KR101005793B1 - Reconstructed-plung lime ii process for nitrogenand and phosphate removal in sewage - Google Patents
Reconstructed-plung lime ii process for nitrogenand and phosphate removal in sewage Download PDFInfo
- Publication number
- KR101005793B1 KR101005793B1 KR1020100052215A KR20100052215A KR101005793B1 KR 101005793 B1 KR101005793 B1 KR 101005793B1 KR 1020100052215 A KR1020100052215 A KR 1020100052215A KR 20100052215 A KR20100052215 A KR 20100052215A KR 101005793 B1 KR101005793 B1 KR 101005793B1
- Authority
- KR
- South Korea
- Prior art keywords
- tank
- sludge
- dephosphorization
- denitrification
- anoxic
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/308—Biological phosphorus removal
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/302—Nitrification and denitrification treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F2001/007—Processes including a sedimentation step
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/002—Construction details of the apparatus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
본 발명은 PL-2공법에 관한 것으로서, 더욱 상세하게는 혐기상태인 탈인슬러지를 무산소조로 투입시켜 질소 및 인 제거효율의 동시에 상승시키도록 하는 PL-2공법을 개조한 하수의 고도처리공법에 관한 것이다. The present invention relates to a PL-2 process, and more particularly, to an advanced treatment method for sewage that has been modified from the PL-2 process to simultaneously increase the nitrogen and phosphorus removal efficiency by introducing an anaerobic dephosphorized sludge into an anoxic tank. will be.
PL-2(Plung lime Ⅱ) 공법이란 Main steam에서 질소를 제거하고 Side Stream 에서 인을 제거하는 공정이다. PL-2 (Plung lime II) process is a process to remove nitrogen from main steam and phosphorus from side stream.
도1을 참조하여 살펴보면, 상기 Main steam은 무산소조(탈질)(2), 호기조(질산화)(4)로 구성되며, Side Steam 은 탈인조(혐기성 인용출)(9)로 구성된다.Referring to Figure 1, the main steam is composed of an oxygen-free tank (denitrification) (2), aerobic tank (nitrification) (4), side steam is composed of a dephosphorization tank (anaerobic quotient) (9).
여기서 Side Steam는 최종침전조 슬러지의 일부가 탈인조(9)로 유입된 후, 혐기성 조건에서 인을 방출한 미생물은 전량 호기조(4)로 반송되어 인을 과잉섭취하게 되며, 최종침전조(7)에서 잉여슬러지 폐기와 탈인조 상등수 화학처리(12)를 통해 인을 최종적으로 제거한다. Here, in the side steam part of the final sedimentation tank sludge is introduced into the dephosphorization tank (9), the microorganisms released phosphorus under anaerobic conditions are all returned to the aerobic tank (4) to ingest excess phosphorus, in the final sedimentation tank (7) Phosphorus is finally removed through waste sludge disposal and demineralization supernatant chemical treatment (12).
그러나 이러한 종래의 PL-2(Plung lime Ⅱ)공법은 무산소 전단계에 산소를 제어하는 혐기조가 없으므로 고농도 DO를 함유한 유입하수가 무산소조(2)로 바로 유입되어 탈질작용을 방해하는 문제점이 있었다.However, since the conventional PL-2 (Plung lime II) method does not have an anaerobic tank controlling oxygen in the anoxic preliminary stage, the influent sewage containing the high concentration DO is directly introduced into the anoxic tank (2), thereby preventing denitrification.
즉, 아래의 표에서 살펴보면, 표1은 무산소조에서의 DO농도를 나타내는 것으로 무산소조 설계치가 0.2이하임에도 불구하고, 가을~봄철, 여름철의 용존산소농도는 이를 초과함을 보여준다.That is, looking at the table below, Table 1 shows the DO concentration in the anaerobic tank, although the oxygen-free tank design value is less than 0.2, the dissolved oxygen concentration in the autumn-spring and summer season exceeds this.
그리고 종래의 PL-2(Plung lime Ⅱ)공법은 무산소조(2)의 탈질 기능이 떨어져 외부 탄소원을 주입하지 않고는 질소제거율이 낮은 문제점이 있었다.In the conventional PL-2 (Plung lime II) method, the denitrification function of the oxygen-
또한 무산소조(2)에서 질소 제거율이 떨어짐으로 인해 고농도 질산염이 탈인조(9)로 유입되어 인방출 저해현상을 일으키는 문제점이 있었다. In addition, there is a problem that the high concentration of nitrate is introduced into the dephosphorization tank (9) due to the decrease in nitrogen removal rate in the anoxic tank (2), causing the phosphorus release inhibition phenomenon.
본 발명은 상기 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 해결하고자 하는 과제는, 탈인슬러지(DO의 함량이 낮고, 유기성분이 풍부함)를 무산소조로 일정 비율 공급하여 원활한 탈질반응을 유도하도록 한 PL-2공법을 개조한 하수의 고도처리공법을 제공하는 데 그 목적이 있다. The present invention has been made to solve the above problems, the problem to be solved of the present invention, PL dephosphorization (low DO content, rich in organic components) by supplying a certain ratio to an oxygen-free tank to induce a smooth denitrification reaction PL The purpose is to provide advanced sewage treatment for the sewage, which has been modified from -2.
또한 무산소조에서의 질소 제거율을 높임으로써, 탈인조로 유입되는 질산성 질소 농도의 최소화로 인하여 인의 제거효율까지 높이도록 하는 PL-2공법을 개조한 하수의 고도처리공법을 제공하는 데 그 목적이 있다. In addition, the purpose of the present invention is to provide a highly advanced treatment method for sewage that is modified to improve the removal efficiency of phosphorus by minimizing the concentration of nitrate nitrogen flowing into the dephosphorization tank by increasing the nitrogen removal rate in the anoxic tank. .
상기의 목적을 달성하기 위해 본 발명은 유입원수가 수용되는 무산소조에, 호기조로부터 내부 반송된 슬러지 혼합액과, 탈인조로부터 반송되는 탈인 슬러지가 공급되어 탈질 세균 및 유입원수에 포함된 탄소원을 이용하여 탈질 공정을 수행하는 탈질단계와, 상기 무산소조의 유출수를 호기조로 이송하여 질산화가 일어나도록 하는 질산화단계와, 상기 호기조 내의 질산화된 슬러지 혼합액을 무산소조로 반송하는 내부 반송단계와, 상기 호기조의 유출수를 침전조로 이송하여 고액분리를 통해 슬러지를 침전시키는 침전단계와, 상기 침전조에서 침전된 슬러지를 탈인조로 이송하여 탈인하는 탈인단계와, 상기 탈인조 내의 탈인 슬러지를 상기 무산소조로 반송하여 원활한 탈질반응이 일어나도록 유도하는 무산소조 반송단계를 포함한다.In order to achieve the above object, the present invention provides denitrification using an anoxic tank in which incoming water is accommodated, a sludge mixed liquid conveyed internally from an aerobic tank, and dephosphorous sludge returned from a dephosphorization tank to denitrifying bacteria and a carbon source included in influent water. A denitrification step for carrying out the process, a nitrification step for transferring the effluent of the anoxic tank to an aerobic tank to cause nitrification, an internal conveying step for conveying the nitrified sludge mixture in the aerobic tank to an anoxic tank, and the effluent of the aerobic tank as a settling tank Precipitation step of transporting to settle the sludge through solid-liquid separation, and dephosphorization step of transporting the sludge precipitated in the settling tank to the dephosphorization tank, and returning the dephosphorous sludge in the dephosphorization tank to the anoxic tank for smooth denitrification reaction. Inducing an oxygen-free tank conveyance step.
여기서 상기 탈질단계에서는, 무산소조 내에 교반기가 더 구비되어, 유입원수 및 반송된 슬러지의 혼합이 원활하게 일어나도록 하는 것이 바람직하다.Here, in the denitrification step, it is preferable that a stirrer is further provided in the anoxic tank so that the mixing of the inflow water and the returned sludge occurs smoothly.
그리고 상기 무산소조 반송단계에서는 상기 무산소조로 반송되는 탈인 슬러지 내에 탈질가능한 탈인미생물이 포함되는 것이 바람직하다. And in the oxygen-free tank conveying step, it is preferable that the dephosphorous dephosphorous microorganisms are included in the dephosphorous sludge conveyed to the anoxic tank.
상기와 같은 구성의 본 발명에 따르면, 다음과 같은 효과를 기대할 수 있을 것이다. According to the present invention of the configuration described above, the following effects can be expected.
우선, 무산소조에서의 DO농도를 기준 설계치에 적합하도록 관리할 수 있고, 외부 탄소원을 주입하지 않고도 고도처리효율을 향상시키는 효과가 있다. First, the DO concentration in the anoxic tank can be managed to meet the reference design value, and there is an effect of improving the high processing efficiency without injecting an external carbon source.
그리고 무산소조에서 질소 제거율이 높아짐에 따라 탈인조로 유입되는 질산성 질소 농도의 최소화로 인하여, 인의 제거효율이 높아지는 효과가 있다. And as the nitrogen removal rate in the anoxic tank is increased, due to the minimization of the concentration of nitrate nitrogen flowing into the dephosphorization tank, the removal efficiency of phosphorus is increased.
이로 인해 생물학적 처리를 최대한 유도함으로써 약품 사용 등으로 인한 생태계 파괴 등 2차적으로 발생할 수 있는 환경문제를 사전적으로 차단할 수 있다. As a result, by inducing biological treatment as much as possible, it is possible to proactively block secondary environmental problems such as ecosystem destruction caused by drug use.
도 1은 종래의 PL-2공법에 따른 하수처리공법의 공정도이다.
도 2는 본 발명의 바람직한 실시예에 따른 PL-2공법을 개조한 하수의 고도처리공법의 공정도이다.
도 3은 본 발명의 바람직한 실시예에 따른 PL-2공법을 개조한 하수의 고도처리공법의 순서도이다.
표1은 무산소조의 DO농도를 나타낸 표이다.
표2는 공정변경 전·후의 질소 처리 효율을 비교한 그래프이다.
표3은 공정변경 전·후의 인 처리 효율을 비교한 그래프이다. 1 is a process chart of the sewage treatment method according to the conventional PL-2 method.
Figure 2 is a process chart of the advanced sewage treatment method of the modified PL-2 method according to a preferred embodiment of the present invention.
Figure 3 is a flow chart of the advanced sewage treatment method of the modified PL-2 method according to a preferred embodiment of the present invention.
Table 1 shows the DO concentration of the anaerobic tank.
Table 2 is a graph comparing the nitrogen treatment efficiency before and after the process change.
Table 3 is a graph comparing the phosphorus treatment efficiency before and after the process change.
이하, 첨부된 도면을 참조로 하여 본 발명의 PL-2공법을 개조한 하수의 고도처리공법을 보다 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in more detail the advanced sewage treatment method of the modified PL-2 method of the present invention.
도 2는 본 발명의 바람직한 실시예에 따른 PL-2공법을 개조한 하수의 고도처리공법을 수행하기 위한 공정도이다.Figure 2 is a process chart for performing the advanced sewage treatment method of the modified PL-2 method according to a preferred embodiment of the present invention.
도시된 바와 같이 1은 유입원수라인, 2는 무산소조, 3은 무산소조 유출수라인, 4는 호기조, 5는 내부반송라인, 6은 호기조 유출수라인, 7은 최종 침전조, 8은 탈인조 슬러지 공급라인, 9는 탈인조, 10은 탈인조 슬러지 반송라인, 11은 탈인조 상등액 공급라인, 12는 화학처리조, 13은 정화수 배출라인으로 구성되어 있다. As shown, 1 is an inlet source line, 2 is an anaerobic tank, 3 is an anaerobic tank effluent line, 4 is an aerobic tank, 5 is an internal return line, 6 is an aerobic tank effluent line, 7 is a final settling tank, 8 is a dephosphorized sludge supply line, 9 It is composed of dephosphorization tank, 10 dephosphorization sludge conveying line, 11 dephosphorization tank supernatant supply line, 12 chemical treatment tank, and 13 purification water discharge line.
도3은 본 발명의 바람직한 실시예에 따른 PL-2공법을 개조한 하수의 고도처리공법의 순서도이다.Figure 3 is a flow chart of the advanced sewage treatment method of the modified PL-2 method according to a preferred embodiment of the present invention.
도3의 공정에 따르면, 본 발명은 크게 탈질단계(S100), 질산화단계(S200), 내부반송단계(S300), 침전단계(S400), 탈인단계(S500), 무산소조 반송단계(S600)로 이루어진다.According to the process of Figure 3, the present invention largely comprises a denitrification step (S100), nitrification step (S200), internal transport step (S300), precipitation step (S400), dephosphorization step (S500), oxygen-free tank transfer step (S600). .
먼저 탈질단계(S100)에 대해 설명하고자 한다.First, the denitrification step (S100) will be described.
무산소조(2)에는 유입원수라인(1)을 통하여 침사지(미도시)를 거친 유입원수가 수용되며, 또한 상기 무산소조(2) 내에는 호기조(4)로부터 내부 반송된 슬러지 혼합액과 상기 탈인조(9)로부터 반송되는 탈인 슬러지가 공급되어 탈질반응이 일어난다. The
상기와 같이 탈질 반응이 일어나기 위해서는, 하수 중에 요소나 암모니아 형태로 존재하는 질소 성분이 호기조(4)에서 질산화 미생물에 의해 산화되어 질산성 질소 형태로 변환되어야 한다.In order for the denitrification reaction to occur as described above, the nitrogen component present in the form of urea or ammonia in the sewage must be oxidized by the nitrifying microorganisms in the
따라서 호기조(4) 내에서 변환된 질산성 질소는 무산소조(2)로 내부반송되며, 상기 변환된 질산성 질소는 공기를 공급하지 않는 조건인 무산소조(2)(용존산소有, 결합산소는蕪)에서 유기 탄소원을 이용하여 질소가스(N2)로 환원되어 대기중으로 날아감으로써 질소가 제거된다.Therefore, the nitrate nitrogen converted in the
특히 본 발명에서는 상기의 탈질 반응을 원활하게 하기 위하여, 후술할 무산소조 반송단계(S600)를 통해 탈인슬러지를 공급받는다.In particular, in the present invention, in order to facilitate the denitrification reaction, dephosphorous sludge is supplied through an oxygen-free tank conveyance step (S600) to be described later.
이와 같이 무산소조(2)에서 탈인 슬러지를 공급받는 이유는, 무산소조(2)의 전단계에는 산소를 제어하는 혐기조가 없으므로 고농도 DO 함유한 유입원수가 바로 유입되어 탈질작용을 억제하기 때문에 이를 해결하기 위함이다.The reason for receiving dephosphorized sludge in the
즉, 탈인 슬러지는 DO의 함량이 낮고, 유기성분이 풍부하므로 이를 무산소조(2)로 일정 비율 공급하게 되면, 외부 유기 탄소원을 주입하지 않고도 고도처리효율을 향상시킬 수 있기 때문이다.That is, because the dephosphorized sludge has a low content of DO and is rich in organic components, if it is supplied to the oxygen-
또한 탈인 슬러지 내에는 탈질이 가능한 탈질 인축적 미생물(DNPAOs)가 존재하므로 상기 탈인 슬러지를 무산소조(2)로 유입하면 질소 제거효율이 높아진다.In addition, since denitrification degenerate accumulation microorganisms (DNPAOs) exist in the dephosphorized sludge, when the dephosphorized sludge is introduced into the
이때 무산소조(2) 내에는 유입원수(1), 반송 슬러지 등의 고른 혼합과, 혼합액이 침전되는 것을 방지하기 위하여 교반기(미도시)를 설치하여 운영한다.At this time, in the oxygen-free tank (2) is operated by installing a stirrer (not shown) to evenly mix the inflow source (1), conveying sludge and the like, and to prevent the mixed solution from being precipitated.
다음 질산화단계(S200) 및 내부 반송단계(S300)를 설명하고자 한다.Next will be described the nitrification step (S200) and the internal conveying step (S300).
먼저 질산화 단계는 상기 무산소조(2)의 유출수를 호기조(4)로 이송하여 질산화가 일어나도록 하는 단계이고, 상기 내부반송 단계는 상기 호기조(4) 내의 질산화된 슬러지 혼합액을 무산소조(2)로 반송하는 단계이다.First, the nitrification step is to transfer the effluent of the oxygen-
보다 상세하게 살펴보면, 상기 무산소조(2)를 거친 유출수가 호기조(4)로 이송되면, 유입원수의 유기물 산화, 암모니아성 질소가 질산성 질소로의 산화가 일어난다.Looking in more detail, when the effluent flowing through the oxygen-free tank (2) is transferred to the aerobic tank (4), the organic material oxidation of the influent water, oxidation of ammonia nitrogen to nitrate nitrogen occurs.
암모니아성 질소는 바로 제거될 수 없으므로 호기조(4)로 이송되어 질산성 질소로 산화된 다음 무산소조(2)로 내부 반송되어 탈질되는 것이다.Since ammonia nitrogen cannot be removed immediately, it is transferred to the
즉, 호기조(4)에서 질산화되어 질산성 질소 농도가 높아진 슬러지 혼합액은, 무산소조(2)로 반송되어 탈질 반응을 거친 후 다시 호기조(4)로 유입된다.That is, the sludge mixed liquid which has been nitrified in the
통상적으로 호기조(4)에서 무산소조(2)로의 내부 반송비율은 유입원수량의 1~2배 범위가 된다.Typically, the internal rate of return from the
다음은 침전단계(S400)에 대해 설명하고자 한다.Next will be described for the precipitation step (S400).
상기 침전단계는 상기 호기조(4)의 유출수를 침전조(7)로 이송하여 고액분리를 통해 슬러지를 침전시키는 단계이다.The precipitation step is to transfer the effluent of the exhalation tank (4) to the precipitation tank (7) to precipitate the sludge through solid-liquid separation.
상기 호기조(4) 유출수는 침전조(7)에서 고액분리되어 침전되며, 상기 침전된 슬러지 중 유입유량의 약 15%의 슬러지는 탈인조 슬러지 공급라인(8)을 통하여 탈인조(9)로 반송된다.The
다음은 탈인단계(S500)에 대해 설명하고자 한다.Next will be described for the dephosphorization step (S500).
상기 탈인단계는 상기 침전조(7)에서 침전된 슬러지를 탈인조(9)로 이송하여 탈인하는 단계이다.The dephosphorization step is a step of dephosphorizing the sludge precipitated in the settling tank 7 to the dephosphorization tank 9.
즉, 상기 탈인조(9)에서는 상기 침전조(7)에서 침전된 슬러지를 공급받아 고액분리가 일어나고, 이때 탈인조(9)의 슬러지층에서는 혐기층이 형성되어 인이 방출된다.That is, the dephosphorization tank 9 receives sludge precipitated from the settling tank 7 and solid-liquid separation occurs. At this time, an anaerobic layer is formed in the sludge layer of the dephosphorization tank 9 to release phosphorus.
특히, 본 발명의 탈인단계는 전술한 무산소조(2)내의 탈질 효율의 향상으로 인하여 저농도의 질산염만이 탈인조(9)로 유입되므로, 탈인조(9) 내에서의 인 방출이 증대되고 인 제거효율이 향상된다. In particular, in the dephosphorization step of the present invention, since only a low concentration of nitrate is introduced into the dephosphorization tank 9 due to the improvement of denitrification efficiency in the above-described
만약 탈인조(9) 내에 고농도의 질산염이 유입되면, 탈인 미생물의 인방출에 유용한 유기물질이 탈질 미생물에 의해 먼저 소모되므로, 상대적으로 탈인 미생물의 성장이 억제되게 되기 때문이다.If a high concentration of nitrate is introduced into the dephosphorization tank (9), the organic material useful for the phosphorus release of the dephosphorized microorganism is consumed by the denitrified microorganism first, so that the growth of the dephosphorized microorganism is relatively suppressed.
따라서, 탈인 미생물의 성장을 억제하는 탈인 방해작용을 억제하기 위하여, 무산소조(2)에서의 탈질 반응이 매우 중요하며, 무산소조(2) 내의 탈질 효율이 높아지면 동시에 탈인조(9) 내의 인 제거효율까지 높아지게 되는 것이다.Therefore, in order to suppress the dephosphorization inhibiting action of inhibiting the growth of dephosphorus microorganisms, the denitrification reaction in the oxygen-
다음은 무산소조 반송단계(S600)에 대해 설명하고자 한다.Next will be described with respect to the oxygen-free tank transfer step (S600).
상기 무산소조 반송단계는 상기 탈인조(9) 내의 탈인 슬러지를 상기 무산소조(2)로 반송하여 무산소조(2) 내에서 원활한 탈질 반응이 일어나도록 유도하는 단계이다.The oxygen-free tank conveyance step is a step of returning the dephosphorized sludge in the dephosphorization tank 9 to the oxygen-
탈인조(9)에서 인이 방출됨에 따라, 세포 내 인의 함유량이 낮아진 탈인조 하부 슬러지는 무산소조(2)로 반송되는데, 이는 무산소조(2) 내의 탈질 작용을 향상시키기 위함이다.As phosphorus is released from the dephosphorization tank (9), the dephosphorization lower sludge having a lower content of phosphorus in the cell is returned to the anoxic tank (2), in order to improve the denitrification effect in the anoxic tank (2).
이에 대해서는 앞에서 자세하게 설명하였음으로 여기서의 설명은 생략한다.Since this has been described in detail above, the description thereof will be omitted.
마지막으로 인 함량이 풍부한 탈인조 상등액은 화학처리조(12)로 이송하여 인을 제거한 후, 유량조정조로 유입시켜 처리된다.Finally, the dephosphorization supernatant rich in phosphorus content is transferred to the
본 실험은 기존의 Pl-2 공정과, 개조된 Pl-2 공정의 고도처리 효율을 비교한 실험이다.This experiment compares the high throughput of the existing Pl-2 process with the modified Pl-2 process.
실험은 공정변경 전·후를 각각 1년간 진행하였고, 월별로 공정을 10회씩 실시하였다. The experiment was conducted for one year before and after the process change, and the process was carried out ten times per month.
결과는 표2(공정변경 전·후의 질소 처리 효율비교한 그래프) 및 표3(공정변경 전·후의 인 처리 효율을 비교한 그래프)과 같으며, 실시한 실험규모는 현장 플랜트 규모였다.The results are shown in Table 2 (graphs comparing the nitrogen treatment efficiency before and after the process change) and Table 3 (graphs comparing the phosphorus treatment efficiency before and after the process change), and the scale of the experiment was the field plant size.
1~4월까지는 Begining(가동기), 5~8월까지는 Adjustment (적응기), 9~12월까지는 Stabilization(안정기)를 나타내었다.Beginnings ranged from January to April, adjustments from May to August, and stabilization from September to December.
공정변경 후의 기간동안 고도처리효율은 평균 질소 15.0%, 인 10.5%의 개선효과가 나타났으며, 외부탄소원(RCS)을 투입하지 않고 최대제거율은 총질소(TN) 86.5% ,총인(TP) 96.2%까지 상승하였다.During the period after the change of process, the high treatment efficiency improved by 15.0% of nitrogen and 10.5% of phosphorus, and the maximum removal rate was 86.5% of total nitrogen (TP) and 96.2% of total phosphorus (TP) without applying external carbon source (RCS). Rose to%.
공정변경 이후 가동기인 3월 이후부터는 질소, 인 모두 처리효율이 향상되었으며, 공정변경 적응기인 5월 이후부터는, 6월을 제외하고는 수처리효율이 상승하였다. Nitrogen and phosphorus treatments have improved since March, the operating period after the process change. After May, the treatment efficiency has increased except in June.
그리고 안정기에 접어든 8월 이후부터는 동기간에 40% 대를 유지하던 질소제거율이 65% 대로 상승하여, 약 20% 이상의 안정적인 처리효율 개선효과가 나타났다.Since August, when the stabilized period is reached, the nitrogen removal rate, which was maintained at 40% in the same period, has increased to 65%, resulting in a stable treatment efficiency improvement of about 20% or more.
실험 결과를 살펴보면, 무산소조 전단계에 용존산소 유입을 완충하는 전단계인 혐기 시설이 없음에도 불구하고, 공정을 변경한 후에는 혐기 상태인 탈인 슬러지를 무산소조로 투입시킴으로써, 질소와 인 제거효율이 동시에 상승한 효과를 보였다.According to the experimental results, despite the absence of an anaerobic facility, which is a preliminary step to buffer dissolved oxygen inflow in the previous stage of the anaerobic tank, after changing the process, the anaerobic dephosphorized sludge was introduced into the anaerobic tank, which simultaneously increased the efficiency of nitrogen and phosphorus removal. Showed.
이상과 같이 본 발명은 탈인슬러지(DO의 함량이 낮고, 유기성분이 풍부함)를 무산소조로 일정 비율 공급하여 원활한 탈질반응을 유도하도록 한 PL-2공법을 개조한 하수의 고도처리공법을 제공하는 것을 기본적인 기술적 사상으로 하고 있음을 알 수 있으며, 이와 같이 본 발명의 기본적인 사상의 범주 내에서, 당업계의 통상의 지식을 가진 자에게 있어서는 다른 많은 변형이 가능함은 물론이다. As described above, the present invention basically provides a high-level treatment method of sewage which is modified from the PL-2 process to induce a smooth denitrification reaction by supplying dephosphorized sludge (low DO content and rich organic components) to an oxygen-free tank. It can be seen that the technical idea, and within the scope of the basic idea of the present invention, many other modifications are possible to those of ordinary skill in the art.
1: 유입원수 라인
2: 무산소조
3: 무산소조 유출수라인
4: 호기조
5: 내부반송라인
6: 호기조 유출수라인
7: 최종 침전조
8: 탈인조 슬러지 공급라인
9: 탈인조
10: 탈인조 슬러지 반송라인
11: 탈인조 상등액 공급라인
12: 화학 처리조
13: 정화수 배출라인1: influent water line
2: anaerobic tank
3: anoxic tank effluent line
4: aerobic tank
5: internal conveying line
6: Aerobic Outflow Line
7: final settling tank
8: Degreasing Sludge Supply Line
9: dejoin
10: desalination sludge return line
11: Dehydrogenation Supernatant Supply Line
12: chemical treatment tank
13: Purified water discharge line
Claims (3)
상기 무산소조의 유출수를 호기조로 이송하여 질산화가 일어나도록 하는 질산화단계와;
상기 호기조 내의 질산화된 슬러지 혼합액을 무산소조로 반송하는 내부 반송단계와;
상기 호기조의 유출수를 침전조로 이송하여 고액분리를 통해 슬러지를 침전시키는 침전단계와;
상기 침전조에서 침전된 슬러지를 탈인조로 이송하여 탈인하는 탈인단계; 및
상기 탈인조 내의 탈인 슬러지를 상기 무산소조로 반송하여 원활한 탈질반응이 일어나도록 유도하는 무산소조 반송단계;
를 포함하는 PL-2공법을 개조한 하수의 고도처리공법.A denitrification step of supplying the sludge mixed liquid returned from the aerobic tank and the dephosphorized sludge conveyed from the dephosphorization tank to the deoxygenation tank in which the inflowing water is accommodated to perform the denitrification process using the denitrifying bacteria and the carbon source included in the inflow water;
A nitrification step of transferring the effluent of the anoxic tank to an aerobic tank to cause nitrification;
An internal conveying step of conveying the nitrified sludge mixed liquid in the aerobic tank to an anoxic tank;
A precipitation step of transferring the effluent of the aerobic tank to the settling tank to precipitate sludge through solid-liquid separation;
A dephosphorization step of dephosphorization by transferring the sludge precipitated in the sedimentation tank to a dephosphorization tank; And
An oxygen-free tank conveyance step of returning the dephosphorized sludge in the dephosphorization tank to the anoxic tank to induce a smooth denitrification reaction;
Advanced sewage treatment method sewage PL-2 method, including.
상기 탈질단계에서는,
무산소조 내에 교반기가 더 구비되어, 유입원수 및 반송된 슬러지의 혼합이 원활하게 일어나도록 하는 것을 특징으로 하는 PL-2공법을 개조한 하수의 고도처리공법.The method of claim 1,
In the denitrification step,
A stirrer is further provided in the anoxic tank, so that the mixing of the inflow water and the returned sludge occurs smoothly.
상기 무산소조 반송단계에서는,
상기 무산소조로 반송되는 탈인 슬러지 내에 탈질가능한 탈인미생물이 포함되는 것을 특징으로 하는 PL-2공법을 개조한 하수의 고도처리공법.
The method of claim 1,
In the oxygen-free tank transfer step,
The advanced sewage treatment method of the sewage dewatering PL-2 process characterized in that the denitrification microorganism is contained in the dephosphorization sludge returned to the anoxic tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100052215A KR101005793B1 (en) | 2010-06-03 | 2010-06-03 | Reconstructed-plung lime ii process for nitrogenand and phosphate removal in sewage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100052215A KR101005793B1 (en) | 2010-06-03 | 2010-06-03 | Reconstructed-plung lime ii process for nitrogenand and phosphate removal in sewage |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101005793B1 true KR101005793B1 (en) | 2011-01-06 |
Family
ID=43615788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100052215A KR101005793B1 (en) | 2010-06-03 | 2010-06-03 | Reconstructed-plung lime ii process for nitrogenand and phosphate removal in sewage |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101005793B1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0129831B1 (en) * | 1994-10-04 | 1998-04-04 | 김일두 | A process for sewage treatment wsing denitrification and dephosphorization |
KR19980051067A (en) * | 1996-12-21 | 1998-09-15 | 유직형 | Simultaneous Biological and Nitrogen Eliminators |
-
2010
- 2010-06-03 KR KR1020100052215A patent/KR101005793B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0129831B1 (en) * | 1994-10-04 | 1998-04-04 | 김일두 | A process for sewage treatment wsing denitrification and dephosphorization |
KR19980051067A (en) * | 1996-12-21 | 1998-09-15 | 유직형 | Simultaneous Biological and Nitrogen Eliminators |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11203541B2 (en) | Partial nitrification-denitrification coupled two-stage autotrophic denitrification advanced nitrogen removal method | |
KR101828212B1 (en) | Wastewater treatment system using anaerobic ammonium oxidation in mainstream | |
KR101473050B1 (en) | Method and device for removing biological nitrogen and support therefor | |
KR102099380B1 (en) | The Method to Remove Nitrogen and Phosphorus from Wastewater by Changing of Reactor and Recycle Method of Conventional Nutrient Removal Process and by Combining Anaerobic Ammonium Oxidation(ANAMMOX) Process | |
KR101294489B1 (en) | Apparatus for treating a drainage containing organic sulfur compounds | |
US9656897B2 (en) | Dual return activated sludge process in a flow-equalized wastewater treatment system | |
KR100231084B1 (en) | Biological phosphor and nitrogen removal device and method modificating phostrip method | |
KR102144118B1 (en) | Method for Removing Nitrogen and Phosphorus from Wastewater by Nutrient Removal Process via Nitrite and by Combining Anaerobic Ammonium Oxidation(ANAMMOX) Process | |
Mulder et al. | Full-scale experience with the SHARON process through the eyes of the operators | |
KR100800550B1 (en) | Method of recycle water treatment with fluidized biofilm media for wastewater treatment | |
KR100783789B1 (en) | Apparatus for wastewater treatment and method for wastewater treatment using the same | |
KR100440748B1 (en) | High-Rate Live Stock Wastewater Treatment Method using Advanced Treatment Process Hybrid SBAR | |
KR20210040632A (en) | Wastewater treatment system using anaerobic ammonium oxidation system in mainstream of mwtp by nitrification reaction of various high concentration waste liquid and microorganism culture reinforcement | |
KR101005793B1 (en) | Reconstructed-plung lime ii process for nitrogenand and phosphate removal in sewage | |
KR20110023436A (en) | Advanced sewage treatment system by mbr using snd | |
KR20110057882A (en) | Method for treating wastewater containing high concentration of organic matter and nitrogen and device therefor | |
KR102052163B1 (en) | Wastewater treatment apparatus and method | |
JP3815977B2 (en) | Treatment method for wastewater containing high concentration nitrogen | |
KR100783790B1 (en) | Apparatus for wastewater treatment with multi-stage denitification-filtration and method for wastewater treatment using the same | |
US10934196B2 (en) | Lagoon-based wastewater treatment with denitrification | |
KR101236693B1 (en) | Apparatus for sewage and wastewater treatment | |
KR101967178B1 (en) | Membrane separation water treatment system with reverse osmosis membrane concentrated water treatment facility | |
KR100614098B1 (en) | A method for phosphorous and nitrogen removal with sludge disintegration in advanced wastewater treatment process | |
KR100433096B1 (en) | Equipment and Method of Nitrogen Removal with Down-flow Biofilm System using the Granule Sulfur | |
KR20180059705A (en) | High effective water treatment apparatus using membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20131224 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20141022 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20151008 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20161128 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20171201 Year of fee payment: 8 |