JP3992910B2 - Method and apparatus for removing phosphorus - Google Patents

Method and apparatus for removing phosphorus Download PDF

Info

Publication number
JP3992910B2
JP3992910B2 JP2000210050A JP2000210050A JP3992910B2 JP 3992910 B2 JP3992910 B2 JP 3992910B2 JP 2000210050 A JP2000210050 A JP 2000210050A JP 2000210050 A JP2000210050 A JP 2000210050A JP 3992910 B2 JP3992910 B2 JP 3992910B2
Authority
JP
Japan
Prior art keywords
magnesium
phosphorus
water
tank
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000210050A
Other languages
Japanese (ja)
Other versions
JP2002018448A (en
Inventor
和彰 島村
康弘 本間
俊博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000210050A priority Critical patent/JP3992910B2/en
Publication of JP2002018448A publication Critical patent/JP2002018448A/en
Application granted granted Critical
Publication of JP3992910B2 publication Critical patent/JP3992910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リンを含有する被処理水中に、マグネシウム化合物を添加することによって、また、必要に応じてアンモニア態窒素、アルカリ成分を添加することによって、リン酸マグネシウムアンモニウム(以下、「MAP」ともいう)を生成させ、被処理水中からリンを除去する方法及び装置に関する。
【0002】
【従来の技術】
被処理水中のリンをMAPとして不溶化させことによって、脱リン処理する場合、MAPを生成させる反応槽と、反応槽にリンを含有する被処理水を供給する手段と、反応槽或いは反応槽周辺の設備に応じて、アルカリ成分、マグネシウム化合物、アンモニアを供給する手段を設けた脱リン処理装置で、リン、アンモニア態窒素、マグネシウム、水酸基の各モル濃度を掛け合わせた濃度がMAPの溶解度積以上になるように操作し、尚かつ、被処理水中のリンに対して、アンモニア分、マグネシウム分が等モル、或いはそれ以上存在するようにして処理がなされていた。
【0003】
通常、被処理水中のリンがMAPとして析出する箇所は、すでに反応槽内に存在しているMAP粒子の表面である。
MAPを析出させるとき、反応pHが高いほどMAPの析出量が多く、よって、処理水中のリン濃度が低下する傾向がみられるが、pH10以上で反応させると、微細なMAPが自己発核し、それらのMAPは処理水と共に流出してしまう結果、処理水の水質を悪化させることになる。
このため、反応pH値を7.5〜10、好ましくは8.5〜9の範囲で処理する処理法がなされていた。
【0004】
従来、被処理水中のリンに対して、アンモニア分が過剰に存在する廃水、例えば、嫌気性消化を行った脱離液、汚泥処理工程より発生する返流水は、被処理水中のリンに対してマグネシウム分の含有量が少なく、MAP生成槽、或いはその周辺の設備にマグネシウム化合物を添加していた。
また、必要に応じて、アルカリ成分(例えば、苛性ソーダ)の添加も行っていた。
【0005】
【発明が解決しようとする課題】
被処理水中のリンをマグネシウム化合物を添加してMAPを生成せさせる場合、添加するマグネシウム剤としては、通常は、塩化マグネシウムを用い、被処理水中のリンに対して、等モル以上になるように添加していた。また、塩化マグネシウムは、易溶性であり、取扱の容易な物質である。
しかしながら、塩化マグネシウムは単価が高く、脱リン装置において塩化マグネシウムに要する費用は、相当の金額になるため、処理に要するランニングコストが過大になっていた。
なお、その上、塩化マグネシウムは6水和物であることが多いため、重量当たりのマグネシウム含有量は約12%と少なく、使用量が多くなっていた。
【0006】
上記の様な事情から、単価が安く、重量当たりのマグネシウム含有量が約42%と多い、難溶性の水酸化マグネシウムをMAPを生成させるための添加剤として用い、MAP生成槽内に水酸化マグネシウムを添加すると、水酸化マグネシウムが解離したときに生じる水酸基によって、生成槽内におけるpHが上昇し、微細なMAPが生成したり、処理水質が安定しない等の不都合があった。
また、被処理水中のリンの量に対して添加する水酸化マグネシウムの供給量を少なくし、被処理水中のリンの量に対して、溶解性のマグネシウムイオンの濃度を低い状態にすると、MAPの生成速度が遅くなり、反応時間を長くする必要が生じた場合もあった。
【0007】
また、溶解性マグネシウムイオン濃度が、20mg/リットル以下になると、MAPを生成する際、その濃度が反応律速となる場合もあった。
さらに、MAP生成槽に流入させる前に、例えば、被処理水貯留槽に、難溶解性の水酸化マグネシウムを添加しようとすると、被処理水貯留槽内で、溶解したマグネシウムイオン、水酸基が被処理水中のリン、アンモニアと反応を生じ、微細なMAPが生成し、この微細なMAPがMAP生成槽で捕捉されない場合には、処理水質を悪くすることがあった。
また、MAP生成槽や被処理水に直接水酸化マグネシウムを添加する図4や図5の方法においても、添加するマグネシウム化合物が被処理水中のリン、アンモニアと反応し、同様に微細なMAPが生成し、処理水質を悪くすることが問題であった。
【0008】
【課題を解決するための手段】
本発明は、以下の手段を用いることによって、上記の課題を解決することができた。
(1)リンを含有した被処理水中のリンを、マグネシウム化合物を添加してリン酸マグネシウムアンモニウムを生成させ、晶析脱リンする方法において、脱リン処理された処理水を用いてスラリー状の水酸化マグネシウムを溶解させ、溶解性のマグネシウムイオン濃度が処理水より高まったマグネシウムイオン含有水を、上記晶析脱リン処理工程に供給することを特徴とするリン含有水の脱リン方法。
(2)リンを含有した被処理水中のリンを、マグネシウム化合物を添加してリン酸マグネシウムアンモニウムを生成させ、晶析脱リンする装置において、リンを含有した被処理水を導入するリン酸マグネシウムアンモニウム生成槽から処理水の一部を導く流出管を水酸化マグネシウム溶解槽につなぎ、水酸化マグネシウム溶解槽からスラリー状の水酸化マグネシウムを溶解させたマグネシウムイオン含有水を送る供給管をリン酸マグネシウムアンモニウム生成槽に連結したことを特徴とするリン含有水の脱リン装置。
(3)リンを含有した被処理水中のリンを、マグネシウム化合物を添加して、リン酸マグネシウムアンモニウムを生成させ、晶析脱リンする装置において、リンを含有した被処理水を導入するリン酸マグネシウムアンモニウム生成槽から処理水を導く流出管をリン酸マグネシウムアンモニウム分離槽に連結し、リン酸マグネシウムアンモニウム分離槽にてリン酸マグネシウムアンモニウムが分離された水を送る供給管を水酸化マグネシウム溶解槽に連結し、水酸化マグネシウム溶解槽からスラリー状の水酸化マグネシウムを溶解させたマグネシウムイオン含有水を送る供給管をリン酸マグネシウムアンモニウム生成槽に連結したことを特徴とするリン含有水の脱リン装置。
【0009】
【発明の実施の形態】
本発明の実施の形態を図面を参照して詳細に説明する。
図1は、本発明を実施する処理系の一形態を示し、MAP反応槽であるMAP生成槽2、水酸化マグネシウム溶解槽7および水酸化マグネシウム貯留槽9からなる。
被処理水の供給管1は、MAP生成槽2の下部に接続し、処理水の流出管4はMAP生成槽2の上部に接続されている。MAP生成槽2には、MAP分離機能も有しており、下部のMAP取出管5より分離されたMAPは排出される。
処理水の引込管6は、処理水の流出管4と水酸化マグネシウム溶解槽7との間に配設されている。
マグネシウムイオン含有スラリーの供給管10は、水酸化マグネシウム貯留槽9と水酸化マグネシウム溶解槽7との間を接続し、マグネシウムイオン含有水の供給管8が水酸化マグネシウム溶解槽7の下部とMAP生成槽2の下部を接続している。
【0010】
リン、アンモニウムを含有した被処理水は、供給管1により前記MAP生成槽2の下部に供給され、槽2内を上向流で連続通水される。
被処理水が、MAP生成槽2を上昇流で通過する間に、被処理水中のリン、アンモニア分が、マグネシウムイオン含有水の供給管8により供給されたマグネシウムイオンと水酸基との反応によりMAPを生成することによって、被処理水中のリンの除去がなされる。
このようにして、脱リン処理された処理水は、MAP生成槽2の上部に配設する処理水の流出管4により系外に連続流出される。
なお、MAP生成槽2内は、アルカリ剤としてNaOH溶液を供給管3から添加して、pH値が一定になるようになされている。
また、処理水の一部は、引込管6により、水酸化マグネシウムの溶解槽7に供給される。
【0011】
水酸化マグネシウム貯留槽9のスラリー中に溶解しているマグネシウムイオンは、約20mg/リットル程度と少ないが、水酸化マグネシウム溶解槽7で、スラリーと処理水の引込管6から流入させた緩衝作用のある処理水とを混合させた場合、緩衝作用によりpHの上昇は抑えられ、スラリー状の水酸化マグネシウムは、およそ100〜150mg/リットル程度まで溶解する。
水酸化マグネシウム貯留槽9で、マグネシウムイオンが多くなったマグネシウムイオン含有水は、マグネシウムイオン含有水の供給管8を通って、MAP生成槽2の底部より流入させ、MAPを生成させるマグネシウム源として用いる。
MAP生成槽に流入させる水酸化マグネシウム量は、被処理水中のリン量と、等モル量か、或いはそれ以上になるようにし、MAPの生成速度を高め、効率よく脱リンが行わせるのが好ましい。
また、本発明では、水酸化マグネシウムと塩化マグネシウムとを併用してもかまわない。その場合塩化マグネシウムの供給場所はMAP生成槽が好ましい。
この結果、難溶解性のマグネシウム塩を、易溶解性のマグネシウム塩と何ら変りなく使用することが可能になり、薬品代を低減させることができることになる。
【0012】
【実施例】
以下において、本発明を実施例により更に具体的に説明するが、本発明はこの実施例により制限されるものではない。
【0013】
実施例1
メタン発酵の処理水を用いて、図2に示す処理系で脱リン処理を行った。
メタン発酵の処理水にリン及びアンモニア分を添加して、第1表に示す所定の濃度になるようにした液を被処理水とし、内径150mmφ×高さ4000mmのカラムをMAP生成槽2として、同槽に前記被処理水をカラム底部の被処理水の供給管1より上向流で通水させて、MAPを生成する反応を行わせた。
【0014】
【表1】

Figure 0003992910
【0015】
MAP生成槽2を流出した処理水は、次いで、内径300mmφ×高さ2500mmのMAP微粒子分離塔であるMAP分離槽11に流入し、ここで、処理水の流出管4へのラインと、処理水の引込管6へのラインに分流される。MAP生成槽2は、MAP分離機能も有しており、下部のMAP取出管5よりMAPが排出される。さらに、MAP分離槽11でMAPが分離され、さらに良好な処理水を得る。MAP分離槽11下部にもMAP取出管5が設けられている。MAP分離槽11は、重力沈殿が好ましい。
処理水の引込管6のラインに分流された処理水は、水酸化マグネシウム溶解槽7へ供給する供給液となる。
水酸化マグネシウム溶解槽7へ供給された前記処理水は、水酸化マグネシウム貯留槽9から導管10で供給される35%(w/v)のスラリー状の水酸化マグネシウムと混合され、溶解性のMgイオン濃度が約110mg/リットルとなるように調製した。
なお、その他の実験条件を以下に記載する。
【0016】
【表2】
Figure 0003992910
【0017】
MAP生成槽に流入する前記被処理水の組成は、溶解性のリンが83mg/リットル(全リン濃度113mg/リットル)、NH4 −Nが184mg/リットルであり、MAP生成槽の反応pHを8.7で操作したところ、処理水の組成は、溶解性のリンが6.2mg/リットル(全リン濃度29mg/リットル)、NH4 −Nが153mg/リットル、Mgが40mg/リットルであった。
また、実験期間中のマグネシウムの使用量は、0.88Kg−Mg/d、35wt%のMg(OH)2 スラリーで6.0Kg/dであった。
【0018】
比較例1
実施例1と同様に、メタン発酵処理水を用いて、図3に示す処理系で脱リン処理を行った。
メタン発酵処理水に第3表に示す所定の濃度になるように、リン、アンモニア分を添加した液を被処理水として、内径150mmφ×高さ4000mmのカラムをMAP生成槽2として、カラム底部の被処理水の供給管1より上向流で通水させた。MAP生成槽2を流出した処理水は、内径300mmφ×高さ2500mmのMAP分離槽11に流入し、処理水の一部は流出管4に、また、残部は返送水の供給管(処理水引込管)6によりMAP生成槽2へ供給する返送液に分離した。
被処理水、処理水の水質を第3表に示す。
【0019】
【表3】
Figure 0003992910
【0020】
上記において、マグネシウム塩には、塩化マグネシウムを用いて、塩化マグネシウム溶液を原水のリン濃度に対してモル比が1.6倍となるようにMAP生成槽に注入した。その他の実験条件を第4表に示す。
【0021】
【表4】
Figure 0003992910
【0022】
MAP生成槽に流入する前記被処理水の組成は、溶解性のリンが81mg/リットル(全リン、104mg/リットル)、NH4 −Nが173mg/リットルであり、MAP生成槽のpHを8.7で操作したところ、処理水の組成は、溶解性のリンが6.6mg/リットル(全リン、24mg/リットル)、NH4 −Nが156mg/リットル、Mgが40mg/リットルであった。
実験期間中の塩化マグネシウムの使用量は、0.90kg−Mg/dであり、25wt%のMgCl2 ・6H2 Oで30Kg/dであった。
【0023】
【発明の効果】
本発明によれば、水酸化マグネシウムのような難溶解性のマグネシウム塩をMAP生成のマグネシウム源として用いた場合においても、従来使用されていた塩化マグネシウムのような易溶性のマグネシウム塩を用いた場合と何ら変りなく、処理水質を低下させることなく、処理することができる。リンが十分に除去された処理水をマグネシウムイオンの溶解に用いるため、被処理水にマグネシウム化合物を添加する場合に比べ、MAPの生成が抑えられる。
また、難溶解性のマグネシウム塩は、易溶性のマグネシウム塩に比較して単価が安く、しかも、使用量を低減させることができるので、ランニングコストの削減をもたらし、極めて有益である。
【図面の簡単な説明】
【図1】本発明を実施する処理系の一形態のフローシートを示す。
【図2】MAP分離槽を設けた本発明の処理系のフローシートを示す。
【図3】MAP分離槽にマグネシウム塩溶液を添加する態様の従来技術の処理系のフローシートを示す。
【図4】MAP生成槽に水酸化マグネシウムを添加する態様の従来技術の処理系のフローシートを示す。
【図5】被処理水に水酸化マグネシウムを添加する態様の従来技術の処理系のフローシートを示す。
【符号の説明】
1 被処理水供給管
2 MAP生成槽
3 アルカリ供給管
4 処理水流出管
5 MAP取出管
6 処理水引込管
7 水酸化マグネシウム溶解槽
8 マグネシウム含有水供給管
9 水酸化マグネシウム貯留槽
10 マグネシウム含有スラリー供給管
11 MAP分離槽
12 マグネシウム塩溶液供給管[0001]
BACKGROUND OF THE INVENTION
In the present invention, magnesium ammonium phosphate (hereinafter referred to as “MAP”) can be obtained by adding a magnesium compound to water to be treated containing phosphorus, and adding ammonia nitrogen and an alkaline component as necessary. And a method and apparatus for removing phosphorus from the water to be treated.
[0002]
[Prior art]
In the case of dephosphorizing by insolubilizing phosphorus in the water to be treated as MAP, a reaction tank for generating MAP, a means for supplying water to be treated containing phosphorus to the reaction tank, a reaction tank or around the reaction tank Depending on the equipment, a dephosphorization processing apparatus provided with means for supplying an alkali component, a magnesium compound, and ammonia. The concentration obtained by multiplying the molar concentrations of phosphorus, ammonia nitrogen, magnesium, and hydroxyl groups is greater than the solubility product of MAP. In addition, the treatment was performed such that the ammonia content and the magnesium content were present in an equimolar amount or more with respect to phosphorus in the water to be treated.
[0003]
Usually, the place where phosphorus in the water to be treated precipitates as MAP is the surface of MAP particles already present in the reaction vessel.
When precipitating MAP, the higher the reaction pH, the greater the amount of MAP deposited, and thus there is a tendency for the phosphorus concentration in the treated water to decrease, but when reacted at pH 10 or higher, fine MAP self-nucleates, As a result of these MAPs flowing out together with the treated water, the quality of the treated water is deteriorated.
For this reason, there has been a treatment method in which the reaction pH value is 7.5 to 10, preferably 8.5 to 9.
[0004]
Conventionally, wastewater containing an excessive amount of ammonia relative to phosphorus in the water to be treated, for example, anaerobic digestion liquid, return water generated from the sludge treatment process, The magnesium content was low, and the magnesium compound was added to the MAP production tank or the surrounding equipment.
In addition, an alkali component (for example, caustic soda) was also added as necessary.
[0005]
[Problems to be solved by the invention]
In the case where MAP is produced by adding a magnesium compound to phosphorus in the water to be treated, magnesium chloride is usually used as the magnesium agent to be added so that it is equimolar or more with respect to phosphorus in the water to be treated. It was added. Magnesium chloride is a material that is easily soluble and easy to handle.
However, magnesium chloride has a high unit price, and the cost required for magnesium chloride in the dephosphorization apparatus becomes a considerable amount, so that the running cost required for the treatment is excessive.
In addition, since magnesium chloride is often hexahydrate, the magnesium content per weight was as low as about 12%, and the amount used was large.
[0006]
Due to the above circumstances, low-solubility magnesium hydroxide with a low unit price and a high magnesium content of about 42% is used as an additive for generating MAP, and magnesium hydroxide is used in the MAP generation tank. When magnesium was added, the hydroxyl group produced when magnesium hydroxide was dissociated increased the pH in the production tank, producing fine MAP, and the quality of the treated water was not stable.
In addition, when the supply amount of magnesium hydroxide added to the amount of phosphorus in the water to be treated is reduced and the concentration of soluble magnesium ions is lowered relative to the amount of phosphorus in the water to be treated, In some cases, the production rate was slow, and it was necessary to lengthen the reaction time.
[0007]
In addition, when the soluble magnesium ion concentration was 20 mg / liter or less, when the MAP was produced, the concentration might be reaction-controlled.
Furthermore, before flowing into the MAP generation tank, for example, if it is attempted to add hardly soluble magnesium hydroxide to the treated water storage tank, the dissolved magnesium ions and hydroxyl groups are treated in the treated water storage tank. When it reacts with phosphorus and ammonia in water to produce fine MAP, and this fine MAP is not captured in the MAP production tank, the quality of the treated water may be deteriorated.
In addition, in the method of FIGS. 4 and 5 in which magnesium hydroxide is directly added to the MAP production tank and the water to be treated, the magnesium compound to be added reacts with phosphorus and ammonia in the water to be treated, so that fine MAP is similarly produced. However, it has been a problem to deteriorate the quality of the treated water.
[0008]
[Means for Solving the Problems]
The present invention was able to solve the above problems by using the following means.
(1) In a method of adding magnesium compound to produce phosphorus magnesium in phosphorus to be treated containing phosphorus and crystallizing and dephosphorizing, water in a slurry state using the dephosphorized treated water A method for dephosphorization of phosphorus-containing water, characterized by supplying magnesium ion-containing water in which magnesium oxide is dissolved and having a soluble magnesium ion concentration higher than that of the treated water to the crystallization and dephosphorization treatment step.
(2) Magnesium ammonium phosphate that introduces phosphorus-treated water in an apparatus that adds magnesium compound to produce magnesium ammonium phosphate by crystallization and dephosphorization. Connect the outflow pipe that leads a part of the treated water from the production tank to the magnesium hydroxide dissolution tank, and supply the magnesium ion-containing water in which slurry magnesium hydroxide is dissolved from the magnesium hydroxide dissolution tank to the magnesium ammonium phosphate A phosphorus removal apparatus for phosphorus-containing water, which is connected to a production tank.
(3) Magnesium phosphate that introduces phosphorus-treated water in an apparatus that adds magnesium compound to produce magnesium ammonium phosphate and crystallizes and removes phosphorus in phosphorus-treated water containing phosphorus The outflow pipe that leads the treated water from the ammonium production tank is connected to the magnesium ammonium phosphate separation tank, and the supply pipe that feeds the water from which magnesium ammonium phosphate has been separated in the magnesium ammonium phosphate separation tank is connected to the magnesium hydroxide dissolution tank Then, a phosphorus-containing water dephosphorization apparatus characterized in that a supply pipe for feeding magnesium ion-containing water in which slurry-like magnesium hydroxide is dissolved from a magnesium hydroxide dissolution tank is connected to a magnesium ammonium phosphate production tank.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows an embodiment of a processing system for carrying out the present invention, and includes a MAP generation tank 2, which is a MAP reaction tank, a magnesium hydroxide dissolution tank 7, and a magnesium hydroxide storage tank 9.
The treated water supply pipe 1 is connected to the lower part of the MAP generation tank 2, and the treated water outflow pipe 4 is connected to the upper part of the MAP generation tank 2. The MAP production tank 2 also has a MAP separation function, and the MAP separated from the lower MAP take-out pipe 5 is discharged.
The treated water inlet pipe 6 is disposed between the treated water outlet pipe 4 and the magnesium hydroxide dissolution tank 7.
The magnesium ion-containing slurry supply pipe 10 connects between the magnesium hydroxide storage tank 9 and the magnesium hydroxide dissolution tank 7, and the magnesium ion-containing water supply pipe 8 is connected to the lower part of the magnesium hydroxide dissolution tank 7 and generates MAP. The lower part of the tank 2 is connected.
[0010]
The water to be treated containing phosphorus and ammonium is supplied to the lower part of the MAP generation tank 2 through the supply pipe 1 and continuously passed through the tank 2 in an upward flow.
While the water to be treated passes through the MAP generation tank 2 in an upward flow, phosphorus and ammonia in the water to be treated are converted into MAP by reaction between magnesium ions and hydroxyl groups supplied from the magnesium ion-containing water supply pipe 8. By generating, phosphorus in the water to be treated is removed.
In this way, the dephosphorized treated water is continuously discharged out of the system by the treated water outflow pipe 4 disposed in the upper part of the MAP generation tank 2.
In the MAP production tank 2, a NaOH solution is added as an alkaline agent from the supply pipe 3 so that the pH value becomes constant.
Also, a part of the treated water is supplied to the magnesium hydroxide dissolution tank 7 through the lead-in pipe 6.
[0011]
Magnesium ions dissolved in the slurry of the magnesium hydroxide storage tank 9 are as low as about 20 mg / liter. However, in the magnesium hydroxide dissolution tank 7, the buffering action of the slurry and the treated water introduced from the inlet pipe 6 is reduced. When mixed with certain treated water, the increase in pH is suppressed by the buffering action, and the slurry-like magnesium hydroxide is dissolved to about 100 to 150 mg / liter.
Magnesium ion-containing water in which magnesium ions have increased in the magnesium hydroxide storage tank 9 flows through the magnesium ion-containing water supply pipe 8 from the bottom of the MAP generation tank 2 and is used as a magnesium source for generating MAP. .
It is preferable that the amount of magnesium hydroxide introduced into the MAP production tank is equal to or more than the amount of phosphorus in the water to be treated to increase the production rate of MAP and to efficiently perform dephosphorization. .
In the present invention, magnesium hydroxide and magnesium chloride may be used in combination. In that case, the supply location of magnesium chloride is preferably a MAP production tank.
As a result, it becomes possible to use the hardly soluble magnesium salt as the easily soluble magnesium salt, and to reduce the chemical cost.
[0012]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.
[0013]
Example 1
The dephosphorization process was performed with the processing system shown in FIG. 2 using the treated water of methane fermentation.
A liquid in which phosphorus and ammonia are added to the treated water of methane fermentation to have a predetermined concentration shown in Table 1 is treated water, and a column having an inner diameter of 150 mmφ × height of 4000 mm is used as the MAP production tank 2. The treated water was passed through the tank in an upward flow from the treated water supply pipe 1 at the bottom of the column, and a reaction for generating MAP was performed.
[0014]
[Table 1]
Figure 0003992910
[0015]
The treated water that has flowed out of the MAP production tank 2 then flows into the MAP separation tank 11, which is a MAP fine particle separation tower having an inner diameter of 300 mmφ × height of 2500 mm. To the line to the lead-in pipe 6. The MAP production tank 2 also has a MAP separation function, and MAP is discharged from the lower MAP take-out pipe 5. Furthermore, MAP is separated in the MAP separation tank 11 to obtain better treated water. A MAP take-out pipe 5 is also provided at the bottom of the MAP separation tank 11. The MAP separation tank 11 is preferably gravity precipitation.
The treated water that is diverted to the line of the treated water inlet pipe 6 becomes a supply liquid that is supplied to the magnesium hydroxide dissolution tank 7.
The treated water supplied to the magnesium hydroxide dissolution tank 7 is mixed with 35% (w / v) slurry-like magnesium hydroxide supplied from the magnesium hydroxide storage tank 9 through the conduit 10 to form soluble Mg. The ion concentration was adjusted to about 110 mg / liter.
Other experimental conditions are described below.
[0016]
[Table 2]
Figure 0003992910
[0017]
The composition of the water to be treated flowing into the MAP generation tank is such that the soluble phosphorus is 83 mg / liter (total phosphorus concentration 113 mg / liter), NH 4 -N is 184 mg / liter, and the reaction pH of the MAP generation tank is 8 As a result, the composition of the treated water was 6.2 mg / liter of soluble phosphorus (total phosphorus concentration 29 mg / liter), 153 mg / liter of NH 4 -N, and 40 mg / liter of Mg.
Moreover, the usage-amount of magnesium during the experiment period was 6.0 kg / d with 0.88 kg-Mg / d, 35 wt% Mg (OH) 2 slurry.
[0018]
Comparative Example 1
Similarly to Example 1, dephosphorization treatment was performed in the treatment system shown in FIG. 3 using methane fermentation treated water.
A liquid with phosphorus and ammonia added to the methane fermentation treated water so as to have a predetermined concentration shown in Table 3 is treated water, a column with an inner diameter of 150 mmφ × height 4000 mm is used as the MAP production tank 2, and the bottom of the column The water to be treated was passed through the supply pipe 1 in an upward flow. The treated water that has flowed out of the MAP production tank 2 flows into the MAP separation tank 11 having an inner diameter of 300 mmφ × height of 2500 mm, a part of the treated water flows into the outflow pipe 4, and the remaining part is a return water supply pipe (treated water intake). Tube) 6 was separated into a return liquid to be supplied to the MAP production tank 2.
Table 3 shows the quality of treated water and treated water.
[0019]
[Table 3]
Figure 0003992910
[0020]
In the above, magnesium chloride was used as the magnesium salt, and the magnesium chloride solution was injected into the MAP production tank so that the molar ratio was 1.6 times the phosphorus concentration of the raw water. Other experimental conditions are shown in Table 4.
[0021]
[Table 4]
Figure 0003992910
[0022]
The composition of the water to be treated flowing into the MAP generation tank is such that soluble phosphorus is 81 mg / liter (total phosphorus, 104 mg / liter), NH 4 -N is 173 mg / liter, and the pH of the MAP generation tank is 8. When operated in 7, the composition of the treated water was 6.6 mg / liter of soluble phosphorus (total phosphorus, 24 mg / liter), 156 mg / liter of NH 4 -N, and 40 mg / liter of Mg.
The amount of magnesium chloride used during the experimental period was 0.90 kg-Mg / d, and 30 kg / d with 25 wt% MgCl 2 .6H 2 O.
[0023]
【The invention's effect】
According to the present invention, when a poorly soluble magnesium salt such as magnesium hydroxide is used as a magnesium source for MAP generation, a conventionally soluble magnesium salt such as magnesium chloride is used. It can be processed without deteriorating the quality of the treated water. Since the treated water from which phosphorus has been sufficiently removed is used for dissolving magnesium ions, the generation of MAP is suppressed as compared with the case where a magnesium compound is added to the treated water.
In addition, the hardly soluble magnesium salt is very useful because it has a lower unit price than the readily soluble magnesium salt and can reduce the amount used, thereby reducing running costs.
[Brief description of the drawings]
FIG. 1 shows a flow sheet of one form of a processing system for carrying out the present invention.
FIG. 2 shows a flow sheet of the processing system of the present invention provided with a MAP separation tank.
FIG. 3 shows a flow sheet of a conventional processing system in which a magnesium salt solution is added to a MAP separation tank.
FIG. 4 shows a flow sheet of a prior art treatment system in which magnesium hydroxide is added to a MAP production tank.
FIG. 5 shows a flow sheet of a prior art treatment system in which magnesium hydroxide is added to water to be treated.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Treated water supply pipe 2 MAP production tank 3 Alkali supply pipe 4 Treated water outflow pipe 5 MAP take-out pipe 6 Treated water intake pipe 7 Magnesium hydroxide dissolution tank 8 Magnesium-containing water supply pipe 9 Magnesium hydroxide storage tank 10 Magnesium-containing slurry Supply pipe 11 MAP separation tank 12 Magnesium salt solution supply pipe

Claims (3)

リンを含有した被処理水中のリンを、マグネシウム化合物を添加してリン酸マグネシウムアンモニウムを生成させ、晶析脱リンする方法において、脱リン処理された処理水を用いてスラリー状の水酸化マグネシウムを溶解させ、溶解性のマグネシウムイオン濃度が処理水より高まったマグネシウムイオン含有水を、上記晶析脱リン処理工程に供給することを特徴とするリン含有水の脱リン方法。In the method of adding magnesium compound to form phosphorus ammonium in the water to be treated containing phosphorus to produce crystallization dephosphorization, slurry magnesium hydroxide is removed using the dephosphorized treated water. A method for dephosphorization of phosphorus-containing water, characterized by supplying magnesium ion-containing water having a dissolved magnesium ion concentration higher than that of the treated water to the crystallization dephosphorization treatment step. リンを含有した被処理水中のリンを、マグネシウム化合物を添加して、リン酸マグネシウムアンモニウムを生成させ、晶析脱リンする装置において、リンを含有した被処理水を導入するリン酸マグネシウムアンモニウム生成槽から処理水の一部を導く流出管を水酸化マグネシウム溶解槽につなぎ、水酸化マグネシウム溶解槽からスラリー状の水酸化マグネシウムを溶解させたマグネシウムイオン含有水を送る供給管をリン酸マグネシウムアンモニウム生成槽に連結したことを特徴とするリン含有水の脱リン装置。Magnesium ammonium phosphate production tank for introducing phosphorus-treated water into an apparatus that adds magnesium compound to produce phosphorus magnesium in the treated water containing phosphorus to produce crystallization dephosphorization Connect the outflow pipe that leads part of the treated water from the magnesium hydroxide dissolution tank, and supply the magnesium ion-containing water in which the magnesium hydroxide slurry is dissolved from the magnesium hydroxide dissolution tank to the magnesium ammonium phosphate production tank A phosphorus-containing water dephosphorization apparatus, characterized in that it is connected to the apparatus. リンを含有した被処理水中のリンを、マグネシウム化合物を添加して、リン酸マグネシウムアンモニウムを生成させ、晶析脱リンする装置において、リンを含有した被処理水を導入するリン酸マグネシウムアンモニウム生成槽から処理水を導く流出管をリン酸マグネシウムアンモニウム分離槽に連結し、リン酸マグネシウムアンモニウム分離槽にてリン酸マグネシウムアンモニウムが分離された水を送る供給管を水酸化マグネシウム溶解槽に連結し、水酸化マグネシウム溶解槽からスラリー状の水酸化マグネシウムを溶解させたマグネシウムイオン含有水を送る供給管をリン酸マグネシウムアンモニウム生成槽に連結したことを特徴とするリン含有水の脱リン装置。Magnesium ammonium phosphate production tank for introducing phosphorus-treated water into an apparatus that adds magnesium compound to produce phosphorus magnesium in the treated water containing phosphorus to produce crystallization dephosphorization The outflow pipe for leading the treated water from is connected to the magnesium ammonium phosphate separation tank, and the supply pipe for feeding the water from which magnesium ammonium phosphate has been separated in the magnesium ammonium phosphate separation tank is connected to the magnesium hydroxide dissolution tank. A dephosphorization apparatus for phosphorus-containing water, wherein a supply pipe for sending magnesium ion-containing water in which slurry-like magnesium hydroxide is dissolved from a magnesium oxide dissolution tank is connected to a magnesium ammonium phosphate production tank.
JP2000210050A 2000-07-11 2000-07-11 Method and apparatus for removing phosphorus Expired - Fee Related JP3992910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000210050A JP3992910B2 (en) 2000-07-11 2000-07-11 Method and apparatus for removing phosphorus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000210050A JP3992910B2 (en) 2000-07-11 2000-07-11 Method and apparatus for removing phosphorus

Publications (2)

Publication Number Publication Date
JP2002018448A JP2002018448A (en) 2002-01-22
JP3992910B2 true JP3992910B2 (en) 2007-10-17

Family

ID=18706376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000210050A Expired - Fee Related JP3992910B2 (en) 2000-07-11 2000-07-11 Method and apparatus for removing phosphorus

Country Status (1)

Country Link
JP (1) JP3992910B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4550366B2 (en) * 2003-03-03 2010-09-22 宇部マテリアルズ株式会社 Method for controlling the generation of algae in freshwater areas
US9650267B2 (en) * 2009-06-29 2017-05-16 Nalco Company Fluid treatment reactor
DE102016004080A1 (en) * 2016-04-08 2017-10-12 Eliquo Stulz Gmbh Apparatus and process for the extraction of phosphorus from wastewater
CN114455616B (en) * 2022-02-08 2024-02-06 中国电建集团华东勘测设计研究院有限公司 Preparation method of magnesium hydroxide and treatment method of sewage containing phytic acid

Also Published As

Publication number Publication date
JP2002018448A (en) 2002-01-22

Similar Documents

Publication Publication Date Title
JP3169899B2 (en) Method and apparatus for treating fluorine-containing wastewater
KR20050005739A (en) Method of treating organic wastewater and sludge and treatment apparatus therefor
US6210589B1 (en) Process for removing fluoride from wastewater
JP3992910B2 (en) Method and apparatus for removing phosphorus
JP5507318B2 (en) Treatment method for wastewater containing metal ions
JP3876489B2 (en) Waste water treatment equipment
JPS63200888A (en) Removal of phosphorus contained in water
JP2002159977A (en) Method and equipment for removing and recovering phosphoric acid ion from phosphorus-containing water
JPH1157773A (en) Biological dephosphorizing device
JP2002336875A (en) Recovering method and equipment for phosphorus in water
JP4025037B2 (en) Dephosphorization method and apparatus
JP2002326089A (en) Method and apparatus for removing phosphorus
JP2007244994A (en) Treatment method of digestion sludge and treatment equipment
JP3592175B2 (en) Treatment method for wastewater containing fluorine
JP2000334474A (en) Method for removing phosphorus from waste water
JP4147609B2 (en) Dephosphorization device
EP0647209A4 (en) Process for the removal of phosphorous.
JPH09117774A (en) Granulating and dephosphorizing device
JP2002126761A (en) Two-stage dephosphorization method and apparatus
JP4156820B2 (en) Organic wastewater treatment method and treatment apparatus
JPS6328429A (en) Treatment of waste water containing fluorine and hydrogen peroxide and exhaust gas and its facility
JP3344132B2 (en) Dephosphorization device
JP2002320976A (en) Method and device for removing underwater phosphorus
JP2002102602A (en) Crystallization reaction device
JP3723601B2 (en) How to remove phosphorus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3992910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees