concentration and recovering phosphorus as a high-value resource. SOLUTION: The method for removing and recovering the phosphoric acid ions from the phosphorus-containing water comprises adding iron hydroxide particles to the phosphorus-containing water (raw water) to remove the phosphoric acid ions in the raw water, adding an acid to an iron hydroxide particle slurry capturing the phosphoric acid ions to regulate the slurry to acidity below pH 3, then subjecting the slurry to a solid-liquid separation, returning the separated iron hydroxide particles separated therein and adding ammonium and Mg2+ to the separated liquid obtained by the solid-liquid separation to deposit NH4 MgPO4 precipitate under alkaline pH conditions, and the equipment for the same is also provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水、下水処理
水、し尿、し尿の生物処理水、各種産業排水などのリン
酸イオンを含有する水からリン酸イオンを除去し、かつ
リンを資源として回収できる新技術に関する。
The present invention relates to a method for removing phosphate ions from water containing phosphate ions such as sewage, sewage treated water, night soil, biologically treated human waste water, and various industrial wastewaters, and using phosphorus as a resource. New technologies that can be collected.

【0002】[0002]

【従来の技術】従来、リン酸イオンを除去する技術は、
凝集沈殿法、吸着法、晶析脱リン法などが公知であっ
た。しかし、下水等に通常含まれる数mg/リットル程
度の希薄な濃度のリン酸イオンを、肥料等に使用可能な
有価資源として回収する理想的技術は無かった。そこで
本発明者は、先に水和酸化鉄粒子とゼオライト粒子を原
水と接触させて、原水中のアンモニア性窒素及びリン酸
イオンを除去し、アンモニア性窒素及びリン酸イオンを
取り込んだ粒子をNaOH液と接触させた後、NaOH
液にMg 2+を添加してNH4 MgPO4 沈殿を析出せし
めるアンモニア性窒素及びリン酸イオンの除去回収方法
を特許出願した(特開平7−284762)。
2. Description of the Related Art Conventionally, a technique for removing phosphate ions is as follows.
Coagulation sedimentation, adsorption, crystallization dephosphorization, etc. are known.
Was. However, about several mg / liter usually contained in sewage, etc.
Phosphate ions with a low concentration can be used for fertilizers, etc.
There was no ideal technology to recover as valuable resources. Therefore
The inventor first made the hydrated iron oxide particles and zeolite particles
Contact with water to remove ammoniacal nitrogen and phosphoric acid in raw water
Removes ions and removes ammoniacal nitrogen and phosphate ions
After bringing the captured particles into contact with a NaOH solution,
Mg in liquid 2+To add NHFourMgPOFourPrecipitate the precipitate
And removal of ammonia nitrogen and phosphate ions
(Japanese Patent Application Laid-Open No. 7-284762).

【0003】[0003]

【発明が解決しようとする課題】この方法は、窒素とリ
ンを資源として回収する点では優れた効果を有するもの
の、粉末状ゼオライトと水和酸化鉄粒子を、混合したり
あるいは単独でポリアクリルアミドゲル内に包含させる
ために、ゲル作製の手間が掛かるという問題があった。
また、ゲルを用いないで、粉末状の水和酸化鉄とゼオラ
イトを用いる流動接触法においては、下水の活性汚泥処
理水のアンモニウム性窒素及びリン酸イオンの除去回収
時間が長くなると除去率が低下するので、この時点で原
水の供給を停止し、沈殿槽底部の沈殿スラリーを全量系
外に取り出すため、装置をいったん停止させなければな
らないという問題点があった。
Although this method has an excellent effect in recovering nitrogen and phosphorus as resources, it is possible to mix powdered zeolite and hydrated iron oxide particles or use polyacrylamide gel alone. There is a problem that it takes a lot of time to prepare a gel because of inclusion in the inside.
In addition, in the fluidized contact method using powdered hydrated iron oxide and zeolite without using a gel, the removal rate decreases as the removal time of ammonium nitrogen and phosphate ions of activated sludge treated sewage becomes longer. Therefore, at this time, the supply of the raw water is stopped, and the apparatus has to be temporarily stopped in order to take out the entire amount of the settling slurry at the bottom of the settling tank out of the system.

【0004】本発明は、このような従来の課題に鑑みて
なされたものであり、ゲル作製の手間を必要とせず、し
かも装置を停止させる必要もない、下水などのリン酸イ
オンを含む水から希薄な濃度のリンを除去でき、かつ除
去したリンを有価資源として回収する理想的新技術を確
立することを課題とする。我国の下水などの汚水中に含
まれるリンの大部分は、輸入された外国のリン鉱石から
のリンに起源するものといわれる。また、リン鉱石資源
は近い将来枯渇することも指摘されているので、本発明
のように汚水からリンを回収することが可能な技術を確
立することの意義は誠に大きい。
The present invention has been made in view of such conventional problems, and does not require the trouble of gel preparation and does not need to stop the apparatus. An object of the present invention is to establish an ideal new technology capable of removing a phosphorus having a low concentration and recovering the removed phosphorus as a valuable resource. Most of the phosphorus contained in sewage such as sewage in Japan is said to originate from phosphorus from imported foreign phosphate ores. In addition, since it is pointed out that phosphate ore resources will be depleted in the near future, it is extremely significant to establish a technology capable of recovering phosphorus from wastewater as in the present invention.

【0005】[0005]

【課題を解決するための手段】本発明は、下記の手段に
よって前記課題を解決した。 (1)水和酸化鉄粒子をリン含有水に添加してリン含有
水中のリン酸イオンを除去し、リン酸イオンを取り込ん
だ水酸化鉄粒子スラリに酸を添加しpH3以下の酸性に
調整した後、固液分離し、そこで分離した分離水酸化鉄
粒子をリン含有水に返送し、かつ該固液分離で得た分離
液にアンモニウムとMg2+を添加してアルカリ性pH条
件でNH4 MgPO4 沈殿を析出せしめることを特徴と
するリン含有水からのリン酸イオンの除去・回収方法。
The present invention has solved the above-mentioned problems by the following means. (1) Hydrated iron oxide particles were added to phosphorus-containing water to remove phosphate ions from the phosphorus-containing water, and an acid was added to the iron hydroxide particle slurry incorporating the phosphate ions to adjust the pH to an acidity of 3 or less. Thereafter, solid-liquid separation is performed, the separated iron hydroxide particles separated therefrom are returned to the phosphorus-containing water, and ammonium and Mg 2+ are added to the separated liquid obtained by the solid-liquid separation, and NH 4 MgPO 4 is added under alkaline pH conditions. (4) A method for removing and recovering phosphate ions from phosphorus-containing water, which comprises causing a precipitate to precipitate.

【0006】(2)リン含有水に水和酸化鉄粒子及び高
分子凝集剤を添加して導入して、リン含有水に水和酸化
鉄粒子を接触させる水和酸化鉄粒子接触装置、前記接触
装置から水和酸化鉄粒子引抜き管から水和酸化鉄粒子を
引き抜いて水和酸化鉄粒子を貯留する引抜きスラリ貯
槽、前記貯槽から水和酸化鉄粒子を導入して鉱酸を添加
して水和酸化鉄粒子からリンを脱着させるリン脱着槽、
リン脱着槽からの処理スラリを導入して水和酸化鉄粒子
を沈殿させ、脱着水和酸化鉄粒子のスラリと脱着したリ
ンを含有する分離液とに分ける沈殿槽、前記分離液にマ
グネシウムイオンを添加してMAPを析出させるMAP
析出槽、及び沈殿槽からの水和酸化鉄粒子のスラリを供
給されるリン含有水に循環供給する循環管を有すること
を特徴とするリン含有水からのリン酸イオンの除去・回
収装置。
(2) A device for contacting hydrated iron oxide particles by adding hydrated iron oxide particles and a polymer flocculant to phosphorus-containing water and bringing the particles into contact with the phosphorus-containing water. Hydraulic iron oxide particles are drawn from the apparatus, and the hydrated iron oxide particles are pulled out from the drawing tube to store the hydrated iron oxide particles. A phosphorus desorption tank for desorbing phosphorus from iron oxide particles,
A treatment slurry from a phosphorus desorption tank is introduced to precipitate hydrated iron oxide particles, and a precipitation tank for separating a slurry of desorbed hydrated iron oxide particles and a separated solution containing desorbed phosphorus, magnesium ions are added to the separated solution. MAP to be added to precipitate MAP
An apparatus for removing and recovering phosphate ions from phosphorus-containing water, comprising a precipitation tank and a circulation pipe for circulating a slurry of hydrated iron oxide particles from the precipitation tank to the supplied phosphorus-containing water.

【0007】なおここで、本発明に言う水和酸化鉄と
は、鉄塩の溶液にNaOH、Mg(OH)2 、MgO、
Ca(OH)2 、CaO、CaCO3 等のアルカリを添
加して溶液のpHを高めて生成させた、水酸化第2鉄等
の他、Fe2 3 ・nH2 OやFeOOH・nH2 O等
酸化鉄の水和物を意味する。また、水和酸化鉄粒子と
は、前記の水和酸化鉄が生成する際には微粒子状になっ
て生成するので、それを指すものであるが、後記する原
水との接触によるリンの吸着の際に、接触装置の構成と
して、好ましくは流動層を形成すること、あるいはリン
の吸着の後、固液分離することを考慮すると、それらの
操作が容易に行われるような粒子径のものであることが
好ましい。
Here, the hydrated iron oxide referred to in the present invention is a solution of iron salt containing NaOH, Mg (OH) 2 , MgO,
In addition to ferric hydroxide or the like, which is formed by adding an alkali such as Ca (OH) 2 , CaO, or CaCO 3 to increase the pH of the solution, Fe 2 O 3 .nH 2 O or FeOOH.nH 2 O It means hydrate of iron oxide. In addition, the hydrated iron oxide particles refer to the hydrated iron oxide particles that are formed in the form of fine particles when the hydrated iron oxide particles are formed. At this time, as a configuration of the contact device, it is preferable to form a fluidized bed or, after the adsorption of phosphorus, consider a solid-liquid separation, and the particle size is such that those operations are easily performed. Is preferred.

【0008】[0008]

【発明の実施の形態】本発明の実施の形態を、図面を参
照して説明する。図1は、本発明を実施する処理系の一
形態を示すものであって、水酸化鉄粒子接触装置として
水酸化鉄粒子流動層装置を使用したものである。この処
理系は、主として、水酸化鉄粒子流動層12を収容する
円筒カラム1、引抜きスラリ貯槽2、リン脱着槽3、沈
殿槽4、MAP晶析槽5からなる。円筒カラム1におい
ては、リン含有水11を処理系へ供給する被処理水供給
管6が、円筒カラム1の下方部に接続されているが、こ
の被処理水供給管6には、水酸化鉄微粒子14と高分子
凝集剤15の供給管が円筒カラム1の下方部に接続され
る前に、前記各薬剤をリン含有水11と混合するために
接続されている。また、円筒カラム1には、その頂部の
大径部8に処理水の排出管7が設けられ、その中間位置
にリンを吸着した水酸化鉄粒子を排出するための弁9を
備えた水酸化鉄粒子引抜き管10が設けられており、こ
の管10は水酸化鉄粒子流動層12のブランケットの高
さを定めている。なお、リン含有水を「原水」ともいう
ことがある。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of a treatment system for carrying out the present invention, in which an iron hydroxide particle fluidized bed device is used as an iron hydroxide particle contact device. This treatment system mainly comprises a cylindrical column 1 containing an iron hydroxide particle fluidized bed 12, a drawing slurry storage tank 2, a phosphorus desorption tank 3, a precipitation tank 4, and a MAP crystallization tank 5. In the cylindrical column 1, a treated water supply pipe 6 for supplying the phosphorus-containing water 11 to the treatment system is connected to a lower portion of the cylindrical column 1. Before the supply pipes of the fine particles 14 and the polymer flocculant 15 are connected to the lower part of the cylindrical column 1, they are connected to mix each of the chemicals with the phosphorus-containing water 11. Further, the cylindrical column 1 is provided with a treated water discharge pipe 7 at a large diameter portion 8 at the top thereof, and is provided with a valve 9 at an intermediate position for discharging the iron hydroxide particles adsorbing phosphorus. An iron particle extraction tube 10 is provided, which defines the height of the blanket of the iron hydroxide particle fluidized bed 12. Note that the phosphorus-containing water may be referred to as “raw water”.

【0009】被処理水供給管6から供給される原水は、
水酸化鉄微粒子14と高分子凝集剤15の供給管からの
水酸化鉄微粒子14と高分子凝集剤15が供給される
他、循環水酸化鉄スラリ18の供給を受けて、下方部か
ら円筒カラム1に入り、水酸化鉄粒子流動層12で水酸
化鉄微粒子14等と接触して、原水中のリンが水酸化鉄
微粒子14に吸着して除去される。リンを吸着した水酸
化鉄粒子は、円筒カラム1の中間位置の水酸化鉄粒子引
抜き管10から引き抜かれて、引抜きスラリ貯槽2に入
る。円筒カラム1における水酸化鉄粒子引抜き管10の
取付位置は、水酸化鉄粒子流動層12の表面の位置を決
めることになる。円筒カラム1の頂部の大径部8に溢流
部を形成しており、そこから処理水排出管7により処理
水13が排出される。
The raw water supplied from the treated water supply pipe 6 is
The iron hydroxide fine particles 14 and the polymer flocculant 15 are supplied from a supply pipe of the iron hydroxide fine particles 14 and the polymer flocculant 15, and the circulating iron hydroxide slurry 18 is supplied thereto. 1 and contact with the iron hydroxide fine particles 14 and the like in the iron hydroxide particle fluidized bed 12 so that phosphorus in the raw water is adsorbed to the iron hydroxide fine particles 14 and removed. The iron hydroxide particles having adsorbed phosphorus are drawn out from the iron hydroxide particle drawing pipe 10 at an intermediate position of the cylindrical column 1 and enter the drawing slurry storage tank 2. The mounting position of the iron hydroxide particle extraction tube 10 in the cylindrical column 1 determines the position of the surface of the iron hydroxide particle fluidized bed 12. An overflow portion is formed at the large diameter portion 8 at the top of the cylindrical column 1, from which treated water 13 is discharged by a treated water discharge pipe 7.

【0010】引抜きスラリ貯槽2にいったん貯蔵され
た、リンを吸着した水酸化鉄粒子はリン脱着槽3へ送ら
れ、ここで硫酸16を添加され、pH3以下、好ましく
はpH2〜3に調整され、次いで沈殿槽4へ送られ、分
離されたリンを含有する分離液17とリンを脱着された
水酸化鉄粒子のスラリに分けられる。前記分離液17は
沈殿槽4の上部からMAP晶析槽5へ送液され、後者の
水酸化鉄粒子は沈殿槽4の底部から循環水酸化鉄スラリ
18として被処理水供給管6の水酸化鉄微粒子14の供
給管付近へ戻されるように構成されている。なお、分離
液17は、MAP晶析槽5への配管の途中でMg(O
H)2 19を添加され、MAP晶析槽5中でNH4 +
20を添加されてMAP21の沈殿を析出し、槽底から
分離・回収されるように構成されている。
The iron hydroxide particles having adsorbed phosphorus once stored in the drawing slurry storage tank 2 are sent to a phosphorus desorption tank 3, where sulfuric acid 16 is added and adjusted to pH 3 or less, preferably pH 2-3. Next, it is sent to the precipitation tank 4 and separated into a separated liquid 17 containing phosphorus and a slurry of iron hydroxide particles from which phosphorus has been desorbed. The separated liquid 17 is sent from the upper part of the sedimentation tank 4 to the MAP crystallization tank 5, and the latter iron hydroxide particles are circulated from the bottom part of the sedimentation tank 4 as a circulating iron hydroxide slurry 18 in the water supply pipe 6 for the treated water supply pipe 6. It is configured to be returned to the vicinity of the supply pipe of the iron fine particles 14. Separation liquid 17 is mixed with Mg (O 2) in the middle of the pipe to MAP crystallization tank 5.
H) is added 2 19, NH 4 in MAP crystalliser 5 +
20 is added to precipitate a MAP 21 precipitate, which is separated and recovered from the tank bottom.

【0011】図1は、概要図であって、本発明の作用原
理を説明するためにその概要を表したものである。図1
に示すように、本発明は、次のような反応過程を取るも
のである。 a)汚水中のリン酸イオン(以下PO4 3- ともいう)を
水和酸化鉄粒子のリン吸着作用によって除去する。 b)脱着されたPO4 3- を取り込んだ水和酸化鉄粒子を
酸性液(pH2〜3が好適)と接触させて、PO4 3-
脱着させたのち固液分離する。分離されたPO 4 3- 脱着
粒子は、再び原水に添加しPO4 3- の除去を行わせる。 c)脱着されたPO4 3- を含む酸性水溶液にアンモニウ
ムとMg2+を添加し、アルカリ性pH(pH8.5〜
9.5が好適)でNH4 MgPO4 (MAPと略記)を
沈殿させる。 本発明は、上記した反応過程を組み合わせる技術によっ
て、汚水等からPO4 3 - を高速度かつ高度に除去し、水
の汚染を防止すると共に、リンを肥料価値の高いMAP
資源として回収することを、その技術思想の骨子として
いる。
FIG. 1 is a schematic diagram showing the operation of the present invention.
It is an outline to explain the theory. FIG.
As shown in the figure, the present invention takes the following reaction process.
It is. a) Phosphate ions in wastewater (hereinafter POFour 3-Also called)
It is removed by the phosphorus adsorption action of the hydrated iron oxide particles. b) Desorbed POFour 3-Hydrated iron oxide particles
By contact with an acidic solution (preferably pH 2-3)Four 3-To
After desorption, solid-liquid separation is performed. PO isolated Four 3-Desorption
The particles are added to the raw water again andFour 3-Is removed. c) Desorbed POFour 3-Ammonium in acidic aqueous solution containing
And Mg2+Is added and the alkaline pH (pH 8.5 to 8.5)
9.5 is preferred) and NHFourMgPOFour(Abbreviated as MAP)
Let it settle. The present invention is based on a technology that combines the above-described reaction processes.
And PO from waste waterFour Three -High speed and high
Phosphorus is added to fertilizer value MAP while preventing soil pollution.
Collecting it as a resource is the key to its technical philosophy
I have.

【0012】PO4 3- を吸着除去する能力の大きな緻密
な水和酸化鉄粒子を得ることは、ポリ硫酸第2鉄、塩化
第2鉄、硫酸第1鉄、硫酸第2鉄の水溶液をMg系、C
a系アルカリ剤で中和する方法によって得られる。この
ような方法によって得られたものは、水酸化第2鉄の粒
子の他Fe2 3・nH2 OやFeOOH・nH2 O等
酸化鉄の水和物が含まれる。また、前記ポリ硫酸第2鉄
等の水溶液をMg系、Ca系アルカリ剤で中和して水酸
化第2鉄等の粒子をつくると沈殿濃縮され難いバルキー
なスラリーとしてではなく、沈殿濃縮され易い緻密な水
和酸化鉄等の粒子を得ることができる。なお、水酸化ア
ルミニウム、活性アルミナ、アロフェン、鹿沼土もPO
4 3- を吸着できるが、リン(以下Pともいう)を脱着さ
せるために酸性液と接触させると、これら吸着剤がアル
ミニウムイオンとして溶解してしまうので、本発明のリ
ン酸イオン吸着剤には使用できない。
To obtain dense hydrated iron oxide particles having a high ability to adsorb and remove PO 4 3- , it is necessary to prepare an aqueous solution of ferric polysulfate, ferric chloride, ferrous sulfate, and ferric sulfate using Mg. System, C
It is obtained by a method of neutralizing with an a-based alkaline agent. What is obtained by such a method includes ferric hydroxide particles as well as hydrates of iron oxides such as Fe 2 O 3 .nH 2 O and FeOOH.nH 2 O. Further, when the aqueous solution of ferric polysulfate or the like is neutralized with an Mg-based or Ca-based alkali agent to form particles of ferric hydroxide or the like, the precipitate is easily precipitated and concentrated, not as a bulky slurry that is not easily precipitated and concentrated. Dense particles of hydrated iron oxide and the like can be obtained. In addition, aluminum hydroxide, activated alumina, allophane and Kanuma soil are also PO
4 3- can be adsorbed, but when it is brought into contact with an acidic solution to desorb phosphorus (hereinafter also referred to as P), these adsorbents dissolve as aluminum ions. I can not use it.

【0013】本発明を実施するには水酸化鉄粒子を流動
層として作用させながら、原水と接触させる方式を推奨
できる。この場合、リンを吸着した水酸化鉄粒子の再生
(リンを脱着させること)部を流動層とは別個に設け、
流動層部から連続的又は間欠的に水酸化鉄粒子を再生部
に少しづつ抜き出して、硫酸、又は塩酸を添加しpH2
〜3の酸性にして1時間程度攪拌すると、PO4 3- を取
り込んだ水酸化鉄粒子からPO4 3- が脱着し、PO4 3-
を高濃度に含んだ酸性液が得られる。なお、原水に水酸
化鉄粒子を接触させる接触装置としては、流動層装置の
他、攪拌状態や、渦流状態などで接触させる接触装置が
あるが、それらの場合には別に分離装置を必要とするの
で、1つの装置で接触と分離を行える点で、流動層装置
が好ましい。
In order to carry out the present invention, a method in which iron hydroxide particles are brought into contact with raw water while acting as a fluidized bed can be recommended. In this case, a part for regenerating (desorbing phosphorus) the iron hydroxide particles having adsorbed phosphorus is provided separately from the fluidized bed,
Iron hydroxide particles are continuously or intermittently withdrawn from the fluidized bed portion little by little into the regenerating portion, and sulfuric acid or hydrochloric acid is added thereto to adjust the pH to 2.
And stirred for about 1 hour in the ~ 3 acidic, PO 4 3- is desorbed from the iron hydroxide particles incorporating the PO 4 3-, PO 4 3-
Is obtained at a high concentration. In addition, as a contact device for bringing iron hydroxide particles into contact with raw water, in addition to a fluidized bed device, there is a contact device for bringing into contact in a stirring state, a vortex state, or the like. Therefore, a fluidized bed apparatus is preferable in that contact and separation can be performed by one apparatus.

【0014】リンが脱着した水酸化鉄微粒子を固液分離
し、分離された水酸化鉄微粒子を再び原水に返送する
と、再生返送された水酸化鉄微粒子が原水中のリンを吸
着除去する。リン含有水からのリン酸の水酸化鉄による
吸着量は、pHが6程度の弱酸性が最も優れているの
で、本発明のpH3以下、好ましくはpH2〜3の酸性
液を原水に添加すると原水のpHを適度に低下でき、リ
ン除去の最適pHに合致させ易くなるという大きな効果
がある。前記分離液には脱着されたリンを高濃度に含有
しているので、これに水酸化マグネシウム又は酸化マグ
ネシウムとアンモニウムイオンを添加しpH約9にする
と、 MH4 + +Mg2++PO4 3- → NH4 MgPO4 ↓ の沈殿生成反応が進み、結晶性のリン酸マグネシウムア
ンモニウム(MAP)の沈殿が析出するので、これを分
離して回収する。
When the iron hydroxide fine particles from which phosphorus has been desorbed are subjected to solid-liquid separation and the separated iron hydroxide fine particles are returned to raw water again, the recycled iron hydroxide fine particles adsorb and remove phosphorus in the raw water. The amount of phosphoric acid adsorbed by the iron hydroxide from the phosphorus-containing water is most preferably weakly acidic at a pH of about 6. Therefore, when an acidic solution of the present invention having a pH of 3 or less, preferably pH 2 to 3 is added to the raw water, Has a great effect that the pH of the solution can be appropriately reduced, and it is easy to match the optimum pH for phosphorus removal. Since the the separation solution containing phosphorus desorbed at a high concentration, when this was added magnesium hydroxide or magnesium oxide and ammonium ions to a pH of about 9, MH 4 + + Mg 2+ + PO 4 3- → The precipitation reaction of NH 4 MgPO 4 ↓ proceeds to precipitate crystalline magnesium ammonium phosphate (MAP), which is separated and collected.

【0015】[0015]

【実施例】以下に、本発明の水中のPO4 3- の除去・回
収方法を用いて、原水中のPO4 3 - を除去・回収する具
体的な実施例を示す。ただし、本発明の実施例は以下の
説明によって限定されるものではない。
EXAMPLES Hereinafter, with reference to PO 4 3- way removal and recovery of the water present invention, raw water PO 4 3 - shows a specific embodiment for removing and recovering. However, embodiments of the present invention are not limited by the following description.

【0016】(実施例1) PO4 3- の除去試験:団地下水を活性汚泥処理した処理
水〔PO4 3- (Pとして)1.2〜1.8mg/リット
ルを含む〕を原水とし、水酸化鉄微粒子(硫酸第2鉄を
水酸化マグネシウムによって中和して生成させたもの)
によるPO4 3- の除去試験を行った。すなわち直径10
cm、高さ1mの円筒カラムに原水を上向流(上向流速
150mm/min)で供給した。原水に水酸化鉄微粒
子を150mg/リットル添加し、かつポリアクリルア
ミド系高分子凝集剤を1mg/リットル添加した後、前
記カラムに供給した。この結果、カラム内には水酸化鉄
微粒子が凝集した高濃度(水酸化鉄粒子SS濃度52g
/リットル)の流動層が形成された。流動層界面からス
ラリを引き抜くことによった流動層の高さを750mm
に制御した。
[0016] (Example 1) PO 4 3- of removing test: The complex sewage activated sludge treatment and treated water [(as P) PO 4 3- including 1.2~1.8Mg / l] and the raw water, Iron hydroxide fine particles (produced by neutralizing ferric sulfate with magnesium hydroxide)
A PO 4 3- removal test was carried out. That is, diameter 10
Raw water was supplied to a cylindrical column having a height of 1 m and a height of 150 cm / min. 150 mg / L of iron hydroxide fine particles were added to the raw water, and 1 mg / L of a polyacrylamide polymer flocculant was added, and then the mixture was supplied to the column. As a result, a high concentration of iron hydroxide fine particles aggregated in the column (iron hydroxide particles SS concentration 52 g
/ Liter) of a fluidized bed. The height of the fluidized bed by extracting the slurry from the fluidized bed interface is 750 mm
Was controlled.

【0017】流動層界面から引抜いた水酸化鉄粒子含有
スラリに、硫酸を添加しpH2.5に調整し、1時間攪
拌後水酸化鉄を沈降分離し、分離液のリンを分析したと
ころ56mg/リットルが検出され、この操作によっ
て、リン吸着水酸化鉄からリンが脱着したことが確認さ
れた。この後、この液を静置し水酸化鉄を沈降分離し
て、分離粒子を原水に添加する操作を行った。この循環
操作を開始後48時間経過後の、定常状態に達したと思
われる時点の処理水のリン濃度は、0.07〜0.09
mg/リットルとリンが高度に除去されていた。
Sulfuric acid was added to the slurry containing iron hydroxide particles extracted from the interface of the fluidized bed to adjust the pH to 2.5. After stirring for 1 hour, the iron hydroxide was precipitated and separated. One liter was detected, and it was confirmed that phosphorus was desorbed from the phosphorus-adsorbed iron hydroxide by this operation. Thereafter, the liquid was allowed to stand, iron hydroxide was settled and separated, and the separated particles were added to raw water. After 48 hours from the start of this circulation operation, the phosphorus concentration of the treated water at the time when it is considered to reach a steady state is 0.07 to 0.09.
mg / l and phosphorus were highly removed.

【0018】次にこの酸性の分離液に水酸化マグネシウ
ムと塩化アンモニウムを、モル比で〔NH4 + 〕:〔M
2+〕:〔PO4 3- 〕=1:2:1になるように添加
し、pH9の条件で30分間攪拌した結果、肥料価値の
大きいNH4 MgPO4 の沈殿が生成し、分離液中のP
が3mg/リットルに減少し、リンが効果的にMAPと
して回収された。
Next, magnesium hydroxide and ammonium chloride were added to the acidic separation solution in a molar ratio of [NH 4 + ]: [M
g 2+ ]: [PO 4 3- ] = 1: 2: 1 and stirred for 30 minutes at pH 9 to produce a precipitate of NH 4 MgPO 4 , which has a large fertilizer value, and P inside
Was reduced to 3 mg / liter and phosphorus was effectively recovered as MAP.

【0019】[0019]

【発明の効果】本発明のリン酸イオンの除去・回収方法
及び装置によれば、以下に示す顕著な効果が得られる。 (1)下水など各種の水の中に含まれる微量のPO4 3-
を、高度に除去できる。 (2)除去したリンを、肥料として価値の大きいMAP
として回収でき、リン資源の枯渇防止に寄与できる。 (3)リン酸イオンを取り込んだ水酸化鉄粒子からリン
酸を脱着させる際に、水酸化鉄粒子スラリに酸を添加し
pH3以下の酸性に調整することにより行われるため、
水酸化鉄粒子の回収も容易であり、また回収して循環す
る水酸化鉄粒子スラリを原水に加えた際に、リンの吸着
に適したpHの範囲にすることが容易である。さらにp
H2〜3とするときには、酸の所要量も少なくすむ。
According to the method and apparatus for removing and recovering phosphate ions of the present invention, the following remarkable effects can be obtained. (1) A small amount of PO 4 3- contained in various types of water such as sewage
Can be highly removed. (2) MAP with high value of removed phosphorus as fertilizer
And contribute to prevention of depletion of phosphorus resources. (3) When desorbing phosphoric acid from iron hydroxide particles that have taken in phosphate ions, it is performed by adding an acid to the iron hydroxide particle slurry and adjusting the pH to an acidity of 3 or less.
It is easy to recover the iron hydroxide particles, and when the recovered and circulated iron hydroxide particle slurry is added to the raw water, the pH can be easily adjusted to a range suitable for phosphorus adsorption. And p
When H2 to H3 is used, the required amount of acid can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のリン酸イオンの除去回収を行うための
1例の装置の概要図を示す。
FIG. 1 shows a schematic diagram of an example of an apparatus for removing and recovering phosphate ions of the present invention.

【符号の説明】[Explanation of symbols]

1 円筒カラム 2 引抜きスラリ貯槽 3 リン脱着槽 4 沈殿槽 5 MAP晶析槽 6 被処理水供給管 7 処理水排出管 8 大径部 9 弁 10 水酸化鉄引抜き管 11 リン含有水 12 水酸化鉄粒子流動層 13 処理水 14 水酸化鉄微粒子 15 高分子凝集剤 16 硫酸 17 分離液 18 循環水酸化鉄スラリ 19 Mg(OH)2 20 NH4 + 21 MAPReference Signs List 1 cylindrical column 2 drawing slurry storage tank 3 phosphorus desorption tank 4 sedimentation tank 5 MAP crystallization tank 6 treated water supply pipe 7 treated water discharge pipe 8 large diameter section 9 valve 10 iron hydroxide extraction pipe 11 phosphorus-containing water 12 iron hydroxide particle fluidized bed 13 treated water 14 iron hydroxide particle 15 polymer flocculant 16 sulfate 17 separated liquid 18 circulating iron hydroxide slurry 19 Mg (OH) 2 20 NH 4 + 21 MAP

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D015 BA19 BB05 CA18 DB02 EA32 FA01 FA02 FA22 FA28 4D024 AA04 AB12 BA14 BB01 BC05 DA08 DB20 DB21 4D038 AA08 AB48 AB54 BA04 BB18 4D062 BA19 BB05 CA18 DB02 EA32 FA01 FA02 FA22 FA28  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D015 BA19 BB05 CA18 DB02 EA32 FA01 FA02 FA22 FA28 4D024 AA04 AB12 BA14 BB01 BC05 DA08 DB20 DB21 4D038 AA08 AB48 AB54 BA04 BB18 4D062 BA19 BB05 CA18 DB02 EA32 FA01 FA02 FA22 FA28

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水和酸化鉄粒子をリン含有水に添加して
リン含有水中のリン酸イオンを除去し、リン酸イオンを
取り込んだ水酸化鉄粒子スラリに酸を添加しpH3以下
の酸性に調整した後、固液分離し、そこで分離した分離
水酸化鉄粒子をリン含有水に返送し、かつ該固液分離で
得た分離液にアンモニウムとMg2+を添加してアルカリ
性pH条件でNH4 MgPO4 沈殿を析出せしめること
を特徴とするリン含有水からのリン酸イオンの除去・回
収方法。
1. The method of claim 1, wherein the hydrated iron oxide particles are added to the phosphorus-containing water to remove phosphate ions from the phosphorus-containing water, and an acid is added to the iron hydroxide particle slurry containing the phosphate ions to obtain an acidity of pH 3 or less. After the adjustment, solid-liquid separation was performed, the separated iron hydroxide particles separated therefrom were returned to the phosphorus-containing water, and ammonium and Mg 2+ were added to the separated liquid obtained by the solid-liquid separation to obtain NH 4 under alkaline pH conditions. (4 ) A method for removing and recovering phosphate ions from phosphorus-containing water, comprising causing precipitation of 4 MgPO 4 precipitates.
【請求項2】 リン含有水に水和酸化鉄粒子及び高分子
凝集剤を添加して導入して、リン含有水に水和酸化鉄粒
子を接触させる水和酸化鉄粒子接触装置、前記接触装置
から水和酸化鉄粒子引抜き管から水和酸化鉄粒子を引き
抜いて水和酸化鉄粒子を貯留する引抜きスラリ貯槽、前
記貯槽から水和酸化鉄粒子を導入して鉱酸を添加して水
和酸化鉄粒子からリンを脱着させるリン脱着槽、リン脱
着槽からの処理スラリを導入して水和酸化鉄粒子を沈殿
させ、脱着水和酸化鉄粒子のスラリと脱着したリンを含
有する分離液とに分ける沈殿槽、前記分離液にマグネシ
ウムイオンを添加してMAPを析出させるMAP析出
槽、及び沈殿槽からの水和酸化鉄粒子のスラリを供給さ
れるリン含有水に循環供給する循環管を有することを特
徴とするリン含有水からのリン酸イオンの除去・回収装
置。
2. A hydrated iron oxide particle contact device for adding hydrated iron oxide particles and a polymer coagulant to phosphorus-containing water and bringing the hydrated iron oxide particles into contact with the phosphorus-containing water, and the contact device. A drawing slurry storage tank for withdrawing hydrated iron oxide particles from a hydrated iron oxide particle withdrawal tube and storing the hydrated iron oxide particles, introducing hydrated iron oxide particles from the storage tank and adding a mineral acid to hydrated oxidation. A phosphorus desorption tank for desorbing phosphorus from iron particles, a treatment slurry from the phosphorus desorption tank is introduced to precipitate hydrated iron oxide particles, and into a slurry of desorbed hydrated iron oxide particles and a separated solution containing desorbed phosphorus. Having a sedimentation tank for separating, a MAP precipitation tank for adding magnesium ions to the separated liquid to precipitate MAP, and a circulation pipe for circulating slurry of hydrated iron oxide particles from the precipitation tank to the supplied phosphorus-containing water. Characterized by phosphorus-containing water Equipment for removing and recovering phosphate ions.
JP2000357728A 2000-11-24 2000-11-24 Method and equipment for removing and recovering phosphoric acid ion from phosphorus-containing water Pending JP2002159977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000357728A JP2002159977A (en) 2000-11-24 2000-11-24 Method and equipment for removing and recovering phosphoric acid ion from phosphorus-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000357728A JP2002159977A (en) 2000-11-24 2000-11-24 Method and equipment for removing and recovering phosphoric acid ion from phosphorus-containing water

Publications (1)

Publication Number Publication Date
JP2002159977A true JP2002159977A (en) 2002-06-04

Family

ID=18829743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000357728A Pending JP2002159977A (en) 2000-11-24 2000-11-24 Method and equipment for removing and recovering phosphoric acid ion from phosphorus-containing water

Country Status (1)

Country Link
JP (1) JP2002159977A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067139A1 (en) * 2003-01-31 2004-08-12 Ebara Corporation Method and apparatus for removing ion in fluid by crystallization
JP2004330022A (en) * 2003-05-02 2004-11-25 Ebara Corp Method and apparatus for removing phosphor in water
JP2005305343A (en) * 2004-04-22 2005-11-04 Tomita Pharmaceutical Co Ltd Phosphorus recovery method
JP2006508791A (en) * 2002-12-04 2006-03-16 アイダホ リサーチ ファウンデーション インコーポレイテッド Reaction filtration
US7713426B2 (en) 2008-01-11 2010-05-11 Blue Water Technologies, Inc. Water treatment
US7744764B2 (en) 2002-12-04 2010-06-29 Idaho Research Foundation, Inc. Reactive filtration
US8071055B2 (en) 2002-12-04 2011-12-06 Blue Water Technologies, Inc. Water treatment techniques
US8080163B2 (en) 2002-12-04 2011-12-20 Blue Water Technologies, Inc. Water treatment method
WO2013033557A1 (en) * 2011-09-01 2013-03-07 Celanese International Corporation Reduction of organic phosphorus acids
US8741154B2 (en) 2008-10-17 2014-06-03 Remembrance Newcombe Water denitrification
CN112875912A (en) * 2021-01-12 2021-06-01 昆明理工大学 Method for treating ammonia nitrogen wastewater
CN113800491A (en) * 2020-06-15 2021-12-17 苏州崇越工程有限公司 System and method for recovering phosphoric acid from mixed acid waste liquid

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE44570E1 (en) 2002-12-04 2013-11-05 Board Of Regents Of The University Of Idaho Reactive filtration
JP2006508791A (en) * 2002-12-04 2006-03-16 アイダホ リサーチ ファウンデーション インコーポレイテッド Reaction filtration
US7713423B2 (en) 2002-12-04 2010-05-11 Idaho Research Foundation, Inc. Reactive filtration
US7744764B2 (en) 2002-12-04 2010-06-29 Idaho Research Foundation, Inc. Reactive filtration
US8071055B2 (en) 2002-12-04 2011-12-06 Blue Water Technologies, Inc. Water treatment techniques
US8080163B2 (en) 2002-12-04 2011-12-20 Blue Water Technologies, Inc. Water treatment method
WO2004067139A1 (en) * 2003-01-31 2004-08-12 Ebara Corporation Method and apparatus for removing ion in fluid by crystallization
JP2004330022A (en) * 2003-05-02 2004-11-25 Ebara Corp Method and apparatus for removing phosphor in water
JP2005305343A (en) * 2004-04-22 2005-11-04 Tomita Pharmaceutical Co Ltd Phosphorus recovery method
US7713426B2 (en) 2008-01-11 2010-05-11 Blue Water Technologies, Inc. Water treatment
US8741154B2 (en) 2008-10-17 2014-06-03 Remembrance Newcombe Water denitrification
US9670082B2 (en) 2008-10-17 2017-06-06 Nexom (Us), Inc. Water denitrification
WO2013033557A1 (en) * 2011-09-01 2013-03-07 Celanese International Corporation Reduction of organic phosphorus acids
CN103842301A (en) * 2011-09-01 2014-06-04 国际人造丝公司 Reduction of organic phosphorus acids
US9346692B2 (en) 2011-09-01 2016-05-24 Celanese International Corporation Reduction of organic phosphorus acids
CN103842301B (en) * 2011-09-01 2018-04-06 醋酸纤维国际有限责任公司 Reduce organic phosphorous acids
CN113800491A (en) * 2020-06-15 2021-12-17 苏州崇越工程有限公司 System and method for recovering phosphoric acid from mixed acid waste liquid
CN112875912A (en) * 2021-01-12 2021-06-01 昆明理工大学 Method for treating ammonia nitrogen wastewater

Similar Documents

Publication Publication Date Title
CN101319275B (en) Process for solvent extraction separation purification of rare earth element
CN103805781B (en) A kind of rare earth extraction is suppressed to separate organophosphor and the method for COD in enterprise waste discharge
KR20170138561A (en) How to collect magnesium-containing smelting wastewater
JP2002159977A (en) Method and equipment for removing and recovering phosphoric acid ion from phosphorus-containing water
CN106830244B (en) Method for separating and recovering fluorine and acid from fluorine-containing acidic wastewater
AU2016297289B2 (en) Effluent treatment process - pH refinement for sulphate removal
CN101151212B (en) Alumina recovery
JP5360764B2 (en) Method and system for simultaneous recovery of ammonia and phosphorus components in water to be treated
JP3767800B2 (en) Nitrogen-phosphorus-containing wastewater treatment method and apparatus
JP2002205077A (en) Method and apparatus for treating organic sewage
JP3942235B2 (en) Method for treating boron-containing water
JP3620659B2 (en) Method and apparatus for removing and recovering ammonia nitrogen and phosphate ions in water
JP2002224663A (en) Method and apparatus for removing and recovering phosphorus from water containing ss and phosphorus
JP3373033B2 (en) How to remove phosphorus from water
JP2003300095A (en) Method and apparatus for sewage treatment
JP2002143883A (en) Method for treating organic polluted water containing phosphorus
JP2003010861A (en) Method and apparatus for coagulation and separation of phosphorus- and suspended solids-containing water
JP3632226B2 (en) Method for treating metal-containing wastewater
JP3414511B2 (en) Advanced treatment method for organic wastewater
JP4505877B2 (en) Wastewater treatment method
JP3992910B2 (en) Method and apparatus for removing phosphorus
JP3156956B2 (en) Advanced treatment of organic wastewater
JP6407052B2 (en) Phosphorus recovery apparatus and phosphorus recovery method
JP2005288366A (en) Method for treating phosphorus-containing waste water
JPH0985263A (en) Treatment of phosphorus in activated alumina desorbed solution