JPS60206493A - Simultaneous removal of nitrogen and phosphorus in sewage - Google Patents

Simultaneous removal of nitrogen and phosphorus in sewage

Info

Publication number
JPS60206493A
JPS60206493A JP6012084A JP6012084A JPS60206493A JP S60206493 A JPS60206493 A JP S60206493A JP 6012084 A JP6012084 A JP 6012084A JP 6012084 A JP6012084 A JP 6012084A JP S60206493 A JPS60206493 A JP S60206493A
Authority
JP
Japan
Prior art keywords
phosphorus
aerobic
tank
sludge
aerobic tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6012084A
Other languages
Japanese (ja)
Other versions
JPS6134880B2 (en
Inventor
Takaaki Tamura
田村 孝章
Wataru Ito
亘 伊藤
Tomeyoshi Ozawa
尾沢 留好
Shigekazu Sato
重和 佐藤
Naoki Negishi
根岸 直毅
Chiyouji Kobashiri
小走 暢治
Jiyouji Murayama
村山 壌治
Toshiharu Ataka
安宅 敏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOGYO KAIHATSU KENKYUSHO
Takuma Co Ltd
Original Assignee
KOGYO KAIHATSU KENKYUSHO
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOGYO KAIHATSU KENKYUSHO, Takuma Co Ltd filed Critical KOGYO KAIHATSU KENKYUSHO
Priority to JP6012084A priority Critical patent/JPS60206493A/en
Publication of JPS60206493A publication Critical patent/JPS60206493A/en
Publication of JPS6134880B2 publication Critical patent/JPS6134880B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To perform the simultaneous removal of nitrogen and phosphorus by such a simple process that a high COD solution is introduced into an aerobic tank and the supernatant solution separated in the aerobic tank and precipitated sludge are respecitvely taken out as treated water and excessive sludge. CONSTITUTION:Raw sewage (a) is flowed into a water channel 15 in the vicinity of the opening provided to the top part of said water channel 15 from a sewage supply pipe 20 and enters an anaerobic tank 12 through the water channel 15 while mixed with recirculated activated sludge and a recirculation liquid in an aerobic tank 11. In the anaerobic tank 12, NO2-N and NO3-N are denitrified by the action of denitriding bacteria utilizing org. substances present in the raw sewage. The supernatant solution separated in the upper layer part in the aerobic tank 11 is flowed in a trough 21 while overflows the upper end of the aerobic tank 11 in an amount corresponding to the inflow of new raw sewage and subsequently taken out to the outside through a treated water take-out pipe 22. Activated sludge taking in excessive phosphorus is discharged from the excessive sludge take-out pipe 23, provided to the bottom part of an aerobic zone.

Description

【発明の詳細な説明】 この発明は、生活系汚水中の窒素、リンを生物学的処理
によって同時に除去する方法に関するも一般に、有機性
汚水の処理に用いられている活 ′のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for simultaneously removing nitrogen and phosphorus from domestic wastewater by biological treatment, and also relates to a method for simultaneously removing nitrogen and phosphorus from domestic wastewater, which is generally used in the treatment of organic wastewater.

性汚泥処理法は、処理工程が全て好気性工程であシ、有
機物の除去には有効であることから、標準 ゛活性汚泥
法を中心に種々の変法が開発され、広く・普及している
。しかし有機物に比べて、窒素、リンは十分に除去され
ず、閉鎖性水域に処理水を放流した場合には富栄養化を
もたらし、水産、漁業などに大きな被害を与えている。
The activated sludge treatment method is an aerobic process and is effective in removing organic matter, so various modified methods have been developed around the standard activated sludge method and are now widely used. . However, compared to organic matter, nitrogen and phosphorus are not removed sufficiently, and when treated water is discharged into closed water bodies, it causes eutrophication, causing great damage to fisheries and fisheries.

近年、これら栄養塩類の除去法として、たとえば窒素除
去については、生物学的循環式脱窒素法などが開発され
、またリン除去につhては、金属塩、Ca塩などを用い
た凝集沈殿法が実用化されている。しかしこのリン除去
法は、発生汚泥量が多く、シかもこの汚泥が難脱水性で
その処理に問題があるtlか、薬品使用による経済的負
担も大きい。
In recent years, methods for removing these nutrient salts have been developed, such as the biological circulation denitrification method for nitrogen removal, and the coagulation-sedimentation method using metal salts, Ca salts, etc. for phosphorus removal. has been put into practical use. However, this method of removing phosphorus generates a large amount of sludge, and this sludge is difficult to dewater, causing problems in its treatment, and the use of chemicals imposes a heavy economic burden.

したがってこの問題点を解決する方法として、生物学的
脱リン法が脚光を浴びている。
Therefore, biological dephosphorization methods are attracting attention as a method for solving this problem.

従来の生物学的脱リン法の処理工程を第1図に示す。主
要設備は、嫌気槽1、好気槽2および沈殿池3からなる
。活性汚泥を有機物の存在下において嫌気(溶存酸素D
oおよび硝酸性・亜硝酸性窒素N0x−Nの存在なし)
および好気を繰シ返すことで、リンを過剰に蓄積する脱
リン菌が優先してくる。この生物学的脱リン法は、ある
種の微生物が嫌気状態にさらされると、細胞内のポリリ
ン顆粒に蓄えられたポリリンをオルトリン酸に加水分解
し、このとき得られるエネルギを利用して有機物を取シ
込み、オル) IJン酸は逆に細胞外に放出されて液側
のリン酸濃度を一時的に高くするが、次に好気状態にさ
らされると、取シ込んだ有機物を分解し、そのエネルギ
を利用して、嫌気槽1で放出した以上のリンを過剰摂取
するという性質を利用している。したがって沈殿池から
リンを過剰に摂取した汚泥を引き抜くことにより、リン
が除去される。
The processing steps of the conventional biological dephosphorization method are shown in FIG. The main equipment consists of an anaerobic tank 1, an aerobic tank 2, and a settling tank 3. Activated sludge is treated anaerobically (dissolved oxygen D) in the presence of organic matter.
o and the presence of nitrate/nitrite nitrogen NOx-N)
As a result of repeated aerobic cycles, dephosphorizing bacteria that accumulate excessive phosphorus become prioritized. In this biological dephosphorization method, when certain microorganisms are exposed to anaerobic conditions, they hydrolyze polyphosphorus stored in intracellular polyphosphorus granules into orthophosphoric acid, and use the energy obtained at this time to remove organic matter. On the contrary, IJ phosphate is released outside the cells and temporarily increases the concentration of phosphate in the liquid, but when it is next exposed to aerobic conditions, it decomposes the organic matter taken in. This energy is used to take advantage of the property of ingesting more phosphorus than was released in the anaerobic tank 1. Therefore, phosphorus is removed by pulling out the sludge that has taken in too much phosphorus from the settling tank.

さらに脱窒素を併用する場合には、第2図に示すように
、嫌気槽lと好気槽2との間に脱窒紫檀4を設け、好気
槽lから流出した硝化液(NOx−Nを含む。以下同じ
)を脱窒紫檀4へ内部循環することによって硝酸性窒素
あるいは亜硝酸性窒素をN!ガスに還元して除去する。
Furthermore, when denitrification is used together, as shown in Figure 2, a denitrifying rosewood 4 is provided between the anaerobic tank 1 and the aerobic tank 2, and the nitrification liquid (NOx-N The same applies hereinafter) is internally circulated to the denitrifying rosewood 4 to convert nitrate nitrogen or nitrite nitrogen into N! Remove by reducing to gas.

また脱窒素効果をさらに高める場合には、第3図に示す
ように、好気槽2と沈殿池3との間に再説窒素槽5を設
けてここでメタノールなどの水素供与体を添加するとと
もに、さらに再ばつ気槽6を設けて残留するメタノール
を除去する。
In addition, in order to further enhance the denitrification effect, as shown in Fig. 3, a nitrogen tank 5 is provided between the aerobic tank 2 and the settling tank 3, and a hydrogen donor such as methanol is added here. Furthermore, a re-aeration tank 6 is provided to remove residual methanol.

これらの公知の方法には次の問題がある。These known methods have the following problems.

■ 沈殿池3内では酸素の供給がないので、長時間滞留
すると嫌気化され、汚泥からリンがオルトリン酸として
再放出され、処理水質を悪化させる。これを防止するた
めには、好気槽2で高いDoを保つとともに、沈殿池3
では汚泥レベルを低く保つ必要がある。
■ Since there is no oxygen supply in the sedimentation tank 3, if the sludge remains for a long time, it will become anaerobic, and phosphorus will be re-released from the sludge as orthophosphoric acid, deteriorating the quality of the treated water. In order to prevent this, it is necessary to maintain a high Do in the aerobic tank 2 and to
It is necessary to keep the sludge level low.

■ 処理工程が複雑なため汚泥返送ポンプ、循環ポンプ
などが必要であシ、電力消費量も大きい。
■ Because the treatment process is complex, sludge return pumps, circulation pumps, etc. are required, and electricity consumption is high.

■ 好気ia2内では硝化の進行にともないPHが低下
するので、アルカリ剤の添加による中和処理が必要にな
る場合がある。
■ In aerobic IA2, the pH decreases as nitrification progresses, so neutralization treatment by adding an alkaline agent may be necessary.

■ °窒素、リンの同時除去の場合、窒素除去率は50
〜60チに過ぎない。
■ °If nitrogen and phosphorus are removed simultaneously, the nitrogen removal rate is 50%.
It's only ~60 inches.

この発明は、上記のような従来の窒素、リン同時除去法
の問題を解決するためになされたもので、嫌気槽と好気
槽との間で混合液を循環させながら窒素、リンを除去す
る際に、嫌気槽内の混合液を抜き出してこれに酸素を溶
解させ、この高Do液を好気槽に導入し、好気槽内で分
離した上澄液および沈殿汚泥をそれぞれ処理水および余
剰汚泥として取シ出すことによシ、薬剤を添加すること
なく、簡単な工程で窒素およびリンの同時除去を行える
ようにした窒素、リンの除去方法を提供することを目的
としている。
This invention was made to solve the problems of the conventional simultaneous nitrogen and phosphorus removal method as described above, and removes nitrogen and phosphorus while circulating a mixed solution between an anaerobic tank and an aerobic tank. At this time, the mixed liquid in the anaerobic tank is extracted, oxygen is dissolved in it, this high-Do liquid is introduced into the aerobic tank, and the supernatant liquid and precipitated sludge separated in the aerobic tank are used as treated water and surplus, respectively. The object of the present invention is to provide a method for removing nitrogen and phosphorus that can be removed simultaneously in a simple process without adding any chemicals by removing them as sludge.

この発明方法の工程を第4図にしたがって説明する。図
において、11は好気槽、12は嫌気槽、13はバブラ
ー、14はセトラーをそれぞれ示す。
The steps of this invention method will be explained with reference to FIG. In the figure, 11 is an aerobic tank, 12 is an anaerobic tank, 13 is a bubbler, and 14 is a settler.

好気[11の内部は、その上端に近い部分で開口する水
路15を介して嫌気槽12の底部に接続され、嫌気槽1
2の内部は、その上端に近い部分で開口する水路16を
介してバブラー13の下端に接続されている。バブラー
13の底部には、水路1.7を通して送られてくる酸素
含有ガスをバブラー13内の液体に吸込むだめの散気管
18が設けられている。またバブラー13の頂部はセト
ラー14の頂部と連通し、セトラー14はその底部で水
路19を介して好気4111の底部に接続されている。
The inside of the aerobic tank 11 is connected to the bottom of the anaerobic tank 12 via a water channel 15 that opens near its upper end.
The inside of bubbler 2 is connected to the lower end of bubbler 13 via a water channel 16 that opens near its upper end. At the bottom of the bubbler 13, a diffuser pipe 18 is provided which sucks the oxygen-containing gas sent through the water channel 1.7 into the liquid in the bubbler 13. Further, the top of the bubbler 13 communicates with the top of the settler 14, and the bottom of the settler 14 is connected to the bottom of the aerobic atmosphere 4111 via the water channel 19.

なお20は汚水供給管、21はトラフ、22は処理水取
出管、23は余剰汚泥取出管、24は排出ガス取出管を
それぞれ示す。
Note that 20 is a sewage supply pipe, 21 is a trough, 22 is a treated water takeoff pipe, 23 is an excess sludge takeout pipe, and 24 is an exhaust gas takeoff pipe.

すなわち第4図忙示した装置は、好気槽11から、水路
15、嫌気槽12、水路16、バブラー13、セトラー
14およびパイプ19を経て好気槽11に戻る循環系路
を有し、この循環系路内における液体の移動は、散気管
18からバブラー13内に吹込まれた酸素含有ガスが気
泡となってバブラー13内を上昇することによってバブ
ラー13内の液体に与えられる湧昇力で行われる。
That is, the apparatus shown in FIG. 4 has a circulation path from the aerobic tank 11, which returns to the aerobic tank 11 via a water channel 15, an anaerobic tank 12, a water channel 16, a bubbler 13, a settler 14, and a pipe 19. The movement of the liquid within the circulation system path is performed by the upwelling force given to the liquid in the bubbler 13 when the oxygen-containing gas blown into the bubbler 13 from the aeration pipe 18 becomes bubbles and rises inside the bubbler 13. .

バブラー13内に吹込まれる酸素含有ガスは、空気もし
くは空気よシも酸素含有量の多い高濃度酸素ガスである
。空気を使用した場合には、バブ2−13およびセトラ
ー14内で液体から分離したガスは、排出ガス取出管2
4を紅て外部に放出されるが、高濃度酸素ガスを使用し
た場合には、排出ガス取出管2,4から取出したガスは
、まだ高い酸素含有量を有している場合があるので、再
使用のため、高濃度酸素ガスの供給源に戻すことが望ま
しい。
The oxygen-containing gas blown into the bubbler 13 is air or a highly concentrated oxygen gas that has a higher oxygen content than air. When air is used, the gas separated from the liquid in the bubble 2-13 and settler 14 is transferred to the exhaust gas outlet pipe 2.
However, if high concentration oxygen gas is used, the gas taken out from the exhaust gas extraction pipes 2 and 4 may still have a high oxygen content. It is desirable to return it to the source of high concentration oxygen gas for reuse.

原汚水は、第4図の例では、汚水供給管2oから、水路
15の頂部開口の近傍に流入し、好気槽11内部を上昇
した循環活性汚泥および循環液と混合されながら、水路
15を経て嫌気槽12に入る。嫌気槽12の内部は、酸
素の供給をしゃ断した嫌気性ゾーンを形成し、したがっ
て好気槽11から移行してきた汚水と活性汚泥とからな
る混合液は、嫌気性条件下におかれる。この結果、好気
槽11内での硝化によって生成したNo2− N (亜
硝酸性窒素)およびNOs −N (硝酸性窒素)は、
原汚水中に存在する有機物を利用する脱窒菌の作用で脱
窒される。なお原汚水の流水は、好気性ゾーンから嫌気
性ゾーンに至る経路内であればどの部分に注入してもよ
い。
In the example of FIG. 4, raw sewage flows from the sewage supply pipe 2o into the vicinity of the top opening of the waterway 15, and flows through the waterway 15 while being mixed with the circulating activated sludge and circulating liquid that have risen inside the aerobic tank 11. After that, it enters the anaerobic tank 12. The inside of the anaerobic tank 12 forms an anaerobic zone in which the supply of oxygen is cut off, and therefore the liquid mixture consisting of sewage and activated sludge transferred from the aerobic tank 11 is placed under anaerobic conditions. As a result, No2-N (nitrite nitrogen) and NOs-N (nitrate nitrogen) generated by nitrification in the aerobic tank 11 are
Denitrification occurs through the action of denitrifying bacteria that utilize organic matter present in raw sewage. Note that the flowing raw sewage may be injected into any part of the route from the aerobic zone to the anaerobic zone.

またリンについては、嫌気槽12において、前述のよう
に、細胞内のポリリン顆粒に蓄えられたポリリンをオル
トリン酸に加水分解して液中に放出する。
Regarding phosphorus, in the anaerobic tank 12, polyphosphorus stored in intracellular polyphosphorus granules is hydrolyzed into orthophosphoric acid and released into the liquid, as described above.

嫌気性ゾーンに所定時間滞留した混合液は、嫌気槽12
の上端部でパイプ16内に吸込まれ、パン プラー13内に入シ、散気管18から吹込まれた酸素含
有ガスとともにバブラー13内を上昇し、ついでセトラ
ー14内を下降する間に、酸−〇溶解と気泡の分離とが
行われる。高DOになった気泡を含まない混合液は、水
路19を通って好気槽11内にその底部から流入する。
The mixed liquid that has remained in the anaerobic zone for a predetermined time is transferred to the anaerobic tank 12.
The acid is sucked into the pipe 16 at the upper end, enters the pumper 13, rises in the bubbler 13 together with the oxygen-containing gas blown from the diffuser pipe 18, and then descends in the settler 14. and bubble separation. The bubble-free mixed liquid with high DO flows into the aerobic tank 11 from the bottom through the water channel 19.

好気槽11内に流入した高DO混合液は、好気@11内
に形成された好気性ゾーンをゆるやかに上昇する過程で
、 1)有機物の吸着および酸化。
The high DO mixture that has flowed into the aerobic tank 11 slowly rises through the aerobic zone formed inside the aerobic tank 11, during which time it undergoes the following steps: 1) Adsorption and oxidation of organic matter.

2)アンモニア性窒素の硝酸化。2) Nitration of ammonia nitrogen.

3) リンの過剰摂取。3) Excessive intake of phosphorus.

が行われる。will be held.

好気槽11の上端部に達した混合液は、水路15の開口
から吸込まれ、再び嫌気槽12に送られる。
The mixed liquid that has reached the upper end of the aerobic tank 11 is sucked through the opening of the water channel 15 and sent to the anaerobic tank 12 again.

また好気槽11内ではガスの吹込みによるばつ気は行わ
れず、高DOの混合液がゆるやかに上昇するので、槽内
では、活性汚泥を多量に含んだ汚泥液と、その上方に位
置する上澄液とが相互に分離する。とくに水路15の開
口の近傍から多量の活性汚泥が水路15内に吸込まれる
ために、この開口面よシも上方では液体の上昇流速が大
幅に低下し、固液分離がさらに効果的に行われる。
Furthermore, in the aerobic tank 11, aeration by blowing gas is not performed, and the high DO mixed liquid rises slowly, so that in the tank, the sludge liquid containing a large amount of activated sludge and the sludge liquid located above it are The supernatant liquid separates from each other. In particular, since a large amount of activated sludge is sucked into the waterway 15 from near the opening of the waterway 15, the upward flow rate of the liquid is significantly reduced above the opening surface, making solid-liquid separation more effective. be exposed.

また混合液が好気槽内を上昇する過程で、D。Also, in the process of the mixed liquid rising in the aerobic tank, D.

は好気槽11の底部で最も高く、生物反応によって消費
されるために、上部に向かうにしたがって順次に低くな
る。この状態は、アンモニア性窒素の硝化および後続の
嫌気槽12における脱窒素に有効である。
is highest at the bottom of the aerobic tank 11 and gradually decreases toward the top because it is consumed by biological reactions. This state is effective for nitrification of ammonia nitrogen and subsequent denitrification in the anaerobic tank 12.

好気槽11内の上層部に分離した上澄液は、新たな原汚
水の流入に応じた量で好気槽11の上縁をオーバーフロ
ーしてトラフ21に流入し、ついで処理水取出管22を
経て外部に取出される。リンを過剰摂取した活性汚泥は
、好気性ゾーンの底部の余剰汚泥取出管23から必要に
応じて排出される。この余剰汚泥は好気状態で引抜かれ
るため、その中に多量のリンを蓄えておシ、シかも好気
性であるためにリンの放出がない。
The supernatant liquid separated into the upper layer in the aerobic tank 11 overflows the upper edge of the aerobic tank 11 in an amount corresponding to the inflow of new raw sewage, flows into the trough 21, and then flows into the treated water take-out pipe 22. It is then taken out to the outside. Activated sludge that has taken in too much phosphorus is discharged from the excess sludge removal pipe 23 at the bottom of the aerobic zone as necessary. This excess sludge is extracted in an aerobic state, so it stores a large amount of phosphorus, and since it is aerobic, no phosphorus is released.

実施例 標準的な下水で、第4図に示した装置を用いて下記の運
転条件で窒素、リンの同時除去を行った。
EXAMPLE Nitrogen and phosphorus were simultaneously removed from standard sewage using the apparatus shown in FIG. 4 under the following operating conditions.

処理量: 1〜1.5♂/日 循環t : 12〜24nI″/日 BOD−8S負荷: 01−0.2KtBOD/に4S
S −日MLSS : 3000〜4000m1F/を
原水および処理水の性質および各成分の除去率をまとめ
て第1表に示す。
Processing amount: 1~1.5♂/day Circulation t: 12~24nI''/day BOD-8S Load: 01-0.2KtBOD/4S
Table 1 summarizes the properties of raw water and treated water and the removal rate of each component for S-day MLSS: 3000 to 4000 m1F/.

第1表 以上のようにこの発明によれば、薬剤を注入することな
く、窒素およびリンを簡単な工程で同時除去することが
可能である。しかも上記の結果からも明らかなように、
公知の方法と比較して、窒素の除去率がきわめて高く、
リンの除去率も遜色かない。
As shown in Table 1, according to the present invention, it is possible to simultaneously remove nitrogen and phosphorus in a simple process without injecting chemicals. Moreover, as is clear from the above results,
Compared to known methods, the nitrogen removal rate is extremely high.
The removal rate of phosphorus is also comparable.

この発明の効果を要約すれば下記のとおシである0 ■ 窒素およびリンが同時除去できる。The effects of this invention can be summarized as follows. ■ Nitrogen and phosphorus can be removed simultaneously.

■ 窒素除去のための中和剤やメタノールの添加が不要
である。
■ No need to add neutralizer or methanol to remove nitrogen.

■ 好気性状態で汚泥を引抜くため、リンの再放出がな
い。
■ Since sludge is extracted under aerobic conditions, there is no re-release of phosphorus.

■ 好気性状態で固液分離を行うため、リン再放出によ
る処理水への影響がなく、水質が安定化される。
■ Since solid-liquid separation is performed under aerobic conditions, there is no impact on treated water due to phosphorus re-release, and water quality is stabilized.

■ 好気槽では底部で高DOK、上部で低DOになるの
で、NHa−Hの硝化と嫌気槽内での脱窒素にとくに有
効である。
■ Since the aerobic tank has high DOK at the bottom and low DO at the top, it is particularly effective for NHa-H nitrification and denitrification in the anaerobic tank.

■ 液体の循環は、ばつ気のために吹込まれた 。■ Liquid circulation was introduced for embarrassment.

ガスのエアリフト効果によって行われるので、ポンプな
どの特別な循環装置は不要であシ、省エネルギ効果も得
られる。
Since this is done by the airlift effect of the gas, there is no need for a special circulation device such as a pump, and an energy saving effect can also be obtained.

■ 沈殿池が不要であるので、敷地面積が節減できる。■ Since no sedimentation pond is required, site area can be saved.

■ 系内で多量の混合液が循環しているので、水質変動
に対する対応性がよい。
■ Since a large amount of mixed liquid is circulated within the system, it is highly responsive to changes in water quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は、従来の汚水処理方法の工程
をそれぞれ示す系統図、第4図はこの発明方法の実施に
用いられた装置の概略的縦断面図である。 11・・・好気槽、12・・・嫌気槽、13・・・バブ
ラー、14・・・セトラー、18・・・散気管、2o・
・・汚水供給管、21・・・トラフ、22・・・処理水
取出管、23・・・余剰汚泥取出管。 特許出願人 財団法人工業開発研究所 特許出願人 株式会社タクマ 第1図 免2図 方−
FIGS. 1, 2, and 3 are system diagrams showing the steps of a conventional sewage treatment method, respectively, and FIG. 4 is a schematic longitudinal sectional view of an apparatus used to carry out the method of the present invention. 11...Aerobic tank, 12...Anaerobic tank, 13...Bubbler, 14...Settler, 18...Aeration pipe, 2o.
... Sewage supply pipe, 21... Trough, 22... Treated water take-out pipe, 23... Excess sludge take-out pipe. Patent applicant: Industrial Development Research Institute Patent applicant: Takuma Co., Ltd.

Claims (1)

【特許請求の範囲】 (1ン 汚水と活性汚泥からなる混合液を好気性ゾーン
および嫌気性ゾーンにそれぞれ収容しぐ上記嫌気性ゾー
ンから取出した混合液中に酸素含有ガスを吹込んで湧昇
力を与えたのち気泡を分離することによって高Do混合
液とし、この高DO混合液を上記好気性ゾーンの底部に
導入して有機物の吸着と酸化、アンモニア性窒素の硝酸
化およびリンの過剰摂取を行わせ、上記好気性ゾーンの
上部に分離した上澄液を処理水として取出すとともに、
上記好気性ゾーンからリンを過剰摂取した余剰汚泥を引
抜き、さらに上記好気性ゾーン内を上昇す・ る間に低
Doとなった混合液を上記好気性ゾーンの上端近傍から
引抜いて上記嫌気性ゾーンの底部に導入し、上記嫌気ゾ
ーン内で脱窒素およびリンの放出を行わせ、任意の個所
に原汚水を導入することを特徴とする汚水中の窒素、リ
ンJ同時除去方法。 (2)原汚水を上記好気性ゾーン内の混合液引抜き部分
に導入することを特徴とする特許請求の範囲第1項記載
の汚水中の窒素、リン同時除去方法。
[Claims] (1) A mixed solution consisting of sewage and activated sludge is stored in an aerobic zone and an anaerobic zone, respectively, and an oxygen-containing gas is blown into the mixed solution taken out from the anaerobic zone to generate upwelling force. After that, air bubbles are separated to obtain a high-Do mixed solution, and this high-DO mixed solution is introduced into the bottom of the aerobic zone to adsorb and oxidize organic matter, nitrate ammonia nitrogen, and take in excess phosphorus. The supernatant liquid separated in the upper part of the aerobic zone is taken out as treated water,
Excess sludge that has taken in too much phosphorus is extracted from the aerobic zone, and the mixed liquid, which has become low Do while rising in the aerobic zone, is extracted from near the upper end of the aerobic zone and is then transferred to the anaerobic zone. A method for simultaneously removing nitrogen and phosphorus from wastewater, which comprises introducing the raw wastewater into the bottom of the wastewater, denitrifying and releasing phosphorus within the anaerobic zone, and introducing the raw wastewater to any desired location. (2) The method for simultaneously removing nitrogen and phosphorus from wastewater according to claim 1, characterized in that the raw wastewater is introduced into a mixed liquid extraction section in the aerobic zone.
JP6012084A 1984-03-28 1984-03-28 Simultaneous removal of nitrogen and phosphorus in sewage Granted JPS60206493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6012084A JPS60206493A (en) 1984-03-28 1984-03-28 Simultaneous removal of nitrogen and phosphorus in sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6012084A JPS60206493A (en) 1984-03-28 1984-03-28 Simultaneous removal of nitrogen and phosphorus in sewage

Publications (2)

Publication Number Publication Date
JPS60206493A true JPS60206493A (en) 1985-10-18
JPS6134880B2 JPS6134880B2 (en) 1986-08-09

Family

ID=13132941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6012084A Granted JPS60206493A (en) 1984-03-28 1984-03-28 Simultaneous removal of nitrogen and phosphorus in sewage

Country Status (1)

Country Link
JP (1) JPS60206493A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107735367A (en) * 2015-04-28 2018-02-23 Aquatec垂直流迷宫有限公司 Use the method and apparatus of the Wastewater Treated by Activated Sludge Process waste water with intensified denitrification and dephosphorization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107735367A (en) * 2015-04-28 2018-02-23 Aquatec垂直流迷宫有限公司 Use the method and apparatus of the Wastewater Treated by Activated Sludge Process waste water with intensified denitrification and dephosphorization
CN107735367B (en) * 2015-04-28 2021-08-17 Aquatec垂直流迷宫有限公司 Method and apparatus for treating wastewater using activated sludge process with enhanced nitrogen and phosphorus removal

Also Published As

Publication number Publication date
JPS6134880B2 (en) 1986-08-09

Similar Documents

Publication Publication Date Title
KR19980051067A (en) Simultaneous Biological and Nitrogen Eliminators
KR100428047B1 (en) A Waste Water Purifier Using Overflow Sediment and Method
JPS5881491A (en) Purification of filthy water with activated sludge
JPH02237698A (en) Biological removing method of nitrogen and phosphorus and its apparatus
CN205328813U (en) Waste water biochemical treatment device
JPH05228493A (en) Method for treating waste water using sulfur bacterium and apparatus therefor
KR20060081804A (en) Gradually operated sequencing batch reactor and method thereof
JPS60206493A (en) Simultaneous removal of nitrogen and phosphorus in sewage
JPS58146495A (en) Treatment of organic waste liquid
KR100348500B1 (en) Biological Nutrient Removal Technology for sewage and wastewater by deep pure oxygen Aeration
KR960011888B1 (en) Method and apparatus for biological treatment of waste water including nitrogen and phosphorus
JPH0437760B2 (en)
CN214693502U (en) Low carbon-nitrogen ratio waste water short-cut nitrification and denitrification quick starting device
JPS6244998B2 (en)
KR100433096B1 (en) Equipment and Method of Nitrogen Removal with Down-flow Biofilm System using the Granule Sulfur
JPS6218232B2 (en)
CN105502831A (en) Waste water biochemical treatment device and technology
JPS61216798A (en) Denitrification and dephosphorization of waste water
JPH0716673B2 (en) Wastewater treatment method
JPS61125491A (en) Treatment of organic waste water
JPH0716674B2 (en) Wastewater treatment method
JPS61118194A (en) Biological treatment of waste water
JPS61142000A (en) Treatment of waste water
JPH0476758B2 (en)
JPS6355999B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees