KR100231084B1 - Biological phosphor and nitrogen removal device and method modificating phostrip method - Google Patents

Biological phosphor and nitrogen removal device and method modificating phostrip method Download PDF

Info

Publication number
KR100231084B1
KR100231084B1 KR1019960069931A KR19960069931A KR100231084B1 KR 100231084 B1 KR100231084 B1 KR 100231084B1 KR 1019960069931 A KR1019960069931 A KR 1019960069931A KR 19960069931 A KR19960069931 A KR 19960069931A KR 100231084 B1 KR100231084 B1 KR 100231084B1
Authority
KR
South Korea
Prior art keywords
tank
sludge
phosphorus
nitrogen
denitrification
Prior art date
Application number
KR1019960069931A
Other languages
Korean (ko)
Other versions
KR19980051067A (en
Inventor
김광수
이상은
안재환
지재성
조형래
김창회
Original Assignee
하진규
한국건설기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 하진규, 한국건설기술연구원 filed Critical 하진규
Priority to KR1019960069931A priority Critical patent/KR100231084B1/en
Priority to DE1997137373 priority patent/DE19737373B4/en
Priority to CN97116878A priority patent/CN1102130C/en
Publication of KR19980051067A publication Critical patent/KR19980051067A/en
Application granted granted Critical
Publication of KR100231084B1 publication Critical patent/KR100231084B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1215Combinations of activated sludge treatment with precipitation, flocculation, coagulation and separation of phosphates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

1.청구범위에 기재된 발명이 속한 기술분야1. Technical field to which the invention described in the claims belongs

포스트립 공범을 개조한 생물학적 인 및 질소 동시 제거 장치 및 방법Simultaneous Removal of Biological and Nitrogen Removal Devices and Methods

2.발명이 해결할려고 하는 기술적 요지2. Technical points that the invention tries to solve

본 발명은 종래의 인의 제거만을 목적으로 수행되는 포스트립공법을 개조하여 인뿐만 아니라 칠소제거도 동시에 이루기 위하여 폭기조 앞에는 탈질조만을 두고, 폭기조에서 칠산화된 질산성 질소를 탈질조로 반송시켜 탈질조에서는 유입하수의 유기물을 전량사용하므로써 시스템전체의 질소제거율을 높일뿐만 아니라, 시스템전체의 질소제거율을 높이므로써 종래의 포스트립 공법보다 인의 제거율을 더욱 높일 수 있는 포스트립 공법을 개조한 생물학적 인 및 칠소 동시 제거 공법을 제공함에 그 목적이 있다.The present invention is to modify the post-rip method performed only for the purpose of removing the phosphorus in order to achieve the removal of phosphorus as well as the denitrification at the same time only the denitrification tank in front of the aeration tank, conveying the nitrate nitrogen nitrate nitrogen in the aeration tank to the denitrification tank in the denitrification tank By using all the organic matter from the influent sewage system, not only the nitrogen removal rate of the whole system is increased, but also the nitrogen removal rate of the whole system is increased, so that the biological phosphorus and sevens are modified at the same time. The purpose is to provide a removal method.

3.발명의 해결방법의 요지3. Summary of the solution of the invention

본 발명은 탈질조에서 1차 침전지 유출수와 반송슬러지를 혼합시킨 후 폭기조로 이송시키는 제1단계 상기 폭기조에서는 유기물 제거 및 질산화가 일어나며 질산화된 혼합슬러지액은 탈질조로 반송하는 제2단계 상기 탈질조에서는 유입된 유입하수의 유기물 전량을 이용하여 반송된 질산성 질소를 제거하여 시스템전체의 질소제거율을 높이는 제3단계 상기 폭기조에서 성장한 미생물을 2차침전지에서 고액분리하여 침전시키되, 슬러지 일부를 탈인조에 반송하고 일부는 탈질조에 반송하는 제4단계 상기 탈인조에 저장된 슬러지를 고액분리하여 혐기성조건을 형성시킨 후, 인함량이 적은 슬러지와 인함량이 않은 상릉액을 호기성조건인 폭기조로 반송하는 제5단계 및 상기 탈인조에서 반송된 인함유 슬러지를 폭기조에서 인의 과잉 섭취가 일어나도록하여 제거하는 제6단계를 포함하는 포스트립 공법을 개조한 생물학적 인 및 제거방법을 제공한다.In the present invention, the first step of mixing the primary sedimentation effluent and the return sludge in the denitrification tank and transporting it to the aeration tank removes organic matter and nitrifies the aeration tank, and the nitrified mixed sludge solution is returned to the denitrification tank. The third step of increasing the nitrogen removal rate of the entire system by removing the returned nitrate nitrogen by using the total amount of the organic matter of the influent sewage, the microorganisms grown in the aeration tank is precipitated by solid-liquid separation in the secondary settler, but the part of the sludge in the dephosphorization tank A fourth step of returning and partially conveying the sludge stored in the dephosphorization tank to form anaerobic conditions by carrying out solid-liquid separation of sludge stored in the dephosphorization tank, and then returning the sludge having a low content of phosphorus and a supernatant solution containing no content to the aeration tank, which is an aerobic condition; and Phosphorus-containing sludge returned from the dephosphorization tank to cause excessive intake of phosphorus in the aeration tank The present invention provides a modified biological post removal method including a sixth step of removal.

4.발명의 중요한 용도4. Important uses of the invention

하수 및 폐수등과 같이 인 및 질소가 높은 오염물질의 생물학적 처리시설에 있어서, 시스템 전체의 질소제거율을 높이고 동시에 2차침전지에서 탈인조로 유입되는 질산성 질소의 농도를 최소화함으로써 인의 제거를 극대화할 수 있는 생물학적 인, 칠소 동시제거 공법임.In biological treatment facilities of high phosphorus and nitrogen pollutants such as sewage and wastewater, it is possible to maximize the removal of phosphorus by increasing the nitrogen removal rate of the whole system and minimizing the concentration of nitrate nitrogen flowing into the dephosphorization tank from the secondary settler. Biological and Chilso simultaneous removal process.

Description

포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거 장치 및 방법Simultaneous Removal of Biological and Nitrogen Removal Devices and Methods

본 발명은 생물학적 하, 폐수처리공정중 인의 제거만을 위해 개발된 종래의 포스트립(Postrip)을 개량하여 유기물을 제거함과 동시에 질소, 인등의 영양염류를 제거할 수 있는 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거장치 및 방법에 관한 것이다.The present invention improves the conventional postrip developed only for the removal of phosphorus in the wastewater treatment process, and removes organic matter and removes nutrients such as nitrogen and phosphorus. And a simultaneous nitrogen removal apparatus and method.

일반적으로, 하, 폐수와 같은 유기성 폐수는 표준활성슬러지법의 2차 처리공정에서 유기물의 제거가 이루어지고 있으나, 질소와 인 등의 영양물질은 2차 처리만으로는 잘 처리가 되지 않기 때문에, 처리수에 포함되어 그대로 방류되고 있다. 이에 따라, 작은 호수나 내만같은 폐쇄성 수역에서의 부영양화 문제가 심각하게 발생한다.In general, organic wastewater such as wastewater and wastewater has been removed from the secondary treatment process of the standard activated sludge method, but nutrients such as nitrogen and phosphorus are not treated well only by the secondary treatment. It is contained in and discharged as it is. As a result, the problem of eutrophication in closed waters such as small lakes and bays is serious.

기존의 하, 폐수 처리시설에서 질소제거를 위한 물리, 화학적 방법으로는 pH 조정에 의해 수중의 암모니아성 질소를 대기중으로 날려보내는 탈기법(Air Stripping)과, 암모니아를 선택적으로 치환하는 제올라이트에 의한 이온교환법과, 염소주입에 의한 제거방법들이 제안되어 있다. 인의 제거를 위한 방법으로는 황산 반토 또는 석회 등 화학제를 첨가하여 용해서 인 성분을 불용성 침전물로 만든 후, 최종 침전지에서 제거하는 방법이 제안되어 있다. 그러나, 전술한 각각의 물리 및 화학적 인, 질소처리방법은 유지 관리비가 많이 소요된다. 또한, 최근에는 물리, 화학 처리방법보다 경제적인 생물학적 인, 질소제거방법을 주로 이용하고 있다.Existing physical and chemical methods for nitrogen removal in wastewater treatment facilities include air stripping, which blows ammonia nitrogen in water to the atmosphere by pH adjustment, and ion by zeolite that selectively substitutes ammonia. Exchange methods and removal methods by chlorine injection have been proposed. As a method for removing phosphorus, a method has been proposed in which a phosphorus component is dissolved by adding a chemical agent such as alumina sulfate or lime to make an insoluble precipitate and then removing it from the final sedimentation basin. However, each of the physical and chemical phosphorus treatment methods described above requires a lot of maintenance costs. In recent years, biological and nitrogen removal methods are used more economically than physical and chemical treatment methods.

생물학적 질소제거의 원리를 설명하면, 하수중의 암모늄이온(NH4 +-N) 이 용존 산소가 풍부한 호기성조건에서는 아질산성질소(NO- 2-N) 혹은 질산성질소(NO- 3-N)로 산화되었다가, 용존 산소가 고갈된 무산소상태에서는 통기성 박테리아에 의해 질소 가스로 환원되어 제거되도록 한 것이다.When explaining the principle of the biological nitrogen removal, the ammonium ion (NH 4 + -N) the dissolved oxygen rich aerobic condition in the sewage nitrite Nitrogen (NO - 2 -N) or nitrate (NO - 3 -N) In the anoxic state in which dissolved oxygen is depleted, it is reduced to nitrogen gas and removed by breathable bacteria.

미생물에 의해 암모늄이온을 아질산성 또는 질산성 질소로 산화시키는 과정에서는 용존산소가 필요하지만, 질산성 질소를 질소 가스로 환원시키는 탈질 과정인 무산소상태에서는 외부로부터 유기탄소원의 주입이 필요하며, 이때의 유기탄소원으로서는 주로 메탄올을 사용하였다. 그러나, 상기 유기탄소원으로 메탄올을 사용하는 것은 유지관리비용이 높아 최근에는 유기물 공급원으로 메탄올 대신 하수에 포함되어 있는 비. 오. 디(B. O. D) 성분을 이용하는 방안으로 공정이 개발되어 왔다.In the process of oxidizing ammonium ion to nitrite or nitrate nitrogen by microorganisms, dissolved oxygen is required, but in the anoxic state, which is a denitrification process that reduces nitrate nitrogen to nitrogen gas, injection of organic carbon source from the outside is necessary. As the organic carbon source, methanol was mainly used. However, the use of methanol as the organic carbon source is high in maintenance costs, and recently, it is included in sewage instead of methanol as an organic source. Five. Processes have been developed with the use of di (B. O. D) components.

생물학적 인의 제거를 위한 핵심공정인 혐기-호기과정에서 인의 제거원리는 다음과 같다.The principle of phosphorus removal in the anaerobic-aerobic process, which is a key process for the removal of biological phosphorus, is as follows.

혐기성 과정에서는 탈인미생물이 유입하수의 유기물을 섭취하여 셀(Cell) 내에 피에치비(PHB : Polyhydro - β - butyrate) 형태로 저정된다. 이때, 필요한 에너지는 세포내의 에이티피(ATP)의 가수분해에 의해 얻어진다. 그 과정에서 셀내의 인은 올소포스페이트 (Orthophosphate, PO4----P)로 방출하게 된다. 뒤따르는 호기성조에서는 셀에 축적된 PHB를 산화시킴과 동시에, 셀의 재합성을 위해 혐기성조에서 방출된 인의 양보다 더 많은 양을 섭취하게 된다. 생물학적 2차 처리에서 인은 양론적으로 섭취되며, 세포내의 인의 함량은 건조중량으로 1.5 ~ 2%이다. 그러나, 혐기성 과정에 이어서 호기성이 뒤따르는 프로세스에서 세포내의 인의 함량은 양론적인 양보다 훨씬 높은 4~8%에 이르며, 이는 전형적인 생물학적 2차처리보다 2~4배가량 더 많은 양이다.In anaerobic processes, demineralized microorganisms consume organic materials from the influent sewage and are stored in the cell in the form of PHB (Polyhydro-β-butyrate). At this time, necessary energy is obtained by hydrolysis of ATP in cells. In the process, phosphorus in the cell is released as orthophosphate (PO4 --- -P). Subsequent aerobic baths oxidize PHB accumulated in the cell and at the same time consume more than the amount of phosphorus released from the anaerobic bath for cell resynthesis. Phosphorus is taken up quantitatively in biological secondary treatment, and the content of phosphorus in cells is 1.5 to 2% by dry weight. However, in the process followed by anaerobic processes followed by aerobic, the phosphorus content in the cells is 4-8%, much higher than the stoichiometric amount, which is 2-4 times more than typical biological secondary treatment.

위와같은 생물학적 인 및 질소제거 원리를 이용하여 실용화된 다양한 공법이 제안되어 있으며, 그 중에서 특히 인의 제거율이 우수한 공법으로는 포스트립 (Phostrip)공법이 제안되어 있다.Various methods that have been put to practical use using the above-described biological phosphorus and nitrogen removal principles have been proposed, and among them, a postrip method has been proposed as a method having excellent phosphorus removal rate.

상기 포스트립 공법에 대하여 간략히 설명하면 다음과 같다.Brief description of the post-lip method is as follows.

유입원수의 유기물은 폭기조에서 제거하고, 2차침전지에서 폭기조로 반송되는 슬러지의 일부를 중력식 농축조인 탈인조에서 장시간 체류시키므로써 혐기성 조건을 만족시킨다. 그리고, 인의 방출에 필요한 유기물은 탈인조에서 미생물의 셀(Cell)분해에 의해서 생성된 유기물을 이용한다. 탈인조에서 인이 방출된 것에 의해 인의 함량이 낮아진 슬러지는 다시 폭기조로 이송되어 폭기조에서 과량으로 인을 섭취하며, 인이 농축된 탈인조 상등액은 화학처리에 의해 제거한다.The organic matter of the influent water is removed from the aeration tank, and part of the sludge returned from the secondary settler to the aeration tank is kept in the dephosphorization tank, which is a gravity concentration tank, to satisfy the anaerobic condition. In addition, the organic material required for the release of phosphorus uses an organic material produced by cell decomposition of microorganisms in a dephosphorization tank. Sludge whose phosphorus content is lowered by the release of phosphorus from the dephosphorization tank is transferred to the aeration tank and consumed excessively in the aeration tank, and the dephosphor supernatant concentrated with phosphorus is removed by chemical treatment.

그러나, 상기 포스트립 공법에서는 인 제거뿐아니라, 질소제거도 동시에 고려하여야 한다. 즉, 폭기조의 운전조건을 유기물 산화뿐 아니라, 질소물질도 산화시키는 조건에도 적용할 경우, 2차 침전지에서 탈인조로 운송되는 반송슬러지에 함유된 질산성 질소에 의하여 인 방출에 소요될 유기물질이 질산성 질소제거에 소요되고, 이는 탈인조에서의 인방출에 악영향을 미치므로써 인의 제거율이 낮아지는 문제점을 내포하고 있다.However, in the post-lip method, not only phosphorus removal but also nitrogen removal should be considered at the same time. That is, when the operation conditions of the aeration tank are applied not only to the oxidation of organic substances but also to the conditions of oxidizing nitrogen substances, the organic substances to be released for phosphorus by the nitrate nitrogen contained in the return sludge transported from the secondary settler to the dephosphorization tank are It is required to remove the acidic nitrogen, which has a problem that the removal rate of phosphorus is lowered because it adversely affects the release of phosphorus in the dephosphorization tank.

상기의 문제점을 해소하고자, 종래의 포스트립 공법에서 인 제거뿐만 아니라, 질소제거를 가능하게 하기 위하여 개선한 방법이 제안되었다. 즉, 폭기조에서는 유기물만 제거하고 2차침전지 다음에 질산화 및 탈질시설을 추가로 설치하거나, 2차침전지와 탈인조 사이에 탈질조를 설치하여 탈인조내부로 질산성질소가 유입되는 양을 저감시키는 방안등이 제안되었다.In order to solve the above problems, an improved method has been proposed to enable nitrogen removal as well as phosphorus removal in the conventional post-lip method. That is, the aeration tank removes only organic matter and installs nitrification and denitrification facilities after the secondary sedimentation battery, or installs a denitrification tank between the secondary sedimentation battery and the dephosphorization tank to reduce the amount of nitrate nitrogen introduced into the dephosphorization tank. A proposal was proposed.

그러나, 전자의 방법의 경우 2차침전지 다음에 질산화 및 탈질화 시설이 추가로 설치되기 때문에 공사비가 많이 소요되며, 또한 2차침전지를 통과한 처리수에는 유기물농도가 유입폐수에 비교하여 매우 낮기 때문에 탈질조에는 외부로부터 메탄올과 같은 유기탄소원을 공급해주어야 하는 문제점을 내포하고 있다. 또한, 후자의 방법의 경우는 전자의 방법과 비교하여 탈질조만 설치하면 되기 때문에 건설비가 적게드나 외부에서 탄소원을 공급하여 주지 않아 탈질조의 체류시간이 8시간 이상으로 증가되어 탈질조의 크기가 커지고, 2차침전지에서 탈질조로의 통과유량이 약 30%에 지나지 않아 시스템전체의 총 질소 제거율이 낮은 문제점을 내포하고 있다.However, in case of the former method, since the nitrification and denitrification facilities are additionally installed after the secondary settler, the construction cost is high, and the organic matter concentration in the treated water passing through the secondary settler is very low compared to the inflow wastewater. The denitrification tank has a problem of supplying an organic carbon source such as methanol from the outside. In addition, in the latter method, since only the denitrification tank needs to be installed in comparison with the former method, the construction cost is low but the carbon source is not supplied from the outside, so the residence time of the denitrification tank is increased to 8 hours or more, and the size of the denitrification tank is increased. Since the flow rate from the rechargeable battery to the denitrification tank is only about 30%, the total nitrogen removal rate of the whole system is low.

따라서, 본 발명은 상기의 제반 문제점을 해결하기 위하여 안출된 것으로서, 폭기조 앞에는 탈질조만을 두고 폭기조에서 질산화된 질산성질소 농도가 높은 혼합슬러지액을 상기 탈질조로 반송시키고, 상기 탈질조에서는 유기물 농도가 높은 유입하수의 유기물을 탄소원으로 전량 사용하여 질소를 제거하여 시스템 전체의 질소 제거율을 높이고, 이의 결과로 시스템 전체의 질소제거율을 높임으로써 탈인조에 유입되는 질산성 질소농도의 최소화로 인의 제거율을 종래의 포스트립 공법보다 더욱 높일 수 있는 생물학적 인 및 질소 동시 제거장치 및 방법을 제공함에 그 목적이 있다.Accordingly, the present invention has been made in order to solve the above problems, and the mixed sludge solution having a high nitric acid nitrate concentration in the aeration tank with only the denitrification tank in front of the aeration tank is returned to the denitrification tank, the organic matter concentration in the denitrification tank By removing all nitrogen using high influent sewage organics as a carbon source, the nitrogen removal rate of the whole system is increased, and as a result, the removal rate of phosphorus is minimized by minimizing the nitrate nitrogen concentration flowing into the dephosphorization tank by increasing the nitrogen removal rate of the entire system. The purpose of the present invention is to provide a biological and nitrogen removal apparatus and method that can be even higher than the post-lip method.

제1도는 본 발명에 의한 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거 공법을 수행하기 위한 공정장치의 구성도.1 is a block diagram of a process apparatus for carrying out a biological phosphorus and nitrogen simultaneous removal method modified from the post-lip method according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 유입원수라인 2 : 탈질조1: inflow source line 2: denitrification tank

2a : 교반기 3 : 탈질조 유출수라인2a: Agitator 3: Denitrification tank effluent line

4 : 폭기조 5 : 제1반송라인4: aeration tank 5: first conveying line

6 : 폭기조 유출수라인 7 : 2차침전지6: aeration tank outflow line 7: secondary sedimentation battery

9 : 제2반송라인 10 : 제3반송라인9: 2nd conveying line 10: 3rd conveying line

11 : 탈인조 12 : 상등액 공급라인11: dephosphorization tank 12: supernatant supply line

13 : 슬러지 공급라인 14 : 정화수 배출라인13: sludge supply line 14: purified water discharge line

상기 목적을 달성하기 위하여 본 발명은, 1차침전지를 거친 유입하수를 수용하며, 상기 유입원수에 포함된 탄소원을 이용하여 폭기조로부터 반송된 슬러지 혼합액을 질소가스로 환원시켜 제거하는 탈질조; 상기 탈질조로부터 배출되는 유출수를 질산화시켜 질산성질소 농도가 높은 슬러지혼합액으로 만드는 폭기조; 상기 폭기조내의 슬러지 혼합액을 상기 탈질조로 반송시키기 위한 제1반송라인; 상기 폭기조에서 방출되는 유출수에 포함된 슬러지를 침전시켜 질산성 질소농도가 매우 낮은 슬러지로 만드는 2차침전지; 상기 2차침전지에서 배출된 슬러지를 반송받아 소정시간동안 체류시켜 중력식 농축으로 고액분리하여 질산성 질소부하가 낮은 슬러지 및 상등액을 만드는 중력식 농축 탈인조; 상기 2차침전지로부터 배출된 슬러지를 탈질조 및 중력식 농축 탈인조에 각각 반송시키는 제2반송라인; 및 상기 폭기조내의 인의 과잉섭취를 위하여 상기 중력식 농축 탈인조에 내재된 슬러지 및 상등액을 상기 폭기조내로 반송시키는 제3반송라인을 포함하는 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거장치를 제공한다.In order to achieve the above object, the present invention, a denitrification tank for receiving the influent sewage through the primary sedimentation battery, by reducing the sludge mixed liquid conveyed from the aeration tank by using a carbon source included in the inlet source water to remove the sludge; An aeration tank for nitrifying the effluent discharged from the denitrification tank to a sludge mixture having a high nitrogen nitrate concentration; A first conveying line for conveying the sludge mixed liquid in the aeration tank to the denitrification tank; A secondary settling battery which precipitates sludge contained in the effluent discharged from the aeration tank to make sludge with a very low nitrate nitrogen concentration; A gravity concentrated dephosphorization tank receiving sludge discharged from the secondary sedimentation cell and retaining for a predetermined time to solid-liquid separation by gravity concentration to make sludge and supernatant with low nitrate nitrogen load; A second conveying line for conveying the sludge discharged from the secondary sedimentation cell to a denitrification tank and a gravity concentrated dephosphorization tank, respectively; And a third transfer line including a third conveying line for returning the sludge and the supernatant inherent in the gravity-type concentrated dephosphorization tank into the aeration tank for the excessive ingestion of phosphorus in the aeration tank.

또한, 본 발명은 탈질조에서 1차 침전지 유출수와 반송슬러지를 혼합시킨 후 폭기조로 이송시키는 제1단계; 상기 폭기조내에서 유기물 제거 및 질산화가 일어 나도록 하며, 질산화된 혼합슬러지액을 탈질조로 반송하는 제2단계; 상기 탈질조에서는 유입된 유입원수의 유기물 전량을 탈질과정에만 소요되도록 하여 반송된 질산성 질소를 제거하는 제3단계; 상기 폭기조에서 성장한 미생물을 2차침전지에서 고액분리하여 침전시키되, 상기 2차침전지의 슬러지웅 일부를 중력식 농축 탈인조에 반송하고 일부는 탈질조로 직접 유입시켜 미생물부족분을 보충시키는 제4단계; 상기 중력식 농축 탈인조에 수용된 슬러지를 고·액분리하여 혐기성조건을 형성시키되, 인방출에 소요되는 유기물질은 셀분해에 의해 생성된 유기물질로 이용하기 위하여 상기 2차침전지의 반송슬러지 일부를 탈인조에 5∼8시간동안 체류시키는 제5단계; 및 인함량이 낮은 슬러지와 인함량이 많은 상등액을 호기성조건인 폭기조로 반송시켜 인의 과잉섭취가 일어나도록 하여 제거하는 제6단계를 포함하는 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거방법을 제공한다.In addition, the present invention comprises a first step of transporting the first settling effluent and the conveying sludge in the denitrification tank and then transferred to the aeration tank; A second step of removing organic matter and nitrifying in the aeration tank and returning the nitrified mixed sludge solution to the denitrification tank; A third step of removing the nitrate nitrogen from the denitrification tank so that the entire amount of the organic material of the introduced influent water is required only for the denitrification process; A fourth step of precipitating the microorganisms grown in the aeration tank by solid-liquid separation in a secondary sedimentation cell, returning a part of the sludge oung of the secondary sedimentation cell to a gravity-type concentrated dehydration tank, and partially introducing the microorganism deficiency by directly entering the denitrification tank; The sludge contained in the gravity-type dephosphorization tank is solid-liquid separated to form anaerobic conditions, and the organic material required for phosphorus release is removed from a part of the return sludge of the secondary sedimentation battery to be used as an organic material produced by cell decomposition. A fifth step of staying in the artificial for 5 to 8 hours; And a sixth step of removing the sludge having a low phosphorus content and the supernatant having a large amount of phosphorus into an aerobic tank, which is an aerobic condition, to remove excess phosphorus by inducing an ingestion of phosphorus.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도1은 본 발명에 의한 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거 공법을 수행하기 위한 공정장치의 구성도로서, 도면에서 1은 유입원수라인, 2는 탈질조, 2a는 교반기, 3은 탈질조 유출수라인, 4 는 폭기조, 5는 제1반송라인, 6은 폭기조 유출수라인, 7은 2차침전지, 9는 제2반송라인, 10은 제3반송라인, 11은 탈인조, 12는 상등액 공급라인, 13은 슬러지 공급라인, 14는 정화수 배출라인을 각각 나타낸다.1 is a block diagram of a process apparatus for carrying out a simultaneous removal of biological phosphorus and nitrogen according to the present invention, 1 is an inlet source line, 2 is a denitrification tank, 2a is a stirrer, 3 is Denitrification tank effluent line, 4 aeration tank, 5 first aeration line, 6 aeration tank effluent line, 7 secondary sedimentation battery, 9 second conveying line, 10 third conveying line, 11 dephosphorization tank, 12 supernatant A supply line, 13 represents a sludge supply line, and 14 represents a purification water discharge line.

본 발명에 의한 포스트립 공법을 개조한 생물학적 인 및 질소제거 장치 및 방법은 도1에 도시한 바와 같이 유입원수라인(1)을 통하여 1차 침전지를 거친 유입 원수를 수용하며 상기 유입 원수에 포함된 유기물질을 이용하여 폭기조(4)에서 순환된 질산성 질소 농도가 높은 반송 슬러지 혼합액을 질소가스로 환원시켜 제거하는 탈질조(2)와, 탈질조 유출수라인(3)을 통하여 상기 탈질조(2)로부터 배출되는 유출수를 질산화시켜 질산성 농도가 높은 슬러지 혼합액을 만드는 폭기조(4)와, 상기 폭기조(4)에 내재된 슬러지 혼합액을 상기 탈질조(2)로 반송시키기 위한 제1반송 라인(5)과, 상기 폭기조 유출수라인(6)을 통하여 상기 폭기조(4)로부터 방출되는 유출수에 포함된 슬러지를 고액분리하여 질산성 질소 농도가 매우 낮은 슬러지로 만드는 2차침전지(7)와, 상기 2차 침전지(7)에서 정화된 폐수를 외부로 방출하는 정화수 방출라인(14)과, 상기 2차침전지(7)에 침전된 슬러지를 상기 탈질조 (2)와 탈인조(11)에 각각 소정량씩 반송하는 제2반송라인(9) 및 제3반송라인 (10)과, 상기 제2반송라인(9)을 통하여 반송받은 슬러지를 중력식 농축으로 고액분리하는 탈인조(11)와, 상기 탈인조(11)로부터 얻어진 슬러지 및 상등액을 상기 폭기조(4)로 송출하는 탈인조 상등액 공급라인(12) 및 탈인조 슬러지 공급라인(13)으로 구성되어 있다.Biological phosphorus and nitrogen removal apparatus and method remodeling the post-rip method according to the present invention, as shown in FIG. The denitrification tank (2) and the denitrification tank (2) through a denitrification tank (2) and a denitrification tank effluent line (3) for reducing and removing the return sludge mixed liquid having a high concentration of nitrate nitrogen circulated in the aeration tank (4) using organic materials. Aeration tank 4 for nitrifying the effluent discharged from the sludge to form a sludge mixed liquid having a high nitrate concentration, and a first conveying line 5 for conveying the sludge mixed liquid inherent in the aeration tank 4 to the denitrification tank 2. ), And the secondary settling battery 7 to solidify the sludge contained in the effluent discharged from the aeration tank 4 through the aeration tank effluent line 6 to make the sludge with a very low nitrate nitrogen concentration; Purified water discharge line 14 for discharging the wastewater purified in the secondary sedimentation basin 7 to the outside, and sludge precipitated in the secondary sedimentation cell 7 in the denitrification tank 2 and the dephosphorization tank 11, respectively. A second conveying line (9) and a third conveying line (10) for conveying by quantity, a dephosphorization tank (11) for solid-liquid separation of sludge conveyed through the second conveying line (9) by gravity concentration, and the It consists of the dephosphorization supernatant supply line 12 and the dephosphorization sludge supply line 13 which send out the sludge and supernatant liquid obtained from the artificial tank 11 to the said aeration tank 4.

여기서, 상기 탈질조(2)에는 폭기조(4) 및 2차 침전지(7)에서 반송된 슬러지와 유입원수(1)를 고르게 혼합하는 교반기 (2a)가 내장되며, 또한 상기 탈질조(2)는 1차침전지에서 유출된 유입원수 전량을 탈질과정에만 소요시켜 시스템전체의 질소 제거 효율을 높이기 위하여 무산소조로 형성된다.Here, the denitrification tank 2 has a built-in stirrer 2a for evenly mixing the sludge conveyed from the aeration tank 4 and the secondary sedimentation basin 7 and the inflow source water 1, and the denitrification tank 2 is It is formed as an oxygen-free tank to increase the nitrogen removal efficiency of the whole system by taking the entire inflow of the outflowed water from the primary settler only in the denitrification process.

도1의 공정에 따라 본 발명의 내용을 상세히 설명하면 다음과 같다.Referring to the contents of the present invention according to the process of Figure 1 in detail as follows.

상기 탈질조(1)에는 유입원수라인(1)을 통하여 1차침전지(도시하지 않음)를 거친 유입원수가 수용되며, 또한 상기 탈질조(1)내에는 2차 침전지(7)에서 침전되어 배출되는 제3반송슬러지의 일부와 상기 폭기조(4)로부터 순환되어 만들어진 질산성 질소 농도가 높은 제1반송 슬러지가 교반기(2a)를 매개로 고르게 혼합된다. 상기와 같이 유입원수, 제1및 제3반송슬러지가 혼합, 수용된 상기 탈질조(1)는 1차침전지를 거친 유입원수의 탄소원을 이용하여 폭기조(4)에서 반송된 제1반송 슬러지에 포함된 질산성질소를 질소가스로 환원시켜 제거한다.The denitrification tank 1 receives inflow water passing through a primary sedimentation battery (not shown) through the inflow water source line 1, and is precipitated and discharged from the secondary sedimentation basin 7 in the denitrification tank 1. A portion of the third conveying sludge to be circulated from the aeration tank 4 and the first conveying sludge having a high nitrate nitrogen concentration are mixed evenly through the stirrer 2a. The denitrification tank 1 in which the inflow water, the first and the third transport sludge are mixed and accommodated as described above is included in the first transport sludge returned from the aeration tank 4 using the carbon source of the inflow water passed through the primary sedimentation cell. Nitrogen nitrate is removed by nitrogen gas.

여기서, 본 발명의 탈질조(2)가 종래의 변형 포스트립 공법의 질소제거시설과 다른 점은 다음과 같다.Here, the denitrification tank 2 of the present invention is different from the nitrogen removal facility of the conventional modified postlip method as follows.

종래의 공법에서는 질소의 제거시설을 2차 침전지 이후의 과정에 설치하고 유기물이 고갈된 처리수를 탄소원으로 사용하기 때문에 시스템 전체의 질소 제거율이 낮고, 그 결과 탈인조로 유입되는 질산성 질소의 함량이 높아서 탈인조(11)에서는 인의 방출이 원활히 이루어지지 않음에 비하여, 본 발명에서는 유입원수의 유기물 전량을 폭기조 앞에 설치된 탈질조(2)에서 소모시킴으로써 시스템 전체의 질소 제거율이 높게 되는 것이다. 또한, 유입 유기물의 대부분이 탈질조(2)에서 소모되기 때문에 폭기조(4)의 수리학적 체류시간이 매우 짧아도 폭기조(4)에서는 고효율의 유기물 제거율을 나타낼 수 있다. 상기 탈질조(2)의 수리학적 체류시간은 1차침전조를 거친 유입유량을 기준으로 약 1~2 시간이면 적당하다. 이때 유입원수, 반송슬러지 등의 고른 혼합을 위하여 교반기(2a)를 설치한다.In the conventional method, since the nitrogen removal facility is installed after the secondary sedimentation basin and the treated water depleted of organic matter is used as the carbon source, the nitrogen removal rate of the entire system is low, and as a result, the content of nitrate nitrogen flowing into the dephosphorization tank is reduced. This high dephosphorization tank 11 does not release phosphorus smoothly, whereas in the present invention, the total nitrogen removal rate of the system is increased by consuming the entire organic matter of the inflow source water in the denitrification tank 2 installed in front of the aeration tank. In addition, since most of the inflow organic matter is consumed in the denitrification tank 2, even if the hydraulic residence time of the aeration tank 4 is very short, the aeration tank 4 can exhibit a high removal rate of organic matter. The hydraulic residence time of the denitrification tank (2) is suitable for about 1 to 2 hours based on the inflow flow through the first settling tank. At this time, the stirrer 2a is installed for even mixing of inflow water, conveying sludge and the like.

상기 폭기조(4)내에는 탈질조(2)를 거친 혼합슬러지와, 탈인조(11)로부터 슬러지 공급라인(13)과 상등액공급라인(12)을 통하여 유입된 인함량이 낮은 슬러지 및 상등액을 포함한다. 상기 폭기조(4)에서는 탈질조(2)를 거친 유입원수의 유기물 산화, 암모니아성 질소의 질산성 질소로의 산화, 그리고 인의 과잉섭취가 일어난다. 이때, 질산화 미생물의 성장에 유리한 조건을 제공하기 위한 상기 폭기조(4)의 조건으로는 유기물 부하가 0.1KgBOD/KgMLVSS·d~0.3KgBOD/KgMLVSS·d 범위이며 수리학적 체류시간은 약 4시간이 적당하다.The aeration tank 4 includes mixed sludge that has passed through the denitrification tank 2, and sludge and supernatant having low phosphorus content introduced from the dephosphorization tank 11 through the sludge supply line 13 and the supernatant liquid supply line 12. . In the aeration tank 4, the organic matter oxidation of the influent water passed through the denitrification tank 2, the oxidation of ammonia nitrogen to nitrate nitrogen, and excessive intake of phosphorus occur. At this time, the conditions of the aeration tank (4) to provide a favorable condition for the growth of nitrifying microorganisms, the organic load is 0.1KgBOD / KgMLVSS · d ~ 0.3KgBOD / KgMLVSS.d range and the hydraulic residence time is about 4 hours Do.

상기 폭기조(4)에서 질산화되어 질산성질소농도가 높아진 혼합슬러지는 탈질조(2)로 반송되어 탈질과정을 거친 후, 다시 폭기조(4)로 유입된다. 상기 폭기조 (4)에서 탈질조(2)로의 내부반송비율은 유입원수(1)량의 1 ~ 4배 범위로 하되, 상기 탈질조(2)에서 질산성 질소 부하율은 유입 COD값의 약 1/4정도에 해당하는 반송비가 적정하다.The mixed sludge, which is nitrified in the aeration tank 4 and the nitrate nitrogen concentration is high, is returned to the denitrification tank 2, undergoes a denitrification process, and then flows back into the aeration tank 4. The internal conveyance ratio from the aeration tank 4 to the denitrification tank 2 is in the range of 1 to 4 times the amount of the inlet water (1), but the nitrate nitrogen loading rate in the denitrification tank (2) is about 1 / of the inlet COD value. A return cost of around 4 is appropriate.

상기 폭기조(4)에서 성장한 미생물은 2차침전지(7)에서 고액분리되어 침전되며, 상기 침전된 슬러지중 유입유량의 약 50%의 슬러지는 제3반송라인(10)을 통하여 탈질조(2)로 반송되고, 약 10 ~ 15%의 슬러지는 제2반송라인(9)을 통하여 탈인조(11)로 반송된다.The microorganisms grown in the aeration tank 4 are precipitated by solid-liquid separation in the secondary sedimentation battery 7, and about 50% of the sludge flowed in the precipitated sludge is denitrified tank 2 through the third conveying line 10. 10 to 15% of the sludge is conveyed to the dephosphorization tank 11 through the second conveying line 9.

상기 중력식 농축조인 탈인조(11)에서는 2차침전지(7)에 침전된 슬러지를 공급받아 고액분리한다. 탈인조 슬러지층에서는 혐기성이 조성되어 인이 방출되며, 인의 방출에 따라 인 함량이 낮아진 슬러지는 호기성조건인 폭기조(4)내로 반송되는데, 이는 상기 폭기조(4)내에서 인을 과잉흡수하기 위함이다. 인함량이 풍부한 탈인조 상등액은 종래의 포스트립 공법에서는 화학처리하여 제거한 후 방류시켰으나, 본 발명의 공법에서는 질산성질소에 의한 인 방출의 영향이 거의 없기 때문에 대부분은 상등액공급라인(12)을 통하여 폭기조(4)로 반송된다. 상기 탈인조(11)에서 셀분해에 의해 생성된 유기물을 탄소원으로 사용하여 인의 원활한 방출을 위해 요구되는 슬러지의 적절한 체류시간 (SDT : Sludge Detention Time)능 5 ~ 8 시간이 적절하며 2차 침전지(7)에서 탈인조(11)로 반송되는 반송슬러지의 유량은 유입유량의 약 10 ~ 15%이며, 탈인조(11)에서 폭기조(4)로의 슬러지 이송량은 탈인조 유입유량의 약 50%이고, 탈인조 상등액은 탈인조 유입유량의 약 50% 이다. 종래의 포스트립 공법과 포스트립을 개량한 공법에서도 2차침전지(7)에서 탈인조(11)로의 반송비는 통상 폭기조 유입유량의 30%를 반송시키지만, 본 발명에서는 유입원수의 유기물을 이용하여 폭기조(4)에서 발생된 질산성질소를 탈질조(2)에서 처리한 경우, 질소제거율이 향상되기 때문에 2차침전지(7)에서 탈인조(11)로 반송되는 반송비는 유입유량의 10~15%로 하여도 가능하다.In the dephosphorization tank 11, which is a gravity-type thickening tank, the sludge precipitated in the secondary settling battery 7 is supplied and separated into a solid solution. In the dephosphorized sludge layer, phosphorus is released due to anaerobic composition, and sludge whose phosphorus content is lowered according to the release of phosphorus is returned to the aeration tank 4 which is an aerobic condition, in order to absorb excessive phosphorus in the aeration tank 4. . Phosphorus-rich dephosphorized supernatant was discharged after chemical treatment in the conventional post-lip method. However, in the process of the present invention, since most of the phosphorus release is not affected by nitrogen nitrate, most of the aeration tank supernatant is supplied through the supernatant supply line 12. It is returned to (4). Using the organic material produced by cell decomposition in the dephosphorization tank (11) as a carbon source, the proper residence time (SDT: Sludge Detention Time) capability required for the smooth release of phosphorus (SDT: 5 ~ 8 hours is appropriate, and the secondary sedimentation basin ( In 7), the flow rate of the return sludge returned to the dephosphorization tank 11 is about 10 to 15% of the inflow flow rate, and the sludge transfer amount from the dephosphorization tank 11 to the aeration tank 4 is about 50% of the dephosphorization inflow flow rate. The desupernatant supernatant is about 50% of the deflow inflow. In the conventional post-lip method and the improved method of the post-lip method, the return ratio from the secondary needle battery 7 to the dephosphorization tank 11 usually returns 30% of the aeration tank inflow flow rate, but in the present invention, the aeration tank using the organic material of the inflow source water is used. When the nitrate nitrogen generated in (4) is treated in the denitrification tank (2), since the nitrogen removal rate is improved, the return cost returned from the secondary needle battery (7) to the dephosphorization tank (11) is 10 to 15% of the inflow flow rate. It is also possible to use.

[실시예 1]Example 1

본 실험에서 사용된 유입원수는 하수처리장에 유입되는 가정하수를 사용하였으며, 질소 및 인의 농도는 고정시키고 유입유기물 농도만을 변화시켜가면서 약 6개월간 실시 하였다. 각 조건별 유입원수의 성상은 표 1과 같으며 실시한 실험규모는 처리용량 20M3/일의 파리로트플랜트(Pilot Plant) 규모였다.As the inflow source used in this experiment, domestic sewage flowing into the sewage treatment plant was used, and the concentration of nitrogen and phosphorus was fixed and the influent organic matter was changed for about 6 months. The characteristics of the influent water in each condition are shown in Table 1, and the experimental scale was the size of a pilot plant with a processing capacity of 20M 3 / day.

[표 1]TABLE 1

하수처리장 유입수질, 화학적산소요구량, 생물학적 산소요구량 등 유기물농도는 수돗물을 사용하여 희석하였고, 희석시 암모니아성 질소와, 총 인의 농도가 감소되는 것을 방지하기 위해 요소비료나 인산비료를 인위적으로 주입하였다.Organic matter concentrations such as influent water quality, chemical oxygen demand and biological oxygen demand were diluted with tap water, and urea fertilizer or phosphate fertilizer was artificially injected to prevent ammonia nitrogen and total phosphorus concentration from diluting. .

실험시설은 제1도와 같이 탈질조(2), 폭기조(4), 2차침전지(7), 탈인조(11)등으로 구성하였으며, 사용된 재질은 3.2mm 두께의 철판으로 하였다.The experimental facility was composed of denitrification tank (2), aeration tank (4), secondary sedimentation battery (7), dephosphorization tank (11) as shown in FIG. 1, and the material used was 3.2 mm thick iron plate.

상기 탈질조(2)의 크기는 약 1.7m3이고 체류시간은 유입유량 기준으로 약 2시간이었으며, 탈질조(2)내에서는 유입수와 폭기조(4)에서 반송되는 슬러지, 그리고 2차침전지(7)에서 반송되는 슬러지가 고루게 혼합되도록 90rpm 정도의 속도를 가진 교반기를 설치하였다. 폭기조(4)의 용량은 약 3.4m3으로 하였고, 조내에는 3개의 칸막이를 설치하여 모두 4칸으로 구성하였으며, 조내의 적절한 산소 공급 및 혼합을 위하여 송풍기를 통하여 150ℓ/min의 공기를 공급하였다.The size of the denitrification tank (2) was about 1.7m 3 and the residence time was about 2 hours on the basis of the inflow flow rate. In the denitrification tank (2), the sludge returned from the influent and the aeration tank (4), and the secondary settling battery (7) Agitator having a speed of about 90rpm was installed so that the sludge conveyed from) was evenly mixed. The capacity of the aeration tank 4 was about 3.4 m 3 , and three partitions were installed in the tank, and all four compartments were provided, and 150 L / min air was supplied through the blower for proper oxygen supply and mixing in the tank. .

상기 2차침전지(7)의 용량은 3.3m3이며 침전된 슬러지의 일부는 탈질조(2)로 직접 반송되고, 일부는 탈인조(11)로 반송하였으며 슬러지 이송은 펌프를 사용하였다. 탈인조(11)의 용량은 3.3m3였으며 탈인조를 통하여 반송되는 슬러지 및 탈인조 상등액은 인의 흡수를 목적으로 폭기조(4)로 전량 반송시켰다.The secondary sedimentation battery 7 has a capacity of 3.3 m 3 and part of the sludge precipitated is directly returned to the denitrification tank 2, and part of the secondary sludge is returned to the dephosphorization tank 11, and the sludge transfer is performed using a pump. The capacity of the dephosphorization tank 11 was 3.3 m 3, and the sludge and the desupernatant supernatant conveyed through the dephosphorization tank were all returned to the aeration tank 4 for the purpose of absorbing phosphorus.

본 발명의 실험에서 수행한 각 반응조의 실험조건은 표 2와 같다.Experimental conditions of each reactor performed in the experiment of the present invention are shown in Table 2.

[표 2]TABLE 2

표 3은 표 2의 실험조건으로 고정시키고 각 조건별로 수행한 결과의 2차 침전지 유출수 수질을 평균하여 요약한 것이다.Table 3 summarizes the average sedimentation effluent water quality of the results of the fixed by the experimental conditions of Table 2 and performed for each condition.

[표 3]TABLE 3

·총질소(T-N) : 총킬달 질소(TKN) + 질소산화물(NOX-N)Total nitrogen (TN): total Kjeldahl nitrogen (TKN) + nitrogen oxides (NO X -N)

·총인(T-P) : 부유물질 + 용해성인Total phosphorus (T-P): suspended solids + soluble

[비교실시예 1]Comparative Example 1

표 4는 본 발명공법과 종래의 인 제거만을 목적으로 하는 포스트립 공법을 개조하여 인뿐만 아니라 질소제거도 가능한 공법과의 비교분석을 위하여, 실시예 1과 동일한 크기의 폭기조 및 탈인조를 설치하고 또 2차 침전지와 탈인조사이에 8시간의 체류시간을 가지는 탈질조를 두었다. 실시예1과 동일한 설계조건 및 유입수를 가지고 동일한 기간동안 운전한 결과, 생물학적 산소요구량, 화학적 산소 요구량, 그리고 부유물질등과 같은 유기물의 제거율과 총킬달질소, 암모니아성 질소 등의 질산화율은 본발명공법과 유사하였다. 그러나 2차 침전지와 탈인조사이에 설치된 탈질조 기능만으로는 시스템 전체의 총질소제거율이 매우 낮았으며, 총인제거율도 또한 탈인조로 질산성질소가 유입되기 때문에 본 발명과 비교하여 낮았다.Table 4 shows the aeration tank and dephosphorization tank of the same size as in Example 1 for the comparative analysis of the method of the present invention and the conventional post-lip method for the purpose of removing phosphorus only. In addition, a denitrification tank with a residence time of 8 hours was installed between the secondary settling basin and the dephosphorization. As a result of operating for the same period with the same design conditions and influent as in Example 1, biological oxygen demand, chemical oxygen demand, removal rate of organic matter such as suspended solids, and nitrification rate of total Kjeldahl nitrogen, ammonia nitrogen, etc. Similar to However, only the denitrification tank function installed in the secondary sedimentation basin and dephosphorization irradiator alone was very low in the total nitrogen removal rate of the whole system, and the total phosphorus removal rate was also low compared with the present invention because nitrogen nitrate was introduced into the dephosphorization tank.

[표 4]TABLE 4

[비교실시예 2]Comparative Example 2

표 5는 본 발명공법과 인·질소 동시제거 공법인 에이투오 공법 (A2/O, 혐기-탈질-호기)과의 질소 및 인의 제거율을 비교 분석하기 위해서, 실시예 1과 동일한 크기의 폭기조 및 탈질조를 설치하고, 추가로 탈질조 앞에 인방출을 위한 혐기조를 설치하여 실시예 1과 동일한 I, II 조건에서 운전한 결과이다. 본 발명공법의 실시 결과인 표 3과 비교하여 종래의 에이투오 공법은 유입원수의 유기물농도 변화에 따라 인 및 질소제거율의 변동이 심하였으나, 본 발명공법에서는 인 및 질소제거율이 안정적 이고 에이투오 공법보다 인·질소 제거율이 우수하였다.Table 5 shows the aeration tank and denitrification of the same size as in Example 1 to compare and analyze the removal rate of nitrogen and phosphorus between the present method and the Atoo method (A 2 / O, anaerobic-denitrification-aerobic), which is a simultaneous removal method of phosphorus and nitrogen. The tank was installed, and an anaerobic tank for releasing phosphorus was further installed in front of the denitrification tank and operated under the same conditions as in Example 1 and II. Compared with Table 3, which is the result of the method of the present invention, in the conventional A2O method, the phosphorus and nitrogen removal rate was severely changed according to the change in the concentration of organic matter in the influent, but in the present method, the phosphorus and nitrogen removal rate is stable and the A2O method Phosphorus and nitrogen removal rate was more excellent.

[표 5]TABLE 5

위의 실시예를 기초로 종래의 포스트립공법과 본 발명공법과의 처리효율을 비교하면, 종래의 포스트립공법에서 질소의 제거공정은 2차침전지 이후에 질산화 및 탈질화시설을 설치하고, 폭기조에서 산화되고 남은 미량의 유기물만을 탄소원으로 사용함으로써 시스템 전체의 질소제거율을 낮추고 있으나, 본 발명에서는 도1에 도시한 바와 같이 폭기조(4)에서 질산화된 질산성질소를 폭기조 전단에 설치된 탈질조(2)로 반송시키고 있다. 이때, 탈질조(2)에서는 유기물농도가 높은 유입원수를 탄소원으로 사용하여 폭기조(4)에서 반송된 질산성 질소 농도가 높은 슬러지의 질산성 질소를 제거함으로써 시스템 전체의 질소 제거율을 제고시킨다. 또한, 유입유기물의 대부분이 탈질조(2)에서 제거되기 때문에 폭기조(4)의 용량이 종래의 공법보다도 작게 된다. 또한, 상기 탈질조(2)내에서의 질산성질소 제거율이 매우 높기 때문에 2차침전지(7)에서 탈인조(11)로 유입되는 반송슬러지내의 질산성질소농도는 매우 낮게 된다. 그 결과, 2차침전지(7)와 탈인조(11) 사이의 질소제거 공정없이 바로 2차침전지(7)에서 탈인조(11)로 유입하여도 상기 탈인조(11)에서는 질산성 질소에 의한 영향이 없기 때문에 상기 탈인조(11)에서의 인의 방출이 원활이 진행되고, 상기 폭기조(4)에서의 인의 흡수가 원활하게 진행되어 인의 제거율이 매우 안정적으로 된다.Comparing the treatment efficiency between the conventional post-lip method and the present invention method based on the above embodiment, the nitrogen removal process in the conventional post-lip method is to install the nitrification and denitrification facilities after the secondary settler, and in the aeration tank Although only a small amount of the organic matter remaining after oxidation is used as a carbon source, the nitrogen removal rate of the entire system is lowered. However, in the present invention, as shown in FIG. 1, the denitrification tank 2 in which the nitrified nitrogen nitrate in the aeration tank 4 is installed in front of the aeration tank 2 is provided. It is conveyed to. At this time, the denitrification tank 2 improves the nitrogen removal rate of the entire system by removing the sludge nitrate nitrogen having a high nitrate nitrogen concentration returned from the aeration tank 4 using the inflow water having a high organic matter concentration as a carbon source. In addition, since most of the inflow organic matter is removed from the denitrification tank 2, the capacity of the aeration tank 4 becomes smaller than the conventional method. In addition, since the nitrate nitrogen removal rate in the denitrification tank 2 is very high, the nitrate nitrogen concentration in the conveying sludge flowing into the dephosphorization tank 11 from the secondary needle battery 7 becomes very low. As a result, even if the secondary needle battery 7 flows directly into the dephosphorization tank 11 from the secondary needle battery 7 without the nitrogen removal process between the secondary needle battery 7 and the dephosphorization tank 11, the dephosphorization tank 11 is decomposed by nitrate nitrogen. Since there is no influence, the release of phosphorus in the dephosphorization tank 11 proceeds smoothly, and the absorption of phosphorus in the aeration tank 4 proceeds smoothly, and the removal rate of phosphorus becomes very stable.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에 게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and various substitutions, modifications, and alterations are possible within the scope without departing from the technical spirit of the present invention. It will be obvious to those with knowledge of the world.

전술한 바와 같이 본 발명에 따르면, 종래의 생물학적 인·질소제거 공법과 비교하여 유입원수의 유기물질을 전량 폭기조 전단에 설치된 탈질조에서 수행되는 탈질과정에 소요시킴으로써, 시스템 전체의 질소 제거율을 향상시킬 수 있고, 그 결과 탈인조내로 유입되는 질산성질소를 최소화함으로써 인의 방출이 원활하게 일어나므로, 종래의 공법보다 인 및 질소제거율이 매우 탁월한 효과를 가진다.As described above, according to the present invention, compared to the conventional biological phosphorus-nitrogen removal method, the organic material of the influent water is subjected to the denitrification process performed in the denitrification tank installed at the front of the aeration tank, thereby improving the nitrogen removal rate of the entire system. As a result, the phosphorus and the nitrogen removal rate is more excellent than the conventional method because the phosphorus emission occurs smoothly by minimizing the nitrate nitrogen flowing into the dephosphorization tank.

Claims (6)

1차 침전지를 거친 유입원수를 수용하며, 상기 유입원수에 포함된 탄소원을 이용하여 폭기조로부터 반송된 슬러지 혼합액을 질소가스로 환원시켜 제거하는 탈질조; 상기 탈질조로부터 배출되는 처리수를 질산화시켜 질산성질소 농도가 높은 슬러지 혼합액으로 만드는 폭기조; 상기 폭기조내의 슬러지 혼합액을 상기 탈질조로 반송시키기 위한 제1반송라인; 상기 폭기조에서 방출되는 처리수에 포함된 슬러지를 침전치켜 질산성 질소 농도가 매우 낮은 슬러지로 만드는 2차침전지; 상기 2차침전지에서 배출된 슬러지를 반송받아 소정시간동안 체류시켜 중력식 농축으로 고·액 분리하여 질산성 질소부하가 낮은 슬러지 및 상등액을 만드는 중력식 농축 탈인조; 상기 2차침전지로부터 배출된 슬러지를 탈질조 및 중력식 농축 탈인조에 각각 반송시키는 제2반송라인; 및 상기 폭기조내의 인의 과잉섭취를 위하여 상기 중력식 농축 탈인조에 내재된 슬러지 및 상등액을 상기 폭기조내로 반송시키는 제3반송라인을 포함하는 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거장치.A denitrification tank for receiving inflow water passing through the primary sedimentation basin, and reducing and removing the sludge mixed liquid returned from the aeration tank by using a carbon source included in the inflow water to remove nitrogen gas; An aeration tank for nitrifying the treated water discharged from the denitrification tank to a sludge mixed liquid having a high nitrate nitrogen concentration; A first conveying line for conveying the sludge mixed liquid in the aeration tank to the denitrification tank; A secondary settling battery which precipitates sludge contained in the treated water discharged from the aeration tank to make sludge with a very low nitrate nitrogen concentration; A gravity concentrated dephosphorization tank for receiving sludge discharged from the secondary sedimentation cell and retaining for a predetermined time to separate solid and liquid by gravity concentration to produce sludge and supernatant with low nitrate nitrogen load; A second conveying line for conveying the sludge discharged from the secondary sedimentation cell to a denitrification tank and a gravity concentrated dephosphorization tank, respectively; And a third conveying line for returning the sludge and the supernatant contained in the gravity-type concentrated dephosphorization tank to the aeration tank for the excess intake of phosphorus in the aeration tank. 제1항에 있어서, 상기 탈질조에 내장되어 폭기조 및 2차침전지에서 반송된 슬러지와 유입원수를 고르게 혼합하는 교반수단을 더 포함하는 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거장치.The biological phosphorus and nitrogen removal apparatus of claim 1, further comprising stirring means for mixing the sludge conveyed from the aeration tank and the secondary sedimentation cell and the inflow source water evenly in the denitrification tank. 제1항 또는 제2항에 있어서, 상기 탈질조는 시스템전체의 질소제거 효율을 높이도록 1차침전지의 유입원수 전량을 탈질과정에만 소요되도록 한 무산소조인 것을 특징으로 하는 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거장치.According to claim 1 or claim 2, wherein the denitrification tank is a biological anatomical modification of the post-lip method, characterized in that the total oxygen intake of the primary precipitating battery to take only the denitrification process to increase the nitrogen removal efficiency of the entire system. And simultaneous nitrogen removal device. 탈질조에서 1차 침전지로부터 배출된 원수와 반송슬러지를 혼합시킨 후 폭기조로 이송시키는 제1단계; 상기 폭기조내에서 유기물 제거 및 질산화가 일어나도록 하며, 질산화된 혼합슬러지액을 탈질조로 반송하는 제2단계; 상기 탈질조에서는 유입된 유입원수의 유기물 전량을 탈질과정에만 소요되도록 하여 반송된 질산성 질소를 제거하는 제3단계; 상기 폭기조에서 성장한 미생물을 2차 침전지에서 고·액 분리하여 침전시키되 상기 2차침전지의 슬러지중 일부를 중력식 농축 탈인조에 반송하고 일부는 탈질조로 직접 유입시켜 미생물의 부족분을 보층시키는 제4단계; 상기 중력식 농축 탈인조에 수용된 슬러지를 고·액 분리하여 혐기성조건을 형성시키되, 인방출에 소요되는 유기물질은 셀분해에 의해 생성된 유기물질로 이용하기 위하여 상기 2차침전지의 반송 슬러지 일부를 탈인조에 5~8시간동안 체류시키는 제5단계; 및 인함량이 낮은 슬러지와 인함량이 많은 상등액을 호기성조건인 폭기조로 반송시켜 인의 과잉섭취가 일어나도록 하는 제6단계를 포함하는 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거방법.A first step of mixing the raw water discharged from the primary sedimentation basin and the return sludge in a denitrification tank and then transferring the raw water to an aeration tank; A second step of removing organic matter and nitrifying in the aeration tank and returning the nitrified mixed sludge solution to the denitrification tank; A third step of removing the nitrate nitrogen from the denitrification tank so that the entire amount of the organic material of the introduced influent water is required only for the denitrification process; A fourth step of precipitating the microorganisms grown in the aeration tank by solid-liquid separation in a secondary sedimentation basin, returning some of the sludge of the secondary sedimentation cell to a gravity concentrated dehydration tank, and partially entering the denitrification tank to supplement the deficiency of the microorganisms; The sludge contained in the gravity concentrated dephosphor was solid-liquid separated to form anaerobic conditions, and the organic material required for phosphorus release was removed from the part of the returned sludge of the secondary sedimentation battery to be used as an organic material produced by cell decomposition. A fifth step of staying in the artificial for 5-8 hours; And a sixth step of returning the sludge having a low phosphorus content and the supernatant containing a large amount of phosphorus to an aeration tank which is an aerobic condition to cause excess intake of phosphorus. 제4항에 있어서, 제2단계에서 질산화 미생물의 성장에 유리한 조건을 제공하기 위하여 상기 폭기조내의 유기물 부하는 1차 침전지를 통과한 유입원수 기준으로 0.1KgBOD/KgMLVSS·d∼0.3KgBOD/KgMLVSS·d 범위, 수리학적 체류시간은 약 4∼5 시간으로 하는 것을 특징으로 하는 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거방법.The method according to claim 4, wherein the organic load in the aeration tank is 0.1KgBOD / KgMLVSS · d˜0.3KgBOD / KgMLVSS · d based on the inflow of water passing through the primary settler to provide conditions favorable for the growth of nitrifying microorganisms in the second step. Range, hydraulic retention time is about 4 to 5 hours, the biological and nitrogen simultaneous removal method modified post-rip method, characterized in that. 제4항 또는 제5항에 있어서, 상기 제3및 제4단계에서 상기 폭기조에서 발생된 질산성 질소를 탈질조에서 유입원수 유기물 전량을 이용하여 처리함으로써, 2차 침전지에서 탈인조로의 반송슬러지에 함유된 질산성질소를 감소시켜, 탈인조에서 인방출에 영향을 주지 않도록 한 것을 특징으로 하는 포스트립 공법을 개조한 생물학적 인 및 질소 동시 제거방법.The conveying sludge from the secondary settler to the dephosphorization tank according to claim 4 or 5, wherein the nitrate nitrogen generated in the aeration tank in the third and fourth steps is treated by using the total amount of influent organic matter in the denitrification tank. A method for simultaneously removing biological phosphorus and nitrogen, wherein the post-lip method is modified so as to reduce the nitrate nitrogen contained in the so as not to affect phosphorus release in the dephosphorization tank.
KR1019960069931A 1996-12-21 1996-12-21 Biological phosphor and nitrogen removal device and method modificating phostrip method KR100231084B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019960069931A KR100231084B1 (en) 1996-12-21 1996-12-21 Biological phosphor and nitrogen removal device and method modificating phostrip method
DE1997137373 DE19737373B4 (en) 1996-12-21 1997-08-27 Plant and process for the biological removal of nitrogen and phosphorus from sewage and sewage water
CN97116878A CN1102130C (en) 1996-12-21 1997-09-03 System and method for removing biologically both nitrogen and phosphorous removal in sewage and wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960069931A KR100231084B1 (en) 1996-12-21 1996-12-21 Biological phosphor and nitrogen removal device and method modificating phostrip method

Publications (2)

Publication Number Publication Date
KR19980051067A KR19980051067A (en) 1998-09-15
KR100231084B1 true KR100231084B1 (en) 1999-11-15

Family

ID=19490177

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960069931A KR100231084B1 (en) 1996-12-21 1996-12-21 Biological phosphor and nitrogen removal device and method modificating phostrip method

Country Status (3)

Country Link
KR (1) KR100231084B1 (en)
CN (1) CN1102130C (en)
DE (1) DE19737373B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000024252A (en) * 2000-02-01 2000-05-06 김창수 Advanced Treatment System using Rotating Immobilized Phosphorus Sweeper from Wastewater, Sewage and Industrial Wastewater

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL365164A1 (en) 2000-08-03 2004-12-27 Bioclar A.S. Activated sludge method and device for the treatment of effluent with nitrogen and phosphorus removal
DE10352636B4 (en) * 2003-11-11 2005-11-10 Hamann Ag Process and plant for the treatment of waste water on ships
CN100395197C (en) * 2006-08-15 2008-06-18 北京工业大学 Improved UCT technology and device
CN100395196C (en) * 2006-08-15 2008-06-18 北京工业大学 Improved MUCT technology and device
KR101005793B1 (en) * 2010-06-03 2011-01-06 부산환경공단 Reconstructed-plung lime ii process for nitrogenand and phosphate removal in sewage
CN103319052B (en) * 2013-07-09 2014-06-18 浙江卓嘉环境工程有限公司 System and method for treating cowboy yarn pulp dyeing wastewater
CN106315969A (en) * 2015-06-25 2017-01-11 麦王环境技术股份有限公司 Integrated wastewater treatment equipment of IBR (integral biological reactor) and treatment process
CN106746391A (en) * 2016-11-16 2017-05-31 环境保护部南京环境科学研究所 A kind of phosphatization recycling sludge method of disposal
CN108328871A (en) * 2018-03-21 2018-07-27 新疆水木湛清环保科技有限公司 Landfill leachate efficient denitrification system and its denitrification process
CN108218153A (en) * 2018-03-27 2018-06-29 湖北君集水处理有限公司 A kind of system and method for sewage plant Tailwater Depth processing
CN110510802A (en) * 2018-05-22 2019-11-29 同济大学 A kind of the carbon source capture systems and method in Heisui River
CN109824211A (en) * 2019-03-26 2019-05-31 武汉派宁环保技术有限公司 A kind of rural domestic sewage treatment system
CN110451726A (en) * 2019-08-15 2019-11-15 苏州湛清环保科技有限公司 Photovoltaic stainless steel waste water total nitrogen handles recycling set device
CN110550823A (en) * 2019-09-11 2019-12-10 清上(苏州)环境科技有限公司 Water body algal bloom treatment system and method
CN111233151A (en) * 2020-03-17 2020-06-05 山东太平洋环保股份有限公司 Efficient synchronous nitrogen and phosphorus removal system and method for high-nitrogen and phosphorus wastewater
CN114349257A (en) * 2020-10-13 2022-04-15 同济大学 Sewage treatment method based on MBR process
CN115677069A (en) * 2021-07-23 2023-02-03 中国石油天然气股份有限公司 Treatment method of excess sludge

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1015889B (en) * 1983-05-06 1992-03-18 伏尔加-乌拉尔硫化氢气体开挖加工科学研究设计院 Remove the biological purification method of methyl alcohol in the sewage
DE4331927C2 (en) * 1992-09-17 1995-07-13 Mannesmann Ag Process for the biochemical removal of nitrogen and phosphorus from waste water
DE4239184C1 (en) * 1992-11-21 1993-10-07 Burghardt Dipl Chem Elster Biological sewage phosphate removal - has initial stripper centrally in the stripper basin with separate zones for sludge to move in opposite directions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000024252A (en) * 2000-02-01 2000-05-06 김창수 Advanced Treatment System using Rotating Immobilized Phosphorus Sweeper from Wastewater, Sewage and Industrial Wastewater

Also Published As

Publication number Publication date
DE19737373A1 (en) 1998-06-25
DE19737373B4 (en) 2011-12-22
CN1186050A (en) 1998-07-01
KR19980051067A (en) 1998-09-15
CN1102130C (en) 2003-02-26

Similar Documents

Publication Publication Date Title
KR100231084B1 (en) Biological phosphor and nitrogen removal device and method modificating phostrip method
CN106745743B (en) Sewage nitrogen and phosphorus removal system
KR102099380B1 (en) The Method to Remove Nitrogen and Phosphorus from Wastewater by Changing of Reactor and Recycle Method of Conventional Nutrient Removal Process and by Combining Anaerobic Ammonium Oxidation(ANAMMOX) Process
KR20130003522A (en) Treatment system for waste water
KR20000021183A (en) Method for managing wastewater including high concentrated organic matter.
KR100759847B1 (en) Advanced swage and waste water treatment method and apparatus with improved anaerobic basin and recirculation part.
KR20010025386A (en) Biological, pysical and chemical treatment method of waste water from livestock
KR20030054810A (en) A Waste Water Purifier Using Overflow Sediment and Method
KR100390633B1 (en) Anoxic-anaerobic sequencing batch reactor and method for nitrogen and phosphorus removal thereby
KR100315874B1 (en) Method and Apparatus of Biological Nitrogen Removal from the High Concentration Industrial Wastewater
KR910003004B1 (en) Biological nitrogen and phosphorus removing method and apparatus
KR100438323B1 (en) High intergated Biological Nutrient Removal System
KR100415437B1 (en) Advanced sludge reaeration process improving denitrification rate for nutrient removal
KR100420647B1 (en) Waste water disposal method by continuos inflow Sequencing Bath Reactor
KR100520324B1 (en) Advanced treatment apparatus that superiority phosphorus removal.
KR100460851B1 (en) Sewage and wastewater treatment apparatus which is no need internal recycle
CN105731619B (en) The processing method of nitrogen fertilizer production waste water
KR0129831B1 (en) A process for sewage treatment wsing denitrification and dephosphorization
KR100311342B1 (en) Wastewater treatment apparatus for removing nitrogen and phosphorus and method therefor
KR100423801B1 (en) Advanced waste-water treatment system
KR100416693B1 (en) Method for removing nutrients of domestic sewage using 2 step aeration and an apparatus used therefor
KR100322252B1 (en) Biological Treatment Systems and Methods for Removing Nitrogen and Phosphorus in Municipal Wastewater
KR20020089085A (en) Apparatus for treating Nitrogen and Phosphorus in wastewater and A Treatment method thereof
KR100420301B1 (en) method and equipment for advanced wastewater-treatment
KR100315875B1 (en) Method and Apparatus of Biological Nitrogen and Phosphorus Removal from SBR

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120924

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20130826

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20150825

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20160829

Year of fee payment: 18

EXPY Expiration of term