JP2000334490A - Biological denitrification and dephosphorization apparatus - Google Patents

Biological denitrification and dephosphorization apparatus

Info

Publication number
JP2000334490A
JP2000334490A JP11148600A JP14860099A JP2000334490A JP 2000334490 A JP2000334490 A JP 2000334490A JP 11148600 A JP11148600 A JP 11148600A JP 14860099 A JP14860099 A JP 14860099A JP 2000334490 A JP2000334490 A JP 2000334490A
Authority
JP
Japan
Prior art keywords
air
tank
cleaning
aeration
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11148600A
Other languages
Japanese (ja)
Inventor
Kazuya Uesugi
和也 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP11148600A priority Critical patent/JP2000334490A/en
Publication of JP2000334490A publication Critical patent/JP2000334490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease the capacity of a cleaning blower for air cleaning of microorganism carrier in an aerobic vessel. SOLUTION: Phosphorus is eluted from sludge in an anaerobic vessel 10. Nitric acid in circulating liquid is removed in a denitrification vessel 12. In the aerobic vessel 14, nitrification treatment is performed, at the same time, phosphorus is taken into the sludge and, in a sedimentation vessel 16, the sludge is sedimented, thereby, the treated water which is subjected to denitrification and dephosphorization is obtained. Therein, the microorganism carrier 40 is arranged in the aerobic vessel 14 and, underneath the carrier, a cleaning air injecting member 42 is arranged. Further, the cleaning air injecting member 42 is divided into plural blocks and, at the time of cleaning, the respective blocks inject the cleaning air and clean the microorganism carrier 40 every block in order.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原水を嫌気槽、脱
窒槽、好気槽、沈殿槽の順で流通するとともに、沈殿槽
の沈殿汚泥を嫌気槽に返送し、かつ好気槽の混合液を脱
窒槽に循環することで、脱窒及び脱リン処理を行う生物
学的脱窒脱リン装置、特に好気槽に微生物担体を配置し
たものに関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for circulating raw water in the order of an anaerobic tank, a denitrification tank, an aerobic tank, and a sedimentation tank, returning sludge from the sedimentation tank to the anaerobic tank, and mixing the aerobic tank. The present invention relates to a biological denitrification and dephosphorization apparatus for performing a denitrification and a dephosphorization treatment by circulating a liquid through a denitrification tank, and particularly relates to an apparatus in which a microorganism carrier is disposed in an aerobic tank.

【0002】[0002]

【従来の技術】従来より、原水を嫌気槽、脱窒槽、好気
槽、沈殿槽の順で流通して、脱窒及び脱リン処理を行う
生物学的脱窒脱リン装置が知られている。この装置で
は、原水は、まず嫌気槽に流入しここで沈殿槽からの返
送汚泥と嫌気状態で混合される。この嫌気槽における嫌
気処理によって、汚泥からのリンの溶出が促進される。
次に、嫌気槽からの混合液は脱窒槽へ流入され、ここで
好気槽からの循環液と混合される。これによって、原水
中の有機物(BOD(生物化学的酸素要求量)成分)を
水素供与体として好気槽からの循環液中の硝酸を還元除
去する脱窒処理が行われる。次に、脱窒槽からの混合液
は曝気されている好気槽に流入され、ここで原水中に含
まれるアンモニア性窒素などの硝酸化が行われる。ま
た、この時嫌気槽での嫌気処理を経た汚泥は液中のリン
酸を過剰摂取する。そして、好気槽からの混合液を沈殿
槽に流入し、沈殿処理することによって、上澄みに窒素
及びリンの除去された処理水を得る。なお、原水中の有
機物は脱窒槽及び硝化槽において除去される。
2. Description of the Related Art Hitherto, there has been known a biological denitrification dephosphorization apparatus in which raw water is circulated in the order of an anaerobic tank, a denitrification tank, an aerobic tank, and a sedimentation tank to perform denitrification and dephosphorization treatment. . In this apparatus, the raw water first flows into the anaerobic tank, where it is mixed anaerobically with the sludge returned from the settling tank. By the anaerobic treatment in the anaerobic tank, the elution of phosphorus from the sludge is promoted.
Next, the mixed liquid from the anaerobic tank flows into the denitrification tank, where it is mixed with the circulating liquid from the aerobic tank. As a result, a denitrification process for reducing and removing nitric acid in the circulating fluid from the aerobic tank using the organic matter (BOD (biochemical oxygen demand) component) in the raw water as a hydrogen donor is performed. Next, the mixed solution from the denitrification tank flows into the aerobic tank that has been aerated, where nitration of ammoniacal nitrogen and the like contained in the raw water is performed. At this time, the sludge that has undergone anaerobic treatment in the anaerobic tank excessively ingests phosphoric acid in the liquid. Then, the mixed solution from the aerobic tank flows into the sedimentation tank and is subjected to precipitation treatment, whereby treated water from which nitrogen and phosphorus have been removed is obtained in the supernatant. The organic matter in the raw water is removed in the denitrification tank and the nitrification tank.

【0003】このような生物学的脱窒脱リン装置におい
て、好気槽において硝酸化を担う硝化菌はその増殖速度
が遅く、これが好気槽において長い滞留時間が必要にな
る原因となっていた。そこで、硝化菌をゲルビーズ内に
取り込み固定した数ミリ角の立方体を好気槽内で流動さ
せる包括固定化法や、数ミリ径の樹脂性球体を好気槽内
で流動させ、この球体に硝化菌を付着させる方法などが
提案されている。
In such a biological denitrification / dephosphorization apparatus, nitrifying bacteria responsible for nitrification in an aerobic tank have a slow growth rate, which causes a long residence time in the aerobic tank. . Therefore, the entrapment immobilization method in which a nitric acid bacterium is taken into gel beads and fixed and a few millimeter square cube is flowed in an aerobic tank, or a resinous sphere with a diameter of several millimeters is flowed in an aerobic tank and nitrified into this sphere Methods for attaching bacteria have been proposed.

【0004】これらの手法は、いずれも増殖の遅い硝化
菌を好気槽内に高濃度で保持することによって、処理系
全体の硝化活性を高く保持し、結果として好気槽におけ
る処理時間を短縮しようとするものである。
[0004] In each of these methods, the nitrifying activity of the entire treatment system is maintained at a high level by keeping nitrifying bacteria that grow slowly at a high concentration in the aerobic tank, and as a result, the processing time in the aerobic tank is reduced. What you want to do.

【0005】しかし、これらの方法では、微小な微生物
担体を好気槽内で流動させるため、微生物担体の流動性
を維持し、かつ好気槽の外への微生物担体の流出を防止
しなければならない、などという運転管理上の問題があ
る。
However, in these methods, since the microbial carrier is made to flow in the aerobic tank, the flowability of the microbial carrier must be maintained and the outflow of the microbial carrier out of the aerobic tank must be prevented. There is a problem in operation management, such as no longer.

【0006】このような問題点を解決するものとして、
特開昭9−10793号公報に示しされる固定床式の微
生物担体を好気槽内に配置する方法が提案されている。
この方法では、好気槽に所定の間隙を有するネット状の
微生物担体を設置し、通常の浮遊汚泥、被処理水、及び
曝気空気についてはその間隙を通過できるようにし、か
つ硝化菌を含む汚泥を微生物担体表面に付着させる。こ
れによって好気槽内に硝化菌を高密度で保持し、処理系
全体としての硝化活性を高め、結果として好気槽におけ
る処理時間を短縮することができる。また、この方法で
は、好気槽内に微生物担体を流動化させる必要はなく、
運転管理上の問題も少ない。
[0006] To solve such problems,
Japanese Patent Application Laid-Open No. 9-10793 proposes a method of disposing a fixed-bed type microorganism carrier in an aerobic tank.
In this method, a net-like microbial carrier having a predetermined gap is installed in an aerobic tank, so that ordinary suspended sludge, water to be treated, and aerated air can pass through the gap, and sludge containing nitrifying bacteria. Is attached to the surface of the microorganism carrier. As a result, the nitrifying bacteria can be held in the aerobic tank at a high density, and the nitrification activity of the entire processing system can be increased. As a result, the processing time in the aerobic tank can be reduced. Also, in this method, it is not necessary to fluidize the microorganism carrier in the aerobic tank,
There are few problems in operation management.

【0007】[0007]

【発明が解決しようとする課題】しかし、この方法で
は、微生物担体の設置場所や、運転条件によっては、微
生物担体にBOD酸化菌が過剰に付着し、さらにこれを
捕食する原生動物が群生する。そして、過剰のBOD酸
化菌が微生物担体に付着すると、微生物担体に付着する
硝化菌の活性を十分なものに維持できなくなってしま
う。
However, in this method, BOD oxidizing bacteria excessively adhere to the microorganism carrier depending on the installation place of the microorganism carrier and operating conditions, and protozoa that prey on the BOD oxidizer colonize. When excessive BOD oxidizing bacteria adhere to the microorganism carrier, the activity of the nitrifying bacteria adhered to the microorganism carrier cannot be maintained at a sufficient level.

【0008】これを解消するために、定期的に微生物担
体の下方に空気を導入して微生物担体の空気洗浄を行う
ことが考えられる。この空気洗浄により、過剰の微生物
を剥離させることができ、微生物担体表面を硝化菌の付
着、生育に適した状態に維持することができる。
In order to solve this problem, it is conceivable to periodically introduce air below the microorganism carrier to perform air cleaning of the microorganism carrier. By this air washing, excess microorganisms can be peeled off, and the surface of the microorganism carrier can be maintained in a state suitable for adhesion and growth of nitrifying bacteria.

【0009】ところが、このような洗浄用の空気を微生
物担体に供給すると、洗浄用のブロアとしてかなり大き
な容量のものが必要となり、装置全体としての設備コス
トや運転管理コストが高騰してしまうという問題点があ
った。
[0009] However, when such cleaning air is supplied to the microorganism carrier, a considerably large capacity blower is required as a cleaning blower, and the equipment cost and operation management cost of the whole apparatus increase. There was a point.

【0010】本発明は、上記課題に鑑みなされたもので
あり、洗浄用のブロアを比較的小さなものとして、十分
な洗浄が行える生物学的脱窒脱リン装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a biological denitrification / dephosphorization apparatus capable of performing sufficient cleaning with a relatively small cleaning blower.

【0011】[0011]

【課題を解決するための手段】本発明は、原水を嫌気
槽、脱窒槽、好気槽、沈殿槽の順で流通するとともに、
沈殿槽の沈殿汚泥を嫌気槽に返送し、かつ好気槽の混合
液を脱窒槽に循環することで、脱窒及び脱リン処理を行
う生物学的脱窒脱リン装置において、前記好気槽内に配
置され、微生物を付着保持する微生物担体と、前記好気
槽内に設けられ、曝気空気を噴出するための曝気空気配
管と、前記好気槽内の微生物担体の下方に設けられ、間
欠的に洗浄空気を噴出して、微生物担体を洗浄するため
の洗浄空気配管と、前記洗浄空気配管に洗浄空気を部分
的に供給するとともに、供給する部分を順次切り換える
切換手段と、を有することを特徴とする。
According to the present invention, raw water is circulated in the order of an anaerobic tank, a denitrification tank, an aerobic tank, and a sedimentation tank.
In the biological denitrification dephosphorization device for performing denitrification and dephosphorization by returning the settled sludge from the settling tank to the anaerobic tank and circulating the mixture in the aerobic tank to the denitrification tank, the aerobic tank A microbial carrier disposed in the aerobic tank; an aerated air pipe provided in the aerobic tank for ejecting aerated air; and an intermittent provided below the microbial carrier in the aerobic tank. Cleaning air piping for jetting the cleaning air to clean the microorganism carrier, and switching means for partially supplying the cleaning air to the cleaning air piping and sequentially switching the supply portion. Features.

【0012】このように、本発明によれば、空気洗浄に
よって好気槽における微生物担体に硝化活性を阻害する
レベルにまで汚泥が過剰付着することを防止し、微生物
担体近傍の環境を硝化菌の付着、生息に適した状態に維
持することが可能となる。
As described above, according to the present invention, it is possible to prevent the sludge from adhering excessively to the microorganism carrier in the aerobic tank to a level that inhibits the nitrification activity by air cleaning, and to reduce the environment near the microorganism carrier by nitrifying bacteria. It is possible to maintain a state suitable for attachment and habitat.

【0013】そして、空気洗浄の際に洗浄用の空気を微
生物担体に対し部分的に順次供給するため、洗浄時にお
ける洗浄用空気の量を比較的少なくすることができ、設
備が高価なものになるのを防止することができる。ま
た、微生物担体として、プラスチック製のネットパイプ
を多数横設して積層したようなもの、あるいは多数立設
したようなものが好ましい。
[0013] Since the air for washing is partially and sequentially supplied to the microorganism carrier at the time of the air washing, the amount of the air for washing at the time of washing can be relatively reduced, and the equipment becomes expensive. Can be prevented. Further, as the microorganism carrier, one obtained by laminating and laminating a large number of plastic net pipes, or one having a large number of standing erect pipes is preferable.

【0014】また、前記曝気空気配管に供給する曝気空
気及び前記洗浄空気配管に供給する洗浄空気は、単一の
空気供給源からの空気を分岐して利用することが好適で
ある。空気供給源に余裕がある場合には、洗浄時に空気
量を増加させることで、洗浄用の空気をまかなうことが
できる。また、余裕がなければ、曝気用の空気を減少さ
せたり、部分的に止めたりすることで、洗浄用の空気を
まかなうことができる。
It is preferable that the aeration air supplied to the aeration air pipe and the cleaning air supplied to the cleaning air pipe be used by branching air from a single air supply source. If there is room in the air supply source, the air for cleaning can be supplied by increasing the amount of air during cleaning. If there is no room, the air for cleaning can be supplied by reducing or partially stopping the air for aeration.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)について、図面に基づいて説明する。
Embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the drawings.

【0016】図1は、実施形態に係る脱窒脱リン装置の
全体構成を示す図である。このように、この装置は、そ
の基本構成として、嫌気槽10,脱窒槽12,好気槽1
4,沈殿槽16を有している。被処理水である原水は、
まず嫌気槽10に流入される。この嫌気槽10には、沈
殿槽16からの返送汚泥も供給される。そして、嫌気槽
10内は、攪拌機22により攪拌されるようになってい
る。そこで、この嫌気槽10において、返送汚泥と原水
が嫌気性条件化において混合攪拌される。この嫌気処理
によって、汚泥はリンを放出する。
FIG. 1 is a diagram showing the overall configuration of a denitrification / dephosphorization apparatus according to an embodiment. As described above, this apparatus has, as its basic components, an anaerobic tank 10, a denitrification tank 12, and an aerobic tank 1
4, a sedimentation tank 16 is provided. Raw water, which is treated water,
First, it flows into the anaerobic tank 10. The sludge returned from the settling tank 16 is also supplied to the anaerobic tank 10. The inside of the anaerobic tank 10 is stirred by the stirrer 22. Therefore, in the anaerobic tank 10, the returned sludge and the raw water are mixed and stirred under anaerobic conditions. By this anaerobic treatment, the sludge releases phosphorus.

【0017】次に、嫌気槽10において、嫌気処理を受
けた汚泥と原水の混合液は脱窒槽12に流入される。こ
の脱窒槽12には、好気槽14から沈殿槽16に供給さ
れる好気処理液の一部が循環液として流入される。そし
て、脱窒槽12には、攪拌機24が設けられており、通
性嫌気性の条件化(無酸素状態)で、嫌気槽10からの
混合液と好気槽14からの循環液が混合される。ここ
で、好気槽14からの循環液は、硝酸を含んでいる。そ
こで、脱窒槽12においては、原水中の有機物を水素供
与体とし、硝酸を還元する脱窒処理が行われる。これに
よって、原水中の有機物を酸化除去並びに好気処理液中
の硝酸性窒素の除去が行われる。
Next, in the anaerobic tank 10, the mixture of sludge and raw water subjected to the anaerobic treatment flows into the denitrification tank 12. A part of the aerobic treatment liquid supplied from the aerobic tank 14 to the sedimentation tank 16 flows into the denitrification tank 12 as a circulating liquid. Further, the denitrification tank 12 is provided with a stirrer 24, and the mixed liquid from the anaerobic tank 10 and the circulating liquid from the aerobic tank 14 are mixed under the condition of facultative anaerobic (anoxic condition). . Here, the circulating liquid from the aerobic tank 14 contains nitric acid. Therefore, in the denitrification tank 12, a denitrification treatment for reducing nitric acid using organic matter in raw water as a hydrogen donor is performed. Thereby, the organic matter in the raw water is oxidized and removed, and the nitrate nitrogen in the aerobic treatment liquid is removed.

【0018】そして、この脱窒槽12の混合液は、好気
槽14に流入される。この好気槽14の底部には、曝気
空気配管30に接続された散気部材32が配置されてお
り、槽内が曝気されている。また、好気槽14は、仕切
壁34により前段曝気部36と後段曝気部38に区切ら
れており、後段曝気部38の散気部材32の上方には微
生物担体40が配置されている。さらに、後段曝気部3
8の微生物担体40の下方には、散気部材32に沿っ
て、洗浄空気噴出部材42が配置されている。なお、こ
の洗浄空気噴出部材42には、洗浄空気配管44を介し
洗浄空気が供給される。また、散気部材32は、多孔質
の散気板などを有し、供給される曝気空気を細かな気泡
として槽内液中に供給する。一方、洗浄空気噴出部材4
2は、パイプに開口を設けて構成されており、開口から
比較的大径の気泡を噴出する。また、洗浄空気噴出部材
42から噴出させる空気量は、これに対応する散気部材
32からの空気量より大量とし、これによって微生物担
体40の洗浄を行う。
The mixed liquid in the denitrification tank 12 flows into the aerobic tank 14. A diffuser member 32 connected to an aeration air pipe 30 is disposed at the bottom of the aerobic tank 14, and the inside of the tank is aerated. The aerobic tank 14 is divided by a partition wall 34 into a front-stage aeration unit 36 and a rear-stage aeration unit 38, and a microorganism carrier 40 is arranged above the diffusing member 32 of the rear-stage aeration unit 38. Furthermore, the latter aeration unit 3
A cleaning air ejection member 42 is arranged below the microbial carrier 40 along the air diffusion member 32. Cleaning air is supplied to the cleaning air ejection member 42 via a cleaning air pipe 44. Further, the diffusion member 32 has a porous diffusion plate or the like, and supplies the supplied aerated air as fine bubbles into the liquid in the tank. On the other hand, the cleaning air ejection member 4
Numeral 2 is provided with an opening in a pipe, and ejects a relatively large-diameter bubble from the opening. Further, the amount of air jetted from the cleaning air jetting member 42 is set to be larger than the corresponding amount of air from the air diffusing member 32, thereby cleaning the microorganism carrier 40.

【0019】このように、好気槽14には、曝気空気が
供給されるため、槽内は好気的条件化に維持され、ここ
で有機物の酸化及び有機態窒素やアンモニア態窒素の酸
化、すなわち硝酸化(亜硝酸化を含む)が行われる。特
に、後段曝気部38には、微生物担体40が配置されて
いる。従って、この微生物担体40内に微生物が保持さ
れ、槽内の微生物を高濃度に維持して、効果的な硝酸化
処理が行える。
As described above, aeration air is supplied to the aerobic tank 14, so that the inside of the tank is maintained under aerobic conditions, where oxidation of organic substances and oxidation of organic nitrogen and ammonia nitrogen are performed. That is, nitration (including nitritation) is performed. In particular, a microorganism carrier 40 is disposed in the rear aeration unit 38. Therefore, the microorganisms are held in the microorganism carrier 40, the microorganisms in the tank are maintained at a high concentration, and an effective nitrification treatment can be performed.

【0020】特に、本実施形態では、この微生物担体4
0として、図2に示すようなプラスチック製ネット材を
パイプ状とした素材40aを多数立設して配置してい
る。この微生物担体40は空隙率が高く、また微生物担
体40の下方には散気部材32が配置されており、微生
物担体40の空隙中を空気及び槽内液が流通する。これ
によって、微生物担体40に保持されている微生物と槽
内液の効果的な接触が行われるとともに、微生物への酸
素の供給が行われ、効果的な硝酸化処理が行われる。
In particular, in this embodiment, the microorganism carrier 4
As 0, a number of materials 40a in the form of a pipe made of a plastic net material as shown in FIG. The microbial carrier 40 has a high porosity, and an air diffusion member 32 is disposed below the microbial carrier 40, so that air and the liquid in the tank flow through the voids of the microbial carrier 40. As a result, the microorganisms held in the microorganism carrier 40 and the liquid in the tank are effectively brought into contact with each other, oxygen is supplied to the microorganisms, and an effective nitrification treatment is performed.

【0021】なお、微生物担体40としては、必ずしも
図2に示すものに限定されることはなく、例えば特開平
9−10793号公報に示されるものなど各種の微生物
担体が利用できる。
The microorganism carrier 40 is not necessarily limited to that shown in FIG. 2, and various microorganism carriers such as those shown in Japanese Patent Application Laid-Open No. 9-10793 can be used.

【0022】また、洗浄空気噴出部材42には、通常時
には、空気は供給されない。そして、定期的にここに比
較的大量の空気が供給され、これによって微生物担体4
0からの汚泥の剥離が促進され、微生物担体40に過剰
な微生物が蓄積することが防止される。
In addition, air is not normally supplied to the cleaning air jetting member 42. Then, a relatively large amount of air is periodically supplied thereto, whereby the microorganism carrier 4 is supplied.
Separation of sludge from zero is promoted, and accumulation of excessive microorganisms on the microorganism carrier 40 is prevented.

【0023】好気槽14からの処理液は、一部が脱窒槽
12に循環され、他部は沈殿槽16に流入される。この
沈殿槽16は、実質的な静置状態において、好気槽14
の処理液中の固形物(汚泥)を沈降分離する。そして、
固形物が除去された上澄水が処理水として排出される。
一方、沈殿槽16の底部に沈殿した沈殿汚泥は、その一
部が返送汚泥として嫌気槽10に返送され、他部は余剰
汚泥として系外に引き抜かれる。
A part of the processing liquid from the aerobic tank 14 is circulated to the denitrification tank 12 and the other part flows into the settling tank 16. The sedimentation tank 16 is placed in an aerobic tank 14 in a substantially stationary state.
The solid matter (sludge) in the treatment liquid is settled and separated. And
The supernatant water from which solids have been removed is discharged as treated water.
On the other hand, part of the settled sludge settled at the bottom of the settling tank 16 is returned to the anaerobic tank 10 as returned sludge, and the other part is pulled out of the system as surplus sludge.

【0024】次に、図3に基づいて、微生物担体40の
洗浄のための構成について説明する。図3は、前記好気
槽14における空気配管の構成例を示す図であり、ま
ず、曝気空気配管30は、曝気用ブロア50に接続され
ており、この曝気ブロア50からの曝気空気が曝気空気
配管30を介し、散気部材32に供給され、ここから曝
気が行われる。この曝気空気による槽内の曝気は基本的
に連続的に行われる。
Next, a configuration for cleaning the microorganism carrier 40 will be described with reference to FIG. FIG. 3 is a diagram showing a configuration example of the air piping in the aerobic tank 14. First, the aeration air piping 30 is connected to the aeration blower 50, and the aeration air from the aeration blower 50 is used as the aeration air. The air is supplied to the air diffusing member 32 through the pipe 30, and aeration is performed from here. The aeration in the tank by the aeration air is basically performed continuously.

【0025】一方、洗浄空気配管44は、複数の洗浄空
気切換バルブ52を介し、洗浄用ブロア54に接続され
ている。そして、洗浄は予め定めた時間間隔で定期的に
行うが、洗浄を行う際に洗浄空気切換バルブ52は、1
つずつが順次開かれる。従って、洗浄空気噴出部材42
の1つの洗浄空気切換バルブ52に対応するものから順
番に洗浄空気が噴出される。図示の例では、洗浄空気切
換バルブ52が5つ設けられており、その結果洗浄空気
噴出部材42は5つのブロックに分割され、各ブロック
から順に洗浄空気が噴出される。これによって、各ブロ
ックの洗浄空気噴出部材42の上方に位置する微生物担
体40が順番に空気洗浄される。
On the other hand, the cleaning air pipe 44 is connected to a cleaning blower 54 via a plurality of cleaning air switching valves 52. The cleaning is performed periodically at a predetermined time interval.
Each one is opened sequentially. Therefore, the cleaning air ejection member 42
The cleaning air is jetted in order from the one corresponding to one of the cleaning air switching valves 52. In the illustrated example, five cleaning air switching valves 52 are provided. As a result, the cleaning air jetting member 42 is divided into five blocks, and the cleaning air is jetted sequentially from each block. As a result, the microorganism carriers 40 located above the cleaning air jetting member 42 of each block are sequentially air-cleaned.

【0026】このような空気洗浄により、微生物担体4
0は、部分的に順次洗浄され、過剰汚泥が剥離除去され
る。ここで、この洗浄空気は、通常の曝気状態よりも高
い線速度を持つ気泡を噴出する。すなわち、洗浄空気噴
出部材の各ブロックに対し供給する洗浄空気は、そのブ
ロックに対し供給される通常の曝気空気量より大きいこ
とが必要であり、例えば2倍程度が好ましい。
By such air cleaning, the microorganism carrier 4
0 is partially washed sequentially to remove and remove excess sludge. Here, the cleaning air blows out bubbles having a higher linear velocity than a normal aeration state. That is, the cleaning air supplied to each block of the cleaning air ejection member needs to be larger than the normal aeration air amount supplied to the block, and for example, is preferably about twice.

【0027】そして、洗浄用空気を部分的に順次供給す
ることで、洗浄空気の線速度を十分大きなものに維持し
つつ、洗浄用ブロアを比較的小さなものにできる。
By supplying the cleaning air partially sequentially, the cleaning blower can be made relatively small while the linear velocity of the cleaning air is maintained at a sufficiently high value.

【0028】次に、図4には、他の実施形態が示されて
いる。この実施形態では、洗浄用ブロアを設置すること
なく、曝気用ブロア50を微生物担体40の洗浄用の空
気源としても利用する。
Next, FIG. 4 shows another embodiment. In this embodiment, the aeration blower 50 is also used as an air source for cleaning the microorganism carrier 40 without installing a cleaning blower.

【0029】曝気用ブロア50の出力が可変であり、か
つ出力に余裕がある場合、洗浄時において、曝気用ブロ
ア50の出力を増加させることにより、洗浄用の空気を
まかなうことができる。しかし、一般的に、曝気用ブロ
ア50は定量で運転されている。そこで、微生物担体4
0を洗浄する際には、通常の曝気設備への通気を低下さ
せるか、もしくは停止させることが好適である。
If the output of the aeration blower 50 is variable and the output has a margin, the cleaning air can be supplied by increasing the output of the aeration blower 50 during cleaning. However, in general, the aeration blower 50 is operated in a fixed amount. Therefore, the microorganism carrier 4
When cleaning 0, it is preferable to reduce or stop the ventilation to the usual aeration equipment.

【0030】すなわち、曝気ブロア50からの曝気空気
配管30に洗浄空気配管44を接続する。そして、洗浄
空気配管44にバルブ52を設けるとともに、曝気空気
配管30にバルブ56を設け、両配管44,30とも個
別に空気の供給をオンオフできるようにする。そして、
通常時は、バルブ52をすべて閉じておき、散気部材3
2から空気を噴出させ、槽内を曝気する。そして、微生
物担体40の洗浄時には、曝気空気配管30に設けられ
ているバルブ56の一部を閉じ、洗浄空気配管44に設
けられたバルブ52を各ブロック毎に順次開く。これに
よって洗浄空気噴出部材42から順次空気を噴出させ、
微生物担体40を順次洗浄することができる。
That is, the cleaning air pipe 44 is connected to the aeration air pipe 30 from the aeration blower 50. A valve 52 is provided in the cleaning air pipe 44, and a valve 56 is provided in the aeration air pipe 30, so that the supply of air to both the pipes 44 and 30 can be individually turned on and off. And
Normally, all the valves 52 are closed and the diffusing member 3 is closed.
Air is blown out from 2 to aerate the inside of the tank. When cleaning the microorganism carrier 40, a part of the valve 56 provided in the aeration air pipe 30 is closed, and the valve 52 provided in the cleaning air pipe 44 is sequentially opened for each block. Thereby, air is sequentially jetted from the cleaning air jetting member 42,
The microorganism carrier 40 can be sequentially washed.

【0031】なお、図4の構成では、曝気空気配管30
にバルブ56を複数設けたが、洗浄用空気に代替する曝
気用空気を得る部分を予め決定しておき、その部分への
空気をカットするために1つのバルブ56を設けるよう
に構成してもよい。さらに、曝気空気配管30に設ける
バルブ56は、閉じなくてもよく、空気量を減少させて
もよい。また、上述のように、バルブ56の制御ではな
く、曝気用ブロア50の空気量を増加させ、これによっ
て洗浄用空気を得てもよい。
In the configuration shown in FIG.
Although a plurality of valves 56 are provided, a portion for obtaining aeration air instead of cleaning air is determined in advance, and one valve 56 may be provided to cut off air to the portion. Good. Further, the valve 56 provided in the aeration air pipe 30 does not have to be closed, and the amount of air may be reduced. Further, as described above, instead of controlling the valve 56, the air amount of the aeration blower 50 may be increased to thereby obtain the cleaning air.

【0032】このように、空気洗浄によって、嫌気槽1
0、脱窒層12、好気槽14、及び沈殿槽16を有する
生物学的窒素リン除去装置の好気槽14に微生物担体4
0を設置した場合において、微生物担体40に硝化活性
を阻害するレベルにまで汚泥が過剰付着することを防止
し、微生物担体40近傍の環境を硝化菌の付着、生息に
適した状態に維持することが可能となる。
As described above, the anaerobic tank 1 is cleaned by air cleaning.
0, a microorganism carrier 4 in an aerobic tank 14 of a biological nitrogen phosphorus removing apparatus having a denitrification layer 12, an aerobic tank 14, and a sedimentation tank 16.
When 0 is installed, sludge is prevented from excessively adhering to the level that inhibits nitrification activity on the microbial carrier 40, and the environment near the microbial carrier 40 is maintained in a state suitable for adhering nitrifying bacteria and inhabiting. Becomes possible.

【0033】そして、空気洗浄の際に洗浄用の空気を微
生物担体40に対し部分的に順次供給するため、洗浄時
における洗浄用空気の量を比較的少なくすることがで
き、設備が高価なものになるのを防止することができ
る。
Since the air for washing is partially and sequentially supplied to the microorganism carrier 40 at the time of the air washing, the amount of the air for washing at the time of washing can be relatively reduced, and the equipment is expensive. Can be prevented.

【0034】なお、汚泥が付着した微生物担体40の洗
浄時間は1回につき、1から60分、洗浄空気量は通常
曝気時における空気線速度の1から10倍、好ましくは
1から5倍程度であることが望ましい。
The washing time of the microorganism carrier 40 to which the sludge has adhered is 1 to 60 minutes per time, and the washing air amount is usually 1 to 10 times, preferably 1 to 5 times the air linear velocity at the time of aeration. Desirably.

【0035】また、微生物担体40としては、合成樹
脂、天然繊維等を材料とし、ひも状、網目格子状、ハニ
カム状等の形態のものが使用できる。特に、図2に示す
ような円筒格子状の微生物担体40を用いた場合、浮遊
汚泥の流動性が低下せず、微生物担体40に付着した汚
泥の剥離も容易である。
The microorganism carrier 40 may be made of synthetic resin, natural fiber or the like, and may be in the form of a string, a mesh lattice, a honeycomb, or the like. In particular, when the cylindrical lattice-shaped microorganism carrier 40 as shown in FIG. 2 is used, the fluidity of the suspended sludge does not decrease, and the sludge attached to the microorganism carrier 40 can be easily separated.

【0036】「設計例」以下に、下水処理施設を例に取
り、従来方法で設計を行った場合と、本発明に基づいて
設計した場合の比較を示す。
"Design Example" The following shows a comparison between a case where the design is performed by the conventional method and a case where the design is performed based on the present invention, taking a sewage treatment facility as an example.

【0037】(設計条件) 計画1日最大流入水量:10,000m/d 計画1日平均流入水量(Qin):8,000m/d 流入水質 BOD(CBOD,in):130mg/L 溶解性BOD(CS−BOD,in):88mg/L SS(CSS,in):70mg/L T−N(CTN,in):36mg/L T−P:3.2mg/L 最終沈殿槽目標処理水質 BOD5(CBOD,eff):10mg/L SS(CSS,eff):5mg/L T−N(CTN,eff):12mg/L NO+NO(CNOX,eff):10mg/L 有機性窒素:2mg/L T−P:1mg/L 設計水温:13℃ MLSS(X):3,000mg/L (好気槽容量及び形状)本発明に必要な好気槽容量を
2,000mとすると、好気槽の有効水深を5m、幅
を8mとした場合、流れ方向の槽長を51mとすれば、
本発明に必要な好気槽容量を確保することが出来る。
(Design Conditions) Planned daily maximum inflow: 10,000 m 3 / d Planned daily average inflow (Q in ): 8,000 m 3 / d Inflow water quality BOD 5 ( CBOD, in ): 130 mg / L soluble BOD 5 (C S-BOD, in): 88mg / L SS (C SS, in): 70mg / L TN (C TN, in): 36mg / L T-P: 3.2mg / L final sedimentation tank target quality of treated water BOD5 (C BOD, eff): 10mg / L SS (C SS, eff): 5mg / L TN (C TN, eff): 12mg / L NO 2 + NO 3 (C NOX, eff ): 10 mg / L Organic nitrogen: 2 mg / L T-P: 1 mg / L Design water temperature: 13 ° C. MLSS (X): 3,000 mg / L (Aerobic tank capacity and shape) Aerobic tank required for the present invention Capacity 2 When 00m 3, the effective depth of the aerobic tank 5 m, if the width is 8m, if the tank length of the flow direction and 51m,
The aerobic tank capacity required for the present invention can be secured.

【0038】すなわち、5×8×51=2,040(m
)となる。
That is, 5 × 8 × 51 = 2,040 (m
3 )

【0039】これを3槽に分割するものとし、1槽の槽
長を17mとする。3槽に分割した槽のうち、後段の2
槽には格子状の微生物担体を設置するものとする。好気
槽底部には、通常曝気用の散気装置を配し、さらに微生
物担体を設置した後段の2槽の底部には洗浄用の空気配
管も設置する。
This is divided into three tanks, and one tank has a tank length of 17 m. Of the tanks divided into three tanks,
The tank shall be provided with a lattice-shaped microorganism carrier. A diffuser for aeration is usually arranged at the bottom of the aerobic tank, and an air pipe for washing is also installed at the bottom of the two tanks after the microorganism carrier is installed.

【0040】図5に示すように、1槽目は微生物担体が
なく洗浄空気配管がなく曝気配管のみが配置され、2,
3槽目には、微生物担体が配置されるとともに、曝気配
管及び洗浄空気配管が配置される。
As shown in FIG. 5, in the first tank, there is no microbial carrier, no washing air piping, and only aeration piping.
In the third tank, a microorganism carrier is arranged, and an aeration pipe and a cleaning air pipe are arranged.

【0041】(ブロアの選定)上記条件において、通常
の曝気に必要な空気量を計算によって求めたところ、必
要空気量は105,000Nm/dであった。必要空
気量105,000Nm/dを得るために、通常曝気
用ブロアは以下の容量の機種を選定する。
(Selection of Blower) Under the above conditions, the amount of air required for normal aeration was determined by calculation, and the required amount of air was 105,000 Nm 3 / d. In order to obtain the required air amount of 105,000 Nm 3 / d, a model with the following capacity is usually selected for the blower for aeration.

【0042】通常曝気用ブロア:80(Nm/mi
n) 80×60×24=115,200(Nm/d) 一方、微生物担体洗浄時には、通常曝気時の2倍の線速
度で通気を行うものとする。通常曝気時における空気線
速度は次のようになる。
Normal blower for aeration: 80 (Nm 3 / mi)
n) 80 × 60 × 24 = 115,200 (Nm 3 / d) On the other hand, at the time of washing the microorganism carrier, the ventilation is performed at a linear velocity twice that of the normal aeration. The linear air velocity during normal aeration is as follows.

【0043】好気槽底面積:8×51=408(m) 通常曝気時 空気線速度:105,000÷408≒2
60(m/d) 以下、洗浄空気の供給方法毎に洗浄用ブロアを選定す
る。
Aerobic tank bottom area: 8 × 51 = 408 (m 2 ) Air linear velocity during normal aeration: 105,000 {408} 2
60 (m / d) Hereinafter, a cleaning blower is selected for each cleaning air supply method.

【0044】すべての微生物担体を同時に洗浄する場
合(従来法) 微生物担体充填部底面積:8×17×2=272
(m) 洗浄時 必要空気量:260×272×2=141,4
40(Nm/d) 選定ブロア:100(Nm/min) 100×60×24=144,000(Nm/d) 微生物担体を順次に洗浄する場合(本発明) 1回に洗浄する微生物担体を全体の8分の1とする。 洗浄する微生物担体充填部底面積:8×17×2÷8=
34(m) 洗浄時 必要空気量:260×34×2=17,680
(Nm/d) 選定ブロア:15(Nm/min) 15×60×24=21,600(Nm/d) 通常曝気用ブロアによって洗浄を行う場合(本発明) 1回に洗浄する微生物担体を全体の8分の1とする。必
要空気量は、先ので求めた値と同様で、17,680
(Nm/d)である。この空気量を通常曝気用ブロア
で賄うものとすると、以下のようになる。
When all the microorganism carriers are washed at the same time (conventional method): The bottom area of the microorganism carrier filled portion: 8 × 17 × 2 = 272
(M 2 ) Required air volume for washing: 260 × 272 × 2 = 141,4
40 (Nm 3 / d) Blower selected: 100 (Nm 3 / min) 100 × 60 × 24 = 144,000 (Nm 3 / d) When the microorganism carrier is washed sequentially (in the present invention) The microorganisms to be washed at one time Make the carrier 1/8 of the whole. Bottom area of microbial carrier packed part to be washed: 8 × 17 × 2 ÷ 8 =
34 (m 2 ) Air required for washing: 260 × 34 × 2 = 17,680
(Nm 3 / d) Blower selected: 15 (Nm 3 / min) 15 × 60 × 24 = 21,600 (Nm 3 / d) When washing is performed by a blower for normal aeration (the present invention) Microorganisms to be washed at one time Make the carrier 1/8 of the whole. The required air amount is the same as the value obtained above, and is 17,680.
(Nm 3 / d). Assuming that this amount of air is normally supplied by an aeration blower, the following is obtained.

【0045】通常曝気時 必要空気量:105,000
(Nm/d) 洗浄時 必要空気量:17,680(Nm/d) 必要空気量 合計:122,680(Nm/d) 選定ブロア(通常曝気用ブロア):90(Nm/mi
n) 90×60×24=129,600(Nm/d) 以上の算出結果をまとめると表−1のようになり、本発
明によって大幅な設備費縮減が可能であることが確認さ
れた。
Normal aeration Required air volume: 105,000
(Nm 3 / d) Required air volume during washing: 17,680 (Nm 3 / d) Required air volume Total: 122,680 (Nm 3 / d) Blower selected (normal blower for aeration): 90 (Nm 3 / mi)
n) 90 × 60 × 24 = 129,600 (Nm 3 / d) The above calculation results are summarized in Table 1, and it has been confirmed that the present invention can significantly reduce equipment cost.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【発明の効果】以上説明したように、本発明によれば、
好気槽における微生物担体の空気洗浄を部分的に順次行
うことができるので、洗浄用のブロアの容量を小さくで
きるか、もしくは洗浄用のブロアを省略し、通常曝気用
のブロアを用いて洗浄を行うことができる。
As described above, according to the present invention,
Since the air cleaning of the microbial carrier in the aerobic tank can be partially performed sequentially, the capacity of the cleaning blower can be reduced, or the cleaning blower can be omitted, and the cleaning can be performed using the aeration blower. It can be carried out.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施形態の装置の全体構成を示す図である。FIG. 1 is a diagram illustrating an overall configuration of an apparatus according to an embodiment.

【図2】 微生物担体の素材を示す図である。FIG. 2 is a view showing a material of a microorganism carrier.

【図3】 洗浄用ブロアを設けた場合の好気槽の空気配
管の構成例を示す図である。
FIG. 3 is a diagram illustrating a configuration example of an air pipe of an aerobic tank when a cleaning blower is provided.

【図4】 洗浄用ブロアを設けない場合の好気槽の空気
配管の構成例である。
FIG. 4 is a configuration example of an air pipe of an aerobic tank when a cleaning blower is not provided.

【図5】 設計例における好気槽の形状を示す図であ
る。
FIG. 5 is a diagram showing a shape of an aerobic tank in a design example.

【符号の説明】[Explanation of symbols]

10 嫌気槽、12 脱窒槽、14 好気槽、16 沈
殿槽、22,24 攪拌機、30 曝気空気配管、32
散気部材、40 微生物担体、42 洗浄空気噴出部
材、44 洗浄空気配管、50 曝気用ブロア、52,
56 バルブ、54 洗浄用ブロア。
10 anaerobic tank, 12 denitrification tank, 14 aerobic tank, 16 sedimentation tank, 22, 24 stirrer, 30 aerated air piping, 32
Diffuser member, 40 microorganism carrier, 42 cleaning air jetting member, 44 cleaning air pipe, 50 aeration blower, 52,
56 valves, 54 cleaning blowers.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原水を嫌気槽、脱窒槽、好気槽、沈殿槽
の順で流通するとともに、沈殿槽の沈殿汚泥を嫌気槽に
返送し、かつ好気槽の混合液を脱窒槽に循環すること
で、脱窒及び脱リン処理を行う生物学的脱窒脱リン装置
において、 前記好気槽内に配置され、微生物を付着保持する微生物
担体と、 前記好気槽内に設けられ、曝気空気を噴出するための曝
気空気配管と、 前記好気槽内の微生物担体の下方に設けられ、間欠的に
洗浄空気を噴出して、微生物担体を洗浄するための洗浄
空気配管と、 前記洗浄空気配管に洗浄空気を部分的に供給するととも
に、供給する部分を順次切り換える切換手段と、 を有することを特徴とする生物学的脱窒脱リン装置。
1. The raw water circulates in the order of an anaerobic tank, a denitrification tank, an aerobic tank, and a sedimentation tank, the sludge settled in the sedimentation tank is returned to the anaerobic tank, and the mixed solution in the aerobic tank is circulated to the denitrification tank. In the biological denitrification and dephosphorization apparatus for performing the denitrification and dephosphorization treatment, a microorganism carrier disposed in the aerobic tank and adhering and holding microorganisms is provided in the aerobic tank, and aeration is performed. An aeration air pipe for ejecting air; a washing air pipe provided below the microorganism carrier in the aerobic tank and intermittently ejecting washing air to wash the microorganism carrier; A biological denitrification / dephosphorization apparatus, comprising: a switching means for partially supplying cleaning air to a pipe and sequentially switching a supply section.
【請求項2】 請求項1に記載の装置において、 前記曝気空気配管に供給する曝気空気及び前記洗浄空気
配管に供給する洗浄空気は、単一の空気供給源からの空
気を分岐して利用することを特徴とする生物学的脱窒脱
リン装置。
2. The apparatus according to claim 1, wherein the aeration air supplied to the aeration air pipe and the cleaning air supplied to the cleaning air pipe use air branched from a single air supply source. A biological denitrification dephosphorization apparatus characterized by the above-mentioned.
JP11148600A 1999-05-27 1999-05-27 Biological denitrification and dephosphorization apparatus Pending JP2000334490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11148600A JP2000334490A (en) 1999-05-27 1999-05-27 Biological denitrification and dephosphorization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11148600A JP2000334490A (en) 1999-05-27 1999-05-27 Biological denitrification and dephosphorization apparatus

Publications (1)

Publication Number Publication Date
JP2000334490A true JP2000334490A (en) 2000-12-05

Family

ID=15456400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11148600A Pending JP2000334490A (en) 1999-05-27 1999-05-27 Biological denitrification and dephosphorization apparatus

Country Status (1)

Country Link
JP (1) JP2000334490A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434858B1 (en) * 2002-04-25 2004-06-07 주식회사 디엠퓨어텍 A sewerage method using cultured nitrification microorganism by anaerobic or aerobic digestive fluid of sludge
WO2006019256A1 (en) * 2004-08-17 2006-02-23 Jae Hyuk Yi Biological wastewater treating apparatus and method for biologically treating wastewater using the apparatus
JP2007105580A (en) * 2005-10-12 2007-04-26 Kurita Water Ind Ltd Method and apparatus for biologically treating organic drainage
JP2020014983A (en) * 2018-07-23 2020-01-30 株式会社タクマ Method of cleaning microorganism carrier
US11454351B2 (en) 2018-10-31 2022-09-27 Guangdong Guanfu Energy Technology Pte Ltd. Multiphase flow mixed delivery method employing reciprocating driving performed by liquid in two chambers and device thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434858B1 (en) * 2002-04-25 2004-06-07 주식회사 디엠퓨어텍 A sewerage method using cultured nitrification microorganism by anaerobic or aerobic digestive fluid of sludge
WO2006019256A1 (en) * 2004-08-17 2006-02-23 Jae Hyuk Yi Biological wastewater treating apparatus and method for biologically treating wastewater using the apparatus
JP2007105580A (en) * 2005-10-12 2007-04-26 Kurita Water Ind Ltd Method and apparatus for biologically treating organic drainage
JP2020014983A (en) * 2018-07-23 2020-01-30 株式会社タクマ Method of cleaning microorganism carrier
JP7162976B2 (en) 2018-07-23 2022-10-31 株式会社タクマ Method for washing microorganism carrier
US11454351B2 (en) 2018-10-31 2022-09-27 Guangdong Guanfu Energy Technology Pte Ltd. Multiphase flow mixed delivery method employing reciprocating driving performed by liquid in two chambers and device thereof

Similar Documents

Publication Publication Date Title
AU2002301606B2 (en) Batch Style Wastewater Treatment Apparatus Using Biological Filtering Process and Wastewater Treatment Method Using The Same
US6592762B2 (en) Process for treating BOD-containing wastewater
CN100360439C (en) Combined activated sludge-biofilm sequencing batch reactor and process
CN108569762A (en) A kind of multifunctional all domestic sewage treatment device
WO2019198388A1 (en) Nitrogen treatment method
US6159372A (en) Method for treating waste water with a high concentration of organic matter by using ball shaped circulating and elongated stationary ciliary filter cakes
JP2000334490A (en) Biological denitrification and dephosphorization apparatus
JP2006314991A (en) Apparatus and method for treating high-concentration nitrogen-containing dirty waste water such as waste water from livestock farmer and excreta
JP2609192B2 (en) Biological dephosphorization nitrification denitrification treatment method of organic wastewater
JP3677783B2 (en) Nitrification method
JP3654164B2 (en) Start-up operation method of waste water treatment equipment
KR100353004B1 (en) Biological Nutrient Removal Method using a Submerged Moving Media Intermittent Aeration Reactor and System
JP3478241B2 (en) Biological treatment equipment
JP2006061879A (en) Waste water treatment method and device
JPH10296283A (en) Carrier separating method for biological reaction tank using carrier combinedly
JPH04310298A (en) Biological nitrogen removing unit
JPH09225494A (en) Sewage treating device
JPH09276893A (en) Method for treating nitrogen-containing waste water
KR20000021219A (en) Biological layer on carrier with stationary phase for separating solid-liquid and for eliminating nitrogen and phosphorous and a method for disposing sewage and waste water
JPH0212638B2 (en)
JPH07185589A (en) Waste water treatment method for removal of nitrogen and device therefor
JP3407342B2 (en) Biological denitrification / phosphorus removal equipment
JPH07136678A (en) Wastewater treatment method and tank
KR100274538B1 (en) Waste water treatment methods and fludized biofilm media unit for nitrogen and phosphorous removal
JP3627402B2 (en) Wastewater treatment method using microorganism-immobilized carrier