KR19980051067A - Simultaneous Biological and Nitrogen Eliminators - Google Patents
Simultaneous Biological and Nitrogen Eliminators Download PDFInfo
- Publication number
- KR19980051067A KR19980051067A KR1019960069931A KR19960069931A KR19980051067A KR 19980051067 A KR19980051067 A KR 19980051067A KR 1019960069931 A KR1019960069931 A KR 1019960069931A KR 19960069931 A KR19960069931 A KR 19960069931A KR 19980051067 A KR19980051067 A KR 19980051067A
- Authority
- KR
- South Korea
- Prior art keywords
- tank
- nitrogen
- sludge
- phosphorus
- denitrification
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1205—Particular type of activated sludge processes
- C02F3/1215—Combinations of activated sludge treatment with precipitation, flocculation, coagulation and separation of phosphates
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/308—Biological phosphorus removal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Chemical & Material Sciences (AREA)
- Water Supply & Treatment (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Microbiology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Activated Sludge Processes (AREA)
Abstract
1. 청구범위에 기재된 발명이 속한 기술분야1. TECHNICAL FIELD OF THE INVENTION
포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거 장치 및 방법Simultaneous Removal of Biological and Nitrogen Removal Devices and Methods
2. 발명이 해결할려고 하는 기술적 요지2. The technical gist of the invention
본 발명은 종래의 인의 제거만을 목적으로 수행되는 포스트립공법을 개조하여 인뿐만 아니라 질소제거도 동시에 이루기 위하여 폭기조 앞에는 탈질조만을 두고, 폭기조에서 질산화된 질산성 질소를 탈질조로 반송시켜 탈질조에서는 유입하수의 유기물을 전량사용하므로써 시스템전체의 질소제거율을 높일 뿐만 아니라, 시스템전체의 질소제거율을 높이므로써 종래의 포스트립 공법보다 인의 제거율을 더욱 높일 수 있는 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거 공법을 제공함에 그 목적이 있다.The present invention is to modify the post-lip method is carried out for the purpose of removing the conventional phosphorus only in order to achieve the removal of nitrogen as well as phosphorus at the same time only the denitrification tank in front of the aeration tank, the nitrified nitrate nitrogen in the aeration tank to return to the denitrification tank inflow in the denitrification tank By using the whole amount of sewage organic materials, not only the nitrogen removal rate of the whole system is increased, but also the removal of biological phosphorus and nitrogen at the same time by modifying the post-lip method, which can increase the removal rate of phosphorus more than the conventional postlip method, The purpose is to provide a process.
3. 발명의 해결방법의 요지3. Summary of Solution to Invention
본 발명은 탈질조에서 1차 침전지 유출수와 반송슬러지를 혼합시킨 후 폭기조로 이송시키는 제1 단계; 상기 폭기조에서는 유기물 제거 및 질산화가 일어나며 질산화된 혼합슬러지액은 탈질조로 반송하는 제2 단계; 상기 탈질조에서는 유입된 유입하수의 유기물 전량을 이용하여 반송된 질산성 질소를 제거하여 시스템전체의 질소제거율을 높이는 제3 단계; 상기 폭기조에서 성장한 미생물을 2차침전지에서 고액분리하여 침전시키되, 슬러지 일부를 탈인조에 반송하고 일부는 탈질조에 반송하는 제4 단계; 상기 탈인조에 저장된 슬러지를 고액분리하여 혐기성조건을 형성시킨 후, 인함량이 적은 슬러지와 인함량이 많은 상등액을 호기성조건인 폭기조로 반송하는 제5 단계; 및 상기 탈인조에서 반송된 인함유 슬러지를 폭기조에서 인의 과잉섭취가 일어나도록하여 제거하는 제6 단계를 포함하는 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거방법을 제공한다.The present invention comprises a first step of mixing the primary sedimentation effluent and the conveying sludge in the denitrification tank and then transported to the aeration tank; Removing the organic matter and nitrifying the aeration tank and returning the nitrified mixed sludge solution to the denitrification tank; The denitrification tank is a third step of increasing the nitrogen removal rate of the entire system by removing the nitrate nitrogen returned by using the total amount of the organic matter of the influent sewage introduced; A fourth step of precipitating the microorganisms grown in the aeration tank by solid-liquid separation in a secondary settling cell, returning some of the sludge to the dephosphorization tank and returning some of the sludge to the denitrification tank; Forming a anaerobic condition by solid-liquid separation of the sludge stored in the dephosphorization tank, and then returning the sludge with low phosphorus content and the supernatant with high phosphorus content to an aeration tank which is an aerobic condition; And a sixth step of removing the phosphorus-containing sludge returned from the dephosphorization tank to remove excess phosphorus from the aeration tank so as to remove the phosphorous sludge.
4. 발명의 중요한 용도4. Important uses of the invention
하수 및 폐수등과 같이 인 및 질소가 높은 오염물질의 생물학적 처리시설에 있어서, 시스템 전체의 질소제거율을 높이고 동시에 2차침전지에서 탈인조로 유입되는 질산성 질소의 농도를 최소화함으로써 인의 제거를 극대화할 수 있는 생물학적 인,질소 동시제거 공법임.In biological treatment facilities of high phosphorus and nitrogen pollutants such as sewage and wastewater, it is possible to maximize the removal of phosphorus by increasing the nitrogen removal rate of the whole system and minimizing the concentration of nitrate nitrogen flowing into the dephosphorization tank from the secondary settler. Simultaneous removal of biological phosphorus and nitrogen.
Description
본 발명은 생물학적 하,폐수처리공정중 인의 제거만을 위해 개발된 종래의 포스트립(Postrip)을 개량하여 유기물을 제거함과 동시에 질소, 인등의 영양염류를 제거할 수 있는 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거장치 및 방법에 관한 것이다.The present invention improves the conventional postrip developed only for the removal of phosphorus in biological wastewater and wastewater treatment process, and removes organic matter and at the same time, it is modified biological post phosphorus method that can remove nutrients such as nitrogen and phosphorus. And a simultaneous nitrogen removal apparatus and method.
일반적으로, 하,폐수와 같은 유기성폐수는 표준활성슬러지법의 2차처리공정에서 유기물의 제거가 이루어지고 있으나, 질소와 인 등의 영양물질은 2차처리만에 의해서 잘 처리가 되지 않기 때문에, 처리수에 포함되어 그대로 방류되고 있다. 이에따라, 작은 호수나 내만같은 폐쇄성 수역에서의 부영양화 문제가 심각하게 발생한다.In general, organic wastewater such as sewage and wastewater is removed organic matter in the secondary treatment process of the standard activated sludge method, but nutrients such as nitrogen and phosphorus are not treated well only by the secondary treatment. It is contained in the treated water and discharged as it is. As a result, eutrophication problems occur in closed waters such as small lakes and bays.
기존의 하,폐수처리시설에서 질소제거를 위한 물리, 화학적 방법으로는 pH조정에 의해 수중의 암모니아성 질소를 대기중으로 날려보내는 탈기법(Air Stripping)과, 암모니아를 선택적으로 치환하는 제올라이트에 의한 이온교환법과, 염소주입에 의한 제거방법들이 제안되어 있으며, 인의 제거를 위한 방법으로는 황산반토 또는 석회등 화학제를 첨가하여 용해성 인성분을 불용성 침전물로 만든 후 최종침전지에서 제거하는 방법이 제안되어 있다. 그러나, 전술한 각각의 물리, 화학적 인, 질소처리방법은 유지관리비가 많이 소요되어 최근에는 물리, 화학처리방법보다 경제적인 생물학적 인, 질소제거방법을 주로 이용하고 있다.Existing physical and chemical methods for nitrogen removal in sewage and wastewater treatment facilities include air stripping, in which ammonia nitrogen is blown into the air by pH adjustment, and ions by zeolite that selectively replaces ammonia. Exchange methods and removal methods by chlorine injection have been proposed, and methods for removing phosphorus have been proposed by adding chemicals such as alumina sulfate or lime to make soluble phosphorus components into insoluble precipitates and removing them from the final settler. . However, each of the above-described physical, chemical and nitrogen treatment methods require a lot of maintenance costs, and in recent years, the biological and nitrogen removal methods are more economically used than the physical and chemical treatment methods.
생물학적 질소제거의 원리를 설명하면, 하수중의 암모늄이온(NH4+-N)이 용존산소가 풍부한 호기성조건에서는 아질산성질소(NO-2-N) 혹은 질산성질소(NO-3-N)로 산화되었다가, 용존산소가 고갈된 무산소상태에서는 통기성 박테리아에 의해 질소가스로 환원되어 제거되도록 한 것이다.Explaining the principle of biological nitrogen removal, ammonium ion (NH4 + -N) in sewage is oxidized to nitrous nitrogen (NO-2-N) or nitric acid (NO-3-N) under aerobic rich aerobic conditions. In the oxygen-free state in which dissolved oxygen is depleted, it is reduced to nitrogen gas and removed by breathable bacteria.
미생물에 의해 암모늄이온을 아질산성 또는 질산성 질소로 산화시키는 과정에서는 용존산소가 필요하나, 질산성 질소를 질소가스로 환원시키는 탈질과정인 무산소상태에서는 외부로부터 유기탄소원의 주입이 필요하며, 유기탄소원으로서는 주로 메탄올을 사용하였다. 그러나, 이 또한 유지관리비용이 높아 최근에는 유기물 공급원으로 메탄올 대신 하수에 포함되어 있는 BOD 성분을 이용하는 방안으로 공정이 개발되어 왔다.In the process of oxidizing ammonium ion to nitrite or nitrate nitrogen by microorganisms, dissolved oxygen is required.In the anoxic state, which is a denitrification process to reduce nitrate nitrogen to nitrogen gas, injection of organic carbon source is required from outside. Mainly, methanol was used. However, because of the high maintenance costs, the process has recently been developed to use BOD components contained in sewage instead of methanol as an organic source.
생물학적 인제거를 위한 핵심공정인 혐기-호기과정에서 인의 제거원리는 다음과 같다.The principle of phosphorus removal in the anaerobic-aerobic process, which is a key process for biological phosphorus removal, is as follows.
혐기성 과정에서는 탈인미생물이 유입하수의 유기물을 섭취하여 셀(Cell)내에 피에치비(PHB : Polyhydro-β-butyrate)형태로 저장하고, 이때 필요한 에너지는 세포내의 에이티피(ATP)의 가수분해에 의해 얻어지며, 그 과정에서 셀내의 인은 올소포스페이트(Orthophosphate, PO4----P)로 방출하게 된다. 뒤따르는 호기성조에서는 셀에 축적된 피에치비를 산화시킴과 동시에 셀의 재합성을 위해 혐기성조에서 방출된 인의 양보다 더많은 양을 섭취하게 된다. 생물학적 2차처리에서 인은 양론적으로 섭취되며, 세포내의 인의 함량은 건조중량으로 1.5∼2%이다. 그러나, 혐기성 과정에 이어서 호기성이 뒤따르는 프로세스에서 세포내의 인의 함량은 양론적인 양보다 훨씬 높은 4∼8%에 이르며, 이는 전형적인 생물학적 2차처리보다 2∼4배가량 더 많은 양이다.In anaerobic processes, demineralized microorganisms take in organic matter from the influent sewage and store it in the form of PHB (Polyhydro-β-butyrate) in the cell, and the required energy is obtained by hydrolysis of ATP in the cell. In the process, phosphorus in the cell is released into orthophosphate (PO4 ---- P). Subsequent aerobic baths oxidize the etch ratio accumulated in the cell and at the same time consume more than the amount of phosphorus released from the anaerobic bath for cell resynthesis. In biological secondary treatment, phosphorus is ingested quantitatively and the phosphorus content in cells is 1.5 to 2% by dry weight. However, in the process followed by anaerobic processes followed by aerobic, the phosphorus content in cells reaches 4-8%, much higher than the stoichiometric amount, which is 2-4 times more than typical biological secondary treatment.
위와같은 생물학적 인 및 질소제거 원리를 이용하여 실용화된 다양한 공법이 제안되어 있으며, 그 중에서 특히 인의 제거율이 우수한 공법으로는 포스트립(Phostrip)공법이 제안되어 있다.Various methods that have been put to practical use using the above-described biological phosphorus and nitrogen removal principles have been proposed, and among them, a postrip method has been proposed as a method having excellent phosphorus removal rate.
상기 포스트립 공법은 유입하수의 유기물은 폭기조에서 제거하고, 혐기성 조건은 2차침전지에서 폭기조로 반송되는 슬러지의 일부를 중력식 농축조인 탈인조에서 장시간 체류시키며, 인의 방출에 필요한 유기물은 탈인조에서 미생물의 셀(Cell)분해에 의해서 생성된 유기물을 이용한다. 탈인조에서 인이 방출되어 인의 함량이 낮아진 슬러지는 다시 폭기조로 이송되어 폭기조에서 과량으로 인을 섭취하며, 인이 농축된 탈인조 상등액은 화학처리에 의해 제거한다.The post-lip method removes the organic matter from the influent sewage in the aeration tank, and anaerobic conditions retain some of the sludge returned to the aeration tank from the secondary settler for a long time in the dephosphorization tank, a gravity thickening tank. The organic material produced by the cell decomposition of is used. Sludge whose phosphorus is released from the dephosphorization tank and the phosphorus content is lowered is transferred to the aeration tank to consume phosphorus in excess in the aeration tank, and the dephosphor supernatant concentrated with phosphorus is removed by chemical treatment.
그러나, 상기 포스트립 공법에서는 인 제거뿐아니라, 질소제거도 동시에 고려하여 폭기조의 운전조건을 유기물 산화뿐 아니라, 질소물질도 산화시키는 조건에서 운전할 경우, 2차 침전지에서 탈인조로 운송되는 반송슬러지에 함유된 질산성 질소에 의하여 인 방출에 소요될 유기물질이 질산성 질소제거에 소요되어 탈인조에서의 인방출에 악영향을 미치므로써 인의 제거율이 낮아지는 문제점이 있었다.However, in the post-lip method, considering not only phosphorus removal but also nitrogen removal, the operation conditions of the aeration tank not only oxidize organic substances but also oxidize nitrogen substances, are operated in the conveying sludge transported from the secondary settling tank to the dephosphorization tank. The organic material to be discharged by the nitrate nitrogen contained in the nitrate nitrogen is removed to have a negative effect on the phosphorus release in the dephosphorization tank has a problem that the removal rate of phosphorus is lowered.
상기의 문제점을 해소하고자, 종래의 포스트립 공법에서 인 제거뿐만 아니라 질소제거를 위하여 개선한 방법으로는 폭기조에서는 유기물만 제거하고 2차침전지 이후에 질산화 및 탈질시설을 추가로 설치하거나, 2차침전지와 탈인조 사이와 탈질조를 설치하여 탈인조로의 질산성질소 유입을 저감시키는 방안등이 제안되었다.In order to solve the above problems, in the conventional post-lip method, an improved method for removing nitrogen as well as phosphorus removal is to remove only organic matter in the aeration tank, and further install nitrification and denitrification facilities after the secondary settler, or the secondary settler. In order to reduce the inflow of nitrate nitrogen into the dephosphorization tank by installing a denitrification tank and a denitrification tank, it has been proposed.
그러나, 전자의 방법의 경우 2차침전지 이후에 질산화 및 탈질화 시설의 추가로 공사비가 많이 소요되며, 또한 2차침전지를 통과한 처리수에는 유기물농도가 유입폐수에 비교하여 매우 낮기 때문에 탈질조에는 외부로부터 메탄올과 같은 유기탄소원을 공급해주어야 하는 문제점을 내포하고 있다. 또한, 후자의 방법의 경우는 전자의 방법과 비교하여 탈질조만 설치하므로 건설비는 적게드나 외부에서 탄소원을 공급하여 주지 않아 탈질조의 체류시간이 8시간 이상으로 증가되어 탈질조의 크기가 커지고, 2차침전지에서 탈질조로의 통과유량이 약 30%에 지나지 않아 시스템전체의 총 질소 제거율이 낮은 문제점을 내포하고 있다.However, in the case of the former method, the construction cost is increased by the addition of nitrification and denitrification facilities after the secondary settler. Also, since the concentration of organic matter is very low compared to the inflow wastewater, the denitrification tank There is a problem to supply an organic carbon source such as methanol from the outside. In addition, in the latter method, since only the denitrification tank is installed in comparison with the former method, the construction cost is low but the carbon source is not supplied from the outside, so the residence time of the denitrification tank is increased to 8 hours or more, and the size of the denitrification tank is increased, and the secondary settler battery The flow rate from the to denitrification tank is only about 30%, which implies low total nitrogen removal rate of the whole system.
따라서, 본 발명은 상기의 제반 문제점을 해결하기 위하여 안출된 것으로서, 폭기조 앞에는 탈질조만을 두고 폭기조에서 질산화된 질산성질소 농도가 높은 혼합슬러지액을 탈질조로 반송시켜 탈질조에서는 유기물 농도가 높은 유입하수의 유기물을 탄소원으로 전량 사용하여 질소를 제거하므로써 시스템 전체의 질소제거율을 높이고, 이의 결과로 시스템 전체의 질소제거율을 높임으로써 탈인조에 유입되는 질산성 질소농도의 최소화로 인의 제거율을 종래의 포스트립 공법보다 더욱 높일 수 있는 생물학적 인 및 질소 동시 제거장치 및 방법을 제공함에 그 목적이 있다.Therefore, the present invention has been devised to solve the above problems, and only the denitrification tank is placed in front of the aeration tank, and the mixed sludge solution having a high nitric acid nitrate concentration in the aeration tank is returned to the denitrification tank, where the organic matter concentration is high in the denitrification tank. By removing all nitrogen by using all organic materials as carbon source, the nitrogen removal rate of the whole system is increased, and as a result, the removal rate of phosphorus is reduced by minimizing the nitrate nitrogen concentration flowing into the dephosphorization tank by increasing the nitrogen removal rate of the whole system. It is an object of the present invention to provide an apparatus and a method for simultaneously removing biological phosphorus and nitrogen which can be further improved than the method.
도1은 본 발명에 의한 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거 공법을 수행하기 위한 공정장치의 구성도;BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram of a process apparatus for carrying out a biological phosphorus and nitrogen simultaneous removal method modified from a post-lip method according to the present invention;
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
1 : 1차침전지 유출하수 2 : 탈질조1: Primary sedimentation drainage sewage 2: Denitrification tank
2a : 교반기 3 : 탈질조 유출수2a: agitator 3: denitrification tank effluent
4 : 폭기조 5 : 제1 반송슬러지4: aeration tank 5: first conveying sludge
6 : 폭기조 유출수 7 : 2차침전지6: aeration tank effluent 7: secondary rechargeable battery
8 : 잉여슬러지 배출수 9 : 제2 반송슬러지8: excess sludge discharged water 9: second conveying sludge
10 : 제3 반송슬러지 11 : 탈인조10: third conveying sludge 11: dephosphorization tank
12 : 탈인조 상등액 13 : 제4 반송슬러지12: dephosphorization supernatant 13: fourth conveying sludge
14 : 2차침전지 유출수14: Secondary battery discharged water
상기 목적을 달성하기 위하여 본 발명은, 1차침전지를 거친 유입하수를 수용하며, 상기 유입하수에 포함된 유기물질을 이용하여 폭기조에서 순환된 질산성질소농도가 높은 반송슬러지 혼합액을 질소가스로 환원시켜 제거하는 탈질조; 상기 탈질조로부터 배출되는 유출수를 수용하며, 질산성질소 농도가 높은 슬러지혼합액을 상기 탈질조에 반송시키는 폭기조; 상기 폭기조로부터 방출되는 유출수를 수용하여 침전시켜 상기 탈질조 및 탈인조에 슬러지를 소정량 반송시키는 2차침전지; 상기 2차침전지에서 배출된 질산성 질소농도가 매우 낮은 슬러지를 소정량 반송받아 중력식 농축으로 고액분리하여 슬러지 및 상등액을 상기 폭기조로 송출하는 탈인조를 포함하는 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거장치를 제공한다.In order to achieve the above object, the present invention accommodates the influent sewage through the primary sedimentation battery, and reduces the return sludge mixed liquid with high nitrate nitrogen concentration circulated in the aeration tank using the organic material contained in the influent sewage to nitrogen gas. Denitrification tank to remove by; An aeration tank for receiving the effluent discharged from the denitrification tank and returning the sludge mixture having a high nitrogen nitrate concentration to the denitrification tank; A secondary settling battery which receives and discharges effluent water discharged from the aeration tank and returns a predetermined amount of sludge to the denitrification tank and the dephosphorization tank; Biological phosphorus and nitrogen modified from the post-lip method including a dephosphorization tank for transporting sludge and supernatant to the aeration tank by receiving a predetermined amount of sludge with a very low nitrate nitrogen concentration discharged from the secondary sedimentation cell and separating it by gravity concentration. Provide a simultaneous removal device.
또한, 본 발명은 탈질조에서 1차 침전지 유출수와 반송슬러지를 혼합시킨 후 폭기조로 이송시키는 제1 단계; 상기 폭기조에서는 유기물 제거 및 질산화가 일어나며 질산화된 혼합슬러지액은 탈질조로 반송하는 제2 단계; 상기 탈질조에서는 유입된 유입하수의 유기물 전량을 이용하여 반송된 질산성 질소를 제거하여 시스템전체의 질소제거율을 높이는 제3 단계; 상기 폭기조에서 성장한 미생물을 2차침전지에서 고액분리하여 침전시키되, 슬러지 일부를 탈인조에 반송하고 일부는 탈질조에 반송하는 제4 단계; 상기 탈인조에 저장된 슬러지를 고액분리하여 혐기성조건을 형성시킨 후, 인함량이 적은 슬러지와 인함량이 많은 상등액을 호기성조건인 폭기조로 반송하는 제5 단계; 및 상기 탈인조에서 반송된 인함유 슬러지를 폭기조에서 인의 과잉섭취가 일어나도록하여 제거하는 제6 단계를 포함하는 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거방법을 제공한다.In addition, the present invention is a first step of mixing the primary sedimentation effluent and the conveying sludge in the denitrification tank and then transported to the aeration tank; Removing the organic matter and nitrifying the aeration tank and returning the nitrified mixed sludge solution to the denitrification tank; The denitrification tank is a third step of increasing the nitrogen removal rate of the entire system by removing the nitrate nitrogen returned by using the total amount of the organic matter of the influent sewage introduced; A fourth step of precipitating the microorganisms grown in the aeration tank by solid-liquid separation in a secondary settling cell, returning some of the sludge to the dephosphorization tank and returning some of the sludge to the denitrification tank; Forming a anaerobic condition by solid-liquid separation of the sludge stored in the dephosphorization tank, and then returning the sludge with low phosphorus content and the supernatant with high phosphorus content to an aeration tank which is an aerobic condition; And a sixth step of removing the phosphorus-containing sludge returned from the dephosphorization tank to remove excess phosphorus from the aeration tank so as to remove the phosphorous sludge.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다,Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도1은 본 발명에 의한 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거 공법을 수행하기 위한 공정장치의 구성도로서, 도면에서 1은 1차침전지 유출하수, 2는 탈질조, 2a는 교반기, 3은 탈질조 유출수, 4 는 폭기조, 5는 폭기조에서 탈질조로의 제1 반송슬러지, 6은 폭기조 유출수, 7은 2차침전지, 8은 잉여슬러지 배출수, 9는 2차침전지에서 탈인조로의 제2 반송슬러지, 10은 2차침전지에서 탈질조로의 제3 반송슬러지, 11은 탈인조, 12는 인함량이 높은 탈인조 상등액, 13은 인함량이 낮아진 틸인조 슬러지를 폭기조로 반송시키는 제4 반송슬러지, 14는 2차침전지 유출수를 각각 나타낸다.1 is a block diagram of a process apparatus for carrying out a simultaneous removal of biological phosphorus and nitrogen according to the present invention, 1 is a primary sedimentation cell discharge sewage, 2 is a denitrification tank, 2a is a stirrer, 3 is the denitrification tank effluent, 4 is the aeration tank, 5 is the first conveying sludge from the aeration tank to the denitrification tank, 6 is the aeration tank effluent, 7 is the secondary sedimentation cell, 8 is the surplus sludge discharge water, 9 is the second 2 conveying sludge, 10 is the third conveying sludge from the secondary settler to the denitrification tank, 11 is the dephosphorization tank, 12 is the dephosphorization supernatant with high phosphorus content, 13 is the fourth conveying sludge which conveys the til-in sludge with lower phosphorus content to the aeration tank, 14 represents the secondary sedimentation effluent, respectively.
본 발명에 의한 포스트립 공법을 개조한 생물학적 인 및 질소제거 장치 및 방법은 도1에 도시한 바와 같이 1차침전지를 거친 유출하수(1)를 수용하며 상기 유출하수에 포함된 유기물질을 이용하여 폭기조(4)에서 순환된 질산성질소농도가 높은 반송슬러지 혼합액을 질소가스로 환원시켜 제거하는 탈질조(2)와, 상기 탈질조(2)로부터 배출되는 유출수(3)를 수용하며 질산성질소 농도가 높은 슬러지혼합액(5)을 상기 탈질조(2)에 반송시키는 폭기조(4)와, 상기 폭기조(4)로부터 방출되는 유출수(6)를 수용하여 침전시켜 상기 탈질조(2) 및 탈인조(11)에 슬러지를 소정량 반송시키는 2차침전지(7)와, 상기 2차침전지(7)에서 배출된 질산성 질소농도가 매우 낮은 슬러지를 소정량 반송받아 중력식 농축으로 고액분리하여 슬러지(13) 및 상등액(12)을 상기 폭기조(4)로 송출하는 탈인조(11)로 구성된다.Biological phosphorus and nitrogen removal apparatus and method remodeling the post-lip method according to the present invention, as shown in Figure 1, by receiving the effluent sewage (1) through the primary sedimentation battery using the organic material contained in the effluent A denitrification tank (2) for reducing and removing the return sludge mixed liquid having a high concentration of nitrate nitrogen circulated in the aeration tank (4), and an effluent (3) discharged from the denitrification tank (2) to accommodate The aeration tank 4 for conveying the sludge mixture 5 having a high concentration to the denitrification tank 2 and the effluent 6 discharged from the aeration tank 4 are accommodated and precipitated. The secondary needle battery 7 for conveying a predetermined amount of sludge to 11 and the sludge having a very low nitrate nitrogen concentration discharged from the secondary needle battery 7 are returned in a predetermined amount to solid-liquid separation by gravity concentration. ) And the supernatant (12) to the aeration tank (4) It is composed of a dephosphorization tank (11).
여기서, 상기 탈질조(2)에는 폭기조(4) 및 2차침전지(7)에서 반송된 슬러지(8)와 유입하수를 고르게 혼합하는 교반기(2a)가 내장되며, 또한 상기 탈질조(2)는 1차침전지에서 유출된 유출하수(1) 전량을 탈질과정에만 소요시켜 시스템전체의 질소제거효율을 높이도록 무산소조로 형성된다.Here, the denitrification tank 2 has a built-in agitator 2a for evenly mixing the sludge 8 conveyed from the aeration tank 4 and the secondary settling battery 7 and the inflow sewage, and the denitrification tank 2 is The total amount of effluent sewage (1) leaked from the primary sedimentation battery is formed in an anoxic tank so as to increase the nitrogen removal efficiency of the entire system by taking only the denitrification process.
도1의 공정에 따라 본 발명의 내용을 상세히 설명하면 다음과 같다.Referring to the contents of the present invention according to the process of Figure 1 in detail as follows.
상기 탈질조(1)에서는 1차침전지(도시하지 않음)를 거친 유출하수(1), 2차침전지(7)의 제3 반송슬러지(10), 폭기조(4)로부터의 질산성질소 농도가 높은 제1 반송슬러지(5)가 혼합되며, 폭기조(4)에서 반송된 질산성질소 농도가 높은 제1 반송슬러지(5)에서의 질산성질소는 1차침전지를 거친 유입하수(1)의 유기물질을 이용하여 질소가스로 환원시켜 제거된다.The denitrification tank 1 has a high concentration of nitrate nitrogen from the effluent sewage 1 which has passed through the primary sedimentation battery (not shown), the third conveying sludge 10 of the secondary sedimentation battery 7, and the aeration tank 4. The first conveying sludge 5 is mixed, and the nitrogenous nitrate in the first conveying sludge 5 having a high nitrate nitrogen concentration conveyed from the aeration tank 4 is organic matter of the influent sewage 1 passing through the primary settling cell. It is removed by reducing with nitrogen gas.
여기서, 본 발명의 탈질조(2)의 기능은 종래의 변형 포스트립 공법의 질소제거시설 기능과 다른점은 종래의 공법에서는 질소의 제거시설을 2차침전지 이후의 과정에 설치하여 유기물이 고갈된 처리수를 탄소원으로 사용하기 때문에 시스템전체의 질소제거율이 낮고, 그 결과 탈인조로 유입되는 질산성질소의 함량이 높아서 탈인조(11)에서는 인의 방출이 원활히 이루어지지 않으나, 본 발명에서는 유입하수 유기물 전량을 폭기조 앞에 설치된 탈질과정에서 소모시킴으로써 시스템 전체의 질소제거율이 높게 되는 것이다. 또한, 유입유기물의 대부분이 탈질조에서 소모되기 때문에 폭기조의 수리학적 체류시간이 매우 짧아도 폭기조(4)에서 고효율의 유기물 제거율을 나타낼 수 있다. 상기 탈질조(2)의 수리학적 체류시간은 1차침전조를 거친 유입유량 기준으로 약 1∼2시간이면 적당하며, 유입하수, 반송슬러지 등의 고른 혼합을 위하여 교반기(2a)를 설치한다.Here, the function of the denitrification tank 2 of the present invention is different from the function of nitrogen removal facility of the conventional modified post-lip method. In the conventional method, the nitrogen removal facility is installed in the process after the secondary sedimentation cell. Since treated water is used as a carbon source, the nitrogen removal rate of the entire system is low, and as a result, the content of nitrogen nitrate introduced into the dephosphorization tank is high, so that the phosphorus is not easily released in the dephosphorization tank. Is consumed in the denitrification process installed in front of the aeration tank, and the nitrogen removal rate of the entire system is increased. In addition, since most of the inflow organic matter is consumed in the denitrification tank, even if the hydraulic retention time of the aeration tank is very short, the aeration tank 4 may exhibit high efficiency of organic matter removal rate. The hydraulic residence time of the denitrification tank 2 is suitable if it is about 1 to 2 hours on the basis of the inflow flow rate after the primary settling tank, and an agitator 2a is installed for even mixing of the influent sewage and the return sludge.
상기 폭기조(4)에서는 탈질조(2)를 거친 혼합슬러지를 포함하는 유출수(3)와 탈인조(11)에서 인이 방출되어 인함량이 낮은 슬러지(13)등이 유입된다. 상기 폭기조(4)에서는 탈질조(2)를 거친 유입하수의 유기물 산화, 암모니아성 질소의 질산성 질소로의 산화 그리고 인의 과잉섭취가 일어난다. 상기 폭기조(4)는 질산화 미생물의 성장에 유리한 조건을 제공하기 위하여 유기물 부하는 0.1㎏BOD/㎏MLVSS·d∼0.3㎏BOD/㎏MLVSS·d 범위, 수리학적 체류시간은 약 4시간이 적당하다.In the aeration tank 4, phosphorus is discharged from the outflow water 3 including the mixed sludge passed through the denitrification tank 2 and the dephosphorization tank 11 to introduce a sludge 13 having a low phosphorus content. In the aeration tank 4, oxidation of the organic matter of the influent sewage through the denitrification tank 2, oxidation of ammonia nitrogen to nitrate nitrogen, and excessive intake of phosphorus occur. The aeration tank 4 has an organic load of 0.1 kg BOD / kg MLVSS · d ~ 0.3 kg BOD / kg MLV SS · d in order to provide favorable conditions for the growth of nitrifying microorganisms, the hydraulic retention time is about 4 hours .
폭기조(4)에서 질산화되어 질산성질소농도가 높은 혼합슬러지는 탈질조(2)로 반송시켜 탈질과정을 거친 후, 다시 폭기조(4)로 유입된다. 폭기조(4)에서 탈질조(2)로의 내부반송비율은 유입하수(1)량의1∼4배 범위로하되, 탈질조(2)에서 질산성질소 부하율은 유입 COD값의 약 1/4정도에 해당하는 반송비가 적정하다.The mixed sludge, which is nitrified in the aeration tank 4 and has a high concentration of nitrate nitrogen, is returned to the denitrification tank 2 to undergo a denitrification process, and then flows back into the aeration tank 4. The internal conveyance ratio from the aeration tank 4 to the denitrification tank 2 is in the range of 1 to 4 times the amount of the inflow sewage 1, while the nitric acid loading rate in the denitrification tank 2 is about 1/4 of the inflow COD value. The return cost is appropriate.
상기 폭기조(4)에서 성장한 미생물은 2차침전지(7)에서 고액분리되어 침전되며, 상기 침전된 슬러지중 약50%인 제3 반송슬러지(10)는 탈질조(2)로 반송되고, 약 10∼15%인 제2 반송슬러지(9)는 탈인조(11)로 반송된다.The microorganisms grown in the aeration tank 4 are precipitated by solid-liquid separation in the secondary settling battery 7, and the third conveying sludge 10, which is about 50% of the precipitated sludge, is returned to the denitrification tank 2, and about 10 The 2nd conveyance sludge 9 which is -15% is conveyed to the dephosphorization tank 11. As shown in FIG.
상기 2차침전지(7)에서 반송된 제2 반송슬러지(9)는 중력식 농축조인 탈인조(11)에서 고액분리된다. 탈인조 슬러지층에서는 혐기성이 조성되어 인이 방출되며, 인이 방출되어 인함량이 낮은 슬러지는 호기성조건인 폭기조(4)에서 인의 과잉흡수를 위하여 폭기조로 반송된다. 인함량이 풍부한 탈인조 상등액(12)은 종래의 포스트립 공법에서는 화학처리하여 제거한 후 방류시켰으나, 본 발명의 공법에서는 질산성질소에 의한 인방출에의 영향이 거의 없기 때문에 대부분은 폭기조(4)로 반송시킨다. 탈인조(11)에서 셀분해에 의해 생성된 유기물을 탄소원으로 사용하여 인의 원활한 방출을 위해 요구되는 슬러지의 적절한 체류시간(SDT : Sludge Detention Time)은 8∼12시간이 적절하며, 2차침전지(7)에서 탈인조(11)로의 반송슬러지 유량(9)은 유입유량(1)의 약 10∼15%, 탈인조에서 폭기조(4)로의 슬러지 이송량은 탈인조 유입유량(9)의 약50%, 탈인조 상등액은(12)은 탈인조 유입유량(9)의 약 50%이다. 종래의 포스트립 공법과 포스트립을 개량한 공법에서도 2차침전지(7)에서 탈인조(11)로의 반송비는 통상 폭기조 유입유량의 30%를 반송시키나 본 발명에서는 유입하수의 유기물을 이용하여 폭기조에서 발생된 질산성질소를 탈질조에서 처리한 경우, 질소제거율 향상으로 2차침전지에서 탈인조로의 반송비는 유입유량의 10∼15%하여도 가능하다.The second conveying sludge 9 conveyed from the secondary needle battery 7 is solid-liquid separated in the dephosphorization tank 11 which is a gravity type concentration tank. The dephosphorized sludge layer is anaerobic and phosphorus is released, and the phosphorus is released and sludge having low phosphorus content is returned to the aeration tank for excess absorption of phosphorus in the aeration tank 4 which is an aerobic condition. Although the phosphorus-containing dephosphorized supernatant 12 was discharged after being chemically removed in the conventional post-lip method, the process of the present invention has almost no effect on the phosphorus release by nitrate nitrogen in the process of the present invention. Return it. Sludge Detention Time (SDT) is preferably 8 to 12 hours for the sludge required for the smooth release of phosphorus by using the organic material generated by cell decomposition in the dephosphorization tank (11) as a carbon source. 7), the sludge flow rate 9 from the dephosphorization tank 11 is about 10 to 15% of the inflow flow rate 1, and the sludge transfer amount from the dephosphorization tank to the aeration tank 4 is about 50% of the dephosphorization inflow flow rate 9. The dephosphorization supernatant (12) is about 50% of the dephosphorization inflow (9). In the conventional post-lip method and the improved method of the post-lip method, the return ratio from the secondary needle battery 7 to the dephosphorization tank 11 usually returns 30% of the inflow flow rate of the aeration tank. In the case where the generated nitrate nitrogen is treated in the denitrification tank, the return ratio from the secondary settler to the dephosphorization tank may be 10 to 15% of the inflow flow rate by improving the nitrogen removal rate.
실시예1Example 1
본 실험에서 사용된 유입하수는 하수처리장에 유입되는 가정하수를 사용하였으며, 질소 및 인의 농도는 고정시키고 유입유기물 농도만을 변화시켜가면서 약 6개월간 실시하였다. 각 조건별 유입하수의 성상은 표1과 같으며 실시한 실험규모는 처리용량 20M3/일의 파리로트플랜트(Pilot Plant) 규모였다.The influent sewage used in this experiment was the domestic sewage flowing into the sewage treatment plant, which was carried out for about 6 months while the concentrations of nitrogen and phosphorus were fixed and only the influent organic matter was changed. The characteristics of influent sewage for each condition are shown in Table 1, and the experimental scale was the size of a pilot plant with a treatment capacity of 20M3 / day.
표1 유입하수의 성상Table 1 Characteristics of Influent Sewage
(단위 : ㎎/1)(Unit: mg / 1)
*하수처리장 유입수질, **화학적산소요구량, 생물학적 산소요구량등 유기물농도감소는 수돗물을 사용하여 희석하였고, 희석시 암모니아성 질소, 총인농도의 감소를 방지하기 위해 요소비료나 인산비료를 인위적으로 주입하였다.* Reduced organic matter concentrations such as inflow of sewage treatment plant, ** chemical oxygen demand, biological oxygen demand, etc. were diluted using tap water, and artificial dilution of urea fertilizer or phosphate fertilizer to prevent ammonia nitrogen and total phosphorus concentration during dilution. It was.
실험시설은 제1도와 같이 탈질조(2), 폭기조(4), 2차침전지(7), 탈인조(11)등으로 구성하였으며 사용된 재질은 3.2㎜두께의 철판으로 하였다.The experimental facility was composed of denitrification tank (2), aeration tank (4), secondary sedimentation battery (7), dephosphorization tank (11) as shown in FIG. 1, and the material used was 3.2 mm thick iron plate.
탈질조(2)의 크기는 약 1.7㎥이고, 체류시간은 유입유량 기준으로 약 2시간이었으며 탈질조(2)내에는 유입수(1)와 폭기조에서는 반송되는 슬러지(5) 그리고 2차침전지(7)에서 반송되는 슬러지(10)가 고루게 혼합되도록 90rpm정도의 속도를 가진 교반기를 설치하였다. 폭기조(4)의 용량은 약 3.4㎥으로하였고, 조내에는 3개의 칸막이를 설치하여 모두 4칸으로 구성하였으며, 조내의 적절한 산소 공급 및 혼합을 위하여 송풍기로 150ℓ/min의 공기를 공급하였다.The size of the denitrification tank 2 was about 1.7m 3, and the residence time was about 2 hours based on the inflow flow rate.In the denitrification tank 2, the sludge 5 returned from the inflow water 1 and the aeration tank 2 and the secondary settler battery 7 Agitator having a speed of about 90rpm was installed so that the sludge 10 conveyed from) was evenly mixed. The capacity of the aeration tank 4 was about 3.4m 3, and three partitions were installed in the tank to constitute four compartments, and 150 L / min air was supplied to the blower for proper oxygen supply and mixing in the tank.
2차침전지(7) 용량은 3.3㎥이며 침전된 슬러지의 일부는 탈질조로 직접 반송되고, 일부는 탈인조로 반송하였으며 슬러지 이송은 펌프를 사용하였다. 탈인조(11)의 용량은 3.3㎥였으며 탈인조 하부의 슬러지 및 탈인조 상등액은 인의 흡수를 목적으로 폭기조(4)로 전량 반송시켰다.The secondary sedimentation cell 7 had a capacity of 3.3m 3, and some of the sludge deposited was directly returned to the denitrification tank, and some of the sludge was returned to the dephosphorization tank. The capacity of the dephosphorization tank 11 was 3.3 m 3, and the sludge in the lower part of the dephosphorization tank and the dephosphorization supernatant were all returned to the aeration tank 4 for the purpose of absorbing phosphorus.
본 발명의 실험에서 수행한 각 반응조의 실험조건은 표2와 같다.Experimental conditions of each reactor performed in the experiment of the present invention are shown in Table 2.
표2 각 반응조의 실험조건Table 2 Experimental Conditions of Each Reactor
·유입하수량(Q) 20㎥/일Inflow Sewage (Q) 20㎥ / day
·탈질조 수리학적 체류시간 : 2시간(유입하수량 기준)Denitrification tank hydraulic residence time: 2 hours (based on influent sewage)
·폭기조 수리학적 체류시간 : 4시간Aeration tank hydraulic stay time: 4 hours
F/M 비 : 0.1∼0.3㎏BOD/㎏MLSS·d, 미생물농도 : 3,000∼4,000㎎/ℓF / M ratio: 0.1 to 0.3 kg BOD / kg MLSS · d, microbial concentration: 3,000 to 4,000 mg / l
·탈인조 슬러지 체류시간 : 8∼12시간, 미생물농도 : 20,000∼25,000㎎/ℓDesalination sludge residence time: 8 to 12 hours, microbial concentration: 20,000 to 25,000 mg / l
·반송슬러지Return sludge
- 폭 기 조 →탈질조 4Q-Aeration tank → Denitrification tank 4Q
- 2차참전지→탈질조 0.5Q-Secondary Battery → Denitrification Tank 0.5Q
- 2차침전지→탈인조 0.1∼0.15Q-Rechargeable battery → dephosphorizer 0.1 ~ 0.15Q
- 탈 인 조 →폭기조 0.05∼0.75Q-Dephosphorization tank → aeration tank 0.05∼0.75Q
표3은 표2의 실험조건으로 고정시키고 각조건별로 수행한 결과의 2차 침전지 유출수 수질을 평균하여 요약한 것이다.Table 3 summarizes the average sedimentation effluent water quality of the results of the fixed and experimental conditions of Table 2 and performed for each condition.
표3 발명공법의 유출수 수질분석결과Table 3 Outflow water quality analysis result of invention method
(단위 : ㎎/1)(Unit: mg / 1)
·총질소(T-N) : 총킬달 질소(TKN) + 질소산화물(NOX-N)Total nitrogen (T-N): total Kjeldahl nitrogen (TKN) + nitrogen oxides (NOX-N)
·총인(T-P) : 부유물질 + 용해성인Total phosphorus (T-P): suspended solids + soluble
비교실시예 1Comparative Example 1
표4는 본 발명공법과 종래의 인제거만 목적인 포스트립 공법을 개조하여 인뿐만 아니라 질소제거도 가능한 공법과의 비교분석을 위하여 실시예 1과 동일한 크기의 폭기조 및 탈인조를 설치하고 2차침전지와 탈인조사이에 체류시간 8시간의 탈질조를 두어 실시예1과 동일한 설계조건 및 유입수로 동일한 기간동안 운전한 결과로서 생물학적 산소요구량, 화학적 산소요구량 그리고 부유물질 등 유기물제거율과 총킬달질소, 암모니아성 질소 등의 질산화율은 본발명공법과 유사하였다. 그러나 2차침전지와 탈인조사이에 설치된 탈질조 기능만으로는 시스템전체의 총질소제거율이 매우 낮았으며 총인제거율 또한 탈인조로의 질산성질소 유입으로 본 발명과 비교하여 낮았다.Table 4 shows aeration tank and dephosphorization tank of the same size as in Example 1 for comparative analysis between the present invention method and the post-lip method for the purpose of removing phosphorus only and the nitrogen-removing method. As a result of denitrification with a denitrification tank with a residence time of 8 hours and operating for the same period with the same design conditions and influent as in Example 1, the organic removal rate such as biological oxygen demand, chemical oxygen demand, and suspended solids and total Kjeldahl and ammonia Nitrification rate such as nitrogen was similar to the present invention. However, only the denitrification tank function installed in the secondary precipitator and the dephosphorization irradiator had a very low total nitrogen removal rate of the whole system, and the total phosphorus removal rate was also low compared to the present invention due to the inflow of nitrogen nitrate into the dephosphorization tank.
표4 포스트립 공법 유출수의 수질분석결과Table 4 Water Quality Analysis Results of Post-Lip Effluent
(단위 : ㎎/1)(Unit: mg / 1)
비교실시예 2Comparative Example 2
표5는 본 발명공법과 인·질소 동시제거 공법인 에이투오 공법(A2/O, 험기-탈질-호기)과의 질소 및 인의 제거율을 비교분석하기 위해서 실시예1과 동일한 크기의 폭기조 및 탈질조와 추가로 탈질조 앞에 인방출을 위한 혐기조를 설치하여 실시예1과 동일한 Ⅰ, Ⅱ조건에서 운전한 결과이다. 본 발명공법의 실시결과인 표3과 비교하여 종래의 에이투오 공법은 유입하수의 유기물농도 변화에 따라 인 및 질소제거율의 변동이 심하였으나, 본 발명공법에서는 인 및 질소제거율이 안정적이고 에이투오 공법보다 인·질소제거율이 우수하였다.Table 5 shows the addition of aeration tank and denitrification tank of the same size as in Example 1 to compare and analyze the removal rate of nitrogen and phosphorus between ATOO method (A2 / O, hum-denitrification-aerobic), which is a simultaneous method of removing the present invention and phosphorus and nitrogen. The anaerobic tank for phosphorus discharge was installed in front of the furnace denitrification tank and operated under the same conditions as in Example 1 and II. Compared with Table 3, which is the result of the method of the present invention, in the conventional A2O method, the phosphorus and nitrogen removal rate fluctuates greatly according to the change in the concentration of organic matter in the influent sewage, but in the present method, the phosphorus and nitrogen removal rate is stable and the A2O method Phosphorus and nitrogen removal rate was more excellent.
표5 에이투오 공법 유출수의 수질분석결과Table 5 Water quality analysis results of Atoo method runoff
(단위 : ㎎/ℓ)(Unit: mg / l)
위의 실시예과를 기초로 종래의 포스트립공법과 본 발명공법과의 처리효율을 비교하면, 종래의 포스트립공법에서 질소의 제거공정은 2차침전지 이후의 시설에 설치하여, 폭기조에서 산화되고 남은 미량의 유기물만을 탄소원으로 사용함으로 시스템전체의 질소제거율이 낮으나, 본 발명에서는 도1에 도시한 바와 같이 폭기조(4)에서 질산화된 질산성질소는 폭기조 전단에 설치된 탈질조(2)로 반송키는데, 이때 탈질조(2)에서는 유기물농도가 높은 유입하수(1)를 탄소원으로 하므로써 질산성 질소농도가 높은 제1 반송슬러지(5)에서의 질산성 질소를 제거하여 시스템전체의 질소제거율을 제고시킨다. 또한, 유입유기물의 대부분이 탈질조(2)에서 제거되기 때문에 폭기조(4)의 용량이 종래의 공법보다도 작게 된다. 또한, 상기 탈질조(2)에서의 질산성질소 제거율이 매우 높기 때문에 2차침전지(7)에서 탈인조(11)로 유입되는 제2 반송슬러지(9)내의 질산성질소농도가 매우 낮게 된다. 그 결과 2차침전지(7)에서 탈인조(11)로의 슬러지반송을 2차침전지(7)와 탈인조(11)사이에 질소제거 공정없이 바로 탈인조(11)로 유입하여도 상기 탈인조(11)에서는 질산성질소에 의한 영향이 없기 때문에 상기 탈인조(11)에서의 인의 방출이 원활히 진행되고, 상기 폭기조(4)에서의 인의 흡수가 원활하게 진행되어 인의 제거율이 매우 안정적으로 된다Comparing the processing efficiency between the conventional post-lip method and the present invention method based on the above-described embodiment, the nitrogen removal step in the conventional post-lip method is installed in a facility after the secondary settler, and is oxidized and left in the aeration tank. The nitrogen removal rate of the whole system is low by using only a small amount of organic matter as a carbon source, but in the present invention, as shown in FIG. 1, the nitrate nitrogen nitrate is returned to the denitrification tank 2 installed at the front of the aeration tank as shown in FIG. In this case, the denitrification tank (2) removes nitrate nitrogen from the first conveying sludge (5) having high nitrate nitrogen concentration by using the influent sewage (1) having high organic concentration as a carbon source, thereby improving the nitrogen removal rate of the entire system. . In addition, since most of the inflow organic matter is removed from the denitrification tank 2, the capacity of the aeration tank 4 becomes smaller than the conventional method. In addition, since the nitrate nitrogen removal rate in the denitrification tank 2 is very high, the nitrate nitrogen concentration in the second conveying sludge 9 flowing into the dephosphorization tank 11 from the secondary needle battery 7 becomes very low. As a result, even if the sludge conveyance from the secondary needle battery 7 to the dephosphorization tank 11 flows directly into the dephosphorization tank 11 without the nitrogen removal process between the secondary needle battery 7 and the dephosphorization tank 11, the dephosphorization tank ( In 11), since there is no influence by nitrogen nitrate, phosphorus release in the dephosphorization tank 11 proceeds smoothly, and phosphorus absorption in the aeration tank 4 proceeds smoothly, resulting in a very stable removal rate of phosphorus.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니고, 본 발명의 기술적사상을 벗어나지 않는 범위내에서 여러가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and various substitutions, modifications, and changes are possible within the scope without departing from the technical spirit of the present invention. It will be apparent to those who have knowledge.
전술한 바와 같이 본 발명에 따르면, 종래의 생물학적 인·질소제거 공법과 비교하여 유입하수의 유기물질을 전량 폭기조 전단에 설치된 탈질조에서의 탈질과정에 소요시킴으로써, 시스템 전체의 질소제거율을 향상시킬 수 있고, 그결과 탈인조에의 질산성질소 최소유입으로 인의 방출이 원활하게 일어나, 종래의 공법보다 인 및 질소제거율이 매우 탁월한 효과를 가진다.As described above, according to the present invention, compared to the conventional biological phosphorus and nitrogen removal method, by removing the organic material of the influent sewage in the denitrification process in the denitrification tank installed in the front of the aeration tank, the nitrogen removal rate of the whole system can be improved. As a result, the phosphorus is smoothly released due to the minimum inflow of nitrogen nitrate into the dephosphorization tank, and the phosphorus and nitrogen removal rates are much superior to those of the conventional method.
Claims (10)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960069931A KR100231084B1 (en) | 1996-12-21 | 1996-12-21 | Biological phosphor and nitrogen removal device and method modificating phostrip method |
DE1997137373 DE19737373B4 (en) | 1996-12-21 | 1997-08-27 | Plant and process for the biological removal of nitrogen and phosphorus from sewage and sewage water |
CN97116878A CN1102130C (en) | 1996-12-21 | 1997-09-03 | System and method for removing biologically both nitrogen and phosphorous removal in sewage and wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960069931A KR100231084B1 (en) | 1996-12-21 | 1996-12-21 | Biological phosphor and nitrogen removal device and method modificating phostrip method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19980051067A true KR19980051067A (en) | 1998-09-15 |
KR100231084B1 KR100231084B1 (en) | 1999-11-15 |
Family
ID=19490177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019960069931A KR100231084B1 (en) | 1996-12-21 | 1996-12-21 | Biological phosphor and nitrogen removal device and method modificating phostrip method |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR100231084B1 (en) |
CN (1) | CN1102130C (en) |
DE (1) | DE19737373B4 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101005793B1 (en) * | 2010-06-03 | 2011-01-06 | 부산환경공단 | Reconstructed-plung lime ii process for nitrogenand and phosphate removal in sewage |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000024252A (en) * | 2000-02-01 | 2000-05-06 | 김창수 | Advanced Treatment System using Rotating Immobilized Phosphorus Sweeper from Wastewater, Sewage and Industrial Wastewater |
US6773596B2 (en) | 2000-08-03 | 2004-08-10 | Ladislav Penzes | Activated sludge method and device for the treatment of effluent with nitrogen and phosphorus removal |
DE10352636B4 (en) * | 2003-11-11 | 2005-11-10 | Hamann Ag | Process and plant for the treatment of waste water on ships |
CN100395196C (en) * | 2006-08-15 | 2008-06-18 | 北京工业大学 | Improved MUCT technology and device |
CN100395197C (en) * | 2006-08-15 | 2008-06-18 | 北京工业大学 | Improved UCT technology and device |
CN103319052B (en) * | 2013-07-09 | 2014-06-18 | 浙江卓嘉环境工程有限公司 | System and method for treating cowboy yarn pulp dyeing wastewater |
CN106315969A (en) * | 2015-06-25 | 2017-01-11 | 麦王环境技术股份有限公司 | Integrated wastewater treatment equipment of IBR (integral biological reactor) and treatment process |
CN106746391A (en) * | 2016-11-16 | 2017-05-31 | 环境保护部南京环境科学研究所 | A kind of phosphatization recycling sludge method of disposal |
CN108328871A (en) * | 2018-03-21 | 2018-07-27 | 新疆水木湛清环保科技有限公司 | Landfill leachate efficient denitrification system and its denitrification process |
CN108218153A (en) * | 2018-03-27 | 2018-06-29 | 湖北君集水处理有限公司 | A kind of system and method for sewage plant Tailwater Depth processing |
CN110510802B (en) * | 2018-05-22 | 2024-10-01 | 同济大学 | Black water carbon source capturing system and method |
CN109824211A (en) * | 2019-03-26 | 2019-05-31 | 武汉派宁环保技术有限公司 | A kind of rural domestic sewage treatment system |
CN110451726A (en) * | 2019-08-15 | 2019-11-15 | 苏州湛清环保科技有限公司 | Photovoltaic stainless steel waste water total nitrogen handles recycling set device |
CN110550823B (en) * | 2019-09-11 | 2024-09-10 | 清上(苏州)环境科技有限公司 | System and method for treating algal bloom in water body |
CN111233151A (en) * | 2020-03-17 | 2020-06-05 | 山东太平洋环保股份有限公司 | Efficient synchronous nitrogen and phosphorus removal system and method for high-nitrogen and phosphorus wastewater |
CN114349257A (en) * | 2020-10-13 | 2022-04-15 | 同济大学 | Sewage treatment method based on MBR process |
CN115677069B (en) * | 2021-07-23 | 2024-09-13 | 中国石油天然气股份有限公司 | Treatment method of excess sludge |
CN117534258B (en) * | 2023-12-25 | 2024-05-14 | 知和环保科技有限公司 | Preparation method of efficient carbon source |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1015889B (en) * | 1983-05-06 | 1992-03-18 | 伏尔加-乌拉尔硫化氢气体开挖加工科学研究设计院 | Remove the biological purification method of methyl alcohol in the sewage |
DE4331927C2 (en) * | 1992-09-17 | 1995-07-13 | Mannesmann Ag | Process for the biochemical removal of nitrogen and phosphorus from waste water |
DE4239184C1 (en) * | 1992-11-21 | 1993-10-07 | Burghardt Dipl Chem Elster | Biological sewage phosphate removal - has initial stripper centrally in the stripper basin with separate zones for sludge to move in opposite directions |
-
1996
- 1996-12-21 KR KR1019960069931A patent/KR100231084B1/en not_active IP Right Cessation
-
1997
- 1997-08-27 DE DE1997137373 patent/DE19737373B4/en not_active Expired - Fee Related
- 1997-09-03 CN CN97116878A patent/CN1102130C/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101005793B1 (en) * | 2010-06-03 | 2011-01-06 | 부산환경공단 | Reconstructed-plung lime ii process for nitrogenand and phosphate removal in sewage |
Also Published As
Publication number | Publication date |
---|---|
CN1186050A (en) | 1998-07-01 |
KR100231084B1 (en) | 1999-11-15 |
DE19737373A1 (en) | 1998-06-25 |
CN1102130C (en) | 2003-02-26 |
DE19737373B4 (en) | 2011-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100419431B1 (en) | Wastewater treatment apparatus and method for removing nitrogen and phosphorus | |
KR100231084B1 (en) | Biological phosphor and nitrogen removal device and method modificating phostrip method | |
KR100524426B1 (en) | Multi-phase dual cycle influent process | |
AU731280B2 (en) | Process, using ammonia rich water for the selection and enrichment of nitrifying micro-organisms for nitrification of wastewater | |
KR102099380B1 (en) | The Method to Remove Nitrogen and Phosphorus from Wastewater by Changing of Reactor and Recycle Method of Conventional Nutrient Removal Process and by Combining Anaerobic Ammonium Oxidation(ANAMMOX) Process | |
CN103068748A (en) | Contact-stabilization/prime-float hybrid | |
KR100428047B1 (en) | A Waste Water Purifier Using Overflow Sediment and Method | |
KR20000021183A (en) | Method for managing wastewater including high concentrated organic matter. | |
KR100390633B1 (en) | Anoxic-anaerobic sequencing batch reactor and method for nitrogen and phosphorus removal thereby | |
KR100430382B1 (en) | Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein | |
KR910003004B1 (en) | Biological nitrogen and phosphorus removing method and apparatus | |
KR100275563B1 (en) | Wastewater treatment methods using anaerobic condition and two stage altering-intermittent aerating condition | |
KR20010047158A (en) | Wastewater treatment process using return sludge reaction tank | |
KR100440748B1 (en) | High-Rate Live Stock Wastewater Treatment Method using Advanced Treatment Process Hybrid SBAR | |
KR100705541B1 (en) | A configuration of process and system for bnr/cpr with a filamentous bio-solids bulking control | |
KR100415437B1 (en) | Advanced sludge reaeration process improving denitrification rate for nutrient removal | |
KR100438323B1 (en) | High intergated Biological Nutrient Removal System | |
KR100420647B1 (en) | Waste water disposal method by continuos inflow Sequencing Bath Reactor | |
KR100460851B1 (en) | Sewage and wastewater treatment apparatus which is no need internal recycle | |
KR100416693B1 (en) | Method for removing nutrients of domestic sewage using 2 step aeration and an apparatus used therefor | |
KR960011888B1 (en) | Method and apparatus for biological treatment of waste water including nitrogen and phosphorus | |
KR0129831B1 (en) | A process for sewage treatment wsing denitrification and dephosphorization | |
KR100311342B1 (en) | Wastewater treatment apparatus for removing nitrogen and phosphorus and method therefor | |
KR100420301B1 (en) | method and equipment for advanced wastewater-treatment | |
KR20010091457A (en) | A sewage treating method for improving the nitrogen removal and a sewage treating device for the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
J201 | Request for trial against refusal decision | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120924 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20130826 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20150825 Year of fee payment: 17 |
|
FPAY | Annual fee payment |
Payment date: 20160829 Year of fee payment: 18 |
|
EXPY | Expiration of term |