JP5936774B2 - Waste water treatment method and waste water treatment system - Google Patents

Waste water treatment method and waste water treatment system Download PDF

Info

Publication number
JP5936774B2
JP5936774B2 JP2015522855A JP2015522855A JP5936774B2 JP 5936774 B2 JP5936774 B2 JP 5936774B2 JP 2015522855 A JP2015522855 A JP 2015522855A JP 2015522855 A JP2015522855 A JP 2015522855A JP 5936774 B2 JP5936774 B2 JP 5936774B2
Authority
JP
Japan
Prior art keywords
wastewater
tank
treatment tank
nitrate
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015522855A
Other languages
Japanese (ja)
Other versions
JPWO2014200056A1 (en
Inventor
武夫 圷
武夫 圷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Original Assignee
Mitsubishi Heavy Industries Mechatronics Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Mechatronics Systems Ltd filed Critical Mitsubishi Heavy Industries Mechatronics Systems Ltd
Application granted granted Critical
Publication of JP5936774B2 publication Critical patent/JP5936774B2/en
Publication of JPWO2014200056A1 publication Critical patent/JPWO2014200056A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/002Apparatus and plants for the biological treatment of water, waste water or sewage comprising an initial buffer container
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour

Description

本発明は、工業廃水、生活廃水、し尿などの廃水の処理方法、および廃水処理システムに関する。
本願は、2013年6月13日に、国際出願されたPCT/JP2013/066393号、に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for treating industrial wastewater, domestic wastewater, human waste and other wastewater, and a wastewater treatment system.
This application claims priority on June 13, 2013 based on internationally filed PCT / JP2013 / 066393, the contents of which are incorporated herein by reference.

従来、工業廃水、生活廃水、し尿などの廃水の処理方法として、生物処理が有効であることが知られている。なかでも、活性汚泥法は最も広く採用されている(例えば非特許文献1)。
活性汚泥法は、廃水を曝気槽(好気槽)で曝気し、活性汚泥中の好気性微生物の酸素呼吸により廃水中の有機物(以下、「BOD」という。)を分解して、廃水を処理する方法である。
Conventionally, it is known that biological treatment is effective as a treatment method for wastewater such as industrial wastewater, domestic wastewater, and human waste. Among these, the activated sludge method is most widely adopted (for example, Non-Patent Document 1).
In the activated sludge method, waste water is aerated in an aeration tank (aerobic tank), and organic matter (hereinafter referred to as “BOD”) in the waste water is decomposed by oxygen respiration of aerobic microorganisms in the activated sludge to treat the waste water. It is a method to do.

廃水には、BOD以外にも、有機態窒素(例えばタンパク質、アミノ酸、尿素等)、アンモニア態窒素、亜硝酸態窒素、硝酸態窒素などの窒素や、リンが含まれている場合があり、これらを除去する必要があるケースもある。
BOD、窒素、リンが含まれている廃水を処理する方法としては、代謝が異なる微生物を運転条件の異なる槽において処理する方法である硝化脱窒法、嫌気・好気法(AO法)、嫌気・無酸素・好気法(A2O法)、嫌気・硝化内生脱窒法(AOAO法)などが知られている(例えば非特許文献2)。
また、BOD、窒素が含まれている廃水を処理する方法としては、溶存酸素濃度を1mg/L以下に制御し、代謝の異なる微生物を単一槽において処理する方法が提案されている(例えば特許文献1、2)。
In addition to BOD, wastewater may contain organic nitrogen (eg, proteins, amino acids, urea, etc.), nitrogen such as ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, and phosphorus. In some cases, it is necessary to remove the.
Methods for treating wastewater containing BOD, nitrogen, and phosphorus include nitrification denitrification, anaerobic / aerobic (AO), anaerobic, An anaerobic / aerobic method (A2O method), anaerobic / nitrification endogenous denitrification method (AOAO method) and the like are known (for example, Non-Patent Document 2).
Further, as a method for treating waste water containing BOD and nitrogen, a method has been proposed in which the dissolved oxygen concentration is controlled to 1 mg / L or less and microorganisms having different metabolism are treated in a single tank (for example, patents). References 1, 2).

また、処理槽の能力増強技術として、担体法、接触酸化法、揺動床法などの生物膜処理法が知られている。生物膜処理法は、人工のろ材(例えば担体、ろ床、揺動床等)に曝気槽内微生物を付着させ、曝気槽内の微生物数を増やすことで、処理能力増強を図る技術である。   In addition, biofilm treatment methods such as a carrier method, a catalytic oxidation method, and a rocking bed method are known as techniques for enhancing the capacity of the treatment tank. The biofilm treatment method is a technique for enhancing treatment capacity by attaching microorganisms in an aeration tank to an artificial filter medium (for example, a carrier, a filter bed, a rocking bed, etc.) and increasing the number of microorganisms in the aeration tank.

ところで、活性汚泥中の細菌は水中において細胞外多糖(Extra cellular polysaccharides, EPS)を産生し、他の細菌・微生物も含めて特徴ある構造が形作られること(バイオフィルムの形成)が知られている(例えば非特許文献3)。バイオフィルムの特徴の一例を下記に示す。
(i)バイオフィルム中のEPSは微生物により産生されるので、その組成、すなわち、物理的・化学的性質はさまざまに変化する。
(ii)バイオフィルム内では、周りの環境と比べ、桁違いに高密度で(棲息密度の高い閉鎖的コロニーが形成される)微生物が棲息し、恒常性(微生物において、その内部環境を一定の状態に保つ働き)が保たれ易くなる。
(iii)バイオフィルム内の酸素濃度やイオン濃度は、水チャネルからの距離、バイオフィルム表面からの距離で異なり、μmオーダーで酸素濃度勾配やイオン濃度勾配を形成している。そのため、多様なニッチ(生態的地位)が生み出され、異なった代謝系の微生物(例えば好気性微生物と嫌気性微生物など)のμmオーダーレベルでの棲み分けが可能となる。
(iv)バイオフィルムは内部の微生物の薬剤に対する抵抗性を上昇させたり、重金属や有機溶媒の毒性からの保護性を高めたりするなど、さまざまな刺激に対する微生物の防護・保護機能も有する。
(v)バイオフィルム内では、多種類の微生物が代謝産物、エネルギー、情報を互いにやり取りし、単独の微生物にはない機能を生み出す(単一種では代謝しないものも代謝可能となるなど)と同時に、多種多様な環境変化にも対応可能となる。
(vi)バイオフィルム内部の微生物は、表面の微生物に比べ増殖速度が小さい。
(vii)細菌は、例えば窒素・リンなどの栄養不足状態、酸素不足などのストレスを受けると、EPSの生産量が増加する。
By the way, bacteria in activated sludge produce extracellular polysaccharides (EPS) in water, and it is known that characteristic structures including other bacteria and microorganisms are formed (formation of biofilm). (For example, nonpatent literature 3). An example of the characteristics of the biofilm is shown below.
(I) Since EPS in a biofilm is produced by microorganisms, its composition, that is, physical and chemical properties, varies in various ways.
(Ii) In the biofilm, microorganisms are inhabiting at an extremely high density (a closed colony with a high density of inhabitants is formed) in comparison with the surrounding environment, and homeostasis (in the microorganism, the internal environment is constant. The function of maintaining the state) is easily maintained.
(Iii) The oxygen concentration and ion concentration in the biofilm differ depending on the distance from the water channel and the distance from the biofilm surface, and form an oxygen concentration gradient and ion concentration gradient on the order of μm. Therefore, various niches (ecologic status) are created, and it becomes possible to sort microorganisms of different metabolic systems (for example, aerobic microorganisms and anaerobic microorganisms) on the order of μm.
(Iv) Biofilms also have a function of protecting and protecting microorganisms against various stimuli, such as increasing the resistance of internal microorganisms to drugs and increasing the protection from the toxicity of heavy metals and organic solvents.
(V) Within a biofilm, many types of microorganisms exchange metabolites, energy, and information with each other to create functions not found in a single microorganism (such as those that cannot be metabolized by a single species). It is possible to cope with various environmental changes.
(Vi) Microorganisms inside the biofilm have a lower growth rate than surface microorganisms.
(Vii) When the bacteria are subjected to stress such as nutrient deficiency such as nitrogen and phosphorus and oxygen deficiency, the production of EPS increases.

「活性汚泥法の改善増強技術」、1979年11月1日、科学技術開発センター発行、第1章活性汚泥法の改善対策、1−1〜1−3頁"Technology for enhancing activated sludge process", November 1, 1979, published by Science and Technology Development Center, Chapter 1 Measures for improving activated sludge process, pages 1-1 to 1-3 建設省都市局下水道部監修「下水道施設計画・設計指針と解説 後編 1994年版」、平成6年10月25日、社団法人日本下水道協会発行、第5章水処理施設、126〜139頁Supervised by the Sewerage Department, City Bureau, Ministry of Construction "Sewerage Facility Planning and Design Guidelines and Explanation, Part 1994", October 25, 1994, Japan Sewerage Association, Chapter 5, Water Treatment Facilities, pages 126-139 「バイオフィルム入門−環境の世紀の新しい微生物像−」、2005年10月17日、日本微生物生態学会 バイオフィルム研究部会、I章微生物の棲み場所としてのバイオフィルム、I章1〜10頁“Introduction to Biofilms-New Microorganisms in the Century of the Environment”, October 17, 2005, Japanese Society for Microbiological Ecology, Biofilm Research Group, Chapter I Biofilms as a place for microbiology, Chapters 1-10

特開昭59−90696号公報JP 59-90696 A 特開2011−5354号公報JP 2011-5354 A

しかしながら、活性汚泥法の場合、通常、曝気槽のBOD容積負荷を0.3〜0.8kg−BOD/m・d程度、溶存酸素濃度を1〜2mg/L程度で運転管理するため、曝気槽容量を大きくし、多量の空気(酸素)供給が必要であり、ブロワ等の電力消費が大きい。しかも、活性汚泥法では、大量の余剰汚泥が発生し、余剰汚泥の処理費用(脱水費用・乾燥費用・産廃処分費用など)も嵩む。
また、活性汚泥法では、形成されたフロックの内部や曝気槽の撹拌が行き届かないデッドスペースなどの嫌気部分において、嫌気性微生物の呼吸(硫酸塩呼吸)や発酵により少量のBODが分解される。この時、有機酸、アルコール、硫化水素など、臭気の原因となる物質が発生する。
さらに、活性汚泥法では、急激な負荷変動(特に上昇)や、廃水中にBOD成分変化などにより、曝気槽の溶存酸素濃度が低くなった場合などにおいて、バルキングが起こることがある。一旦、バルキングが発生すると汚泥が沈殿しにくくなり、曝気槽下流に位置する沈殿槽にて、処理水を汚泥と固液分離するのが困難となる。
However, in the case of the activated sludge method, since the BOD volume load of the aeration tank is usually controlled at about 0.3 to 0.8 kg-BOD / m 3 · d and the dissolved oxygen concentration is about 1 to 2 mg / L, aeration is performed. The tank capacity is increased, a large amount of air (oxygen) supply is required, and power consumption of the blower and the like is large. Moreover, in the activated sludge method, a large amount of excess sludge is generated, and the treatment costs of the excess sludge (dehydration costs, drying costs, industrial waste disposal costs, etc.) increase.
In the activated sludge method, a small amount of BOD is decomposed by respiration (sulfate respiration) or fermentation of anaerobic microorganisms in an anaerobic part such as the inside of the formed floc and a dead space where the aeration tank cannot be stirred. . At this time, substances that cause odor, such as organic acids, alcohols, and hydrogen sulfide, are generated.
Furthermore, in the activated sludge method, bulking may occur when the dissolved oxygen concentration in the aeration tank becomes low due to rapid load fluctuations (particularly rising) or BOD component changes in the wastewater. Once bulking occurs, it becomes difficult for the sludge to settle, and it becomes difficult to separate the treated water from the sludge in the sedimentation tank located downstream of the aeration tank.

硝化脱窒法、AO法、A2O法、AOAO法などにより廃水を処理する場合、BOD、窒素、リンを処理する微生物の代謝(呼吸)が異なるため、これらを全て処理するためには、処理槽として嫌気槽、無酸素槽、好気槽が必要となる。そのため、処理槽の設置面積が大きくなり、運転管理が煩雑になる。
また、特許文献1、2に記載の溶存酸素濃度1mg/L以下での生物処理方法では、原水条件や運転条件の小さな変化により、処理性が崩れやすく、処理性維持と運転継続が困難であった。さらに特許文献1、2に記載の方法では、単一槽においてBODと窒素の処理について記載されているが、BODに対して窒素の量が少ない、或いは含まれていない廃水の処理については、記載されていない。また、リンも含まれる場合の単一槽におけるBOD、窒素、リンの同時除去については、記載されていない。
また、生物膜処理法は、ろ材(固定床、流動担体、揺動繊維ろ材など)に処理槽中の微生物を付着させることにより処理槽中の微生物量を増加させることで処理性を増強できる。しかし、1つのろ材に異なる代謝の微生物を付着したとしてもその処理槽が好気槽であれば、嫌気性の微生物数の作用を同時に増強することは困難である。そのため、BOD、窒素、リンが含まれている廃水を処理する場合、生物膜処理法を採用することで各処理槽の容量を小さくすることはできても、処理槽の数を減らすことはできない。
When treating wastewater by the nitrification denitrification method, AO method, A2O method, AOAO method, etc., the metabolism (breathing) of microorganisms that treat BOD, nitrogen, and phosphorus is different. An anaerobic tank, an oxygen-free tank, and an aerobic tank are needed. Therefore, the installation area of a processing tank becomes large and operation management becomes complicated.
In addition, in the biological treatment methods described in Patent Documents 1 and 2 at a dissolved oxygen concentration of 1 mg / L or less, the processability tends to be lost due to small changes in raw water conditions and operating conditions, and it is difficult to maintain the processability and continue the operation. It was. Furthermore, in the methods described in Patent Documents 1 and 2, the treatment of BOD and nitrogen is described in a single tank, but the treatment of waste water that contains little or no nitrogen relative to BOD is described. It has not been. Moreover, it does not describe about simultaneous removal of BOD, nitrogen, and phosphorus in a single tank when phosphorus is also included.
In addition, the biofilm treatment method can enhance the processability by increasing the amount of microorganisms in the treatment tank by adhering microorganisms in the treatment tank to the filter medium (fixed bed, fluid carrier, rocking fiber filter medium, etc.). However, even if microorganisms of different metabolism are attached to one filter medium, if the treatment tank is an aerobic tank, it is difficult to simultaneously enhance the action of the number of anaerobic microorganisms. Therefore, when treating wastewater containing BOD, nitrogen, phosphorus, the number of treatment tanks cannot be reduced even though the capacity of each treatment tank can be reduced by adopting the biofilm treatment method. .

また、従来の水処理技術において、上述したバイオフィルムの特徴の中でも微生物の凝集性、高密度保持性などは、活性汚泥法や生物膜処理法に利用されてきたが、代謝の異なる微生物の共生を利用した水処理技術は存在しない。   In the conventional water treatment technology, among the characteristics of the biofilm described above, microbial cohesion and high density retention have been used in the activated sludge method and the biofilm treatment method. There is no water treatment technology using

本発明は、上記事情に鑑みてなされたものであり、BODを含む廃水を処理する場合、処理能力の増強、消費電力および余剰汚泥量の削減、臭気発生およびバルキングの抑制を同時に達成でき、しかも安定した運転の継続と処理性維持が可能である廃水の処理方法、および廃水処理システムを提供することを目的とする。
また、BODを含み、かつ窒素およびリンのいずれかまたはその両方を含む廃水を処理する場合でも、単一の処理槽で処理できる廃水の処理方法、および廃水処理システムを提供することを目的とする。
The present invention has been made in view of the above circumstances, and when treating wastewater containing BOD, it is possible to simultaneously achieve enhancement of treatment capacity, reduction of power consumption and excess sludge amount, suppression of odor generation and bulking, An object of the present invention is to provide a wastewater treatment method and a wastewater treatment system capable of continuing stable operation and maintaining the treatment performance.
Another object of the present invention is to provide a wastewater treatment method and a wastewater treatment system that can be treated in a single treatment tank even when treating wastewater containing BOD and containing either or both of nitrogen and phosphorus. .

本発明では、微生物に産生されるEPSによって構成されるバイオフィルム(微生物の共同体)に着目した。ここで、生物処理槽内におけるバイオフィルムとは、処理槽壁面などの固体表面と水が接する部分に形成されるもののみを指すのではなく、処理槽内液中全体的に形成されるものも指し、後者は処理槽内で浮遊分散状態にある。
バイオフィルム内では、異なった代謝系の微生物(例えば好気性微生物と嫌気性微生物など)が共生可能となることから、バイオフィルムを利用すれば、1つの処理槽でもBOD、窒素、リンの全てを同時に処理できるとの着想に至った。
また、生物処理槽内において、代謝の異なる微生物を効果的に共生させるバイオフィルムとしては、標準活性汚泥法で微生物がストレスを感じた時に産生し、粘性バルキングの原因になる粘性の高いEPSによって構成されるバイオフィルムよりも、微生物が硝酸塩呼吸時に産生するEPSによって構成されるバイオフィルム(以下「硝酸塩呼吸時のバイオフィルム」という。)の方が適していることを発見した。
さらに溶存酸素濃度1mg/L以下での処理性維持は、原水条件や運転条件の小さな変化に対応することが困難であったが、硝酸塩及びアルカリの添加により、原水条件や運転条件の大きな変動に対しても安定した運転の継続と処理性維持が可能となることを見出し、本発明を完成するに至った。
In the present invention, attention is paid to a biofilm (a community of microorganisms) composed of EPS produced by microorganisms. Here, the biofilm in the biological treatment tank refers not only to a part formed on the surface where the solid surface such as the wall of the treatment tank is in contact with water but also to a whole formed in the liquid in the treatment tank. The latter is in a floating dispersion state in the treatment tank.
In biofilms, microorganisms of different metabolic systems (for example, aerobic microorganisms and anaerobic microorganisms) can coexist, so if biofilm is used, all of BOD, nitrogen and phosphorus can be obtained in one treatment tank. The idea was that it could be processed at the same time.
In addition, biofilms that effectively coexist with microorganisms with different metabolisms in biological treatment tanks are composed of highly viscous EPS that is produced when microorganisms feel stress in the standard activated sludge method and causes viscous bulking. It was discovered that a biofilm composed of EPS produced by microorganisms during nitrate respiration (hereinafter referred to as “biofilm during nitrate respiration”) is more suitable than a biofilm to be produced.
Furthermore, it was difficult to maintain treatability at a dissolved oxygen concentration of 1 mg / L or less, but it was difficult to cope with small changes in raw water conditions and operating conditions. However, the addition of nitrate and alkali greatly changed raw water conditions and operating conditions. In contrast, the present inventors have found that stable operation can be continued and processability can be maintained, and the present invention has been completed.

すなわち、本発明は以下の態様を有する。
[1] 有機物を含有する廃水を生物処理する生物処理槽中の酸化還元電位を±0mV以上、および溶存酸素濃度を1mg/L以下となるように前記生物処理槽において前記廃水を曝気する、廃水の処理方法において、前記廃水または前記生物処理槽へ、硝酸塩を添加し脱窒反応を活性化させ、アルカリを添加し硝化反応を活性化させ、前記生物処理槽内の代謝に必要な量の窒素が循環する状態にすることにより、前記廃水中の有機物を分解し、前記生物処理槽中に、脱窒菌、窒素固定菌、硝化菌がいる、廃水の処理方法。
] 前記生物処理槽では、前記脱窒菌により、廃水中のBODを分解して亜硝酸イオン(NO )、硝酸イオン(NO )から窒素ガス(N)を生成する脱窒反応と、前記窒素固定菌により、前記窒素ガス(N)からアンモニア(NH)を生成する窒素固定反応と、前記アンモニアは処理液中でアンモニウムイオン(NH )となり、前記硝化菌により、前記アンモニウムイオン(NH )から亜硝酸イオン(NO )、硝酸イオン(NO )を生成する硝化反応とが並行して行われ、前記生物処理槽内で窒素(N)が循環利用される、[]に記載の廃水の処理方法。
有機物を含有する廃水を生物処理する生物処理槽中の酸化還元電位を±0mV以上、および溶存酸素濃度を1mg/L以下となるように前記生物処理槽において前記廃水を曝気する、廃水処理システムであって、
前記廃水を生物処理するとともに内部に脱窒菌、窒素固定菌、硝化菌がいる前記生物処理槽と、前記廃水または前記生物処理槽へ脱窒反応を活性化する硝酸塩を添加する硝酸塩添加手段と、前記廃水または前記生物処理槽へ硝化反応を活性化するアルカリを添加するアルカリ添加手段とを備え、前記生物処理槽内の代謝に必要な量の窒素が循環する状態にすることにより、前記廃水中の有機物を分解する、単一槽の処理槽で処理できる廃水処理システム。
That is, this invention has the following aspects.
[1] Waste water for aeration of the waste water in the biological treatment tank so that the oxidation-reduction potential in the biological treatment tank for biological treatment of waste water containing organic matter is ± 0 mV or more and the dissolved oxygen concentration is 1 mg / L or less. in the processing method, the to waste water or the biological treatment tank, nitrate activate the denitrification reaction by adding, to activate the added alkali nitrification, the amount of nitrogen needed for metabolism of the biological treatment tank A method for treating wastewater, in which organic matter in the wastewater is decomposed by bringing it into a circulating state, and there are denitrifying bacteria, nitrogen-fixing bacteria, and nitrifying bacteria in the biological treatment tank .
[ 2 ] In the biological treatment tank, the denitrification bacteria decomposes the BOD in the wastewater to generate nitrogen gas (N 2 ) from nitrite ions (NO 2 ) and nitrate ions (NO 3 ). Reaction, a nitrogen fixation reaction that generates ammonia (NH 3 ) from the nitrogen gas (N 2 ) by the nitrogen-fixing bacteria, and the ammonia becomes ammonium ions (NH 4 + ) in the treatment liquid, and the nitrifying bacteria , A nitrification reaction that generates nitrite ions (NO 2 ) and nitrate ions (NO 3 ) from the ammonium ions (NH 4 + ) is performed in parallel, and nitrogen (N) is generated in the biological treatment tank. The method for treating wastewater according to [ 1 ], wherein the wastewater is recycled.
[ 3 ] Wastewater for aeration of the wastewater in the biological treatment tank so that the oxidation-reduction potential in the biological treatment tank for biologically treating the wastewater containing organic matter is ± 0 mV or more and the dissolved oxygen concentration is 1 mg / L or less. A processing system,
Biological treatment of the wastewater and the biological treatment tank having denitrifying bacteria, nitrogen-fixing bacteria, and nitrifying bacteria therein, and nitrate addition means for adding nitrate for activating a denitrification reaction to the wastewater or the biological treatment tank; An alkali addition means for adding an alkali that activates the nitrification reaction to the wastewater or the biological treatment tank, and by making the amount of nitrogen necessary for metabolism in the biological treatment tank circulate, Wastewater treatment system that decomposes organic matter in a single tank.

本発明の廃水の処理方法、および廃水処理システムによれば、BODを含む廃水を処理する場合、処理能力の増強、消費電力および余剰汚泥量の削減、臭気発生およびバルキングの抑制を同時に達成でき、しかも安定した運転の継続と処理性維持が可能である。
また、本発明の廃水の処理方法、および廃水処理システムによれば、BODを含み、かつ窒素およびリンのいずれかまたはその両方を含む廃水を処理する場合でも、単一の処理槽で処理できる。
また、既存の活性汚泥法を用いた設備であれば、運転しながら(処理性を維持しながら)の転換が可能である。
According to the wastewater treatment method and wastewater treatment system of the present invention, when treating wastewater containing BOD, it is possible to simultaneously achieve treatment capacity enhancement, power consumption and reduction of excess sludge, odor generation and bulking suppression, In addition, stable operation can be continued and processability can be maintained.
Moreover, according to the wastewater treatment method and wastewater treatment system of the present invention, even when wastewater containing BOD and containing either or both of nitrogen and phosphorus can be treated in a single treatment tank.
Moreover, if it is the installation using the existing activated sludge method, conversion while operating (maintaining processability) is possible.

本発明の廃水処理システムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the wastewater treatment system of this invention. 廃水が生物処理されるメカニズムを示すチャートである。It is a chart which shows the mechanism by which wastewater is biologically processed.

以下、図面を参照しながら説明する。
図1は、本発明の廃水処理システムの一例を示す概略構成図である。この例の廃水処理システム1は、調整槽10と、生物処理槽(以下、単に「処理槽」ともいう。)20と、沈殿槽30と、硝酸塩添加手段41と、アルカリ添加手段42と、廃水流路51と、移送流路52と、処理水流路53と、余剰汚泥流路54と、返送汚泥流路55とを具備する。
Hereinafter, description will be given with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an example of a wastewater treatment system of the present invention. The wastewater treatment system 1 of this example includes an adjustment tank 10, a biological treatment tank (hereinafter also simply referred to as "treatment tank") 20, a precipitation tank 30, a nitrate addition means 41, an alkali addition means 42, and wastewater. A flow path 51, a transfer flow path 52, a treated water flow path 53, an excess sludge flow path 54, and a return sludge flow path 55 are provided.

調整槽10は、廃水の流量等を調整する槽であり、廃水を貯留する槽本体11と、廃水を処理槽20に供給するポンプ12とを備える。
槽本体11としては、廃水を貯留できるものであれば特に制限されないが、例えば廃水タンクなどが挙げられる。
The adjustment tank 10 is a tank that adjusts the flow rate of waste water and the like, and includes a tank body 11 that stores the waste water and a pump 12 that supplies the waste water to the treatment tank 20.
The tank body 11 is not particularly limited as long as it can store wastewater, and examples thereof include a wastewater tank.

処理槽20は、調整槽10から供給された廃水を生物処理する槽であり、廃水を貯留する槽本体21と、空気を供給し処理槽内を曝気する曝気手段22とを備える。
曝気手段22は、散気装置22aと、ブロア22bと、空気供給管22cと、マノメータ22dと、流量計22eとを備える。散気装置22aは、槽本体21の底部に配置されている。ブロア22bは、散気装置22aに空気を供給する。空気供給管22cは、散気装置22aとブロア22bとを接続している。マノメータ22dおよび流量計22eは、散気装置22aとブロア22bとの間に設けられている。
槽本体21としては、廃水を貯留できるものであれば特に制限されないが、硝酸塩やアルカリによって劣化しにくい材質のものが好ましい。
曝気手段22としては、廃水を曝気できるものであれば特に制限されず、例えば公知の曝気装置などを用いることができる。
The treatment tank 20 is a tank that biologically treats the wastewater supplied from the adjustment tank 10 and includes a tank body 21 that stores the wastewater and aeration means 22 that supplies air and aerates the inside of the treatment tank.
The aeration means 22 includes an air diffuser 22a, a blower 22b, an air supply pipe 22c, a manometer 22d, and a flow meter 22e. The air diffuser 22 a is disposed at the bottom of the tank body 21. The blower 22b supplies air to the air diffuser 22a. The air supply pipe 22c connects the air diffuser 22a and the blower 22b. The manometer 22d and the flow meter 22e are provided between the air diffuser 22a and the blower 22b.
The tank body 21 is not particularly limited as long as it can store wastewater, but is preferably made of a material that is not easily deteriorated by nitrate or alkali.
The aeration means 22 is not particularly limited as long as it can aerate wastewater, and for example, a known aeration apparatus can be used.

沈殿槽30は、処理槽20にて廃水を生物処理して得られる処理水と汚泥(微生物群)とを固液分離する槽であり、処理水および汚泥を貯留する槽本体31と、分離された汚泥を掻き寄せる掻き寄せ機32と、汚泥の一部を処理槽20に返送するポンプ33とを備える。
槽本体31の構造については特に制限されない。
掻き寄せ機32としては、汚泥を掻き寄せることができるものであれば、特に制限されない。
The sedimentation tank 30 is a tank for solid-liquid separation of treated water obtained by biological treatment of wastewater in the treatment tank 20 and sludge (microorganism group), and is separated from a tank body 31 for storing treated water and sludge. A scraper 32 for scraping the sludge and a pump 33 for returning a part of the sludge to the treatment tank 20.
The structure of the tank body 31 is not particularly limited.
The scraper 32 is not particularly limited as long as it can scrape sludge.

この例の硝酸塩添加手段41は、処理槽20において廃水に硝酸塩をバッチ或いは連続で添加する手段である。
硝酸塩添加手段41としては、廃水に硝酸塩を添加できるものであれば特に制限されない。
The nitrate addition means 41 in this example is a means for adding nitrate to the wastewater batchwise or continuously in the treatment tank 20.
The nitrate addition means 41 is not particularly limited as long as nitrate can be added to wastewater.

この例のアルカリ添加手段42は、処理槽20において廃水にアルカリをバッチ或いは連続で添加する手段である。
アルカリ添加手段42としては、廃水にアルカリを添加できるものであれば特に制限されない。
The alkali addition means 42 in this example is a means for adding alkali to the wastewater batchwise or continuously in the treatment tank 20.
The alkali adding means 42 is not particularly limited as long as alkali can be added to wastewater.

廃水流路51は、廃水が調整槽10から処理槽20へ供給される流路である。
移送流路52は、処理槽20にて生物処理された処理水と汚泥の混合液が、処理槽20から沈殿槽30へ移送される流路である。
処理水流路53は、沈殿槽30にて固液分離された処理水が、沈殿槽30から系外へ排出される流路である。
余剰汚泥流路54は、沈殿槽30にて固液分離された汚泥の一部が、余剰汚泥として沈殿槽30から系外へ排出される流路である。
返送汚泥流路55は、沈殿槽30にて固液分離された汚泥の一部が、返送汚泥として沈殿槽30から処理槽20へ返送される流路である。
The waste water channel 51 is a channel through which waste water is supplied from the adjustment tank 10 to the treatment tank 20.
The transfer channel 52 is a channel through which a mixed solution of treated water and sludge that has been biologically treated in the treatment tank 20 is transferred from the treatment tank 20 to the sedimentation tank 30.
The treated water channel 53 is a channel through which treated water that has been separated into solid and liquid in the settling tank 30 is discharged from the settling tank 30 to the outside of the system.
The surplus sludge channel 54 is a channel through which a part of the sludge separated into solid and liquid in the settling tank 30 is discharged from the settling tank 30 to the outside as surplus sludge.
The return sludge flow path 55 is a flow path in which a part of the sludge separated into solid and liquid in the settling tank 30 is returned from the settling tank 30 to the treatment tank 20 as return sludge.

図1に示す廃水処理システム1を用いた廃水の処理方法は、下記の工程(a)〜(c)を有する。
工程(a):調整槽10にて廃水の流量や濃度を均一化する工程。
工程(b):調整槽10から供給された廃水を処理槽20にて生物処理する工程。
工程(c):沈殿槽30にて、処理水と汚泥の混液を処理水と汚泥とに固液分離する工程。
The wastewater treatment method using the wastewater treatment system 1 shown in FIG. 1 includes the following steps (a) to (c).
Step (a): A step of making the flow rate and concentration of wastewater uniform in the adjustment tank 10.
Step (b): A step of biologically treating the wastewater supplied from the adjustment tank 10 in the treatment tank 20.
Step (c): A step of solid-liquid separation of the mixed liquid of treated water and sludge into treated water and sludge in the precipitation tank 30.

<廃水>
本発明において処理される廃水としては、有機性廃水であれば特に限定されず、工業廃水、生活廃水、し尿などが挙げられる。また、廃水には、BODのほかに、窒素、リンなどが含まれていてもよい。
<Waste water>
The wastewater to be treated in the present invention is not particularly limited as long as it is organic wastewater, and examples thereof include industrial wastewater, domestic wastewater, and human waste. In addition, the wastewater may contain nitrogen, phosphorus, etc. in addition to BOD.

<工程(a)>
工程(a)では、調整槽10にて廃水の流量や負荷成分および負荷濃度をできるだけ均一化する。
<Process (a)>
In step (a), the flow rate, load component, and load concentration of wastewater are made as uniform as possible in the adjustment tank 10.

<工程(b)>
工程(b)では、廃水に硝酸塩添加手段41より硝酸塩を添加し、アルカリ添加手段42よりアルカリを添加する。さらに、硝酸塩およびアルカリが添加された廃水を処理槽20において酸化還元電位を±0mV以上、溶存酸素濃度(DO)を1mg/L以下となるように、曝気手段22にて曝気する(以下、「低曝気」ともいう。)。これにより、廃水が生物処理される。廃水が生物処理されるメカニズムを、図2を参照しながら説明する。
なお、酸化還元電位は、酸化還元電位計(例えば株式会社堀場製作所製の「D−13」)を用い、液温25℃で測定される。溶存酸素濃度は、溶存酸素濃度計(例えば株式会社堀場製作所製の「OM−51」)を用い、液温25℃で測定される。
<Step (b)>
In the step (b), nitrate is added to the wastewater from the nitrate addition means 41, and alkali is added from the alkali addition means 42. Further, the wastewater to which nitrate and alkali are added is aerated by the aeration means 22 in the treatment tank 20 so that the redox potential is ± 0 mV or more and the dissolved oxygen concentration (DO) is 1 mg / L or less (hereinafter, “ Also called “low aeration”.) Thereby, the waste water is biologically treated. The mechanism by which wastewater is biologically treated will be described with reference to FIG.
The oxidation-reduction potential is measured at a liquid temperature of 25 ° C. using an oxidation-reduction potentiometer (for example, “D-13” manufactured by Horiba, Ltd.). The dissolved oxygen concentration is measured at a liquid temperature of 25 ° C. using a dissolved oxygen concentration meter (for example, “OM-51” manufactured by Horiba, Ltd.).

本発明において、廃水の生物処理は、下記4段階により達成される。代謝の活性化(活性汚泥法からの転換の場合は、代謝経路の変換)は、大きく分けて下記の第1段階〜第3段階の3段階から成る。図2では、下記の前段階として、活性汚泥法である好気処理を設けた例となっているが、本発明は、好気処理がない場合も成り立つ。
第1段階:脱窒反応の活性化(活性汚泥法からの転換の場合には、酸素呼吸から硝酸塩呼吸への誘導)
第2段階:窒素固定反応の活性化
第3段階:硝化反応の活性化
In the present invention, biological treatment of wastewater is achieved by the following four stages. Metabolic activation (in the case of conversion from the activated sludge method, conversion of the metabolic pathway) is roughly divided into the following three stages: the first stage to the third stage. FIG. 2 shows an example in which an aerobic treatment that is an activated sludge method is provided as the following pre-stage, but the present invention also holds when there is no aerobic treatment.
First stage: Activation of denitrification reaction (in the case of conversion from activated sludge method, induction from oxygen respiration to nitrate respiration)
2nd stage: Activation of nitrogen fixation reaction 3rd stage: Activation of nitrification reaction

脱窒反応が活性化(硝酸塩呼吸による脱窒)されると(活性汚泥法からの転換の場合には、代謝経路が酸素呼吸から硝酸塩呼吸へ移行されると)、下記の第4段階により第1段階〜第3段階の反応は同時並行的に進行する。
第4段階:硝酸塩呼吸時に形成された硝酸塩呼吸時のバイオフィルムでの微生物の共生(生体間の共生)
When the denitrification reaction is activated (denitrification by nitrate respiration) (in the case of conversion from the activated sludge method, the metabolic pathway is shifted from oxygen respiration to nitrate respiration), The reaction from the first stage to the third stage proceeds in parallel.
Stage 4: Microbiological symbiosis in the biofilm during nitrate respiration (symbiosis between living organisms)

(前段階)
活性汚泥法では、大半の部分が好気雰囲気であり、微生物はBODの分解を酸素呼吸により行っている。ただし、フロックの内部などのごく一部の嫌気部分では、硫酸塩呼吸や発酵などによりBODが分解される。
(第1段階)
廃水に硝酸塩を添加し、処理槽中の酸化還元電位を±0mV以上、溶存酸素濃度を1mg/L以下となるように曝気すると、処理槽内の微生物は、硝酸塩呼吸により廃水中のBODを分解する(廃水中のBODを有機炭素源とした脱窒反応活性化)。
活性汚泥法から転換する場合には、廃水に硝酸塩を添加し、処理槽中の酸化還元電位を±0mV以上、溶存酸素濃度を1mg/L以下となるように曝気を変更すると、酸素呼吸から硝酸塩呼吸へ誘導される。具体的には、大部分である好気部分の微生物は、酸素呼吸から硝酸塩呼吸へ誘導され、ごく一部の嫌気部分の微生物は、硫酸塩呼吸および発酵から硝酸塩呼吸へ誘導される。
(Previous stage)
In the activated sludge method, most of the parts are in an aerobic atmosphere, and the microorganisms decompose BOD by oxygen respiration. However, in a small part of the anaerobic part such as the inside of the floc, BOD is decomposed by sulfate respiration or fermentation.
(First stage)
When nitrate is added to the wastewater and aeration is performed such that the oxidation-reduction potential in the treatment tank is ± 0 mV or more and the dissolved oxygen concentration is 1 mg / L or less, the microorganisms in the treatment tank decompose BOD in the wastewater by nitrate respiration. (Denitrification reaction activation using BOD in wastewater as organic carbon source).
When converting from the activated sludge method, nitrate is added to the wastewater, and the aeration is changed so that the redox potential in the treatment tank is ± 0 mV or more and the dissolved oxygen concentration is 1 mg / L or less. Induced to breathing. Specifically, most of the aerobic microorganisms are induced from oxygen respiration to nitrate respiration, and a small portion of the anaerobic microorganisms are induced from sulfate respiration and fermentation to nitrate respiration.

硝酸塩呼吸を行う(硝酸塩呼吸に誘導された)微生物(脱窒菌など)は、図2に示すように、BODを分解して亜硝酸イオン(NO )や硝酸イオン(NO )から窒素ガス(N)を生成する(脱窒反応)。このとき、アルカリ(炭酸(HCO)、炭酸水素イオン(HCO )など)も生成され、後述する硝酸塩呼吸時のバイオフィルムも形成される。
前記脱窒菌としては、Flavobacteriaceae,Sphingobacteriaceae,Rhodocyclaceae,Flexibacteraceae, Comamonadaceaeなどに属するものがある。
なお、菌によっては、BODを分解するとともに、専ら、亜硝酸イオン(NO )から窒素ガス(N)を生成するものもある。
As shown in FIG. 2, microorganisms that perform nitrate respiration (induced by nitrate respiration), such as denitrifying bacteria, decompose BOD to form nitrogen from nitrite ions (NO 2 ) and nitrate ions (NO 3 ). Gas (N 2 ) is generated (denitrification reaction). At this time, alkali (carbonic acid (H 2 CO 3 ), hydrogen carbonate ion (HCO 3 ), etc.) is also generated, and a biofilm during nitrate respiration described later is also formed.
Examples of the denitrifying bacteria include those belonging to Flavobacteriaceae, Sphingobacteriaceae, Rhodocyclaceae, Flexibacteraceae, Comamonadaceae and the like.
Some bacteria decompose BOD and generate nitrogen gas (N 2 ) exclusively from nitrite ions (NO 2 ).

(第2段階)
脱窒反応により生成した窒素ガス(N)は、微生物(窒素固定菌など)によりアンモニアへと変換される(窒素固定反応の活性化)。この反応により生成したアンモニア(NH)は、水中でイオン化されてアンモニウムイオン(NH )となる。
前記窒素固定菌としては、Rhodocyclaceae,Rhodobacteriaceae,Rhodospirillaceaeなどに属するものがある。
(Second stage)
Nitrogen gas (N 2 ) generated by the denitrification reaction is converted into ammonia by a microorganism (nitrogen-fixing bacteria or the like) (activation of the nitrogen fixation reaction). Ammonia (NH 3 ) produced by this reaction is ionized in water to become ammonium ions (NH 4 + ).
Examples of the nitrogen-fixing bacteria include those belonging to Rhodocyclaceae, Rhodobacteriaceae, Rhodospirillaceae and the like.

(第3段階)
第2段階で生成したアンモニウムイオン(NH )、および第1段階で生成したアルカリの存在下、廃水中に酸素が溶存していると、微生物(亜硝酸菌や硝酸菌などの硝化菌)によりアンモニウムイオン(NH )は亜硝酸イオン(NO )を経て硝酸イオン(NO )へ酸化される(硝化反応)。
硝化反応は、第1段階の脱窒反応で生成したアルカリにより進行するが、工程(b)において硝酸塩と共にアルカリを廃水に予め添加しておくことで、硝化反応が効率よく進行する。
前記硝化菌としては、Nitrospiraceae,Nitrosomonadaceaeなどに属するものがある。
(3rd stage)
If oxygen is dissolved in the wastewater in the presence of ammonium ions (NH 4 + ) generated in the second stage and alkali generated in the first stage, microorganisms (nitrifying bacteria such as nitrite and nitrate bacteria) As a result, ammonium ions (NH 4 + ) are oxidized to nitrate ions (NO 3 ) via nitrite ions (NO 2 ) (nitrification reaction).
The nitrification reaction proceeds with the alkali generated in the first-stage denitrification reaction, but the nitrification reaction proceeds efficiently by adding the alkali together with the nitrate in the step (b) in advance.
Examples of the nitrifying bacteria include those belonging to Nitrospiraceae, Nitrosomonadaceae and the like.

第3段階の硝化反応で生成した亜硝酸イオン(NO )、硝酸イオン(NO )は、第1段階において微生物の硝酸塩呼吸用の硝酸塩として用いられる。このように、本発明では、窒素(N)が、窒素ガス(N)からアンモニウムイオン(NH )を経て亜硝酸イオン(NO )さらに、硝酸イオン(NO )へと形を変えて第1段階から第3段階を循環している。Nitrite ions (NO 2 ) and nitrate ions (NO 3 ) generated by the nitrification reaction in the third stage are used as nitrates for microbial nitrate respiration in the first stage. Thus, in the present invention, nitrogen (N) is transformed from nitrogen gas (N 2 ) to ammonium ion (NH 4 + ) to nitrite ion (NO 2 ) and further to nitrate ion (NO 3 ). Is changed and the first to third stages are circulated.

(第4段階)
硝酸塩呼吸時には、ATP合成量が酸素呼吸時よりも減少する。よって、微生物はより多くの栄養素を捕集すべくEPSを産生し、異なる微生物による硝酸塩呼吸時のバイオフィルム(微生物共同体)を形成する。その結果、下記(α)〜(γ)の状態に変化する。
(α)第1段階から第3段階における脱窒菌、窒素固定菌、硝化菌などをはじめとした代謝の異なる微生物が、バイオフィルム内で安定した共生状態(生体間の共生)となる。
(β)窒素(N)については、バイオフィルム内で微生物が互いに生成する窒素ガス(N)、アンモニウムイオン(NH )、硝酸イオン(NO )などをやりとりすることで、系内で微生物の代謝に必要な量の窒素(N)が安定して循環する状態となる(系内窒素循環)。
(γ)共生状態になった微生物群は、微生物単独では代謝し得ないものも代謝可能となることにより、廃水の処理性が上昇する(難分解性物質の分解性上昇など)。
(Fourth stage)
During nitrate breathing, the amount of ATP synthesis is reduced compared to oxygen breathing. Thus, microorganisms produce EPS to collect more nutrients and form a biofilm (microbe community) during nitrate respiration by different microorganisms. As a result, the state changes to the following (α) to (γ).
(Α) Microorganisms having different metabolisms such as denitrifying bacteria, nitrogen-fixing bacteria, and nitrifying bacteria in the first to third stages are in a stable symbiotic state (symbiosis between living organisms) in the biofilm.
(Β) Nitrogen (N) is exchanged in the system by exchanging nitrogen gas (N 2 ), ammonium ions (NH 4 + ), nitrate ions (NO 3 ), etc., which are produced by microorganisms in the biofilm. Thus, the amount of nitrogen (N) necessary for the metabolism of microorganisms is stably circulated (in-system nitrogen circulation).
(Γ) A group of microorganisms in a symbiotic state is capable of metabolizing those that cannot be metabolized by microorganisms alone, thereby increasing the treatment of wastewater (eg, increasing the degradability of persistent substances).

廃水へ添加する硝酸塩としては、硝酸ナトリウム、硝酸カリウム、硝酸マグネシウム、硝酸カルシウムなどが挙げられる。これら硝酸塩は1種単独で用いてもよいし、2種以上を併用してもよい。
図1に示すように処理槽20内の廃水に硝酸塩を添加する場合、硝酸塩の添加量は、処理水量に対して0.1mg−NO−N/L以上が好ましく、0.5mg−NO−N/L以上がより好ましい。硝酸塩の添加量が0.1mg−NO−N/L以上であれば、第1段階において微生物を硝酸塩呼吸へ充分に誘導できる。また、硝酸塩の添加量が増えると薬品コストの増加につながるため、硝酸塩の添加量は20mg−NO−N/L以下が好ましく、10mg−NO−N/L以下がより好ましく、5mg−NO−N/L以下がさらに好ましい。
また、処理する廃水に硝酸態窒素が0.5mg−NO−N/L以上含まれる場合には、硝酸塩を添加せずとも安定した処理性を維持できる場合もある。
Examples of the nitrate added to the waste water include sodium nitrate, potassium nitrate, magnesium nitrate, and calcium nitrate. These nitrates may be used alone or in combination of two or more.
As shown in FIG. 1, when adding nitrate to the wastewater in the processing tank 20, the addition amount of nitrate is preferably 0.1 mg-NO 3 -N / L or more with respect to the amount of treated water, and 0.5 mg-NO 3. -N / L or more is more preferable. If the addition amount of the nitrate 0.1mg-NO 3 -N / L or more, microorganisms can be sufficiently guided to nitrate respiration in the first stage. Moreover, because it leads to an increase in drug costs When the amount of the nitrate increase, the amount of nitrate is preferably from 20mg-NO 3 -N / L, more preferably not more than 10mg-NO 3 -N / L, 5mg-NO 3- N / L or less is more preferable.
Moreover, when nitrate nitrogen is contained in the waste water to be treated in an amount of 0.5 mg-NO 3 -N / L or more, there are cases where stable processability can be maintained without adding nitrate.

廃水へ添加するアルカリとしては、炭酸水素ナトリウム、炭酸ナトリウム、炭酸、水酸化ナトリウムなどが挙げられる。これらアルカリは1種単独で用いてもよいし、2種以上を併用してもよい。
図1に示すように処理槽20内の廃水にアルカリを添加する場合、アルカリの添加量は、処理水量に対してMアルカリ度で0.6mg as CaCO/L以上が好ましく、3mg as CaCO/L以上がより好ましい。アルカリの添加量がMアルカリ度で0.6mg as CaCO/L以上であれば、第3段階において硝化反応が充分に進行する。また、アルカリの添加量が増えると薬品コストの増加につながるため、アルカリの添加量はMアルカリ度で50mg as CaCO/L以下が好ましい。
また、図1に示すように処理槽20内の廃水にアルカリを添加する場合、処理槽20および沈殿槽30内の廃水のpHが6.0〜8.6となるように調整するのが好ましい。
また、原水のMアルカリ度が50mg as CaCO/L以上である場合には、アルカリを添加せずとも安定した処理性を維持できる場合もある。
Examples of the alkali added to the waste water include sodium hydrogen carbonate, sodium carbonate, carbonic acid, and sodium hydroxide. These alkalis may be used alone or in combination of two or more.
As shown in FIG. 1, when adding an alkali to the waste water in the processing tank 20, the amount of alkali added is preferably 0.6 mg as CaCO 3 / L or more in terms of M alkalinity with respect to the amount of treated water, and 3 mg as CaCO 3. / L or more is more preferable. If the amount of alkali added is 0.6 mg as CaCO 3 / L or more in terms of M alkalinity, the nitrification reaction proceeds sufficiently in the third stage. Moreover, since the increase in the amount of alkali added leads to an increase in chemical cost, the amount of alkali added is preferably 50 mg as CaCO 3 / L or less in terms of M alkalinity.
Moreover, when adding an alkali to the wastewater in the processing tank 20 as shown in FIG. 1, it is preferable to adjust so that the pH of the wastewater in the processing tank 20 and the sedimentation tank 30 may be 6.0-8.6. .
Further, when the M alkalinity of the raw water is 50 mg as CaCO 3 / L or more, there are cases where stable processability can be maintained without adding alkali.

低曝気による処理槽20中の酸化還元電位は±0mV以上であり、溶存酸素濃度は1mg/L以下である。処理槽20中の溶存酸素濃度が1mg/L以下であれば、脱窒菌の活性阻害がほぼ起きることがなく、また好気性微生物を酸素呼吸から硝酸塩呼吸へ誘導できる。
また、上述したように、第3段階の硝化反応には廃水中の溶存酸素が必要であるが、酸化還元電位が±0mV以上であれば、いくら低くても構わない。
よって、生物処理中は、処理槽20中の酸化還元電位を±0mV以上、溶存酸素濃度を0.3mg/L以下となるように曝気するのが好ましく、より好ましくは酸化還元電位を±0mV以上、溶存酸素濃度を0.1mg/L以下である。
ただし、活性汚泥法から転換する場合などにおいて、微生物の代謝の活性化が十分進捗していない段階では、廃水中の溶存酸素濃度を1mg/L以上としてもよい。
The redox potential in the treatment tank 20 due to low aeration is ± 0 mV or more, and the dissolved oxygen concentration is 1 mg / L or less. If the dissolved oxygen concentration in the treatment tank 20 is 1 mg / L or less, the activity of denitrifying bacteria is hardly inhibited, and aerobic microorganisms can be induced from oxygen respiration to nitrate respiration.
Further, as described above, dissolved oxygen in the wastewater is required for the third stage nitrification reaction, but may be as low as the oxidation-reduction potential is ± 0 mV or more.
Therefore, during biological treatment, it is preferable to perform aeration so that the oxidation-reduction potential in the treatment tank 20 is ± 0 mV or more and the dissolved oxygen concentration is 0.3 mg / L or less, and more preferably, the oxidation-reduction potential is ± 0 mV or more. The dissolved oxygen concentration is 0.1 mg / L or less.
However, when converting from the activated sludge method, the dissolved oxygen concentration in the wastewater may be 1 mg / L or more at the stage where the activation of the metabolism of microorganisms is not sufficiently advanced.

<工程(c)>
工程(c)では、沈殿槽30にて、生物処理された廃水を汚泥(微生物)と上澄み液(処理水)とに固液分離する。
沈殿槽30にて固液分離された上澄み液(処理水)は、処理水流路53を経て系外へ排出される。
沈殿槽30にて固液分離された汚泥は、返送汚泥として返送汚泥流路55を経て処理槽20へ返送される。また、汚泥の一部は、余剰汚泥として余剰汚泥流路54を経て系外へ排出される。
<Step (c)>
In the step (c), the biologically treated waste water is solid-liquid separated into sludge (microorganisms) and supernatant liquid (treated water) in the precipitation tank 30.
The supernatant liquid (treated water) separated in the precipitation tank 30 is discharged out of the system through the treated water channel 53.
The sludge separated into solid and liquid in the sedimentation tank 30 is returned to the treatment tank 20 through the return sludge flow path 55 as return sludge. Moreover, a part of sludge is discharged | emitted out of the system through the excess sludge flow path 54 as excess sludge.

<作用効果>
本発明によれば、硝酸塩およびアルカリを廃水に添加し、該廃水を生物処理する処理槽中の酸化還元電位を±0mV以上、溶存酸素濃度を1mg/L以下となるように低曝気するので、微生物は硝酸塩呼吸を行い、脱窒反応が充分に進行して硝酸塩呼吸時のバイオフィルムが形成される。そして、硝酸塩呼吸時のバイオフィルムにより異なった代謝系の微生物(脱窒菌、窒素固定菌、硝化菌など)の共生が可能となるため、廃水にBODと窒素が含まれていても、これらを単一の処理槽で同時に処理することができる。
また、廃水中に窒素が含まれていない場合であっても、系内窒素循環により、0.1〜20mg−NO−N/L程度の硝酸塩添加で安定したBOD処理ができる。
また、バイオフィルムにリン蓄積菌も共生することにより、リンの処理も同時に行うことができる。しかも、バイオフィルムは基質の吸着凝集効率が高く、効率よく廃水を処理できる。
よって、本発明であれば従来の生物学的窒素処理及びリン処理方式(硝化脱窒法、嫌気・好気法(AO法)、嫌気・無酸素・好気法(A2O法)、嫌気・硝化内生脱窒法(AOAO法)など)に比べ処理槽の数を削減できる。
<Effect>
According to the present invention, nitrate and alkali are added to the wastewater, and the redox potential in the treatment tank for biological treatment of the wastewater is low aerated so that the dissolved oxygen concentration is 1 mg / L or less. The microorganism performs nitrate respiration, and the denitrification reaction proceeds sufficiently to form a biofilm during nitrate respiration. In addition, different metabolic microorganisms (denitrifying bacteria, nitrogen-fixing bacteria, nitrifying bacteria, etc.) can coexist with biofilms during nitrate respiration, so even if wastewater contains BOD and nitrogen, It can process simultaneously with one processing tank.
Moreover, even when the wastewater does not contain nitrogen, a stable BOD treatment can be performed by adding a nitrate of about 0.1 to 20 mg-NO 3 -N / L due to nitrogen circulation in the system.
In addition, phosphorus can be treated at the same time by coexisting with phosphorus-accumulating bacteria on the biofilm. In addition, the biofilm has a high adsorption / aggregation efficiency of the substrate and can efficiently treat wastewater.
Therefore, in the present invention, conventional biological nitrogen treatment and phosphorus treatment methods (nitrification denitrification method, anaerobic / aerobic method (AO method), anaerobic / anoxic / aerobic method (A2O method), anaerobic / nitrification Compared to biodenitrification methods (AOAO method, etc.), the number of treatment tanks can be reduced.

また、本発明であれば、急激な負荷の増減に対し、バイオフィルムが微生物に対してクッション的な役割を果たすため負荷変動に強くなる。また生物阻害物質や毒物に対しても防御の役割を果たすため生物阻害物質や毒物などに対する耐性も上がる。また、活性汚泥法では処理困難な難分解性有機物の分解も微生物同士の共生により促進される。従って、従来法(活性汚泥法)に比べ高負荷処理が可能となることから設置面積を減らすことが可能となる。さらに生物にとって過酷な状況下における耐性が強化され、バルキングも抑制できることから運転管理が容易である。   In addition, according to the present invention, the biofilm plays a role of cushioning against microorganisms against a sudden increase or decrease of the load, so that it is resistant to load fluctuations. Also, since it plays a role of defense against bioinhibitors and poisons, resistance to bioinhibitors and poisons also increases. In addition, the decomposition of difficult-to-decompose organic substances that are difficult to process by the activated sludge method is promoted by the symbiosis between microorganisms. Therefore, it is possible to reduce the installation area because high load treatment is possible compared to the conventional method (activated sludge method). In addition, resistance to living organisms under harsh conditions is enhanced and bulking can be suppressed, so operation management is easy.

また、本発明であれば、処理槽中の溶存酸素濃度が1mg/L以下となるように低曝気すればよいので、消費電力を削減できる。   In addition, according to the present invention, power consumption can be reduced because low aeration is required so that the dissolved oxygen concentration in the treatment tank is 1 mg / L or less.

また、本発明であれば、微生物を酸素呼吸から硝酸塩呼吸に代謝を変更させるため、同じ量のBODを分解した場合のATP合成量が減少することとなることから、余剰汚泥の発生量も削減できる。   In addition, according to the present invention, since microorganisms change metabolism from oxygen respiration to nitrate respiration, the amount of ATP synthesized when the same amount of BOD is decomposed is reduced, so the amount of excess sludge generated is also reduced. it can.

また、本発明であれば、微生物の硫酸塩呼吸および発酵を抑制するため、有機酸、アルコール、硫化水素などの発生が抑制されることから、臭気の発生を軽減できる。また、硫化水素発生の抑制により、コンクリート製の水槽や水路および鋼製製缶品などの腐食・劣化も抑制できる。   Moreover, if it is this invention, in order to suppress sulfate respiration and fermentation of microorganisms, since generation | occurrence | production of an organic acid, alcohol, hydrogen sulfide, etc. is suppressed, generation | occurrence | production of an odor can be reduced. In addition, by suppressing the generation of hydrogen sulfide, corrosion and deterioration of concrete water tanks, water channels and steel cans can be suppressed.

また、本発明であれば、硝酸塩およびアルカリを廃水に添加することにより、原水条件や運転条件の大きな変動に対しても安定した運転の継続と処理性維持が可能となる。   Further, according to the present invention, by adding nitrate and alkali to waste water, stable operation can be continued and maintainability can be maintained even with large fluctuations in raw water conditions and operating conditions.

また、本発明であれば、硝酸塩呼吸時のバイオフィルムが非溶解性の微細懸濁物質を捕集することにより、処理水の透視度が向上し、処理水質も改善される(処理水の浮遊物質濃度(SS濃度)が低下する)。   In addition, according to the present invention, the biofilm during nitrate respiration collects insoluble fine suspended solids, thereby improving the transparency of treated water and improving the quality of treated water (floating of treated water). Substance concentration (SS concentration) decreases).

上述したように、本発明では、窒素(N)が、窒素ガス(N)からアンモニウムイオン(NH )を経て硝酸イオン(NO )などへと形を変えて前記第1段階から第3段階を循環している。また、第3段階の硝化反応に必要なアルカリは、第1段階の脱窒反応により生成される。よって、前記工程(b)における廃水への硝酸塩およびアルカリの添加は、少なくとも廃水処理システムの運転開始時に行えばよい。すなわち、少なくとも最初に生物処理される廃水に硝酸塩およびアルカリを外部から添加すればよい。以降の生物処理においては、第1段階から第3段階を経て生成される硝酸イオン(NO )、曝気空気中の窒素ガス(N)および第1段階にて生成されるアルカリが系中に存在しているので、廃水に硝酸塩およびアルカリを外部から添加しなくても、前記第4段階により第1段階〜第3段階の反応は同時並行的に進行できる場合もある。
ただし、系中の硝酸塩濃度やアルカリ濃度が低下した場合は、新たに硝酸塩やアルカリを廃水に添加してもよい。
As described above, in the present invention, nitrogen (N) changes its form from nitrogen gas (N 2 ) to ammonium ion (NH 4 + ) to nitrate ion (NO 3 ), etc. Circulating the third stage. Further, the alkali necessary for the third stage nitrification reaction is produced by the first stage denitrification reaction. Therefore, the addition of nitrate and alkali to the wastewater in the step (b) may be performed at least at the start of operation of the wastewater treatment system. That is, nitrate and alkali may be added from the outside to at least wastewater to be biologically treated first. In the subsequent biological treatment, nitrate ions (NO 3 ) generated through the first stage to the third stage, nitrogen gas (N 2 ) in the aerated air, and alkali generated in the first stage are in the system. Therefore, the reaction from the first stage to the third stage may proceed in parallel by the fourth stage without adding nitrate and alkali to the waste water from the outside.
However, when the nitrate concentration or alkali concentration in the system is lowered, a new nitrate or alkali may be added to the waste water.

<他の実施形態>
本発明の廃水の処理方法は、上述した方法に限定されない。上述した方法では、図1に示すように、硝酸塩およびアルカリを処理槽20内の廃水のみに添加しているが、硝酸塩およびアルカリは処理槽20以前(処理槽20またはその上流)のいずれかのポイントで添加すればよい。つまり、調整槽10内の廃水のみに硝酸塩添加手段41から硝酸塩を添加し、アルカリ添加手段42からアルカリを添加してもよい。また、調整槽10内と処理槽20内の両方の廃水に硝酸塩添加手段41から硝酸塩を添加し、アルカリ添加手段42からアルカリを添加してもよい。さらに、調整槽10内の廃水に硝酸塩添加手段41から硝酸塩を添加し、処理槽20内の廃水にアルカリ添加手段42からアルカリを添加してもよいし、その逆でもよい。
また、調整槽10より更に上流側のいずれかのポイントで廃水(調整槽10の上流側であるので、調整槽10へ複数の廃水が流入している場合は、その内の一つ或いは複数或いは全ての廃水)に硝酸塩添加手段41から硝酸塩を添加し、アルカリ添加手段42からアルカリを添加してもよい。
<Other embodiments>
The wastewater treatment method of the present invention is not limited to the method described above. In the above-described method, as shown in FIG. 1, nitrate and alkali are added only to the waste water in the treatment tank 20, but the nitrate and alkali are either before the treatment tank 20 (the treatment tank 20 or upstream thereof). What is necessary is just to add at a point. That is, the nitrate may be added from the nitrate addition means 41 and the alkali may be added from the alkali addition means 42 only to the waste water in the adjustment tank 10. Further, nitrate may be added from the nitrate addition means 41 to the waste water in both the adjustment tank 10 and the treatment tank 20, and alkali may be added from the alkali addition means 42. Furthermore, nitrate may be added to the wastewater in the adjustment tank 10 from the nitrate addition means 41, and alkali may be added to the wastewater in the treatment tank 20 from the alkali addition means 42, or vice versa.
Further, the waste water at any point further upstream than the adjustment tank 10 (because it is the upstream side of the adjustment tank 10, if a plurality of waste water flows into the adjustment tank 10, one or more of them or Nitrate may be added from the nitrate addition means 41 to all waste water), and alkali may be added from the alkali addition means 42.

また、上述した方法では、工程(a)として調整槽10にて廃水の流量や濃度を均一化しているが、工程(a)は行わなくてもよい場合もある。
また、工程(a)の前段或いは工程(a)と工程(b)の間において、大小の固形分を除去する工程(スクリーン、固形分除去装置(凝集沈殿、加圧浮上など)、沈殿槽など)等の他の工程を設ける場合もある。
また、上述した方法では、工程(c)として沈殿槽30にて処理水と汚泥の混液を処理水と汚泥とに固液分離しているが、膜分離装置など汚泥と処理水との分離機能を備えるものを沈殿槽30の代替としてもよい。なお、膜分離装置を処理槽20内に設置する場合は、移送流路52と返送汚泥流路55は不要となり、処理水流路53と、余剰汚泥流路54は、処理槽20から出ていく形となる。
さらに、上述した方法では、1つの処理槽20で廃水を生物処理しているが、複数の処理槽20を用いてもよい。上述したように、本発明であれば、BOD、窒素、リンを含む廃水を処理する場合でも、1つの処理槽で廃水を処理できるが、複数の処理槽20を用いてもよい。
Moreover, in the method mentioned above, although the flow volume and density | concentration of wastewater are equalized in the adjustment tank 10 as process (a), process (a) may not be performed.
Also, before the step (a) or between the step (a) and the step (b), a step of removing large and small solids (screen, solid content removing device (coagulation precipitation, pressurized flotation, etc.), precipitation tank, etc. Other steps may be provided.
Moreover, in the method mentioned above, although the liquid mixture of treated water and sludge is solid-liquid separated into the treated water and sludge in the settling tank 30 as a process (c), the separation function of sludge and treated water, such as a membrane separator. It is good also as what substitutes for the sedimentation tank 30. In addition, when installing a membrane separator in the processing tank 20, the transfer flow path 52 and the return sludge flow path 55 become unnecessary, and the treated water flow path 53 and the excess sludge flow path 54 exit from the processing tank 20. It becomes a shape.
Furthermore, in the method described above, wastewater is biologically treated in one treatment tank 20, but a plurality of treatment tanks 20 may be used. As described above, according to the present invention, wastewater can be treated in one treatment tank even when wastewater containing BOD, nitrogen, and phosphorus is treated, but a plurality of treatment tanks 20 may be used.

また、本発明は、散水ろ床法を除く生物膜処理法(浸漬ろ床法、流動床法、固定化担体法、回転円盤法、揺動床法など)に適用できる。
生物膜処理法に本発明を適用する場合、生物膜処理槽以前(生物膜処理槽またはその上流)において廃水に硝酸塩およびアルカリを添加し、生物膜処理槽を低曝気(酸化還元電位を±0mV以上、溶存酸素濃度を1mg/L以下に)すればよい。
なお、生物膜処理法に用いるろ材の材質や形状に限定はない。
The present invention can also be applied to biofilm treatment methods other than the trickling filter method (immersion filter method, fluidized bed method, immobilized carrier method, rotating disk method, rocking bed method, etc.).
When the present invention is applied to the biofilm treatment method, nitrate and alkali are added to the wastewater before the biofilm treatment tank (in the biofilm treatment tank or upstream thereof), and the biofilm treatment tank is subjected to low aeration (redox potential is ± 0 mV). As described above, the dissolved oxygen concentration may be 1 mg / L or less).
There is no limitation on the material and shape of the filter medium used in the biofilm treatment method.

また、本発明は、分散菌処理法に適用できる。
分散菌処理法とは、原生動物・後生動物の実質的不存在下で、廃水中のBODを非凝集性細菌(分散菌)により酸化分解すると共に非凝集性細菌へ変換する処理法である。
原生動物・後生動物を実質的不存在とし、非凝集性細菌を優先化する方法としては、(1)分散菌製剤添加、(2)原生動物・後生動物類の不添加(返送汚泥を行わないなど)、(3)処理槽の滞留時間を原生動物・後生動物が増殖できないように設定、(4)分散菌を保持・固定できるろ材(固定ろ材、流動担体、揺動繊維ろ材)の投入または設置、(5) 上記(1)〜(4)の組み合わせ、などがある。
分散菌処理法に本発明を適用する場合、分散菌処理槽以前(分散菌処理槽またはその上流)において廃水に硝酸塩およびアルカリを添加し、生物膜処理槽を低曝気(酸化還元電位を±0mV以上、溶存酸素濃度を1mg/L以下に)すればよい。
なお、上記(4)において投入するろ材の材質や形状に限定はない。
Further, the present invention can be applied to a dispersal bacteria treatment method.
The dispersal bacteria treatment method is a treatment method in which BOD in waste water is oxidized and decomposed by non-aggregating bacteria (dispersing bacteria) and converted to non-aggregating bacteria in the substantial absence of protozoa and metazoans.
As a method for making protozoa and metazoans substantially non-existent and giving priority to non-aggregating bacteria, (1) Addition of dispersal bacteria preparations, (2) No addition of protozoa / metazoans (no return sludge) Etc.), (3) The retention time in the treatment tank is set so that protozoa and metazoans cannot grow, and (4) a filter medium (fixed filter medium, fluid carrier, rocking fiber filter medium) capable of holding and fixing dispersal bacteria or Installation, (5) Combinations of (1) to (4) above, and the like.
When the present invention is applied to the dispersal bacteria treatment method, nitrate and alkali are added to the wastewater before the dispersal bacteria treatment tank (or the upstream of the dispersal bacteria treatment tank), and the biofilm treatment tank is low aerated (redox potential is ± 0 mV). As described above, the dissolved oxygen concentration may be 1 mg / L or less).
In addition, there is no limitation in the material and shape of the filter medium thrown in in said (4).

また、本発明は、嫌気処理法の代替処理に適用できる。
嫌気処理装置の代替処理に本発明を適用する場合、嫌気処理槽以前(嫌気処理槽およびその上流)において廃水に硝酸塩およびアルカリを添加し、嫌気処理槽に曝気装置を取り付け、嫌気処理槽を低曝気(酸化還元電位を±0mV以上、溶存酸素濃度を1mg/L以下に)すればよい。嫌気処理槽の前段に前酸化処理槽がある場合は、前酸化処理槽以前(前酸化処理槽およびその上流)において、廃水に硝酸塩およびアルカリを添加し、前酸化処理槽および嫌気処理槽を低曝気すればよい。
なお、嫌気処理槽へろ材を投入する場合、投入するろ材の材質や形状に限定はない。
Further, the present invention can be applied to an alternative process of the anaerobic treatment method.
When the present invention is applied to an alternative treatment of an anaerobic treatment device, nitrate and alkali are added to wastewater before the anaerobic treatment vessel (upstream and anaerobic treatment tank), an aeration device is attached to the anaerobic treatment tank, and the anaerobic treatment tank is lowered. Aeration may be performed (the redox potential is ± 0 mV or more and the dissolved oxygen concentration is 1 mg / L or less). If there is a pre-oxidation treatment tank in front of the anaerobic treatment tank, add nitrate and alkali to the wastewater before the pre-oxidation treatment tank (pre-oxidation treatment tank and its upstream), and lower the pre-oxidation treatment tank and the anaerobic treatment tank. Aeration is enough.
In addition, when supplying a filter medium to an anaerobic treatment tank, there is no limitation in the material and shape of the filter medium to input.

また、本発明は、前段に高負荷処理装置(嫌気処理法、生物膜処理法、分散菌処理法など)を置き、後段に活性汚泥処理装置や生物膜処理装置を仕上げ処理として用いる場合の、後段の代替処理に適用できる。
前段に高負荷処理装置を置いた後段生物処理装置の代替処理に本発明を適用する場合、後段生物処理槽(活性汚泥処理槽や生物膜処理槽)以前(後段生物処理槽およびその上流)において廃水に硝酸塩およびアルカリを添加し、後段生物処理槽を低曝気(酸化還元電位を±0mV以上、溶存酸素濃度を1mg/L以下に)すればよい。
なお、後段生物処理槽が生物膜処理槽である場合、投入するろ材の材質や形状に限定はない。
In addition, the present invention places a high-load treatment device (anaerobic treatment method, biofilm treatment method, dispersal bacteria treatment method, etc.) in the previous stage, and uses an activated sludge treatment device or biofilm treatment apparatus in the subsequent stage as a finishing treatment. It can be applied to an alternative process at a later stage.
In the case where the present invention is applied to an alternative treatment of a post-stage biological treatment apparatus in which a high-load treatment apparatus is placed in the front stage, in a post-stage biological treatment tank (an activated sludge treatment tank or a biofilm treatment tank) before (the latter stage biological treatment tank and its upstream) Nitrate and alkali are added to the wastewater, and the latter biological treatment tank is aerated (the redox potential is ± 0 mV or more and the dissolved oxygen concentration is 1 mg / L or less).
In addition, when a back | latter stage biological treatment tank is a biofilm treatment tank, there is no limitation in the material and shape of a filter medium to introduce | transduce.

以下、本発明について実施例を挙げて具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.

「実施例1」
図1に示す廃水処理システム1を用い、廃水は人口下水とし、馴致用汚泥は下水処理場の返送汚泥を用いた。調整槽10の槽本体11として、60Lの廃水タンクを用いた。また、処理槽20の槽本体21の容量は10L、沈殿槽30の槽本体31の容量は10Lであった。
廃水タンクから、処理水量3.5L/日の条件で処理槽20に廃水を供給し、処理槽20内の廃水に、処理水量に対して硝酸カルシウムを2mg−NO−N/Lと、濃度5質量%の炭酸水素ナトリウム水溶液を8mg as CaCO/L添加した。さらに、処理槽20中の酸化還元電位を0mV以上、溶存酸素濃度を1mg/L以下となるように、曝気手段22にて処理槽20中を曝気して廃水を生物処理した。このとき、処理槽20内の温度は25℃、曝気風量は溶存酸素濃度を確認しながら調整した。引き続き、沈殿槽30にて処理水と汚泥の混液を処理水と汚泥とに固液分離し、処理水は系外へ排出し、汚泥の一部は返送汚泥として処理槽20に返送した。返送汚泥率は処理水量の100%とした。余剰汚泥は、沈殿槽の汚泥界面を確認しながらバッチで系外へ排出した。
なお、硝酸カルシウムと炭酸水素ナトリウム水溶液の添加方法はバッチであり、試験期間中には添加しない時期もあった。また、処理期間中における、処理槽内の酸化還元電位は、40〜250mV、溶存酸素濃度は、0.36mg/L以下であり、平均曝気風量は270NmL/minであった。酸化還元電位は酸化還元電位計(株式会社堀場製作所製、「D−13」)を用いて測定し、溶存酸素濃度は溶存酸素濃度計(株式会社堀場製作所製、「OM−51」)を用いて測定した。
廃水として用いた人口下水の薬品量および性状(水質分析結果)を表1に、廃水の処理条件(運転条件)を表2に示す。
"Example 1"
The wastewater treatment system 1 shown in FIG. 1 was used, the wastewater was artificial sewage, and the sewage sludge was returned sludge from the sewage treatment plant. A 60 L waste water tank was used as the tank body 11 of the adjustment tank 10. Moreover, the capacity | capacitance of the tank main body 21 of the processing tank 20 was 10L, and the capacity | capacitance of the tank main body 31 of the sedimentation tank 30 was 10L.
Waste water is supplied from the waste water tank to the treatment tank 20 under the condition of a treatment water amount of 3.5 L / day, and the concentration of calcium nitrate in the waste water in the treatment tank 20 is 2 mg-NO 3 -N / L with respect to the treatment water amount. 8 mg as CaCO 3 / L of 5 mass% sodium hydrogen carbonate aqueous solution was added. Furthermore, the wastewater was biologically treated by aeration of the treatment tank 20 with the aeration means 22 so that the oxidation-reduction potential in the treatment tank 20 was 0 mV or more and the dissolved oxygen concentration was 1 mg / L or less. At this time, the temperature in the treatment tank 20 was adjusted to 25 ° C., and the amount of aeration air was adjusted while confirming the dissolved oxygen concentration. Subsequently, the mixed liquid of treated water and sludge was separated into treated water and sludge in the sedimentation tank 30, the treated water was discharged out of the system, and part of the sludge was returned to the treatment tank 20 as return sludge. The return sludge rate was 100% of the treated water volume. Excess sludge was discharged out of the system in batches while confirming the sludge interface of the settling tank.
In addition, the addition method of calcium nitrate and sodium hydrogencarbonate aqueous solution was a batch, and there was a period when it was not added during the test period. Further, during the treatment period, the oxidation-reduction potential in the treatment tank was 40 to 250 mV, the dissolved oxygen concentration was 0.36 mg / L or less, and the average aeration air volume was 270 NmL / min. The oxidation-reduction potential is measured using an oxidation-reduction potentiometer ("D-13" manufactured by Horiba, Ltd.), and the dissolved oxygen concentration is measured using a dissolved oxygen concentration meter ("OM-51" manufactured by Horiba, Ltd.). Measured.
Table 1 shows chemical amounts and properties (results of water quality analysis) of artificial sewage used as wastewater, and Table 2 shows treatment conditions (operation conditions) of wastewater.

上記試験条件で実施した処理水を採取し、性状を分析した。また、下記方法によりBODおよび全窒素(T−N)の除去率、BOD汚泥転換率、推定汚泥減量率を求めた。これらの結果を表3に示す。   The treated water carried out under the above test conditions was collected and analyzed for properties. Moreover, the removal rate of BOD and total nitrogen (TN), the BOD sludge conversion rate, and the estimated sludge reduction rate were calculated | required with the following method. These results are shown in Table 3.

BODの除去率(%)={(処理前の廃水中のBOD量−処理水中のBOD量)/処理前の廃水中のBOD量}×100
全窒素(T−N)の除去率(%)={(処理前の廃水中の全窒素量−処理水中の全窒素量)/処理前の廃水中の全窒素量}×100
BOD汚泥転換率(%)={(特定期間の処理槽及び沈殿槽内の汚泥増量+特定期間の余剰汚泥引き抜き量)/特定期間の処理BOD量}×100
推定汚泥減量率(%)=(本試験中の平均BOD汚泥転換率/活性汚泥におけるBOD汚泥転換率(40〜50%))×100
BOD removal rate (%) = {(BOD amount in wastewater before treatment−BOD amount in treatment water) / BOD amount in wastewater before treatment} × 100
Total nitrogen (TN) removal rate (%) = {(total nitrogen amount in wastewater before treatment−total nitrogen amount in treated water) / total nitrogen amount in wastewater before treatment} × 100
BOD sludge conversion rate (%) = {(increase amount of sludge in the treatment tank and settling tank in the specific period + amount of excess sludge withdrawn in the specific period) / treatment BOD amount in the specific period} × 100
Estimated sludge reduction rate (%) = (average BOD sludge conversion rate during this test / BOD sludge conversion rate in activated sludge (40-50%)) × 100

Figure 0005936774
Figure 0005936774

Figure 0005936774
Figure 0005936774

Figure 0005936774
Figure 0005936774

表1、3中、「BOD」は生物化学的酸素要求量であり、「T−N」は全窒素であり、「Org−N」は有機態窒素であり、「NH−N」はアンモニア態窒素であり、「NO−N」は亜硝酸態窒素であり、「NO−N」は硝酸態窒素であり、「SS」は浮遊物質である。In Tables 1 and 3, “BOD” is biochemical oxygen demand, “TN” is total nitrogen, “Org-N” is organic nitrogen, and “NH 4 -N” is ammonia. is nitrogen, "NO 2 -N" is the nitrite nitrogen, "NO 3 -N" is the nitrate nitrogen, "SS" is a floating material.

表3から明らかなように、実施例1では1つの処理槽で、BODのほぼ100%、窒素の約55%を処理できた。
また、余剰汚泥を50〜60%減量できた。
As is clear from Table 3, in Example 1, almost 100% of BOD and about 55% of nitrogen could be treated in one treatment tank.
Moreover, the excess sludge could be reduced by 50 to 60%.

「実施例2」
図1に示す廃水処理システム1を用い、廃水は調味料工場の廃水とし、馴致用汚泥は下水処理場の返送汚泥を用いた。調整槽10の槽本体11として、60Lの廃水タンクを用いた。また、処理槽20の槽本体21の容量は10L、沈殿槽30の槽本体31の容量は10Lであった。
廃水タンクから、処理水量10L/日の条件で処理槽20に廃水を供給し、処理槽20内の廃水に、処理水量に対して硝酸カルシウムを10mg−NO−N/Lと、濃度5質量%の水酸化ナトリウム水溶液を処理槽20内のpHが7以上となるように添加した。さらに、処理槽20中の酸化還元電位を0mV以上、溶存酸素濃度を1mg/L以下となるように、曝気手段22にて処理槽20中を曝気して廃水を生物処理した。このとき、処理槽20内の温度は25℃、曝気風量は溶存酸素濃度を確認しながら調整した。引き続き、沈殿槽30にて処理水と汚泥の混液を処理水と汚泥とに固液分離し、処理水は系外へ排出し、汚泥の一部は返送汚泥として処理槽20に返送した。返送汚泥率は処理水量の100%とした。余剰汚泥は、沈殿槽の汚泥界面を確認しながらバッチで系外へ排出した。
なお、硝酸カルシウムの添加方法はバッチであり、水酸化ナトリウムの添加方法はpHコントローラによる自動添加方法であり、試験期間中には添加しない時期もあった。また、処理期間中における、処理槽内の酸化還元電位は、55〜261mV、溶存酸素濃度は、0.23mg/L以下であり、曝気風量は100〜500NmL/minであった。酸化還元電位は酸化還元電位計(株式会社堀場製作所製、「D−13」)を用いて測定し、溶存酸素濃度は溶存酸素濃度計(株式会社堀場製作所製、「OM−51」)を用いて測定し、pHはpH計(株式会社堀場製作所製、「D−24」)を用いて測定した。
廃水として用いた調味料工場の廃水の性状(水質分析結果)を表4に、廃水の処理条件(運転条件)を表5に示す。
"Example 2"
The wastewater treatment system 1 shown in FIG. 1 was used, the wastewater was the wastewater from the seasoning factory, and the sludge for habituation was the return sludge from the sewage treatment plant. A 60 L waste water tank was used as the tank body 11 of the adjustment tank 10. Moreover, the capacity | capacitance of the tank main body 21 of the processing tank 20 was 10L, and the capacity | capacitance of the tank main body 31 of the sedimentation tank 30 was 10L.
Waste water is supplied from the waste water tank to the treatment tank 20 under the condition of a treatment water amount of 10 L / day, and calcium nitrate is added to the waste water in the treatment tank 20 at a concentration of 10 mg-NO 3 -N / L and a concentration of 5 mass with respect to the treatment water amount. % Sodium hydroxide aqueous solution was added so that the pH in the treatment tank 20 would be 7 or more. Furthermore, the wastewater was biologically treated by aeration of the treatment tank 20 with the aeration means 22 so that the oxidation-reduction potential in the treatment tank 20 was 0 mV or more and the dissolved oxygen concentration was 1 mg / L or less. At this time, the temperature in the treatment tank 20 was adjusted to 25 ° C., and the amount of aeration air was adjusted while confirming the dissolved oxygen concentration. Subsequently, the mixed liquid of treated water and sludge was separated into treated water and sludge in the sedimentation tank 30, the treated water was discharged out of the system, and part of the sludge was returned to the treatment tank 20 as return sludge. The return sludge rate was 100% of the treated water volume. Excess sludge was discharged out of the system in batches while confirming the sludge interface of the settling tank.
In addition, the addition method of calcium nitrate is a batch, the addition method of sodium hydroxide is an automatic addition method using a pH controller, and there were times when it was not added during the test period. During the treatment period, the oxidation-reduction potential in the treatment tank was 55 to 261 mV, the dissolved oxygen concentration was 0.23 mg / L or less, and the amount of aeration air was 100 to 500 NmL / min. The oxidation-reduction potential is measured using an oxidation-reduction potentiometer ("D-13" manufactured by Horiba, Ltd.), and the dissolved oxygen concentration is measured using a dissolved oxygen concentration meter ("OM-51" manufactured by Horiba, Ltd.). The pH was measured using a pH meter (“D-24” manufactured by Horiba, Ltd.).
Table 4 shows the properties (results of water quality analysis) of the seasoning factory used as waste water, and Table 5 shows the treatment conditions (operation conditions) of the waste water.

上記試験条件で実施した処理水を採取し、性状を分析した。また、下記方法によりCOD(化学的酸素消費量)の除去率を求めた。これらの結果を表6に示す。   The treated water carried out under the above test conditions was collected and analyzed for properties. Moreover, the removal rate of COD (chemical oxygen consumption) was calculated | required with the following method. These results are shown in Table 6.

CODの除去率(%)={(処理前の廃水中のCOD量−処理水中のCOD量)/処理前の廃水中のCOD量}×100   COD removal rate (%) = {(COD amount in wastewater before treatment−COD amount in treated water) / COD amount in wastewater before treatment} × 100

Figure 0005936774
Figure 0005936774

Figure 0005936774
Figure 0005936774

Figure 0005936774
Figure 0005936774

表4、6中、「CODCr」は二クロム酸カリウムによる酸素要求量であり、「CODMn」は100℃における過マンガン酸カリウムによる酸素要求量であり、「BOD」は生物化学的酸素要求量であり、「Org−N」は有機態窒素であり、「NH−N」はアンモニア態窒素であり、「NO−N」は亜硝酸態窒素であり、「NO−N」は硝酸態窒素であり、「SS」は浮遊物質であり、「T−N」は全窒素であり、「PO−P」はリン酸態リンであり、「T−P」は全リンである。In Tables 4 and 6, “COD Cr ” is the oxygen demand by potassium dichromate, “COD Mn ” is the oxygen demand by potassium permanganate at 100 ° C., and “BOD” is the biochemical oxygen demand. a quantity, "Org-N" is an organic nitrogen, "NH 4 -N" is ammonia nitrogen, "NO 2 -N" is nitrite nitrogen, "NO 3 -N" is It is nitrate nitrogen, “SS” is a suspended substance, “TN” is total nitrogen, “PO 4 -P” is phosphate phosphorus, and “TP” is total phosphorus. .

表6から明らかなように、実施例2では1つの処理槽で、CODMnの96%以上を処理できた。As is apparent from Table 6, in Example 2, 96% or more of COD Mn could be processed in one processing tank.

本発明の廃水の処理方法は、BODを含む廃水の処理方法として有用である。また、BODを含む廃水に窒素及びリンのいずれかまたは両方が含まれる廃水の処理方法としても有用である。   The wastewater treatment method of the present invention is useful as a wastewater treatment method containing BOD. Moreover, it is also useful as a wastewater treatment method in which either or both of nitrogen and phosphorus are contained in wastewater containing BOD.

1 廃水処理システム
10 調整槽
11 槽本体
12 ポンプ
20 生物処理槽(処理槽)
21 槽本体
22 曝気手段
22a 散気装置
22b ブロア
22c 空気供給管
22d マノメータ
22e 流量計
30 沈殿槽
31 槽本体
32 掻き寄せ機
33 ポンプ
41 硝酸塩添加手段
42 アルカリ添加手段
51 廃水流路
52 移送流路
53 処理水流路
54 余剰汚泥流路
55 返送汚泥流路
DESCRIPTION OF SYMBOLS 1 Waste water treatment system 10 Adjustment tank 11 Tank main body 12 Pump 20 Biological treatment tank (treatment tank)
DESCRIPTION OF SYMBOLS 21 Tank main body 22 Aeration means 22a Air diffuser 22b Blower 22c Air supply pipe 22d Manometer 22e Flow meter 30 Precipitation tank 31 Tank main body 32 Scraper 33 Pump 41 Nitrate addition means 42 Alkali addition means 51 Waste water flow path 52 Transfer flow path 53 Treated water channel 54 Excess sludge channel 55 Return sludge channel

Claims (3)

有機物を含有する廃水を生物処理する生物処理槽中の酸化還元電位を±0mV以上、および溶存酸素濃度を1mg/L以下となるように前記生物処理槽において前記廃水を曝気する、廃水の処理方法において、前記廃水または前記生物処理槽へ、硝酸塩を添加し脱窒反応を活性化させ、アルカリを添加し硝化反応を活性化させ、前記生物処理槽内の代謝に必要な量の窒素が循環する状態にすることにより、前記廃水中の有機物を分解し、前記生物処理槽中に、脱窒菌、窒素固定菌、硝化菌がいる、廃水の処理方法。 A method for treating wastewater, wherein the wastewater is aerated in the biological treatment tank so that the redox potential in the biological treatment tank for biologically treating the wastewater containing organic matter is ± 0 mV or more and the dissolved oxygen concentration is 1 mg / L or less. in the the waste water or the biological treatment tank, nitrate activate the denitrification reaction by adding, to activate the added alkali nitrification, the amount of nitrogen is circulated required for the metabolism of the biological treatment tank A method for treating wastewater , wherein the organic matter in the wastewater is decomposed by making the state, and denitrifying bacteria, nitrogen-fixing bacteria, and nitrifying bacteria are present in the biological treatment tank . 前記生物処理槽では、前記脱窒菌により、廃水中のBODを分解して亜硝酸イオン(NO )、硝酸イオン(NO )から窒素ガス(N)を生成する脱窒反応と、前記窒素固定菌により、前記窒素ガス(N)からアンモニア(NH)を生成する窒素固定反応と、前記アンモニアは処理液中でアンモニウムイオン(NH )となり、前記硝化菌により、前記アンモニウムイオン(NH )から亜硝酸イオン(NO )、硝酸イオン(NO )を生成する硝化反応とが並行して行われ、前記生物処理槽内で窒素(N)が循環利用される、請求項に記載の廃水の処理方法。 In the biological treatment tank, a denitrification reaction that decomposes BOD in wastewater by the denitrifying bacteria to generate nitrogen gas (N 2 ) from nitrite ions (NO 2 ) and nitrate ions (NO 3 ); A nitrogen fixation reaction that generates ammonia (NH 3 ) from the nitrogen gas (N 2 ) by the nitrogen-fixing bacteria, and the ammonia becomes ammonium ions (NH 4 + ) in the treatment liquid. A nitrification reaction for generating nitrite ions (NO 2 ) and nitrate ions (NO 3 ) from ions (NH 4 + ) is performed in parallel, and nitrogen (N) is circulated and used in the biological treatment tank. The processing method of the wastewater of Claim 1 . 有機物を含有する廃水を生物処理する生物処理槽中の酸化還元電位を±0mV以上、および溶存酸素濃度を1mg/L以下となるように前記生物処理槽において前記廃水を曝気する、廃水処理システムであって、
前記廃水を生物処理するとともに内部に脱窒菌、窒素固定菌、硝化菌がいる前記生物処理槽と、前記廃水または前記生物処理槽へ脱窒反応を活性化する硝酸塩を添加する硝酸塩添加手段と、前記廃水または前記生物処理槽へ硝化反応を活性化するアルカリを添加するアルカリ添加手段とを備え、前記生物処理槽内の代謝に必要な量の窒素が循環する状態にすることにより、前記廃水中の有機物を分解する、単一槽の処理槽で処理できる廃水処理システム。
In a wastewater treatment system, the wastewater is aerated in the biological treatment tank so that the oxidation-reduction potential in the biological treatment tank for biologically treating wastewater containing organic substances is ± 0 mV or more and the dissolved oxygen concentration is 1 mg / L or less. There,
Biological treatment of the wastewater and the biological treatment tank having denitrifying bacteria, nitrogen-fixing bacteria, and nitrifying bacteria therein, and nitrate addition means for adding nitrate for activating a denitrification reaction to the wastewater or the biological treatment tank; An alkali addition means for adding an alkali that activates the nitrification reaction to the wastewater or the biological treatment tank, and by making the amount of nitrogen necessary for metabolism in the biological treatment tank circulate, Wastewater treatment system that decomposes organic matter in a single tank.
JP2015522855A 2013-06-13 2014-06-12 Waste water treatment method and waste water treatment system Active JP5936774B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2013/066393 2013-06-13
PCT/JP2013/066393 WO2014199500A1 (en) 2013-06-13 2013-06-13 Wastewater treatment method
PCT/JP2014/065579 WO2014200056A1 (en) 2013-06-13 2014-06-12 Wastewater treatment method and wastewater treatment system

Publications (2)

Publication Number Publication Date
JP5936774B2 true JP5936774B2 (en) 2016-06-22
JPWO2014200056A1 JPWO2014200056A1 (en) 2017-02-23

Family

ID=52021830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015522855A Active JP5936774B2 (en) 2013-06-13 2014-06-12 Waste water treatment method and waste water treatment system

Country Status (4)

Country Link
JP (1) JP5936774B2 (en)
MY (1) MY181287A (en)
SG (1) SG11201508745UA (en)
WO (2) WO2014199500A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123694A (en) * 1991-11-07 1993-05-21 Kurita Water Ind Ltd Treatment of organic waste water with nitrogen fixation bacterial
JPH0819791A (en) * 1994-07-06 1996-01-23 Kurita Water Ind Ltd Nitration method and apparatus
JP2000061488A (en) * 1998-06-10 2000-02-29 Kankyo Eng Co Ltd Treatment of organic wastewater and chemical agent used therein
JP2002516757A (en) * 1998-06-04 2002-06-11 ニュージーランド フォレスト リサーチ インスティテュート リミテッド Wastewater treatment method
JP2002263688A (en) * 2001-03-05 2002-09-17 Ebara Corp Method and device for treating organic polluted water
JP2007117790A (en) * 2005-10-25 2007-05-17 Saitama Univ Treatment method of organic waste

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211645A (en) * 1975-04-23 1977-01-28 Sanki Eng Co Ltd Method for treatment of organic waste fluid
JP3837766B2 (en) * 1995-12-18 2006-10-25 栗田工業株式会社 Nitrification denitrification method
JP4404976B2 (en) * 1998-08-25 2010-01-27 日鉄環境エンジニアリング株式会社 Organic wastewater treatment method and organic wastewater treatment apparatus
JP5425992B2 (en) * 2012-09-27 2014-02-26 第一環境株式会社 Water treatment equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123694A (en) * 1991-11-07 1993-05-21 Kurita Water Ind Ltd Treatment of organic waste water with nitrogen fixation bacterial
JPH0819791A (en) * 1994-07-06 1996-01-23 Kurita Water Ind Ltd Nitration method and apparatus
JP2002516757A (en) * 1998-06-04 2002-06-11 ニュージーランド フォレスト リサーチ インスティテュート リミテッド Wastewater treatment method
JP2000061488A (en) * 1998-06-10 2000-02-29 Kankyo Eng Co Ltd Treatment of organic wastewater and chemical agent used therein
JP2002263688A (en) * 2001-03-05 2002-09-17 Ebara Corp Method and device for treating organic polluted water
JP2007117790A (en) * 2005-10-25 2007-05-17 Saitama Univ Treatment method of organic waste

Also Published As

Publication number Publication date
SG11201508745UA (en) 2015-11-27
MY181287A (en) 2020-12-21
JPWO2014200056A1 (en) 2017-02-23
WO2014200056A1 (en) 2014-12-18
WO2014199500A1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
He et al. Factors affecting simultaneous nitrification and de-nitrification (SND) and its kinetics model in membrane bioreactor
Wei et al. COD and nitrogen removal in facilitated transfer membrane-aerated biofilm reactor (FT-MABR)
Abyar et al. Kinetic evaluation and process analysis of COD and nitrogen removal in UAASB bioreactor
JP5629448B2 (en) Wastewater treatment method
Jia et al. Nitrogen removal in photo sequence batch reactor using algae-bacteria consortium
Yang et al. Impacts of sludge retention time on the performance of an algal-bacterial bioreactor
She et al. Salinity effect on simultaneous nitrification and denitrification, microbial characteristics in a hybrid sequencing batch biofilm reactor
Zieliński et al. Nitrification in activated sludge exposed to static magnetic field
Wei et al. Effect of COD/N ratio on cultivation of aerobic granular sludge in a pilot-scale sequencing batch reactor
Liu et al. Microbial nitrogen removal of ammonia wastewater in poly (butylenes succinate)-based constructed wetland: effect of dissolved oxygen
Cui et al. Start-up of halophilic nitrogen removal via nitrite from hypersaline wastewater by estuarine sediments in sequencing batch reactor
CN101348304A (en) Improved process of activated sludge and biological film composite type A2/O
Zafarzadeh et al. Effect of dissolved oxygen and chemical oxygen demand to nitrogen ratios on the partial nitrification/denitrification process in moving bed biofilm reactors
CN102583724A (en) Method for utilizing activated sludge, ozone and magnetic field to reduce sludge
Bhattacharya et al. Evaluation of nitrification kinetics for treating ammonium nitrogen enriched wastewater in moving bed hybrid bioreactor
Matinfar et al. Ammonia and phosphorus removal from mixture of treated and raw cattle manure wastewater in a low‐O2 granular sequencing batch reactor
CN207986811U (en) A kind of processing unit of high concentration rhodanate waste water
CN103880184B (en) A kind of without the ultra-clean sewage water treatment method of sludge organism ball and system
JP2009214035A (en) Treatment method of water-base paint booth circulating water
JP5936774B2 (en) Waste water treatment method and waste water treatment system
Lee et al. Influence of sludge type, MLSS, and substrate ratio on stable implementation of ANAMMOX
RU2751356C1 (en) Method for removing nitrogen-containing compounds from wastewater
Lim et al. Alternative solid carbon source from dried attached-growth biomass for nitrogen removal enhancement in intermittently aerated moving bed sequencing batch reactor
Joo et al. Application of alcaligenes faecalis no. 4 for treatment of high-strength ammonium wastewater
JP4865294B2 (en) Decomposition method of organic waste

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160510

R150 Certificate of patent or registration of utility model

Ref document number: 5936774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350