JP2013103185A - Wastewater treatment apparatus - Google Patents

Wastewater treatment apparatus Download PDF

Info

Publication number
JP2013103185A
JP2013103185A JP2011249470A JP2011249470A JP2013103185A JP 2013103185 A JP2013103185 A JP 2013103185A JP 2011249470 A JP2011249470 A JP 2011249470A JP 2011249470 A JP2011249470 A JP 2011249470A JP 2013103185 A JP2013103185 A JP 2013103185A
Authority
JP
Japan
Prior art keywords
concentration
oxygen
target value
downstream
circulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011249470A
Other languages
Japanese (ja)
Other versions
JP5863409B2 (en
Inventor
Yukio Kawaguchi
幸男 川口
Toshiichi Hashimoto
敏一 橋本
Hiroshi Fujiwara
拓 藤原
Kazuo Nakamachi
和雄 中町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Japan Sewage Works Agency
Kochi University NUC
Maezawa Industries Inc
Original Assignee
Kyushu University NUC
Japan Sewage Works Agency
Kochi University NUC
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Japan Sewage Works Agency, Kochi University NUC, Maezawa Industries Inc filed Critical Kyushu University NUC
Priority to JP2011249470A priority Critical patent/JP5863409B2/en
Publication of JP2013103185A publication Critical patent/JP2013103185A/en
Application granted granted Critical
Publication of JP5863409B2 publication Critical patent/JP5863409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wastewater treatment apparatus capable of improving reaction speed in a ditch.SOLUTION: A wastewater treatment apparatus includes: a raw water inflow channel 18, a circulation liquid outlet channel 16, an endless water channel (ditch 11) which is provided with a circulation flow generation means 12 and an oxygen supply means (aeration device 13) and in which an aerobic region 14 and an anoxic region 15 are formed; and a solid-liquid separation means (final sedimentation tank 17) performing solid-liquid separation of circulation liquid flowing out from the circulation liquid outlet channel 15. A biological fixing carrier is put into the circulation liquid. The circulation flow generation means includes a rotary cylindrical body 12a having an axial line directed in the vertical direction and a protruding agitation blade 12b provided at an outer circumference of the rotary cylindrical body. The oxygen supply means includes a microbubble generator generating microbubbles having diameters equal to or less than 50 μm. The circulation liquid outlet channel includes a screen 16a preventing an outflow of the biological fixing carrier.

Description

本発明は、排水処理装置に関し、詳しくは、無終端水路を用いた生物学的排水処理方法によって窒素及びリンの除去を含む排水の浄化処理を行う排水処理装置に関する。   The present invention relates to a wastewater treatment apparatus, and more particularly to a wastewater treatment apparatus that performs purification treatment of wastewater including removal of nitrogen and phosphorus by a biological wastewater treatment method using an endless water channel.

生物学的な排水処理を行う方法として、オキシデーションディッチ法が広く知られている。このオキシデーションディッチ法は、無端状に形成したディッチ(無終端水路)内の水を循環させながら一部で曝気することにより、ディッチ内に好気域と無酸素域とを形成し、有機物の分解だけでなく、好気域での硝化反応と無酸素域での脱窒反応とによって窒素分も除去するようにしている。また、ディッチの上流側に嫌気槽を設けることにより、リンを除去することも可能である。   The oxidation ditch method is widely known as a biological wastewater treatment method. This oxidation ditch method forms an aerobic region and an anoxic region in the ditch by aerating part of the water in the endlessly formed ditch (endless water channel) while circulating it. In addition to decomposition, nitrogen is also removed by a nitrification reaction in an aerobic region and a denitrification reaction in an anoxic region. It is also possible to remove phosphorus by providing an anaerobic tank upstream of the ditch.

オキシデーションディッチ法は、大規模処理場に比べて日間変動が大きい小規模処理場に適しているが、日間変動によってディッチ内における負荷が大きく変動するため、負荷に応じてディッチ内の流速や酸素供給量(曝気量)を調節し、前記好気域と無酸素域とのバランスを適正に保つことが重要となる。このため、好気域の上流側と下流側との適当な位置に溶存酸素計(DO計)をそれぞれ設置し、各DO計の測定値(DO値)に基づいて循環液の流速及び酸素の供給量をそれぞれ調節することにより、いわゆる二点DO制御によって好気域と無酸素域とのバランスを適正に保つようにしている(例えば、特許文献1参照。)。   The oxidation ditch method is suitable for small-scale treatment plants that have large daily fluctuations compared to large-scale treatment plants, but the load in the ditch varies greatly due to daily fluctuations. It is important to adjust the supply amount (aeration amount) and maintain a proper balance between the aerobic region and the anoxic region. For this reason, dissolved oxygen meters (DO meters) are installed at appropriate positions on the upstream side and downstream side of the aerobic region, respectively, and the flow rate of the circulating fluid and the oxygen concentration are measured based on the measured values (DO values) of each DO meter. By adjusting the supply amount, the balance between the aerobic region and the anaerobic region is appropriately maintained by so-called two-point DO control (see, for example, Patent Document 1).

特開2005−52804号公報JP 2005-52804 A

前記特許文献1に記載された処理を適用することにより、負荷変動があっても常に一定の好気域及び無酸素域を形成することができ、処理水中のアンモニア濃度や硝酸態窒素濃度を最小とすることができる。しかし、小規模で低負荷の場合や流路長が極端に短い場合には、酸素消費速度が低くなって十分な無酸素域を形成することが困難になるおそれがある。また、原水流入量が多い場合には、ディッチの後段に設けられている固液分離手段、例えば沈殿槽の負荷が増大するため、沈殿槽の容量を大きくしたり、沈殿槽を増設したりする必要が生じる。   By applying the treatment described in Patent Document 1, it is possible to always form a constant aerobic region and anoxic region even when there is a load fluctuation, and minimize ammonia concentration and nitrate nitrogen concentration in the treated water. It can be. However, in the case of a small scale and a low load, or when the flow path length is extremely short, the oxygen consumption rate is low, and it may be difficult to form a sufficient anoxic region. Also, when the raw water inflow is large, the load of the solid-liquid separation means provided in the subsequent stage of the ditch, for example, the sedimentation tank increases, so the capacity of the sedimentation tank is increased or the sedimentation tank is expanded. Need arises.

一方、ディッチ内に生物固定担体を投入することによって ディッチ内の微生物量を多く保って反応速度を向上させるとともに沈殿池に流入する汚泥量を減少させて沈殿池の負荷を軽減することが可能である。しかしながら、一般的なディッチに設けられている機械式エアレーション装置や撹拌装置は、撹拌羽根で循環液を高速撹拌するため、撹拌羽根の高速撹拌によって生じる大きな剪断力によって生物固定担体が損傷したり、生物固定担体から微生物が剥離したりしてしまうため、生物固定担体を投入した効果を十分に上げることができず、実用化には至っていない。   On the other hand, it is possible to reduce the load on the sedimentation basin by increasing the reaction rate by increasing the amount of microorganisms in the ditch and reducing the amount of sludge flowing into the sedimentation basin by introducing the biofixation carrier into the ditch. is there. However, since the mechanical aeration device and stirring device provided in a general ditch stir the circulating fluid at high speed with the stirring blade, the biological fixed carrier is damaged by the large shearing force generated by the high-speed stirring of the stirring blade, Since microorganisms are peeled off from the biological immobilization carrier, the effect of introducing the biological immobilization carrier cannot be sufficiently improved and has not been put into practical use.

そこで本発明は、生物固定担体を使用して反応速度を向上させることによって十分な無酸素域を形成することができ、後段の固液分離手段の負荷を増大させることもなく、生物固定担体の損傷や微生物の剥離を抑制して処理効率を大幅に向上させることができる排水処理装置を提供することを目的としている。   Therefore, the present invention can form a sufficient anoxic region by improving the reaction rate using the biological immobilization carrier, and without increasing the load of the subsequent solid-liquid separation means, An object of the present invention is to provide a wastewater treatment apparatus capable of significantly improving treatment efficiency by suppressing damage and detachment of microorganisms.

上記目的を達成するため、本発明の排水処理装置は、原水流入部及び循環液出口経路を備えるとともに循環流発生手段及び酸素供給手段を備え、前記酸素供給手段の下流側に好気域を、該好気域の終端から前記酸素供給手段に至る無酸素域をそれぞれ形成した無終端水路と、前記循環液出口経路から流出した循環液の固液分離を行う固液分離手段とを備えた排水処理装置において、前記無終端水路内を循環する循環液中に、該循環液中に浮遊する生物固定担体を投入するとともに、前記循環流発生手段は、軸線を鉛直方向に向けた回転円筒体と、該回転円筒体の外周に突設した複数の撹拌羽根とを備え、前記酸素供給手段は、直径が1mm以下の微細気泡を発生する微細気泡発生器を備え、前記循環液出口経路は、前記生物固定担体の流出を防止するスクリーンを備えていることを特徴としている。   In order to achieve the above object, the wastewater treatment apparatus of the present invention comprises a raw water inflow portion and a circulating fluid outlet path, and also comprises a circulating flow generation means and an oxygen supply means, and an aerobic region downstream of the oxygen supply means, Drainage provided with an endless water channel that forms an oxygen-free region from the end of the aerobic region to the oxygen supply unit, and a solid-liquid separation unit that performs solid-liquid separation of the circulating fluid flowing out from the circulating fluid outlet channel In the treatment device, the biological immobilization carrier floating in the circulating fluid is introduced into the circulating fluid circulating in the endless water channel, and the circulating flow generating means includes a rotating cylindrical body whose axis is directed in the vertical direction, A plurality of stirring blades protruding from the outer periphery of the rotating cylindrical body, the oxygen supply means includes a fine bubble generator for generating fine bubbles having a diameter of 1 mm or less, and the circulating fluid outlet path The outflow of the biological immobilization carrier It is characterized in that it comprises a screen for stopping.

さらに、本発明の排水処理装置は、前記好気域における上流側と下流側とにそれぞれ設けられて循環液中の溶存酸素濃度を測定する上流側溶存酸素計及び下流側溶存酸素計と、前記上流側溶存酸素計で測定した上流側溶存酸素濃度とあらかじめ設定された上流側酸素濃度目標値とに基づいて前記酸素供給手段による酸素の供給量を制御する酸素供給量制御手段と、前記下流側溶存酸素計で測定した下流側溶存酸素濃度とあらかじめ設定された下流側酸素濃度目標値とに基づいて前記循環流発生手段による循環液の流速を制御する流速制御手段とを備えていることを特徴としている。   Furthermore, the waste water treatment apparatus of the present invention is provided on the upstream side and the downstream side in the aerobic region, respectively, and an upstream dissolved oxygen meter and a downstream dissolved oxygen meter that measure the dissolved oxygen concentration in the circulating liquid, An oxygen supply amount control means for controlling an oxygen supply amount by the oxygen supply means based on an upstream dissolved oxygen concentration measured by an upstream dissolved oxygen meter and a preset upstream oxygen concentration target value; and the downstream side A flow rate control means for controlling the flow rate of the circulating fluid by the circulating flow generating means based on a downstream dissolved oxygen concentration measured by a dissolved oxygen meter and a preset downstream oxygen concentration target value; It is said.

また、前記循環液中のアンモニアの濃度及び硝酸の濃度をそれぞれ測定するアンモニア/硝酸濃度測定手段を設けるとともに、該アンモニア/硝酸濃度測定手段で測定したアンモニア濃度及び硝酸濃度の少なくともいずれか一方の濃度に基づいて前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値を調節する目標値調節手段を備えているを特徴とし、加えて、前記原水流入部の上流に、原水の嫌気処理を行ってリンを除去する嫌気槽を設けるとともに、前記固液分離手段で分離した汚泥を前記嫌気槽に返送して原水に混合する返送汚泥経路を設けたことを特徴としている。   In addition, ammonia / nitric acid concentration measuring means for measuring the ammonia concentration and nitric acid concentration in the circulating fluid is provided, and at least one of the ammonia concentration and the nitric acid concentration measured by the ammonia / nitric acid concentration measuring means is provided. And a target value adjusting means for adjusting the upstream oxygen concentration target value and the downstream oxygen concentration target value based on the above, and in addition, anaerobic treatment of raw water is performed upstream of the raw water inflow portion. And an anaerobic tank for removing phosphorus, and a return sludge path for returning the sludge separated by the solid-liquid separation means to the anaerobic tank and mixing it with raw water.

本発明の排水処理装置によれば、循環液中に生物固定担体を投入することによって好気域での酸素消費速度が向上し、十分な長さの無酸素域を形成することができる。また、循環液中の微生物を生物固定担体に付着させることにより、循環液中に浮遊する微生物(浮遊微生物)の濃度を低くすることができ、全体としての微生物濃度を高く保持しながら、浮遊微生物の濃度を低くできるので、循環液における生物反応処理効率を向上させながら、後段の固液分離手段の負荷を低減して固液分離効率の向上も図ることができる。さらに、軸線を鉛直方向に向けた円筒体の外周に複数の撹拌羽根を有する循環流発生手段を使用することにより、生物固定担体の損傷や微生物の剥離を抑制することができ、微細気泡発生器を備えた酸素供給手段を用いることにより、生物固定担体同士の激しい衝突による生物固定担体の損傷や微生物の剥離を防止できる。   According to the waste water treatment apparatus of the present invention, by introducing the biological fixed carrier into the circulating liquid, the oxygen consumption rate in the aerobic region can be improved, and a sufficiently long anoxic region can be formed. In addition, by attaching microorganisms in the circulating fluid to the biological immobilization carrier, the concentration of microorganisms floating in the circulating fluid (floating microorganisms) can be reduced, and while maintaining the overall microorganism concentration, the floating microorganisms Therefore, the solid-liquid separation efficiency can be improved by reducing the load of the solid-liquid separation means in the subsequent stage while improving the biological reaction treatment efficiency in the circulating liquid. Furthermore, by using a circulating flow generating means having a plurality of stirring blades on the outer periphery of the cylindrical body with the axis line oriented in the vertical direction, damage to the biological immobilization carrier and detachment of microorganisms can be suppressed, and a fine bubble generator By using the oxygen supply means provided with the above, it is possible to prevent damage to the biological immobilization carrier and detachment of microorganisms due to intense collision between the biological immobilization carriers.

また、好気域における上流側と下流側とにおける各溶存酸素濃度に応じて酸素供給手段による酸素の供給量や循環流発生手段による循環液の流速を制御することにより、流入負荷が変動しても無終端水路内に一定の好気域と無酸素域とを確実に形成することができる。さらに、無酸素域の上流部に設けた原水流入部上流に嫌気槽を設けることにより、原水中のリンを効率よく除去することができる。加えて、循環液中のアンモニアの濃度や硝酸の濃度に基づいて上流側酸素濃度目標値や下流側酸素濃度目標値を調節することにより、アンモニア性窒素や硝酸性窒素の濃度を適正な濃度に制御することができ、好気域と無酸素域との比率をアンモニア濃度や硝酸濃度に応じて最適な比率に制御することができ、処理効率の向上が図れる。   In addition, the inflow load fluctuates by controlling the amount of oxygen supplied by the oxygen supplying means and the flow rate of the circulating fluid by the circulating flow generating means according to the dissolved oxygen concentration on the upstream side and downstream side in the aerobic region. In addition, a certain aerobic region and an oxygen-free region can be reliably formed in the endless water channel. Furthermore, phosphorus in raw water can be efficiently removed by providing an anaerobic tank upstream of the raw water inflow part provided in the upstream part of the oxygen-free region. In addition, by adjusting the upstream oxygen concentration target value and downstream oxygen concentration target value based on the ammonia concentration and nitric acid concentration in the circulating fluid, the concentration of ammonia nitrogen and nitrate nitrogen is adjusted to the appropriate concentration. The ratio between the aerobic region and the anaerobic region can be controlled to an optimal ratio according to the ammonia concentration and the nitric acid concentration, and the processing efficiency can be improved.

本発明の排水処理装置の一形態例を示す説明図である。It is explanatory drawing which shows one example of the waste water treatment apparatus of this invention.

本形態例に示す排水処理装置は、生物学的排水処理方法によって窒素の除去を含む排水の浄化処理を行うディッチ11に循環流発生手段である一組の循環流発生手段12と酸素供給手段である散気装置13とを設け、ディッチ11内に矢印Fで示す方向の循環流を形成することにより、散気装置13から所定の距離までの間に好気域14を、この好気域14の終端から散気装置13までの間に無酸素域15をそれぞれ所定のバランスで形成するとともに、好気域14と無酸素域15とを循環する循環液中に、該循環液中に浮遊する生物固定担体を投入している。   The wastewater treatment apparatus shown in the present embodiment includes a pair of circulation flow generation means 12 and oxygen supply means, which are circulation flow generation means, in a ditch 11 that performs purification treatment of wastewater including nitrogen removal by a biological wastewater treatment method. By providing a diffuser 13 and forming a circulating flow in the direction indicated by the arrow F in the ditch 11, an aerobic region 14 is formed between the diffuser 13 and a predetermined distance. The oxygen-free region 15 is formed in a predetermined balance between the end of the gas and the diffuser 13 and floats in the circulating fluid circulating in the aerobic region 14 and the oxygen-free region 15. A biological immobilization carrier is used.

好気域14の下流部には、循環液出口経路である循環液出口経路16を介して最終沈殿池17が設けられ、無酸素域15の上流部には、原水流入部である原水流入経路18が設けられるとともに、該原水流入経路18の途中には嫌気槽19が設けられている。さらに、最終沈殿池17には、分離した上澄み水が流出する処理水流出経路20と、沈降分離した汚泥を嫌気槽19に返送する返送汚泥経路21と、汚泥の一部を余剰汚泥として抜き取る汚泥抜出経路22とが設けられており、前記嫌気槽19は、該嫌気槽19に流入した原水と前記返送汚泥経路21から返送された汚泥とを混合して嫌気状態に所定時間保持して嫌気処理を行う。また、循環液出口経路16への流入部には、生物固定担体がディッチ11内から循環液出口経路16に流出することを防止するためのスクリーン16aが設けられている。   A final sedimentation basin 17 is provided downstream of the aerobic zone 14 via a circulating fluid outlet route 16 that is a circulating fluid outlet route, and a raw water inlet route that is a raw water inlet portion is provided upstream of the anoxic zone 15. 18 is provided, and an anaerobic tank 19 is provided in the middle of the raw water inflow path 18. Further, in the final sedimentation basin 17, a treated water outflow path 20 through which the separated supernatant water flows out, a return sludge path 21 through which the settled and separated sludge is returned to the anaerobic tank 19, and sludge that extracts a part of the sludge as excess sludge. An extraction path 22 is provided, and the anaerobic tank 19 mixes the raw water flowing into the anaerobic tank 19 and the sludge returned from the return sludge path 21 and keeps them in an anaerobic state for a predetermined time. Process. Further, a screen 16 a for preventing the biological immobilization carrier from flowing out of the ditch 11 into the circulating fluid outlet passage 16 is provided at the inflow portion to the circulating fluid outlet passage 16.

前記一組の循環流発生手段12は、ディッチ11内を仕切る隔壁11aの両端部にそれぞれ配置されており、軸線を鉛直方向に向けた回転円筒体12aと、該回転円筒体12aの外周に突設した複数の撹拌羽根12bとを備えた縦軸形水流発生装置であって、軸線を中心として回転円筒体12aをモータで所定回転数で回転させることにより、複数の撹拌羽根12bがディッチ11内に前記循環流を形成する。このような縦軸形の循環流発生手段12は、複数の撹拌羽根12bの全体で水、即ち循環液を下流側に押し出すことで水流(循環流)を発生することができるので、回転円筒体12aを毎分10〜20回転程度の低速で回転させることによってディッチ11内に適当な流速の循環流を形成することができるとともに、回転速度がゆっくりで撹拌羽根12bによる剪断力が小さいため、生物固定担体が損傷したり、微生物が生物固定担体から剥離したりすることを抑えることができる。   The pair of circulating flow generating means 12 are respectively arranged at both ends of the partition wall 11a partitioning the inside of the ditch 11, and projecting to the outer periphery of the rotating cylinder 12a with the axis line oriented in the vertical direction. It is a vertical axis type water flow generator provided with a plurality of stirring blades 12b provided, and the plurality of stirring blades 12b are moved into the ditch 11 by rotating the rotating cylindrical body 12a with a motor at a predetermined rotational speed around the axis. To form the circulating flow. Such a vertical flow circulation means 12 can generate water flow (circulation flow) by extruding water, that is, circulation liquid, downstream of the plurality of stirring blades 12b as a whole. By rotating 12a at a low speed of about 10 to 20 revolutions per minute, a circulating flow with an appropriate flow rate can be formed in the ditch 11, and the rotational speed is slow and the shearing force by the stirring blade 12b is small. It can suppress that a fixed support | carrier is damaged or that microorganisms peel from a biological fixed support | carrier.

また、前記散気装置13は、直径が1mm以下の微細気泡を発生する微細気泡発生器を備えている。直径が1mm程度の微細気泡は、水中での上昇速度が十分に低いことから、酸素溶解効率が高く、少量の散気で十分な酸素供給を行えるとともに、従来の粗大気泡のような鉛直方向の旋回流を発生させることがないため、生物固定担体同士が激しく衝突して損傷したり、微生物が剥離したりすることがなくなる。   The air diffuser 13 includes a fine bubble generator that generates fine bubbles having a diameter of 1 mm or less. Fine bubbles with a diameter of about 1 mm have a sufficiently low ascending rate in water, so that the oxygen dissolution efficiency is high, and sufficient oxygen can be supplied with a small amount of air diffused. Since a swirl flow is not generated, the biological immobilization carriers do not collide violently and are not damaged, and microorganisms are not separated.

循環液中に投入する生物固定担体は、ディッチ11内で沈降せず、かつ、完全に浮上せずに循環液の全体に均一に分散して浮遊するように、微生物が適度に付着した状態で比重が1前後になるものが選定される。特に、ディッチ11内を循環する循環液では、複数の生物反応、例えば、有機物の酸化、アンモニア態窒素の硝化、硝酸態窒素の脱窒が同時に進行するため、これらの反応に寄与する微生物を複合的に保持する必要があることから、生物固定担体としては、微生物が付着しやすい材質からなる適当な大きさの物体を使用し、系内に存在する各種の微生物が担体上に付着して増殖する結合型微生物保持担体を使用することが好ましい。さらに、結合型微生物保持担体の場合は、担体の表面及び内部で溶存酸素濃度に勾配が生じるため、担体の表面では主として好気性菌、例えば硝化菌が優先し、内部では通性嫌気性菌、例えば脱窒菌がそれぞれ優先した状態となる。   The biological immobilization carrier introduced into the circulating fluid does not settle in the ditch 11 and does not float completely, but is dispersed in the whole circulating fluid and floats in a state where microorganisms are appropriately attached. A specific gravity of around 1 is selected. In particular, in the circulating fluid circulating in the ditch 11, a plurality of biological reactions such as oxidation of organic substances, nitrification of ammonia nitrogen, and denitrification of nitrate nitrogen proceed at the same time, so that microorganisms contributing to these reactions are combined. As the biological immobilization carrier, an object of an appropriate size made of a material that easily adheres to microorganisms is used, and various microorganisms existing in the system adhere to the carrier and proliferate. It is preferable to use a binding type microorganism holding carrier. Furthermore, in the case of a conjugated microorganism-supporting carrier, since a gradient occurs in the dissolved oxygen concentration on the surface and inside of the carrier, mainly aerobic bacteria, for example, nitrifying bacteria are given priority on the surface of the carrier, For example, denitrifying bacteria are prioritized.

これにより、生物固定担体に付着した大量の微生物と循環液とが、好気域14と無酸素域15とで効率よくかつ効果的に接触し、処理効率の向上が図れる。また、生物固定担体の直径が数mm程度のもの選定することにより、前記スクリーン16aとして比較的目の粗いものを用いることができ、しかも、スクリーン16aのディッチ11側の面は、循環液が常時所定の流速で流れているため、目詰まりが発生することはほとんどなく、特に、循環液の流れ方向に平行な方向のスリットでスクリーン16aを形成することにより、目詰まりの発生をより確実に防止できる。   As a result, a large amount of microorganisms adhering to the biological immobilization carrier and the circulating fluid are efficiently and effectively brought into contact with each other in the aerobic region 14 and the anoxic region 15, thereby improving the processing efficiency. Further, by selecting a biological immobilization carrier having a diameter of about several millimeters, a relatively coarse screen can be used as the screen 16a, and the surface of the screen 16a on the Ditch 11 side is always filled with circulating fluid. Since it flows at a predetermined flow rate, clogging hardly occurs. In particular, clogging can be prevented more reliably by forming the screen 16a with a slit in a direction parallel to the circulating fluid flow direction. it can.

このように、ディッチ11内を循環する循環液中に生物固定担体を投入することによって処理効率の大幅な向上を図ることができる。また、円筒体12aの外周に複数の撹拌羽根12bを設けた循環流発生手段12によって循環流を形成することにより、生物固定担体の損傷や微生物の剥離を抑制することができるさらに、微細気泡発生器を備えた酸素供給手段を用いることにより、酸素溶解効率の向上が図れるとともに、生物固定担体同士が激しく衝突することがなくなるので、生物固定担体の損傷や生物固定担体からの微生物の剥離を防止することができる。   Thus, the treatment efficiency can be significantly improved by introducing the biological immobilization carrier into the circulating fluid circulating in the ditch 11. Further, by forming a circulating flow by the circulating flow generating means 12 provided with a plurality of stirring blades 12b on the outer periphery of the cylindrical body 12a, damage to the biological immobilization carrier and detachment of microorganisms can be suppressed. By using oxygen supply means equipped with a vessel, the oxygen dissolution efficiency can be improved and the biofixation carriers will not collide violently, preventing damage to the biofixation carriers and detachment of microorganisms from the biofixation carriers. can do.

さらに、本形態例に示す排水処理装置では、ディッチ11内の前記好気域14における循環液流れ方向上流側と下流側とには、循環液中の溶存酸素濃度を測定する上流側溶存酸素計23と、下流側溶存酸素計24とがそれぞれ設けられるとともに、ディッチ11内の適宜な位置、好ましくは、循環液出口経路16の近傍には、循環液中のアンモニア(アンモニア性窒素)及び硝酸(硝酸性窒素)の濃度を測定するアンモニア/硝酸濃度測定手段25が設けられている。   Further, in the wastewater treatment apparatus shown in the present embodiment, an upstream dissolved oxygen meter that measures the dissolved oxygen concentration in the circulating liquid is provided upstream and downstream in the circulating fluid flow direction in the aerobic region 14 in the ditch 11. 23 and a downstream dissolved oxygen meter 24 are provided, and ammonia (ammonia nitrogen) and nitric acid (nitric acid) and nitric acid (circulating fluid) in the circulating fluid are disposed at an appropriate position in the ditch 11, preferably in the vicinity of the circulating fluid outlet passage 16. An ammonia / nitric acid concentration measuring means 25 for measuring the concentration of (nitric nitrogen) is provided.

さらに、前記上流側溶存酸素計23で測定した上流側溶存酸素濃度に基づいて前記散気装置13による酸素の供給量を制御する酸素供給量制御手段26と、前記下流側溶存酸素計24で測定した下流側溶存酸素濃度に基づいて前記一組の循環流発生手段12による循環液の流速を制御する流速制御手段27と、アンモニア/硝酸濃度測定手段25で測定したアンモニア濃度及び硝酸濃度に基づいて前記酸素供給量制御手段26の上流側酸素濃度目標値及び前記流速制御手段27の下流側酸素濃度目標値を調節する目標値制御手段28とが設けられている。   Furthermore, the oxygen supply amount control means 26 for controlling the oxygen supply amount by the air diffuser 13 based on the upstream dissolved oxygen concentration measured by the upstream dissolved oxygen meter 23 and the downstream dissolved oxygen meter 24 On the basis of the ammonia concentration and nitric acid concentration measured by the flow rate control means 27 for controlling the flow rate of the circulating fluid by the set of circulating flow generation means 12 and the ammonia / nitric acid concentration measurement means 25 based on the downstream dissolved oxygen concentration. A target value control means 28 for adjusting the upstream oxygen concentration target value of the oxygen supply amount control means 26 and the downstream oxygen concentration target value of the flow rate control means 27 is provided.

原水流入経路18から嫌気槽19に流入した原水は、最終沈殿池17から返送汚泥経路21を通って返送された汚泥と混合した混合液となり、嫌気槽19で嫌気状態に保持された後、ディッチ11の無酸素域15に流入して循環液に合流し、無酸素域15で無酸素状態に保持されることによって硝酸性窒素の脱窒が行われ、循環液中から窒素が除去される。   The raw water flowing into the anaerobic tank 19 from the raw water inflow path 18 becomes a mixed liquid mixed with the sludge returned from the final sedimentation basin 17 through the return sludge path 21, and after being held in an anaerobic state in the anaerobic tank 19, 11 flows into the oxygen-free region 15 and joins with the circulating liquid, and is maintained in an oxygen-free state in the oxygen-free region 15, so that nitrate nitrogen is denitrified and nitrogen is removed from the circulating liquid.

循環液は、散気装置13を通過する際に、ブロワBから圧送されて微細気泡発生器から循環液中に供給された空気からなる微細気泡と接触し、液中に酸素を取り込んで好気性状態となり、好気域14を流れながら有機物の分解やアンモニア性窒素の硝化が行われ、循環液中から有機物及びアンモニア性窒素が除去される。   When the circulating liquid passes through the air diffuser 13, it comes into contact with fine bubbles made of air that is pumped from the blower B and supplied from the fine bubble generator into the circulating liquid, and takes oxygen into the liquid and is aerobic. The organic matter is decomposed and ammonia nitrogen is nitrified while flowing through the aerobic region 14, and the organic matter and ammonia nitrogen are removed from the circulating fluid.

好気域14の終端部を流れる循環液の一部は、循環液出口経路16を通って最終沈殿池17に抜き出され、最終沈殿池17で循環液の固液分離が行われる。最終沈殿池17で分離した上澄み液は、処理水流出経路20から放流され、沈殿した汚泥の一部は、汚泥抜出経路22から余剰汚泥として抜き取られ、残りの汚泥は、返送汚泥経路21を通って前記嫌気槽19に返送される。また、最終沈殿池17に抜き出されなかった循環液は、溶存酸素の減少によって無酸素状態となり、無酸素域15の上流部分で嫌気槽19からの前記混合液と合流してディッチ11内を循環する。   A part of the circulating fluid flowing through the end portion of the aerobic region 14 is extracted to the final sedimentation basin 17 through the circulating fluid outlet path 16, and the circulating fluid is subjected to solid-liquid separation in the final sedimentation basin 17. The supernatant liquid separated in the final sedimentation basin 17 is discharged from the treated water outflow path 20, a part of the precipitated sludge is extracted as excess sludge from the sludge extraction path 22, and the remaining sludge passes through the return sludge path 21. It passes through and returns to the anaerobic tank 19. In addition, the circulating fluid that has not been withdrawn into the final sedimentation basin 17 becomes oxygen-free due to a decrease in dissolved oxygen, and merges with the mixed solution from the anaerobic tank 19 in the upstream portion of the oxygen-free zone 15 to enter the interior of the ditch 11. Circulate.

前記酸素供給量制御手段26は、測定した上流側溶存酸素濃度があらかじめ設定した上流側酸素濃度目標値となるように前記散気装置13による酸素(空気)の供給量を制御する。例えば、流入原水の負荷の変動により、上流側溶存酸素濃度が上流側酸素濃度目標値として設定された適正範囲を下回った場合は、酸素不足状態であるから、散気装置13による散気量を増大させて上流側溶存酸素濃度が適正範囲に入るように制御し、適正範囲を上回った場合は、酸素過剰状態であるから、散気装置13による散気量を減少させて上流側溶存酸素濃度が適正範囲に入るように制御する。   The oxygen supply amount control means 26 controls the supply amount of oxygen (air) by the diffuser 13 so that the measured upstream dissolved oxygen concentration becomes a preset upstream oxygen concentration target value. For example, if the upstream dissolved oxygen concentration falls below the appropriate range set as the upstream oxygen concentration target value due to fluctuations in the load of the inflow raw water, the amount of air diffused by the air diffuser 13 is reduced because the oxygen is insufficient. The upstream dissolved oxygen concentration is controlled so as to be within the proper range, and when it exceeds the proper range, it is an oxygen excess state. Therefore, the amount of air diffused by the air diffuser 13 is reduced and the upstream dissolved oxygen concentration is reduced. Is controlled to be within the proper range.

また、前記流速制御手段27は、測定した下流側溶存酸素濃度があらかじめ設定した下流側酸素濃度目標値となるように前記循環流発生手段12の回転速度を制御する。例えば、流入原水の負荷の変動により、下流側溶存酸素計24で測定した下流側溶存酸素濃度が下流側酸素濃度目標値として設定された適正範囲を超えて高濃度になった場合は、循環流発生手段12を減速して循環液の流速を低下させることにより、下流側溶存酸素濃度が適正範囲に入るように制御し、下流側溶存酸素濃度が適正範囲を下回って低濃度になった場合は、循環流発生手段12を増速して循環液の流速を上昇させることにより、下流側溶存酸素濃度が適正範囲に入るように制御する。   The flow rate control means 27 controls the rotational speed of the circulating flow generating means 12 so that the measured downstream dissolved oxygen concentration becomes a preset downstream oxygen concentration target value. For example, when the downstream dissolved oxygen concentration measured by the downstream dissolved oxygen meter 24 exceeds the appropriate range set as the downstream oxygen concentration target value due to fluctuations in the load of the inflow raw water, the circulation flow When the generation means 12 is decelerated and the flow rate of the circulating fluid is decreased, the downstream dissolved oxygen concentration is controlled to fall within the proper range, and the downstream dissolved oxygen concentration falls below the proper range and becomes low. Then, the circulating flow generating means 12 is accelerated to increase the flow rate of the circulating fluid, thereby controlling the downstream dissolved oxygen concentration to fall within an appropriate range.

そして、前記目標値制御手段28は、アンモニア/硝酸濃度測定手段25で測定したアンモニア濃度があらかじめ設定したアンモニア濃度下限値を下回るときには、前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値の少なくともいずれか一方、好ましくは双方を低い値に調節し、測定したアンモニア濃度が前記アンモニア濃度上限値を上回るときには、前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値の少なくともいずれか一方、好ましくは双方を高い値に調節する。   Then, when the ammonia concentration measured by the ammonia / nitric acid concentration measuring means 25 falls below a preset ammonia concentration lower limit value, the target value control means 28 sets the upstream oxygen concentration target value and the downstream oxygen concentration target value. At least one of them, preferably both are adjusted to a low value, and when the measured ammonia concentration exceeds the ammonia concentration upper limit value, at least one of the upstream oxygen concentration target value and the downstream oxygen concentration target value, Preferably both are adjusted to a high value.

すなわち、目標値制御手段28は、アンモニア/硝酸濃度測定手段25で測定したディッチ11内の循環液のアンモニア濃度がアンモニア濃度下限値を下回るときには、酸素供給量制御手段26の上流側酸素濃度目標値を、該上流側酸素濃度目標値よりも低い溶存酸素濃度とした上流側低酸素濃度目標値に下げたり、前記流速制御手段27の下流側酸素濃度目標値を、該下流側酸素濃度目標値よりも低い溶存酸素濃度とした下流側低酸素濃度目標値に下げたりする。   That is, the target value control means 28 determines the upstream oxygen concentration target value of the oxygen supply amount control means 26 when the ammonia concentration of the circulating fluid in the ditch 11 measured by the ammonia / nitric acid concentration measurement means 25 is lower than the ammonia concentration lower limit value. Is reduced to an upstream low oxygen concentration target value that is lower than the upstream oxygen concentration target value, or the downstream oxygen concentration target value of the flow rate control means 27 is set lower than the downstream oxygen concentration target value. Also lower the lower oxygen concentration target value on the downstream side to a lower dissolved oxygen concentration.

これにより、酸素供給量制御手段26は、上流側溶存酸素計23で測定した上流側溶存酸素濃度が、前記上流側低酸素濃度目標値として設定された適正範囲を上回っていると判断したときには、散気装置13による散気量を減少させて上流側溶存酸素濃度が上流側低酸素濃度目標値の適正範囲に入るように制御する。   Thus, when the oxygen supply amount control means 26 determines that the upstream dissolved oxygen concentration measured by the upstream dissolved oxygen meter 23 exceeds the appropriate range set as the upstream low oxygen concentration target value, The amount of air diffused by the air diffuser 13 is reduced so that the upstream dissolved oxygen concentration falls within the appropriate range of the upstream low oxygen concentration target value.

同様に、流速制御手段27においても、下流側溶存酸素計24で測定した下流側溶存酸素濃度が下流側低酸素濃度目標値として設定された適正範囲を上回っていると判断したときには、循環流発生手段12を減速して循環液の流速を低下させることにより、下流側溶存酸素濃度が下流側低酸素濃度目標値の適正範囲に入るように制御する。   Similarly, when the flow rate control means 27 determines that the downstream dissolved oxygen concentration measured by the downstream dissolved oxygen meter 24 exceeds the appropriate range set as the downstream low oxygen concentration target value, the circulation flow is generated. By decelerating the means 12 and decreasing the flow rate of the circulating fluid, the downstream dissolved oxygen concentration is controlled to fall within the appropriate range of the downstream low oxygen concentration target value.

このように、酸素供給量制御手段26の上流側酸素濃度目標値及び流速制御手段27の下流側酸素濃度目標値の少なくともいずれか一方を低酸素目標値に下げて制御することにより、ディッチ11内の循環液における溶存酸素濃度が全体的に低く制御されることになり、好気域14の領域が減少して無酸素域15の領域が増大する。これにより、硝化菌によるアンモニアの酸化作用が抑制されて循環液のアンモニア濃度が徐々に上昇する。また、過剰な溶存酸素によって硝化菌が自己酸化分解することを防止できるとともに、散気装置13及び循環流発生手段12の消費動力を低減することができる。   In this way, by controlling at least one of the upstream oxygen concentration target value of the oxygen supply amount control means 26 and the downstream oxygen concentration target value of the flow rate control means 27 to the low oxygen target value, Thus, the dissolved oxygen concentration in the circulating fluid is controlled to be low as a whole, and the region of the aerobic region 14 decreases and the region of the anoxic region 15 increases. Thereby, the oxidizing action of ammonia by nitrifying bacteria is suppressed, and the ammonia concentration in the circulating fluid gradually increases. In addition, it is possible to prevent the nitrifying bacteria from undergoing auto-oxidative decomposition due to excessive dissolved oxygen, and it is possible to reduce the power consumed by the air diffuser 13 and the circulating flow generating means 12.

逆に、アンモニア/硝酸濃度測定手段25で測定したディッチ11内の循環液のアンモニア濃度がアンモニア濃度上限値を上回るときには、酸素供給量制御手段26の上流側酸素濃度目標値を、該上流側酸素濃度目標値よりも高い溶存酸素濃度とした上流側高酸素濃度目標値に上げたり、前記流速制御手段27の下流側酸素濃度目標値を、該下流側酸素濃度目標値よりも高い溶存酸素濃度とした下流側高酸素濃度目標値に上げたりする。   Conversely, when the ammonia concentration of the circulating fluid in the ditch 11 measured by the ammonia / nitric acid concentration measuring means 25 exceeds the ammonia concentration upper limit value, the upstream oxygen concentration target value of the oxygen supply amount control means 26 is set to the upstream oxygen concentration. The upstream oxygen concentration target value is set to an upstream high oxygen concentration target value that is higher than the concentration target value, or the downstream oxygen concentration target value of the flow rate control means 27 is set to a dissolved oxygen concentration that is higher than the downstream oxygen concentration target value. Or increase the target value to the downstream high oxygen concentration target value.

これにより、酸素供給量制御手段26は、測定した上流側溶存酸素濃度が上流側酸素濃度目標値として設定された適正範囲を下回ったと判断したときには、散気装置13による散気量を増加させて上流側溶存酸素濃度が上流側高酸素濃度目標値の適正範囲に入るように制御する。同様に、流速制御手段27においても、測定した下流側溶存酸素濃度が下流側高酸素濃度目標値として設定された適正範囲を下回ったと判断したときには、循環流発生手段12を増速して循環液の流速を上昇させることにより、下流側溶存酸素濃度が下流側高酸素濃度目標値の適正範囲に入るように制御する。   Thus, when the oxygen supply amount control means 26 determines that the measured upstream dissolved oxygen concentration falls below the appropriate range set as the upstream oxygen concentration target value, the oxygen supply amount control means 26 increases the amount of air diffused by the air diffuser 13. Control is performed so that the upstream dissolved oxygen concentration falls within an appropriate range of the upstream high oxygen concentration target value. Similarly, in the flow rate control means 27, when it is determined that the measured downstream dissolved oxygen concentration falls below the appropriate range set as the downstream high oxygen concentration target value, the circulating flow generating means 12 is accelerated to increase the circulating fluid. Is controlled so that the downstream dissolved oxygen concentration falls within an appropriate range of the downstream high oxygen concentration target value.

このように、酸素供給量制御手段26の上流側酸素濃度目標値及び流速制御手段27の下流側酸素濃度目標値の少なくともいずれか一方を高酸素濃度目標値に上げて制御することにより、ディッチ11内の循環液における溶存酸素濃度が全体的に高く制御されることになり、好気域14の領域が増大して無酸素域15の領域が減少する。これにより、硝化菌によるアンモニアの酸化作用が促進され、アンモニアが亜硝酸や硝酸に変化することで循環液のアンモニア濃度が徐々に低下する。   In this way, by controlling at least one of the upstream oxygen concentration target value of the oxygen supply amount control means 26 and the downstream oxygen concentration target value of the flow velocity control means 27 to the high oxygen concentration target value, control is performed. The dissolved oxygen concentration in the circulating fluid is controlled to be high overall, so that the region of the aerobic region 14 increases and the region of the anoxic region 15 decreases. As a result, the oxidizing action of ammonia by nitrifying bacteria is promoted, and the ammonia concentration in the circulating fluid is gradually lowered by changing the ammonia to nitrous acid or nitric acid.

いずれの制御の場合も、アンモニア/硝酸濃度測定手段25で測定したアンモニア濃度が、アンモニア濃度下限値以上になったり、アンモニア濃度上限値以下になったりした場合は、前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値をあらかじめ設定した元の目標値に戻すことにより、あらかじめ設定された通常の制御を行うことができ、効率よく排水処理を行うことができる。   In any control, when the ammonia concentration measured by the ammonia / nitric acid concentration measuring means 25 becomes equal to or higher than the ammonia concentration lower limit value or lower than the ammonia concentration upper limit value, the upstream oxygen concentration target value and By returning the downstream oxygen concentration target value to the original target value set in advance, normal control set in advance can be performed, and wastewater treatment can be performed efficiently.

さらに、アンモニア/硝酸濃度測定手段25で測定したアンモニア濃度が、アンモニア濃度下限値以上、アンモニア濃度上限値以下であって、アンモニア濃度が適正な範囲に入っている場合でも、アンモニア/硝酸濃度測定手段25で測定した硝酸濃度があらかじめ設定した硝酸濃度上限値を上回るときには、前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値の少なくともいずれか一方を低酸素濃度目標値に調節する。これにより、前記同様に、散気装置13による散気量が減少したり、循環流発生手段12が減速したりすることで無酸素域15の領域が増大し、無酸素域15における脱窒反応が促進され、徐々に硝酸濃度が低下する。この場合も、硝酸濃度が硝酸濃度上限値以下になったら上流側高酸素濃度目標値及び下流側高酸素濃度目標値を元の目標値に戻す。   Furthermore, even if the ammonia concentration measured by the ammonia / nitric acid concentration measuring means 25 is not less than the ammonia concentration lower limit value and not more than the ammonia concentration upper limit value, and the ammonia concentration is within an appropriate range, the ammonia / nitric acid concentration measuring means. When the nitric acid concentration measured in 25 exceeds the preset nitric acid concentration upper limit value, at least one of the upstream oxygen concentration target value and the downstream oxygen concentration target value is adjusted to the low oxygen concentration target value. As a result, as described above, the amount of diffused air by the diffuser 13 is reduced or the circulating flow generating means 12 is decelerated, so that the region of the anoxic region 15 is increased, and the denitrification reaction in the anoxic region 15 is performed. Is promoted, and the nitric acid concentration gradually decreases. Also in this case, when the nitric acid concentration falls below the upper limit of nitric acid concentration, the upstream high oxygen concentration target value and the downstream high oxygen concentration target value are returned to the original target values.

このように、循環液中のアンモニア濃度をアンモニア濃度下限値とアンモニア濃度上限値との間の一定の濃度範囲に制御するとともに、循環液中硝酸濃度を硝酸濃度上限値以下に制御するために、アンモニア濃度及び硝酸濃度に基づいて酸素供給量制御手段26の上流側酸素濃度目標値及び流速制御手段27の下流側酸素濃度目標値をそれぞれ調節するようにしているので、酸素供給量制御手段26と流速制御手段27とによってディッチ11内の溶存酸素濃度を確実に制御することができ、好気域14と無酸素域15との比率をアンモニア濃度や硝酸濃度に応じて最適な比率に制御することができる。   Thus, in order to control the ammonia concentration in the circulating fluid to a certain concentration range between the ammonia concentration lower limit value and the ammonia concentration upper limit value, and to control the nitric acid concentration in the circulating fluid below the nitric acid concentration upper limit value, Since the upstream oxygen concentration target value of the oxygen supply amount control means 26 and the downstream oxygen concentration target value of the flow rate control means 27 are adjusted based on the ammonia concentration and the nitric acid concentration, respectively, the oxygen supply amount control means 26 and The dissolved oxygen concentration in the ditch 11 can be reliably controlled by the flow rate control means 27, and the ratio of the aerobic region 14 and the anoxic region 15 is controlled to an optimum ratio according to the ammonia concentration and the nitric acid concentration. Can do.

すなわち、従来のように、測定した硝酸性窒素濃度とアンモニア性窒素濃度とに基づいてこれらの濃度を直接的に制御する場合に比べて、好気域14と無酸素域15とのバランスが大きく崩れたりすることがないので、ディッチ11から最終沈殿池17に抜き出される循環液の状態も安定し、循環液中に含まれる窒素分の濃度も安定し、排水処理効率の向上を図れるとともに、消費動力の低減も図ることができる。   That is, the balance between the aerobic region 14 and the anaerobic region 15 is larger than in the conventional case where these concentrations are directly controlled based on the measured nitrate nitrogen concentration and ammonia nitrogen concentration. Since it does not collapse, the state of the circulating fluid extracted from the ditch 11 to the final sedimentation basin 17 is stable, the concentration of nitrogen contained in the circulating fluid is also stable, and wastewater treatment efficiency can be improved. It is also possible to reduce power consumption.

さらに、放流水中のアンモニア濃度を極力低く抑える必要がある場合には、前記アンモニア濃度上限値を低くするだけで確実な制御を行うことが可能であり、同様に、放流水中の硝酸濃度を極力低く抑える必要がある場合には、前記硝酸濃度上限値を低くするだけで確実な制御を行うことが可能である。また、放流水中の窒素分を極力低く抑える必要がある場合には、アンモニア濃度と硝酸濃度との和を全窒素濃度として演算し、あらかじめ設定したアンモニア濃度と硝酸濃度との比率に基づいて上流側酸素濃度目標値及び下流側酸素濃度目標値をそれぞれ調節することで全窒素濃度が最小となるように制御することも可能であり、全窒素濃度が規制値以下となる条件で好気域14の領域を小さくすることにより、酸素供給手段である散気装置13のブロワB及び循環流発生手段である循環流発生手段12の駆動源であるモータの消費電力を削減することができる。   Furthermore, when it is necessary to keep the ammonia concentration in the effluent water as low as possible, it is possible to perform reliable control only by reducing the upper limit value of the ammonia concentration. Similarly, the nitric acid concentration in the effluent water is as low as possible. When it is necessary to suppress this, it is possible to perform reliable control only by reducing the upper limit value of the nitric acid concentration. In addition, when it is necessary to keep the nitrogen content in the effluent water as low as possible, the sum of ammonia concentration and nitric acid concentration is calculated as the total nitrogen concentration, and the upstream side is calculated based on the ratio of ammonia concentration and nitric acid concentration set in advance. It is possible to control the total nitrogen concentration to be the minimum by adjusting the oxygen concentration target value and the downstream oxygen concentration target value, respectively. By reducing the area, it is possible to reduce the power consumption of the blower B of the air diffuser 13 that is the oxygen supply means and the motor that is the drive source of the circulation flow generation means 12 that is the circulation flow generation means.

したがって、周長が極めて短く、好気域14と無酸素域15とのバランスをとりにくい小規模なディッチ11においても、循環液中に生物固定担体を投入することによって適正なバランスで好気域14と無酸素域15とを形成できる。また、寒冷地における低水温での処理では、硝化菌の増殖速度が他の細菌に比べて極端に低下するため、生物学的窒素除去、特に硝化反応が進みにくくなるが、生物固定担体を投入することにより、汚泥濃度や滞留時間などの運転条件に関係なく、硝化菌を担体表面に確実に付着させて半永久的に保持させておくことができるので、硝化菌の固形物滞留時間(SRT)を長くとることができる。また、低水温下では、微生物全般の活性が低くなって酸素消費速度が低下するが、生物固定担体の投入によって微生物量を増加させることができるので、酸素消費速度を高く保持することができ、無酸素域15を確実に形成することができる。   Therefore, even in a small-scale ditch 11 having a very short circumference and difficult to balance the aerobic region 14 and the anaerobic region 15, an aerobic region can be obtained with an appropriate balance by introducing a biological fixing carrier into the circulating fluid. 14 and the oxygen-free region 15 can be formed. In addition, when processing at low water temperature in cold regions, the growth rate of nitrifying bacteria is drastically reduced compared to other bacteria, so biological nitrogen removal, especially nitrification reaction, is difficult to proceed. By doing so, the nitrifying bacteria can be reliably attached to the surface of the carrier and kept semi-permanently regardless of the operating conditions such as sludge concentration and residence time, so the solids residence time (SRT) of the nitrifying bacteria Can be taken longer. In addition, under low water temperature, the activity of microorganisms in general decreases and the oxygen consumption rate decreases, but the amount of microorganisms can be increased by the introduction of a biofixation carrier, so the oxygen consumption rate can be kept high, The anoxic region 15 can be reliably formed.

さらに、原水流入経路18の途中に返送汚泥と原水とを混合して嫌気状態に所定時間保持する嫌気槽19を設けることにより、微生物による有機物の摂取とリンの放出とが行われ、ディッチ11の好気域14における好気性処理で放出量以上のリンを微生物が過剰摂取することにより、生物学的に水中からリンを除去することができる。このとき、生物リン除去プロセスにおいては、汚泥中に生物濃縮したりんを余剰汚泥の形で引き抜く必要があり、単に汚泥の引き抜き量を増加させると固形物滞留時間(SRT)が短くなって生物学的窒素除去に悪影響を及ぼすが、前述のように生物固定担体に大量の硝化菌を保持しておくことができるので、汚泥の引き抜き量を増加させても生物学的窒素除去を確実に行うことができ、汚泥の引き抜き量を増加させてリンの除去も確実に行うことができる。   Further, by providing an anaerobic tank 19 that mixes return sludge and raw water in the raw water inflow path 18 and keeps them in an anaerobic state for a predetermined time, intake of organic substances and release of phosphorus by microorganisms are performed. By excessive intake of microorganisms by the aerobic treatment in the aerobic region 14, the microorganisms can biologically remove phosphorus from the water. At this time, in the biological phosphorus removal process, it is necessary to extract the biologically concentrated phosphorus in the sludge in the form of excess sludge. If the amount of sludge extraction is simply increased, the solids retention time (SRT) will be shortened. As described above, a large amount of nitrifying bacteria can be retained on the biological immobilization carrier, so biological nitrogen removal must be ensured even if the amount of sludge withdrawn is increased. The amount of sludge withdrawn can be increased, and phosphorus can be removed reliably.

また、循環液中の微生物の大部分を生物固定担体に保持させることにより、系内の液中に浮遊する浮遊微生物濃度を低くすることができ、系全体の微生物量を維持又は増大させながら、浮遊微生物濃度の低下によって最終沈殿池17における固液分離効率を向上させることができる。これにより、ディッチ11における生物反応処理効率の向上と、最終沈殿池17における固液分離効率の向上とを両立させることができ、排水処理装置全体における処理効率の向上による装置の小型化、低コスト化を図ることができる。   In addition, by holding most of the microorganisms in the circulating fluid on the biological immobilization carrier, the concentration of suspended microorganisms floating in the fluid in the system can be lowered, while maintaining or increasing the amount of microorganisms in the entire system, The solid-liquid separation efficiency in the final sedimentation basin 17 can be improved by lowering the floating microorganism concentration. Thereby, the improvement of the biological reaction processing efficiency in the ditch 11 and the improvement of the solid-liquid separation efficiency in the final sedimentation basin 17 can be achieved at the same time. Can be achieved.

さらに、好気域14の上流側及び下流側の酸素濃度に応じて循環流発生手段12や散気装置13を制御することにより、負荷が大きく変動しても、好気域14と無酸素域15とのバランスを適正化することができるとともに、生物リン除去の阻害要因である硝酸をディッチ11内でゼロ近くまで除去できるので、嫌気槽19における処理効率を更に向上させることができる。また、アンモニア/硝酸濃度に応じて酸素濃度を調節することにより、窒素の除去効率を向上させることができる。   Further, by controlling the circulating flow generating means 12 and the air diffuser 13 according to the oxygen concentration upstream and downstream of the aerobic region 14, even if the load fluctuates greatly, the aerobic region 14 and the anaerobic region 15 can be optimized, and nitric acid, which is an inhibitory factor for biological phosphorus removal, can be removed to near zero in the ditch 11, so that the processing efficiency in the anaerobic tank 19 can be further improved. Further, the nitrogen removal efficiency can be improved by adjusting the oxygen concentration according to the ammonia / nitric acid concentration.

なお、酸素供給量制御手段や目標値制御手段における制御用の上限値や下限値、目標値は、複数段階設定することが可能であり、目標値を二段階以上で上下することもでき、目標値に対する適正範囲の幅も任意に設定することができ、アンモニア濃度の測定値に対して上流側酸素濃度目標値及び下流側酸素濃度目標値をそれぞれ連続的に変化させることも可能である。また、アンモニア/硝酸濃度測定手段は、アンモニアイオン及び硝酸イオンを1本のセンサーで同時に測定可能なものを用いることが好ましいが、アンモニア用、硝酸用をそれぞれ用いることもできる。さらに、原水の状態やディッチの構成によっては、アンモニア/硝酸濃度に応じた目標値制御を省略することができ、好気域の酸素濃度に応じた酸素供給量制御を省略することも可能であり、嫌気槽を省略することもできる。また、固液分離手段の形式も任意である。   The upper limit value, lower limit value, and target value for control in the oxygen supply amount control means and target value control means can be set in multiple stages, and the target value can be increased or decreased in two or more stages. The width of the appropriate range for the value can be arbitrarily set, and the upstream oxygen concentration target value and the downstream oxygen concentration target value can be continuously changed with respect to the measured value of the ammonia concentration. The ammonia / nitric acid concentration measuring means is preferably one that can simultaneously measure ammonia ions and nitrate ions with a single sensor, but it can also be used for ammonia and nitric acid, respectively. Furthermore, depending on the state of the raw water and the configuration of the ditch, the target value control according to the ammonia / nitric acid concentration can be omitted, and the oxygen supply amount control according to the oxygen concentration in the aerobic region can be omitted. The anaerobic tank can be omitted. The form of the solid-liquid separation means is also arbitrary.

11…ディッチ、11a…隔壁、12…循環流発生手段、12a…回転円筒体、12b…撹拌羽根、13…散気装置、14…好気域、15…無酸素域、16…循環液出口経路、16a…スクリーン、17…最終沈殿池、18…原水流入経路、19…嫌気槽、20…処理水流出経路、21…返送汚泥経路、22…汚泥抜出経路、23…上流側溶存酸素計、24…下流側溶存酸素計、25…アンモニア/硝酸濃度測定手段、26…酸素供給量制御手段、27…流速制御手段、28…目標値制御手段   DESCRIPTION OF SYMBOLS 11 ... Ditch, 11a ... Partition, 12 ... Circulating flow generation means, 12a ... Rotating cylindrical body, 12b ... Stirrer blade, 13 ... Air diffuser, 14 ... Aerobic region, 15 ... Anoxic region, 16 ... Circulating fluid outlet path 16a ... Screen, 17 ... Final sedimentation basin, 18 ... Raw water inflow route, 19 ... Anaerobic tank, 20 ... Treated water outflow route, 21 ... Return sludge route, 22 ... Sludge extraction route, 23 ... Upstream dissolved oxygen meter, 24 ... downstream dissolved oxygen meter, 25 ... ammonia / nitric acid concentration measuring means, 26 ... oxygen supply amount control means, 27 ... flow rate control means, 28 ... target value control means

Claims (4)

原水流入部及び循環液出口経路を備えるとともに循環流発生手段及び酸素供給手段を備え、前記酸素供給手段の下流側に好気域を、該好気域の終端から前記酸素供給手段に至る無酸素域をそれぞれ形成した無終端水路と、前記循環液出口経路から流出した循環液の固液分離を行う固液分離手段とを備えた排水処理装置において、前記無終端水路内を循環する循環液中に、該循環液中に浮遊する生物固定担体を投入するとともに、前記循環流発生手段は、軸線を鉛直方向に向けた回転円筒体と、該回転円筒体の外周に突設した複数の撹拌羽根とを備え、前記酸素供給手段は、直径がmm以下の微細気泡を発生する微細気泡発生器を備え、前記循環液出口経路は、前記生物固定担体の流出を防止するスクリーンを備えていることを特徴とする排水処理装置。   A raw water inflow section and a circulating fluid outlet path are provided, a circulation flow generating means and an oxygen supply means are provided, an aerobic region is provided downstream of the oxygen supply unit, and an oxygen-free region extending from the end of the aerobic region to the oxygen supply unit In a wastewater treatment apparatus comprising endless water channels each having a zone and solid-liquid separation means for performing solid-liquid separation of the circulating liquid flowing out from the circulating fluid outlet path, the circulating liquid circulating in the endless water channel In addition, the biological immobilization carrier floating in the circulating liquid is introduced, and the circulating flow generating means includes a rotating cylindrical body whose axis is directed in the vertical direction, and a plurality of stirring blades protruding from the outer periphery of the rotating cylindrical body The oxygen supply means includes a microbubble generator that generates microbubbles having a diameter of mm or less, and the circulating fluid outlet path includes a screen that prevents the biological immobilization carrier from flowing out. Characterized drainage Management apparatus. 前記好気域における上流側と下流側とにそれぞれ設けられて循環液中の溶存酸素濃度を測定する上流側溶存酸素計及び下流側溶存酸素計と、前記上流側溶存酸素計で測定した上流側溶存酸素濃度とあらかじめ設定された上流側酸素濃度目標値とに基づいて前記酸素供給手段による酸素の供給量を制御する酸素供給量制御手段と、前記下流側溶存酸素計で測定した下流側溶存酸素濃度とあらかじめ設定された下流側酸素濃度目標値とに基づいて前記循環流発生手段による循環液の流速を制御する流速制御手段とを備えていることを特徴とする請求項1記載の排水処理装置。   An upstream dissolved oxygen meter and a downstream dissolved oxygen meter that are provided on the upstream side and the downstream side, respectively, in the aerobic region and measure the dissolved oxygen concentration in the circulating fluid, and the upstream side measured by the upstream dissolved oxygen meter An oxygen supply amount control means for controlling the oxygen supply amount by the oxygen supply means based on a dissolved oxygen concentration and a preset upstream oxygen concentration target value, and downstream dissolved oxygen measured by the downstream dissolved oxygen meter The waste water treatment apparatus according to claim 1, further comprising a flow rate control means for controlling a flow rate of the circulating fluid by the circulating flow generation means based on a concentration and a preset downstream oxygen concentration target value. . 前記循環液中のアンモニアの濃度及び硝酸の濃度をそれぞれ測定するアンモニア/硝酸濃度測定手段を設けるとともに、該アンモニア/硝酸濃度測定手段で測定したアンモニア濃度及び硝酸濃度の少なくともいずれか一方の濃度に基づいて前記上流側酸素濃度目標値及び前記下流側酸素濃度目標値を調節する目標値調節手段を備えているを特徴とする請求項2記載の排水処理装置。   An ammonia / nitric acid concentration measuring means for measuring the ammonia concentration and the nitric acid concentration in the circulating fluid is provided, and based on at least one of the ammonia concentration and the nitric acid concentration measured by the ammonia / nitric acid concentration measuring means. The waste water treatment apparatus according to claim 2, further comprising target value adjusting means for adjusting the upstream oxygen concentration target value and the downstream oxygen concentration target value. 前記原水流入部の上流に、原水の嫌気処理を行う嫌気槽を設けるとともに、前記固液分離手段で分離した汚泥を前記嫌気槽に返送して原水に混合する返送汚泥経路を設けたことを特徴とする請求項1乃至3のいずれか1項記載の排水処理装置。   An anaerobic tank for anaerobic treatment of raw water is provided upstream of the raw water inflow section, and a return sludge path is provided for returning the sludge separated by the solid-liquid separation means to the anaerobic tank and mixing it with the raw water. The wastewater treatment apparatus according to any one of claims 1 to 3.
JP2011249470A 2011-11-15 2011-11-15 Wastewater treatment equipment Active JP5863409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011249470A JP5863409B2 (en) 2011-11-15 2011-11-15 Wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011249470A JP5863409B2 (en) 2011-11-15 2011-11-15 Wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2013103185A true JP2013103185A (en) 2013-05-30
JP5863409B2 JP5863409B2 (en) 2016-02-16

Family

ID=48623169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011249470A Active JP5863409B2 (en) 2011-11-15 2011-11-15 Wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP5863409B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098003A (en) * 2013-11-20 2015-05-28 住友重機械エンバイロメント株式会社 Aeration agitation system
JP2018051562A (en) * 2018-01-16 2018-04-05 住友重機械エンバイロメント株式会社 A novel system for aeration and stirring
CN110156155A (en) * 2019-06-18 2019-08-23 北京城市排水集团有限责任公司 One kind is for preventing drop oxygenation device and its application method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323384A (en) * 1995-05-30 1996-12-10 Mitsubishi Electric Corp Method for controlling oxidation ditch-type water treating device and device therefor
US5582734A (en) * 1993-09-14 1996-12-10 H. David Stensel Oxidation ditch modification and automated control system for nitrogen removal and sludge settling improvements
JP2002336893A (en) * 2001-05-18 2002-11-26 Sumitomo Heavy Ind Ltd Method of controlling operation of oxidation ditch
JP2003305493A (en) * 2002-04-17 2003-10-28 Kurita Water Ind Ltd Method for starting activated sludge treating apparatus
JP2006055683A (en) * 2004-08-17 2006-03-02 Saan Engineering Kk Activated sludge type wastewater treatment method and activated sludge type wastewater treatment apparatus
JP2006088022A (en) * 2004-09-22 2006-04-06 Sumitomo Heavy Ind Ltd Operation control method of oxidation ditch, and oxidation ditch
JP2008036517A (en) * 2006-08-04 2008-02-21 Kochi Univ Wastewater treatment apparatus and method
JP2008246483A (en) * 2008-06-06 2008-10-16 Nishihara Environment Technology Inc Apparatus for biological treatment of waste water
JP2011189304A (en) * 2010-03-16 2011-09-29 Maezawa Ind Inc Oxidation ditch

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582734A (en) * 1993-09-14 1996-12-10 H. David Stensel Oxidation ditch modification and automated control system for nitrogen removal and sludge settling improvements
JPH08323384A (en) * 1995-05-30 1996-12-10 Mitsubishi Electric Corp Method for controlling oxidation ditch-type water treating device and device therefor
JP2002336893A (en) * 2001-05-18 2002-11-26 Sumitomo Heavy Ind Ltd Method of controlling operation of oxidation ditch
JP2003305493A (en) * 2002-04-17 2003-10-28 Kurita Water Ind Ltd Method for starting activated sludge treating apparatus
JP2006055683A (en) * 2004-08-17 2006-03-02 Saan Engineering Kk Activated sludge type wastewater treatment method and activated sludge type wastewater treatment apparatus
JP2006088022A (en) * 2004-09-22 2006-04-06 Sumitomo Heavy Ind Ltd Operation control method of oxidation ditch, and oxidation ditch
JP2008036517A (en) * 2006-08-04 2008-02-21 Kochi Univ Wastewater treatment apparatus and method
JP2008246483A (en) * 2008-06-06 2008-10-16 Nishihara Environment Technology Inc Apparatus for biological treatment of waste water
JP2011189304A (en) * 2010-03-16 2011-09-29 Maezawa Ind Inc Oxidation ditch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098003A (en) * 2013-11-20 2015-05-28 住友重機械エンバイロメント株式会社 Aeration agitation system
JP2018051562A (en) * 2018-01-16 2018-04-05 住友重機械エンバイロメント株式会社 A novel system for aeration and stirring
CN110156155A (en) * 2019-06-18 2019-08-23 北京城市排水集团有限责任公司 One kind is for preventing drop oxygenation device and its application method
CN110156155B (en) * 2019-06-18 2024-05-31 北京城市排水集团有限责任公司 Device for preventing water fall from oxygenating and application method thereof

Also Published As

Publication number Publication date
JP5863409B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
KR101494398B1 (en) Apparatus for wastewater treatment with submerged membrane
JP2008221160A (en) Denitrifying treatment device and denitrifying treatment method
JP5329021B2 (en) Sewage treatment equipment
JP3336410B2 (en) Apparatus and method for treating sewage and wastewater by biological reaction
WO2018198422A1 (en) Membrane-separation activated sludge treatment device and membrane-separation activated sludge treatment method
JP5597002B2 (en) Waste water treatment apparatus and waste water treatment method
JP2000288568A (en) Sewage treatment apparatus
JP2012076081A (en) Membrane separation type activated sludge treatment apparatus and method thereof
JP5105243B2 (en) Membrane separation activated sludge treatment apparatus and method
JP5863409B2 (en) Wastewater treatment equipment
JP2008036517A (en) Wastewater treatment apparatus and method
KR101292736B1 (en) Advanced wastewater treatment technology
JP2019136652A (en) Water treatment method and water treatment apparatus
KR20150144682A (en) Apparatus for wastewater treatment with submerged membrane
JP7016623B2 (en) Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method
JP2016182551A (en) Treatment method for organic waste water and treatment system therefor
JP2007326075A (en) Waste water treatment method and waste water treatment equipment
KR101485500B1 (en) Device and method by the membrane separator activated advanced oxidation process
JP5725869B2 (en) Waste water treatment apparatus and operation method thereof
JP5743448B2 (en) Sewage treatment equipment
JP5490491B2 (en) Sewage treatment equipment
KR100353004B1 (en) Biological Nutrient Removal Method using a Submerged Moving Media Intermittent Aeration Reactor and System
JP7016622B2 (en) Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method
KR101303820B1 (en) Water treatmen apparatus for removing nitrogen and phosphorus using upflow and downflow complete mixing chain reaction
KR101536985B1 (en) Advanced Wastewater Treatment Apparatus and method using inflow carbon in SBR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151222

R150 Certificate of patent or registration of utility model

Ref document number: 5863409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250