JP4550366B2 - Method for controlling the generation of algae in freshwater areas - Google Patents

Method for controlling the generation of algae in freshwater areas Download PDF

Info

Publication number
JP4550366B2
JP4550366B2 JP2003055614A JP2003055614A JP4550366B2 JP 4550366 B2 JP4550366 B2 JP 4550366B2 JP 2003055614 A JP2003055614 A JP 2003055614A JP 2003055614 A JP2003055614 A JP 2003055614A JP 4550366 B2 JP4550366 B2 JP 4550366B2
Authority
JP
Japan
Prior art keywords
region
nitrogen
phosphorus
algae
freshwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003055614A
Other languages
Japanese (ja)
Other versions
JP2004261732A (en
Inventor
悠平 稲森
朋聡 板山
洋 在田
隆 出光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2003055614A priority Critical patent/JP4550366B2/en
Publication of JP2004261732A publication Critical patent/JP2004261732A/en
Application granted granted Critical
Publication of JP4550366B2 publication Critical patent/JP4550366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、淡水領域での藻類の発生を抑制する方法に関し、さらに詳しくは、淡水領域の底質からの窒素もしくはリンの溶出を抑制する方法に関する。
【0002】
【従来の技術】
ダム湖や湖沼などの淡水領域では、藻類(特に、アオコ)の異常発生などの環境悪化が近年累進的に加速している。藻類の異常発生により水面が緑色に覆われて、著しく景観を損なうのみならず、水生生物の生息に悪影響を及ぼす。そればかりではなく、アオコには、「ミクロキスチン」という毒素を生成するものもあり、浄水処理後の飲料水を通して人の健康をも損なうことがあることが報告されている。
【0003】
藻類の異常発生は、水中の栄養塩濃度が高い場合、特に、藻類の増殖制限因子(生育制限因子ともいう)となりやすい窒素(例えば、アンモニア態窒素や亜硝酸態窒素)とリン(例えば、リン酸)の濃度が高い場合に起こりやすいといわれている(非特許文献1を参照)。淡水領域での窒素濃度とリン濃度の増加は、一般に、汚水(例えば、工場廃水、家庭廃水)の流入、あるいは淡水領域の底部分(底質と呼ばれる)からの有機物(例えば、水性生物の死骸)の腐敗物又は分解物の溶出が主な原因とされている。淡水領域に流入する汚水の窒素濃度及びリン濃度は、近年の環境問題に対する意識の高まりに伴って減少する傾向にある。ただし、これまでに流入した汚水等による窒素含有化合物とリン含有化合物が底質に蓄積されている。このため、最近では、藻類の発生抑制の主要な課題は、淡水領域の底質からの窒素とリンの溶出量を低減させることになりつつある。
【0004】
淡水領域の底質からの窒素とリンの溶出量を低減させる方法の一つとして、その淡水領域に水酸化マグネシウムや酸化マグネシウムなどの苦土系材料を添加する方法が知られている(特許文献1を参照)。この方法は、苦土系材料の添加により、その淡水領域の底質を弱アルカリ性にして、底質に生息するアンモニア酸化細菌や亜硝酸酸化細菌を活性化させることにより窒素を窒素ガスとして淡水領域の外部に除去し、リンを難水溶性のリン酸マグネシウム化合物として淡水領域内に安定に固定する方法である。上記特許文献1の実施例7には、水道水を満たした3Lのビーカに、アオコの発生している生活排水溝より採取したヘドロを敷き詰め、そこに苦土系材料を添加したところ、アオコの発生は見られなかったとの記載がある。
【0005】
【非特許文献1】
藤田善彦、大城香,「らん藻という生きもの」,財団法人東京大学出版会,1989年6月25日,101−107頁
【特許文献1】
特許2917096号公報
【0006】
【発明が解決しようとする課題】
藻類の発生を抑制するには、その対象となる淡水領域の底質からの窒素とリンの溶出量を共に低減できれば望ましいが、窒素もしくはリンのどちらか一方の溶出量を低減させればよい場合がある。例えば、藻類の増殖制限因子が窒素である淡水領域(窒素制限の淡水領域)では、底質からの窒素の溶出量を低減できれば藻類の発生を抑制することができる。一方、藻類の増殖制限因子がリンである淡水領域(リン制限の淡水領域)では、底質からのリンの溶出量を低減できれば藻類の発生を抑制することができる。すなわち、淡水領域が窒素制限であるか、リン制限であるかに応じて、底質からの窒素もしくはリンの溶出量を選択的に低減させることにより、効率よく藻類の異常発生を抑制することができる。
【0007】
従って、本発明の課題は、淡水領域の底質からの窒素もしくはリンの溶出量を選択的に低減させることができる方法を開発し、藻類の異常発生を効率よく抑制することができる方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者は、淡水領域に、その領域の底質のpHが8.5〜9.3の範囲になるように、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、水酸化カルシウム、及びドロマイト仮焼物などのアルカリ土類金属化合物を添加すると底質からの窒素溶出量が低減し、底質のpHが9.4以上となるようにアルカリ土類金属化合物を添加すると、底質からのリン溶出量が低減することを見出し、本発明を完成した。
【0009】
本発明は、藻類の発生を抑制する対象の淡水領域について、予め窒素制限領域であるかリン制限領域であるかを確認(決定)する工程、そして予め窒素制限領域であることが確認(決定)された淡水領域に、該領域の底質のpHが8.5〜9.3の範囲となるように、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、水酸化カルシウム、及びドロマイト仮焼物よりなる群から選ばれたアルカリ土類金属化合物を添加することにより底質からの窒素の溶出を抑制することを特徴とする淡水領域での藻類の発生を抑制する方法にある。
底質のpHは、以下の方法により測定することができる。
BOD測定用のふらん瓶(容積:0.1L)に、淡水領域の底質から採取した底泥を、乾燥重量が約1gとなる量にて入れ、予めばっ気を行ない溶存酸素量を飽和にした後、水0.1Lを注入し、ふらん瓶を25℃の暗所に静置して、底泥をマグネチックスターラーを用いて24時間撹拌した後、撹拌物のpHを測定する。
【0010】
上記の藻類の発生抑制方法において、窒素制限の淡水領域とは、藻類(特に、アオコ)の増殖制限因子が窒素である淡水領域を意味する。
窒素制限の淡水領域であることは、例えば、その領域の水の窒素濃度とリン濃度との比に基づいて、あるいはその領域の水に窒素含有化合物を添加して調製した試験水での藻類発生量に基づいて決定することができる。
【0011】
本発明はまた、藻類の発生を抑制する対象の淡水領域について、予め窒素制限領域であるかリン制限領域であるかを確認(決定)する工程、そして予めリン制限領域であることが確認(決定)された淡水領域に、該領域の底質のpHが9.4以上となるように、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、水酸化カルシウム、及びドロマイト仮焼物よりなる群から選ばれたアルカリ土類金属化合物を添加することにより底質からのリンの溶出を抑制することを特徴とする淡水領域での藻類の発生を抑制する方法にもある。
【0012】
上記の藻類の発生抑制方法において、リン制限の淡水領域とは、藻類(特に、アオコ)の増殖制限因子がリンである淡水領域を意味する。
リン制限の淡水領域であることは、例えば、その領域の水の窒素濃度とリン濃度との比に基づいて、あるいはその領域の水にリン含有化合物を添加して調製した試験水での藻類発生量に基づいて決定することができる。
【0013】
本発明はさらに、予め窒素制限であることが決定された淡水領域に、該領域の底質のpHが8.5〜9.3の範囲となるように、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、水酸化カルシウム、及びドロマイト仮焼物よりなる群から選ばれたアルカリ土類金属化合物を添加することを特徴とする淡水領域の底質からの窒素の溶出を抑制する方法にもある。
【0014】
本発明はさらに、予めリン制限であることが決定された淡水領域に、該領域の底質のpHが9.4以上となるように、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、水酸化カルシウム、及びドロマイト仮焼物よりなる群から選ばれたアルカリ土類金属化合物を添加することを特徴とする淡水領域の底質からのリンの溶出を抑制する方法にもある。
【0015】
【発明の実施の形態】
本発明において、藻類(特に、アオコ)の発生を抑制する淡水領域に特には制限はない。その例としては、ダム湖や湖沼あるいはプールなどの閉鎖性淡水領域を挙げることができる。
【0016】
本発明では、アルカリ土類金属化合物として、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、水酸化カルシウム、及びドロマイト仮焼物を用いる。これらは、単独であるいは二種以上を組み合わせて用いることができる。これらのアルカリ土類金属化合物の中でも、酸化マグネシウム、水酸化マグネシウム、及びドロマイト仮焼物などのマグネシウム化合物が好ましく、水酸化マグネシウムが特に好ましい。
【0017】
酸化マグネシウムとしては、マグネサイト(菱苦土鉱)、ブルーサイト(水滑石)、あるいは海水から得た水酸化マグネシウムを焼成することによって得たものを用いることができる。水酸化マグネシウムとしては、上記の酸化マグネシウムを水和させて得たもの、またはブルーサイト(水滑石)、もしくは海水から得たものを用いることができる。酸化カルシウム(生石灰)としては、炭酸カルシウム(石灰)を公知の方法により焼成して得たものを用いることができる。水酸化カルシウム(消石灰)としては、酸化カルシウムを公知の方法により水和(消化)して得たものを用いることができる。ドロマイト仮焼物としては、天然ドロマイトを700〜1200℃の温度で焼成(仮焼)して得たものを用いることができる。
【0018】
本発明の方法を利用して藻類の発生を抑制する場合は、まず初めに、対象となる淡水領域の藻類の増殖制限因子が窒素であるか、リンであるかを決定することが必要となる。
【0019】
藻類の増殖制限因子は、例えば、その対象領域の窒素濃度(全窒素濃度もしくはTNともいう)と、リン濃度(全リン濃度もしくはTPともいう)とを測定し、その窒素濃度とリン濃度との比(TN/TP)を算出することによって決定することができる。通常は、TN/TPが10以下である場合には増殖制限因子は窒素であり、TN/TPが17以上である場合には増殖制限因子はリンである。
【0020】
藻類の増殖制限因子はまた、その対象領域の水に窒素含有化合物(例えば、硝酸ナトリウム)とリン含有化合物(例えば、リン酸水素二カリウム)とをそれぞれ別に添加して調製した試験水にて藻類を発生させ、その発生量を比較することによっても決定することができる(この方法は、一般にAGP法と呼ばれている)。この方法では、窒素含有化合物を添加した試験水の藻類の発生量が多い場合には増殖制限因子は窒素であり、リン含有化合物を添加した試験水の藻類の発生量が多い場合には増殖制限因子はリンである。
【0021】
藻類の増殖制限因子が窒素であると決定された場合は、対象領域の底質のpHが8.5〜9.3の範囲(好ましくは、8.8〜9.2の範囲)となるようにアルカリ土類金属化合物を対象領域に添加する。一方、藻類の増殖制限因子がリンであると決定された場合は、対象領域の底質のpHが9.4以上(好ましくは、9.4〜10)となるように、アルカリ土類金属化合物を対象領域に添加する。アルカリ土類金属化合物の添加方法には、特に制限はない。例えば、固形状(粉末状、顆粒状、あるいは塊状)のアルカリ土類金属化合物を対象領域の水面へ散布してもよいし、固形状のアルカリ土類金属化合物の懸濁液を対象領域の水面もしくはその近傍に注入してもよい。あるいは、アルカリ土類金属化合物の水溶液を対象領域の底質に注入してもよい。
【0022】
底質のpHを所望の範囲にするためのアルカリ土類金属化合物の添加量は、対象領域の水質などにより異なる傾向にある。このため、アルカリ土類金属化合物の添加は、淡水領域の底質のpHの測定と平行して行なうことが好ましい。
【0023】
アルカリ土類金属化合物の添加による底質のpHの調整は、藻類の増殖が活発な季節(5〜10月、特に、7月〜9月)に行なうことが好ましく、藻類の増殖が活発になる季節よりも以前(特に、1ヶ月以上前)から行なうことがより好ましい。なお、底質のpHの調整を、通年にわたって行なってもよい。
【0024】
【実施例】
以下、本発明を実施例により説明する。
本実施例では、下記の供試底泥と供試湖水とを用いた。
(1)供試底泥
霞ヶ浦流域の新川より、エックマンパージ採泥器を用いてサンプリングした底泥を用いた。
(2)供試湖水
行幸湖からサンプリングしたアオコを含む湖水を用いた。供試湖水のpHは7.3、溶存窒素濃度(DTN)は0.588mg/L、溶存リン濃度(DTP)は0.05mg/L、そしてアオコ量はSSとして100mg/Lであった。また、供試湖水のアオコは、ミクロキスティスエルギノーサ(Microcytis aeruginosa)が優占化していることを確認した。
【0025】
[実施例1]
BOD測定用のふらん瓶(容積:0.1L)に、乾燥重量が約1gとなる量の供試底泥を入れ、予めばっ気を行ない溶存酸素量を飽和にした後、供試湖水0.1Lを注入した。その後、水酸化マグネシウム粉末を供試底泥の乾燥重量1g当たり0〜700mgとなる量にて添加した。次いで、ふらん瓶を25℃の暗所に静置して、供試泥をマグネチックスターラーを用いて24時間撹拌した。撹拌終了後、撹拌物のpH、DTN(mg/L)、及びDTP(mg/L)を測定した。
【0026】
上記のDTN及びDTPの測定値から、供試底泥の乾燥重量1g当たりの窒素溶出量とリン溶出量とを下記の式(1)及び(2)により算出した。
(1)窒素溶出量(mg/g・24時間)={DTN測定値(mg/L)−0.588(mg/L)}×0.1(L)/供試底泥の乾燥重量(g)
(2)リン溶出量(mg/g・24時間)={DTP測定値(mg/L)−0.05(mg/L)×0.1(L)/供試底泥の乾燥重量(g)
【0027】
図1に、水酸化マグネシウム粉末の添加量と撹拌物のpHとの関係を、図2に、撹拌物のpHと底泥からの窒素溶出量及びリン溶出量との関係を示す。図2において、横軸は、撹拌物のpHを表わす。
図2に示すように、pHが8.5〜9.3の領域では、底泥からの窒素溶出量が低減されており、pHが9.4以上の領域では、底泥からのリン溶出量が低減されていることがわかる。
【0028】
【発明の効果】
本発明の藻類の発生抑制方法を利用することにより、淡水領域での藻類の異常発生を効率よく抑制することができる。
【図面の簡単な説明】
【図1】 本実施例1にて測定した、水酸化マグネシウム粉末の添加量と撹拌物のpHとの関係を示す図である。
【図2】 本実施例1にて測定した、撹拌物のpHと底泥からの窒素溶出量及びリン溶出量との関係を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for suppressing the generation of algae in a fresh water region, and more particularly, to a method for suppressing elution of nitrogen or phosphorus from the sediment in the fresh water region.
[0002]
[Prior art]
In freshwater areas such as dam lakes and lakes, environmental deterioration such as abnormal occurrence of algae (especially blue sea bream) has been progressively accelerated in recent years. Due to the abnormal occurrence of algae, the surface of the water is covered with green, which not only significantly damages the landscape but also adversely affects the aquatic habitat. Not only that, some aokos produce a toxin called “microkistin”, which has been reported to impair human health through drinking water after water purification.
[0003]
Algae abnormalities occur especially when the concentration of nutrients in water is high, especially when nitrogen (for example, ammonia nitrogen or nitrite nitrogen) and phosphorus (for example, phosphorus) are likely to become algal growth limiting factors (also called growth limiting factors). It is said that it tends to occur when the concentration of (acid) is high (see Non-Patent Document 1). Increases in nitrogen and phosphorus concentrations in freshwater areas generally result in inflows of sewage (eg, factory wastewater, household wastewater) or organic matter (eg, dead bodies of aquatic organisms) from the bottom of the freshwater area (called sediment). Elution of spoilage or decomposition products). The nitrogen concentration and phosphorus concentration of sewage flowing into the fresh water region tend to decrease with the recent increase in awareness of environmental problems. However, nitrogen-containing compounds and phosphorus-containing compounds due to sewage that have flown so far have accumulated in the sediment. For this reason, recently, the main problem of suppressing the generation of algae is to reduce the amount of nitrogen and phosphorus eluted from the sediment in the freshwater region.
[0004]
As one of the methods for reducing the amount of nitrogen and phosphorus eluted from the sediment in the fresh water region, a method of adding a maternal material such as magnesium hydroxide or magnesium oxide to the fresh water region is known (Patent Literature). 1). In this method, the sediment of the freshwater area is made weakly alkaline by the addition of the maternal material, and the ammonia-oxidizing bacteria and nitrite-oxidizing bacteria that live in the sediment are activated, so that nitrogen is used as the nitrogen gas in the freshwater area. This is a method in which phosphorus is removed to the outside and stably fixed in the fresh water region as a poorly water-soluble magnesium phosphate compound. In Example 7 of the above-mentioned patent document 1, when a sludge collected from a domestic drainage ditch where blue water is generated is spread over a 3 L beaker filled with tap water, and a bitter earth material is added thereto, There is a description that the occurrence was not seen.
[0005]
[Non-Patent Document 1]
Yoshihiko Fujita, Kaori Oshiro, “A creature called Ranga”, The University of Tokyo Press, June 25, 1989, pp. 101-107 [Patent Document 1]
Japanese Patent No. 2917096 [0006]
[Problems to be solved by the invention]
In order to suppress the generation of algae, it is desirable if both the elution amount of nitrogen and phosphorus from the sediment of the target freshwater area can be reduced, but it is only necessary to reduce the elution amount of either nitrogen or phosphorus. There is. For example, in a freshwater region where the growth limiting factor of algae is nitrogen (a nitrogen-restricted freshwater region), generation of algae can be suppressed if the amount of nitrogen eluted from the sediment can be reduced. On the other hand, in a freshwater region where the growth limiting factor of algae is phosphorus (phosphorus-restricted freshwater region), generation of algae can be suppressed if the amount of phosphorus eluted from the sediment can be reduced. In other words, depending on whether the freshwater region is nitrogen-limited or phosphorus-limited, the amount of nitrogen or phosphorus eluted from the sediment can be selectively reduced to effectively suppress the occurrence of algae. it can.
[0007]
Therefore, an object of the present invention is to develop a method that can selectively reduce the amount of nitrogen or phosphorus eluted from the sediment in a freshwater region, and to provide a method that can efficiently suppress the occurrence of algae abnormalities. There is to do.
[0008]
[Means for Solving the Problems]
The inventor of the present invention, in the fresh water region, magnesium oxide, magnesium hydroxide, calcium oxide, calcium hydroxide, dolomite calcined product, etc. so that the pH of the bottom sediment of the region is in the range of 8.5 to 9.3 When the alkaline earth metal compound is added, the amount of nitrogen eluted from the bottom is reduced, and when the alkaline earth metal compound is added so that the pH of the bottom is 9.4 or more, the amount of phosphorus eluted from the bottom is reduced. As a result, the present invention was completed.
[0009]
The present invention has a step of confirming (determining) whether it is a nitrogen-restricted region or a phosphorus-restricted region in advance , and confirming (determining) that it is a nitrogen-restricted region. From the group consisting of magnesium oxide, magnesium hydroxide, calcium oxide, calcium hydroxide, and dolomite calcined material, so that the pH of the bottom sediment of the region is in the range of 8.5 to 9.3. The present invention provides a method for suppressing the generation of algae in a fresh water region, characterized in that elution of nitrogen from sediment is suppressed by adding a selected alkaline earth metal compound.
The pH of the sediment can be measured by the following method.
Put the bottom mud collected from the sediment in the fresh water area into the jar for measuring BOD (volume: 0.1L) in an amount that makes the dry weight about 1g, and aeration is performed in advance to saturate the dissolved oxygen amount. After that, 0.1 L of water is poured in, the jar is left in a dark place at 25 ° C., and the bottom mud is stirred for 24 hours using a magnetic stirrer, and then the pH of the stirred product is measured.
[0010]
In the above-described method for suppressing the generation of algae, the nitrogen-limited freshwater region means a freshwater region in which the growth-limiting factor for algae (particularly blue-green algae) is nitrogen.
Algae generation in test water prepared based on the ratio of nitrogen concentration and phosphorus concentration of water in the region or by adding a nitrogen-containing compound to water in the region, for example, is a nitrogen-limited freshwater region Can be determined based on quantity.
[0011]
The present invention also provides for the freshwater areas of suppressing target generation of algae, step confirms whether the phosphorus restriction area or a previously nitrogen-restricted area (determined) and previously confirmed that phosphorus restricted area (determined, The alkali selected from the group consisting of magnesium oxide, magnesium hydroxide, calcium oxide, calcium hydroxide, and dolomite calcined product so that the pH of the sediment in the fresh water region is 9.4 or higher. There is also a method for suppressing the generation of algae in a fresh water region characterized by suppressing the elution of phosphorus from sediment by adding an earth metal compound.
[0012]
In the above-described method for suppressing the generation of algae, the phosphorus-restricted freshwater region means a freshwater region in which the growth-limiting factor for algae (especially blue sea bream) is phosphorus.
A phosphorus-restricted freshwater region can be generated, for example, by the generation of algae in test water prepared based on the ratio of the nitrogen concentration and phosphorus concentration of the water in the region or by adding a phosphorus-containing compound to the water in the region. Can be determined based on quantity.
[0013]
The present invention further provides magnesium oxide, magnesium hydroxide, calcium oxide in a fresh water region that has been previously determined to be nitrogen-limited so that the pH of the sediment in the region is in the range of 8.5 to 9.3. There is also a method for suppressing elution of nitrogen from the sediment in the freshwater region, which comprises adding an alkaline earth metal compound selected from the group consisting of calcium hydroxide and calcined dolomite.
[0014]
The present invention further provides magnesium oxide, magnesium hydroxide, calcium oxide, calcium hydroxide, in a fresh water region that has been previously determined to be phosphorus-limited, so that the pH of the sediment in the region is 9.4 or higher. And an alkaline earth metal compound selected from the group consisting of calcined dolomite and a method for suppressing elution of phosphorus from the sediment in the freshwater region.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, there is no particular limitation on the fresh water region that suppresses the generation of algae (especially blue sea bream). Examples include closed freshwater areas such as dam lakes, lakes or pools.
[0016]
In the present invention, magnesium oxide, magnesium hydroxide, calcium oxide, calcium hydroxide, and dolomite calcined material are used as the alkaline earth metal compound. These can be used alone or in combination of two or more. Among these alkaline earth metal compounds, magnesium compounds such as magnesium oxide, magnesium hydroxide, and calcined dolomite are preferable, and magnesium hydroxide is particularly preferable.
[0017]
As magnesium oxide, what was obtained by baking magnesium hydroxide obtained from magnesite (rhizobite), brucite (water talc), or seawater can be used. As magnesium hydroxide, those obtained by hydrating the above magnesium oxide, those obtained from brucite (water talc), or seawater can be used. As calcium oxide (quick lime), what was obtained by baking calcium carbonate (lime) by a known method can be used. As calcium hydroxide (slaked lime), what was obtained by hydrating (digesting) calcium oxide by a known method can be used. As the dolomite calcined product, a product obtained by firing (calcining) natural dolomite at a temperature of 700 to 1200 ° C. can be used.
[0018]
When suppressing the generation of algae using the method of the present invention, it is first necessary to determine whether the growth limiting factor of the algae in the target freshwater region is nitrogen or phosphorus. .
[0019]
Algae growth limiting factors are measured, for example, by measuring the nitrogen concentration (also referred to as total nitrogen concentration or TN) and phosphorus concentration (also referred to as total phosphorus concentration or TP) in the target region, It can be determined by calculating the ratio (TN / TP). Usually, when TN / TP is 10 or less, the growth limiting factor is nitrogen, and when TN / TP is 17 or more, the growth limiting factor is phosphorus.
[0020]
Algae growth limiting factors are also algae in test water prepared by separately adding a nitrogen-containing compound (for example, sodium nitrate) and a phosphorus-containing compound (for example, dipotassium hydrogen phosphate) to the water in the target area. Can also be determined by comparing the generation amount (this method is generally called the AGP method). In this method, the growth limiting factor is nitrogen when the amount of algae generated in the test water to which the nitrogen-containing compound is added is large, and the growth is restricted when the amount of algae generated in the test water to which the phosphorus-containing compound is added is large. The factor is phosphorus.
[0021]
When it is determined that the growth limiting factor of algae is nitrogen, the pH of the sediment in the target region is in the range of 8.5 to 9.3 (preferably, the range of 8.8 to 9.2). The alkaline earth metal compound is added to the target area. On the other hand, when it is determined that the algal growth limiting factor is phosphorus, the alkaline earth metal compound is adjusted so that the pH of the sediment in the target region is 9.4 or higher (preferably 9.4 to 10). To the target area. There is no restriction | limiting in particular in the addition method of an alkaline-earth metal compound. For example, a solid (powder, granule, or lump) alkaline earth metal compound may be sprayed on the surface of the target area, or a solid alkaline earth metal compound suspension may be applied to the surface of the target area. Or you may inject | pour into the vicinity. Or you may inject | pour the aqueous solution of an alkaline-earth metal compound into the bottom sediment of an object area | region.
[0022]
The amount of the alkaline earth metal compound added to bring the pH of the bottom sediment to a desired range tends to vary depending on the water quality of the target region. For this reason, it is preferable to add the alkaline earth metal compound in parallel with the measurement of the pH of the sediment in the fresh water region.
[0023]
The adjustment of the pH of the sediment by adding an alkaline earth metal compound is preferably performed in a season in which algae grows actively (May to October, particularly July to September), and the algae grows actively. It is more preferable to carry out from before the season (particularly one month or more before). The bottom pH may be adjusted over the course of the year.
[0024]
【Example】
Hereinafter, the present invention will be described with reference to examples.
In this example, the following test bottom mud and test lake water were used.
(1) Test bottom mud The bottom mud sampled from the Shinkawa river in the Kasumigaura basin using an Ekman purge mud collector was used.
(2) The lake water including the blue seawater sampled from the test lake water Yukiyuki lake was used. The pH of the test lake water was 7.3, the dissolved nitrogen concentration (DTN) was 0.588 mg / L, the dissolved phosphorus concentration (DTP) was 0.05 mg / L, and the amount of water was 100 mg / L as SS. Moreover, it was confirmed that Microcytis aeruginosa predominates in the test lake water.
[0025]
[Example 1]
Place the test bottom mud in an amount of about 1 g in dry weight (volume: 0.1 L) for BOD measurement, aerate in advance to saturate the dissolved oxygen amount, then test lake water 0. 1 L was injected. Thereafter, magnesium hydroxide powder was added in an amount of 0 to 700 mg per 1 g of dry weight of the test bottom mud. Then, on standing incubator bottle dark at 25 ° C., and the test mud was stirred for 24 hours using a magnetic stirrer. After the stirring, the pH, DTN (mg / L), and DTP (mg / L) of the stirred product were measured.
[0026]
From the measured values of DTN and DTP, the nitrogen elution amount and phosphorus elution amount per 1 g of dry weight of the bottom mud were calculated by the following formulas (1) and (2).
(1) Nitrogen elution amount (mg / g · 24 hours) = {DTN measured value (mg / L) −0.588 (mg / L)} × 0.1 (L) / dry weight of test bottom mud ( g)
(2) Phosphorus elution amount (mg / g · 24 hours) = {DTP measurement value (mg / L) −0.05 (mg / L) × 0.1 (L) / dry weight of test bottom mud (g )
[0027]
FIG. 1 shows the relationship between the amount of magnesium hydroxide powder added and the pH of the stirred product , and FIG. 2 shows the relationship between the pH of the stirred product and the amount of nitrogen and phosphorus eluted from the bottom mud. In FIG. 2, the horizontal axis represents the pH of the agitated material .
As shown in FIG. 2, in the region where the pH is 8.5 to 9.3, the nitrogen elution amount from the bottom mud is reduced, and in the region where the pH is 9.4 or more, the phosphorus elution amount from the bottom mud. It can be seen that is reduced.
[0028]
【The invention's effect】
By using the method for suppressing the generation of algae according to the present invention, it is possible to efficiently suppress the occurrence of abnormal algae in the fresh water region.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of magnesium hydroxide powder added and the pH of a stirred product measured in Example 1. FIG.
FIG. 2 is a graph showing the relationship between the pH of the stirred product , the amount of nitrogen eluted from the bottom mud, and the amount of phosphorus eluted as measured in Example 1.

Claims (4)

藻類の発生を抑制する対象の淡水領域について、予め窒素制限領域であるかリン制限領域であるかを確認する工程、そして予め窒素制限領域であることが確認された淡水領域に、該領域の底質のpHが8.5〜9.3の範囲となるように、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、水酸化カルシウム、及びドロマイト仮焼物よりなる群から選ばれたアルカリ土類金属化合物を添加することにより底質からの窒素の溶出を抑制することを特徴とする淡水領域での藻類の発生を抑制する方法。 A step of confirming whether the freshwater region is a nitrogen-restricted region or a phosphorus-restricted region in advance , and a freshwater region previously confirmed to be a nitrogen-restricted region is added to the bottom of the region. An alkaline earth metal compound selected from the group consisting of magnesium oxide, magnesium hydroxide, calcium oxide, calcium hydroxide, and dolomite calcined material is added so that the pH of the quality is in the range of 8.5 to 9.3 A method for suppressing the generation of algae in a fresh water region, characterized in that elution of nitrogen from sediment is suppressed. 藻類の発生を抑制する対象の淡水領域について、予め窒素制限領域であるかリン制限領域であるかを確認する工程、そして予めリン制限領域であることが確認された淡水領域に、該領域の底質のpHが9.4以上となるように、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、水酸化カルシウム、及びドロマイト仮焼物よりなる群から選ばれたアルカリ土類金属化合物を添加することにより底質からのリンの溶出を抑制することを特徴とする淡水領域での藻類の発生を抑制する方法。A step of confirming whether the freshwater region is a nitrogen-restricted region or a phosphorus-restricted region in advance, and a freshwater region previously confirmed to be a phosphorus-restricted region is added to the bottom of the region. By adding an alkaline earth metal compound selected from the group consisting of magnesium oxide, magnesium hydroxide, calcium oxide, calcium hydroxide, and dolomite calcined product so that the pH of the quality becomes 9.4 or more A method for suppressing the generation of algae in a fresh water region, characterized by suppressing elution of phosphorus from the water. アルカリ土類金属化合物が水酸化マグネシウムであることを特徴とする請求項1もしくは2に記載の藻類の発生を抑制する方法。The method for suppressing the generation of algae according to claim 1 or 2, wherein the alkaline earth metal compound is magnesium hydroxide. アルカリ土類金属化合物の添加を淡水領域の底質のpHの測定と平行して行なうことを特徴とする請求項1もしくは2に記載の藻類の発生を抑制する方法。The method for suppressing the generation of algae according to claim 1 or 2, wherein the addition of the alkaline earth metal compound is performed in parallel with the measurement of the pH of the sediment in the fresh water region.
JP2003055614A 2003-03-03 2003-03-03 Method for controlling the generation of algae in freshwater areas Expired - Lifetime JP4550366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055614A JP4550366B2 (en) 2003-03-03 2003-03-03 Method for controlling the generation of algae in freshwater areas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055614A JP4550366B2 (en) 2003-03-03 2003-03-03 Method for controlling the generation of algae in freshwater areas

Publications (2)

Publication Number Publication Date
JP2004261732A JP2004261732A (en) 2004-09-24
JP4550366B2 true JP4550366B2 (en) 2010-09-22

Family

ID=33119576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055614A Expired - Lifetime JP4550366B2 (en) 2003-03-03 2003-03-03 Method for controlling the generation of algae in freshwater areas

Country Status (1)

Country Link
JP (1) JP4550366B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4965129B2 (en) * 2006-01-24 2012-07-04 広人 前田 Antifouling agent
JP5094817B2 (en) * 2009-11-09 2012-12-12 中国電力株式会社 How to control the growth of blue sea bream
JP6726146B2 (en) * 2017-09-19 2020-07-22 宇部マテリアルズ株式会社 Red tide control agent and red tide control method using the same
CN109704462B (en) * 2019-02-14 2020-10-23 杭州师范大学 Algae-inhibiting denitrification microorganism combined biological filter and wastewater treatment method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2917096B2 (en) * 1994-07-06 1999-07-12 宇部マテリアルズ株式会社 Water quality and bottom sedimentary malignant improver
JPH11299481A (en) * 1998-04-17 1999-11-02 Nippon Steel Corp Breeding of bacterium oxidizing sulfur and removal of nitrogen from waste water with the bacterium oxidizing sulfur
JP2002018448A (en) * 2000-07-11 2002-01-22 Ebara Corp Method and apparatus for removing phosphorus
JP2002088732A (en) * 2000-09-21 2002-03-27 Ohbayashi Corp Bottom quality improving method
JP2002153898A (en) * 2000-11-20 2002-05-28 Fuji Electric Co Ltd Method of operating sewage treatment facility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2917096B2 (en) * 1994-07-06 1999-07-12 宇部マテリアルズ株式会社 Water quality and bottom sedimentary malignant improver
JPH11299481A (en) * 1998-04-17 1999-11-02 Nippon Steel Corp Breeding of bacterium oxidizing sulfur and removal of nitrogen from waste water with the bacterium oxidizing sulfur
JP2002018448A (en) * 2000-07-11 2002-01-22 Ebara Corp Method and apparatus for removing phosphorus
JP2002088732A (en) * 2000-09-21 2002-03-27 Ohbayashi Corp Bottom quality improving method
JP2002153898A (en) * 2000-11-20 2002-05-28 Fuji Electric Co Ltd Method of operating sewage treatment facility

Also Published As

Publication number Publication date
JP2004261732A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
AU770812B2 (en) Method of high-concentration culture of nitrifying bacteria or denitrifying bacteria contained in activated sludge, culture promoter to be used in high-concentration culture method of nitrifying bacteria, and method of weight loss treatment of activated sludge
EP2064156A1 (en) Product and process for treating water bodies, sediments and soils
US6989266B2 (en) Concrete product containing a mixture of bacillus microbial cells
Bowling Occurrence and possible causes of a severe cyanobacterial bloom in Lake Cargelligo, New South Wales
Alum et al. Cement-based biocide coatings for controlling algal growth in water distribution canals
JP4550366B2 (en) Method for controlling the generation of algae in freshwater areas
SK284452B6 (en) Use of alkaline earth metal peroxides
Markou et al. Water quality of Vistonis Lagoon, Northern Greece: seasonal variation and impact of bottom sediments
US9403706B2 (en) Water treatment composition
JP2020005523A (en) Modification method of culture tank, and cultivation method
JP6776080B2 (en) Bottom sediment improvement material and bottom sediment improvement method
Boyd Silicon, diatoms in aquaculture
JPH0819774A (en) Magnesia type modifier of water quality and bottom material
Cho et al. Effect of calcium peroxide on the growth and proliferation of Microcystis aerusinosa, a water-blooming cyanobacterium
Akköz The determination of some pollution parameters, water quality and heavy metal concentrations of Aci Lake (Karapinar/Konya, Turkey)
Ali et al. Studies on water quality and some heavy metals in hypersaline Mediterranean lagoon (Bardawil lagoon, Egypt)
Klapper Calcite covering of sediment as a possible way of curbing blue-green algae
CN104582491B (en) The selectivity bacteriostasis method of sulfate reducting bacteria, utilize the gypsum compositions of propagation of preceding method inhibiting sulfate reduction bacterium, gypsum curing materials and gypsum construction material
KR20000070119A (en) Use of a calcium carbonate-containing composition as additive to seawater in which marine animals are reared or kept
CN112661275A (en) Blue algae water purifying material for removing natural water eutrophication and eliminating biological compound mixing
KR20060103311A (en) Composition to eliminate red tide
JP4164018B2 (en) Removal method of organic nitrogen compounds accumulated in sediment of closed freshwater area
Okbah et al. Study of nutrient salts, chlorophyll-a and physicochemical condition in El-Mex Bay Water, Alexandria, Egypt
JP4213386B2 (en) Inorganic electrolytic flocculant and method for modifying mud using the inorganic electrolytic flocculant
JP2012023986A (en) Method for inhibiting growth of algae

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

R150 Certificate of patent or registration of utility model

Ref document number: 4550366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term