JPH0476758B2 - - Google Patents

Info

Publication number
JPH0476758B2
JPH0476758B2 JP59237543A JP23754384A JPH0476758B2 JP H0476758 B2 JPH0476758 B2 JP H0476758B2 JP 59237543 A JP59237543 A JP 59237543A JP 23754384 A JP23754384 A JP 23754384A JP H0476758 B2 JPH0476758 B2 JP H0476758B2
Authority
JP
Japan
Prior art keywords
wastewater
phosphorus
aeration
nitrogen
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59237543A
Other languages
Japanese (ja)
Other versions
JPS61118198A (en
Inventor
Toshio Shimooka
Hiroaki Myakoshi
Shuichi Kojima
Toyoichi Yokomaku
Ichiro Yamamoto
Yoshinari Inoe
Asao Horiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kankyo Engineering Co Ltd
Original Assignee
Kankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kankyo Engineering Co Ltd filed Critical Kankyo Engineering Co Ltd
Priority to JP23754384A priority Critical patent/JPS61118198A/en
Publication of JPS61118198A publication Critical patent/JPS61118198A/en
Publication of JPH0476758B2 publication Critical patent/JPH0476758B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、嫌気工程および好気工程を含む回分
式の活性汚泥法による排水の生物学的処理方法に
関し、特に排水中の窒素と燐とを同時に生物学的
に処理して排水中から除去する方法に関する。 (従来の技術) 近年、内湾、内海、湖沼等の水域における窒素
および燐による富栄養化現象の進行は、水質汚濁
の主原因として大きな社会問題化し、これらの水
質汚染の原因となる一般家庭および工場排水に対
して、特に排水中に含まれる窒素および燐に対し
て厳しい規制が実施され、そのための排水処理方
法も種々提案されている。 排水処理方法として最も一般的な方法は活性汚
泥法による生物学的処理方法であり、該方法によ
る窒素の除去は、好気条件下でBOD酸化菌と硝
化菌を利用して、排水中の各種窒素化合物を亜硝
酸または硝酸まで酸化する工程と、嫌気条件下で
脱窒菌を利用して、硝化工程で生成した硝酸また
は亜硝酸を窒素ガスに還元する脱窒工程の2工程
からなつている。 また、活性汚泥法により微生物反応を利用する
燐の除去方法は、生物学的燐除去法と呼ばれ、生
物学的処理の嫌気工程で放出された燐を好気工程
で微生物の細胞に過剰に取り込ませて、この燐を
取り込んだ微生物を余剰汚泥の形で処理系外に取
出す方法と、微生物により過剰に摂取された燐を
嫌気条件下で再び放出させて、燐の濃縮液とし、
これを化学的に凝集させて分離除去する方法に大
別されている。 (発明が解決しようとしている問題点) しかしながら、上記の如き従来の活性汚泥法に
より、窒素と燐を同時に除去しようとすること
は、嫌気処理と好気処理という互いに相反する微
生物代謝メカニズムを利用するものであるため、
従来の嫌気工程と好気工程とを組合せた活性汚泥
法では排水中の窒素と燐とを同時に効率的に除去
することは極めて困難であり、通常は、排水中の
窒素は全体の40〜60%しか除去できず、また燐で
は30〜50%程度が除去されるにすぎなかつた。 従つて、可能な限り簡単な方法で且つ効率のよ
い排水の生物学的処理方法が強く要望されている
のが実情である。 本発明者は上述の如き従来技術の欠点を解決
し、上記の要望に応えるべく、排水の生物学的処
理方法について鋭意研究の結果、各工程の処理条
件を簡単に制御するのみで、従来の回分式の排水
の生物学的処理装置をそのまま利用して、従来方
法では達成し得なかつた高い効率で排水中の窒素
と燐を容易に且つ低コストで同時に処理し、除去
できることを知見して本発明を完成した。 (問題点を解決するための手段) すなわち、本発明は、嫌気工程および好気工程
を含む回分式の活性汚泥法による排水の生物学的
処理方法において、排水を曝気槽中へ流入中は曝
気槽において嫌気攪拌を行い、好気工程の処理液
のPHを6.5〜7.8に調整し、且つ曝気槽中における
活性汚泥の滞留時間を少なくとも16日に制御し
て、排水から窒素および燐を同時に除去すること
を特徴とする排水の生物学的処理方法である。 本発明を更に詳細に説明すると、本発明が主た
る第1の特徴とする点は、処理すべき排水を曝気
槽へ流入中は曝気槽において嫌気攪拌を行うこと
であり、第2の特徴は、引続いて行う好気工程で
の処理液のPHを6.5〜7.8に調整することであり、
且つ第3の特徴は曝気槽中における活性汚泥の滞
留時間を少なくとも16日に制御することであり、
これらの特徴点により、本発明の目的が主として
達成されたものである。 すなわち、本発明者の詳細な研究によれば、処
理すべき原排水を、曝気槽への流入中は曝気槽中
で嫌気攪拌を行うことにより、ATPの加水分解
が速やかに進行して燐が放出され、続いて行う好
気工程である曝気工程においては、原排水と活性
汚泥との混合液のPHを上記の如き所定の範囲に調
整することによつて、非常に効率よくATPが生
産され、活性汚泥によつて摂取されるが、この活
性汚泥は常に曝気処理中に16日以上滞留されてお
り、従つて生物活性が高く維持されているので燐
を過剰に摂取でき、一方、次いで行う脱窒工程の
嫌気条件下では亜硝酸または硝酸態の窒素が存在
するために、ポリリン酸蓄積微生物は通常の呼吸
代謝を維持することができ、摂取した燐は放出さ
れず、従つて一連の生物学的処理工程を通して汚
泥の燐含有率が高濃度に維持され、結果として燐
の除去効果が著しく高く維持されることを知見し
たものである。 本発明において、窒素と燐とを同時に処理する
ことができる排水としては、食品工場排水をはじ
めとする工場排水、し尿および下水などの有機性
排水で、窒素と燐とを過剰に含有する排水であれ
ば、いずれの排水をも処理することができる。特
にBOD濃度100mg/以上5000mg/以下で、
BOD/窒素比が3以上の排水であれば、本発明
の処理効果が最も顕著となる。 本発明方法は以上の点を主たる特徴とし、それ
以外の生物学的処理工程は従来公知の工程でよ
い。上記の特徴を含有する本発明方法を、本発明
の1実施態様を示す添付図面を参照して更に具体
的に説明すると、第1図に図解的に示す通り、処
理すべき原排水は、流入路1より貯留槽2に導か
れ、ここで一旦貯留される。この貯留槽の容量は
曝気槽への排水流入が、回分式処理のタイムスケ
ジユールを満足させる様に、排水の流入パターン
より、その容量は任意に選定することができ、特
に排水の滞留時間を考慮する必要はない。貯留槽
の排水は、曝気もしくは機械攪拌により攪拌混合
を行い、排水を均質化するのが好ましい。 次いで、貯留槽中の原排水は、原排水ポンプ3
により、流入路4を経て曝気槽5に流入される。
前述の通り、本発明の第1の特徴は、この原排水
の曝気槽中への流入中は、曝気槽中で曝気を行わ
ず、そのまま攪拌混合、すなわち嫌気攪拌を行う
ことであり、この嫌気攪拌によつて原排水と活性
汚泥とを十分に混合する。この嫌気攪拌によつて
原排水中のATPが加水分解され、十分な燐の放
出が生じる。このような嫌気攪拌は、攪拌ポンプ
等による機械的攪拌でもよいし、原排水の流入速
度を利用する攪拌方法のいずれでもよい。 原排水の流入が終了した後、曝気槽中で曝気を
開始する。曝気は、従来公知のいずれの方法でも
よく、例えば送風機7により管路8を経て送られ
る空気によつて行うことができる。この曝気工程
により、流入した原排水中の窒素成分の硝化反応
が進行し、窒素成分の大部分は亜硝酸態あるいは
硝酸態の窒素に酸化される。このような窒素成分
の酸化が終了した時点で、曝気を終了させるのが
好ましく、従つて所定の曝気時間内に酸化が丁度
完了するように、負荷量、曝気量等を設定するの
が好ましい。また硝化反応は酸生成反応であるの
で、曝気中にPHが低下しすぎる場合にはアルカリ
剤を薬注路9から曝気槽中に添加するのが好まし
い。処理終了時の曝気液のPHは、6.5〜7.8に保持
することが必要である。 硝化反応が終了し、曝気工程を終了した後は、
嫌気攪拌を行う。この嫌気攪拌は、薬注路10か
ら水素供与体を曝気槽中に添加するとともに曝気
槽内の攪拌ポンプ6により、曝気を行わずに嫌気
攪拌を行い、脱窒反応を進行させ、窒素を窒素ガ
スとして分離させる。この嫌気工程で使用する水
素供与体としては、メタノール、エタノール、酢
酸、イソプロピルアルコール等の工業薬品、ある
いは流入排水組成に類似した窒素と燐を過剰に含
有しない廃液等が使用できる。この嫌気攪拌工程
における水素供与体の添加量は、硝化反応によつ
て生成した亜硝酸、硝酸態の窒素が脱窒反応によ
り、窒素ガスとして系外に除去されるに足る量で
十分である。また嫌気攪拌時間も脱窒反応が終了
するに必要な時間にする。 以上の脱窒反応が終了すると、添加した水素供
与体が消費されず、1部残存することがあるの
で、この水素供与体を除去するために短時間の再
曝気処理を行い、再曝気処理が終了後は攪拌を停
止して活性汚泥を沈降分離させる沈澱工程に移
る。所定時間の沈澱工程が終了したら、放流路1
1によつて上澄水を処理済水として放流する。こ
の処理済水は、通常塩素または次亜塩素酸塩類等
の殺菌剤により滅菌消毒処理するのが好ましい。 以上の処理で燐を過剰に摂取した余剰汚泥は、
曝気槽5からの処理済水の放流と同時に、あるい
はその前後に排泥管12から汚泥貯槽13に所定
量を排泥し、管路14から、脱水等の処理を行う
かまたはそのまま搬出して処分されるが、残りの
大部分の活性汚泥は、常に曝気処理内に16日間以
上滞留するように制御するのが好ましく、このよ
うにすることにより、活性汚泥の燐に対する活性
を高く維持することができ、次サイクルでの燐の
活性汚泥による摂取が高い効率で行われるように
なる。このような制御は、活性汚泥の排泥量と排
泥時間によつて行うかあるいは活性汚泥界面を界
面計により検知して行うか、いずれの方法でも容
易に行うことができる。余剰汚泥の脱水方法は、
通常行われている脱水助剤としての鉄塩を用いる
方法で燐を汚泥中に有効に固定することが可能で
あるため、特別な脱水方法は不要である。 (作用・効果) 以上の如き本発明方法では、従来公知の比較的
低コストの回分式の排水処理設備をそのまま使用
して、排水の処理に際して、原排水の曝気槽への
流入中は、曝気を行わずに嫌気攪拌を行うことに
よつて、ATPの加水分解による燐の放出が有効
に行われ、次いで特定のPH範囲における曝気によ
る好気状態でATPが生産され、活性が十分に高
められている汚泥が燐を効率的に過剰に摂取でき
る状態に保持されている。また脱窒反応の嫌気状
態でも亜硝酸または硝酸態の窒素が存在するた
め、燐を過剰に摂取した微生物は通常の呼吸代謝
が行うことができ、このような嫌気状態であつて
も、燐が放出されない。従つて本発明では従来の
方法に比較して汚泥の燐含有率を最後まで高く維
持できるため、最後に余剰汚泥を処分するのみ
で、燐を安定的且つ高度に除去することができ
る。 また、本発明方法においては上記の燐の除去だ
けでなく、前記の如き特定の条件下でも、生物学
的な窒素の硝化処理および脱窒反応には何ら悪影
響を及ぼさない。 従つて、本発明方法では、複雑で高価の設備を
要せずに、従来の回分式の設備をそのまま用い
て、排水中の窒素と燐を同時に効率的に処理して
分離することができる。 次に実施例を挙げて、本発明を更に具体的に説
明する。 実施例 1 曝気槽容量80の回分式活性汚泥法実験装置に
より、グルコース700mg/、スターチ400mg/
、ペプトン320mg/、燐酸2水素カリウム60
mg/、尿素200mg/、BOD1000mg/、全窒
素120mg/、全燐25mg/を含む合成排水を用
いて、実験を行つた。 実験の処理のタイムスケジユールは、排水の流
入(嫌気攪拌)2時間→曝気15時間→脱窒3時間
→再曝気1時間→沈澱2時間→放流1時間であ
り、24時間で1回の処理を完了させるスケジユー
ルである。 実験は同じ曝気槽を有する実験装置を8基使用
し、下記の処理条件にて並列運転を行つた。
(Industrial Application Field) The present invention relates to a biological treatment method for wastewater using a batch activated sludge method including an anaerobic process and an aerobic process, and in particular, the present invention relates to a biological treatment method for wastewater using a batch activated sludge method including an anaerobic process and an aerobic process. and how to remove it from wastewater. (Prior art) In recent years, the progression of eutrophication due to nitrogen and phosphorus in water bodies such as inner bays, inland seas, and lakes has become a major social problem as a main cause of water pollution. Strict regulations have been put in place for factory wastewater, particularly regarding nitrogen and phosphorus contained in the wastewater, and various wastewater treatment methods have been proposed. The most common method for wastewater treatment is the biological treatment method using activated sludge. This method uses BOD oxidizing bacteria and nitrifying bacteria under aerobic conditions to remove various types of nitrogen from wastewater. It consists of two steps: a step in which nitrogen compounds are oxidized to nitrous acid or nitric acid, and a denitrification step in which nitric acid or nitrous acid produced in the nitrification step is reduced to nitrogen gas using denitrifying bacteria under anaerobic conditions. In addition, a method for removing phosphorus that utilizes microbial reactions using the activated sludge method is called a biological phosphorus removal method, in which excess phosphorus released in the anaerobic process of biological treatment is transferred to microbial cells in the aerobic process. The microorganisms that have taken in phosphorus are taken out of the treatment system in the form of surplus sludge, and the excess phosphorus taken up by the microorganisms is released again under anaerobic conditions to form a concentrated phosphorus solution.
There are two main types of methods: chemically agglomerating the particles and separating and removing them. (Problem to be solved by the invention) However, attempting to simultaneously remove nitrogen and phosphorus using the conventional activated sludge method as described above utilizes mutually contradictory microbial metabolic mechanisms of anaerobic treatment and aerobic treatment. Because it is a thing,
It is extremely difficult to efficiently remove nitrogen and phosphorus from wastewater at the same time using the conventional activated sludge method, which combines an anaerobic process and an aerobic process. In addition, only 30 to 50% of phosphorus was removed. Therefore, the reality is that there is a strong demand for a biological treatment method for wastewater that is as simple and efficient as possible. In order to solve the above-mentioned drawbacks of the conventional technology and meet the above-mentioned demands, the present inventor has conducted intensive research into a biological treatment method for wastewater. We discovered that by using a batch-type biological treatment system for wastewater as is, it is possible to simultaneously treat and remove nitrogen and phosphorus from wastewater easily and at low cost with a high efficiency that could not be achieved with conventional methods. The invention has been completed. (Means for Solving the Problems) That is, the present invention provides a biological treatment method for wastewater using a batch activated sludge method including an anaerobic process and an aerobic process, in which the wastewater is not aerated while flowing into the aeration tank. Perform anaerobic stirring in the tank, adjust the pH of the treated solution in the aerobic process to 6.5 to 7.8, and control the residence time of activated sludge in the aeration tank for at least 16 days to simultaneously remove nitrogen and phosphorus from the wastewater. This is a biological treatment method for wastewater that is characterized by: To explain the present invention in more detail, the first main feature of the present invention is that anaerobic stirring is performed in the aeration tank while the wastewater to be treated is flowing into the aeration tank, and the second feature is that: Adjusting the pH of the treatment liquid in the subsequent aerobic process to 6.5 to 7.8,
And the third feature is to control the residence time of activated sludge in the aeration tank for at least 16 days,
These features have largely achieved the objectives of the present invention. In other words, according to detailed research conducted by the present inventor, by subjecting the raw wastewater to be treated to anaerobic agitation in the aeration tank while it flows into the aeration tank, the hydrolysis of ATP proceeds rapidly and phosphorus is released. In the aeration process, which is the aerobic process that follows after ATP is released, ATP can be produced very efficiently by adjusting the pH of the mixed liquid of raw wastewater and activated sludge to a predetermined range as described above. The activated sludge is always retained for more than 16 days during the aeration process, and therefore the biological activity remains high, allowing for an excessive uptake of phosphorus; Due to the presence of nitrite or nitrate nitrogen under anaerobic conditions in the denitrification process, polyphosphate-accumulating microorganisms can maintain normal respiratory metabolism, and the ingested phosphorus is not released, so that a series of organisms It was discovered that the phosphorus content of sludge was maintained at a high concentration throughout the chemical treatment process, and as a result, the phosphorus removal effect was maintained at a significantly high level. In the present invention, wastewater that can be treated with nitrogen and phosphorus at the same time includes industrial wastewater including food factory wastewater, organic wastewater such as human waste and sewage, and wastewater that contains excessive amounts of nitrogen and phosphorus. If so, any wastewater can be treated. Especially when the BOD concentration is 100 mg/ to 5000 mg/
When wastewater has a BOD/nitrogen ratio of 3 or more, the treatment effect of the present invention is most significant. The method of the present invention has the above-mentioned main features, and the other biological treatment steps may be conventionally known steps. The method of the present invention having the above characteristics will be explained in more detail with reference to the accompanying drawings showing one embodiment of the present invention.As schematically shown in FIG. It is guided from channel 1 to storage tank 2, where it is temporarily stored. The capacity of this storage tank can be arbitrarily selected based on the inflow pattern of the wastewater, so that the inflow of wastewater into the aeration tank satisfies the time schedule of batch treatment.The capacity of this storage tank can be arbitrarily selected based on the inflow pattern of the wastewater, especially considering the residence time of the wastewater. do not have to. It is preferable that the waste water from the storage tank is agitated and mixed by aeration or mechanical stirring to homogenize the waste water. Next, the raw wastewater in the storage tank is transferred to the raw wastewater pump 3.
As a result, the water flows into the aeration tank 5 via the inflow path 4.
As mentioned above, the first feature of the present invention is that while this raw wastewater is flowing into the aeration tank, aeration is not performed in the aeration tank, and stirring and mixing, that is, anaerobic stirring, is performed as it is, and this anaerobic Thoroughly mix raw wastewater and activated sludge by stirring. This anaerobic agitation hydrolyzes ATP in the raw wastewater and releases sufficient phosphorus. Such anaerobic stirring may be performed by mechanical stirring using a stirring pump or the like, or by any stirring method that utilizes the inflow velocity of raw wastewater. After the raw wastewater has finished flowing in, aeration begins in the aeration tank. Aeration may be carried out by any conventionally known method, for example by air sent through pipe 8 by blower 7. Through this aeration process, the nitrification reaction of the nitrogen components in the inflowing raw wastewater progresses, and most of the nitrogen components are oxidized to nitrite or nitrate nitrogen. It is preferable to terminate the aeration when the oxidation of the nitrogen component is completed, and therefore it is preferable to set the load amount, aeration amount, etc. so that the oxidation is exactly completed within a predetermined aeration time. Further, since the nitrification reaction is an acid production reaction, it is preferable to add an alkaline agent into the aeration tank through the chemical injection path 9 if the pH drops too much during aeration. It is necessary to maintain the pH of the aeration liquid at 6.5 to 7.8 at the end of the treatment. After the nitrification reaction is completed and the aeration process is completed,
Perform anaerobic stirring. In this anaerobic stirring, a hydrogen donor is added into the aeration tank from the chemical injection path 10, and the stirring pump 6 in the aeration tank performs anaerobic stirring without aeration to advance the denitrification reaction and convert nitrogen into nitrogen. Separate it as a gas. As the hydrogen donor used in this anaerobic process, industrial chemicals such as methanol, ethanol, acetic acid, isopropyl alcohol, etc., or waste liquids having a composition similar to the influent wastewater but not containing excessive amounts of nitrogen and phosphorus, etc. can be used. The amount of hydrogen donor added in this anaerobic stirring step is sufficient to remove nitrogen in the form of nitrite and nitrate produced by the nitrification reaction from the system as nitrogen gas by the denitrification reaction. Also, the anaerobic stirring time is set to a time necessary for the denitrification reaction to complete. When the above denitrification reaction is completed, the added hydrogen donor is not consumed and some portion may remain, so a short reaeration process is performed to remove this hydrogen donor. After the completion of the stirring, the stirring is stopped and the process moves on to the sedimentation step in which the activated sludge is separated by sedimentation. After the settling process for a predetermined period of time is completed, the discharge channel 1
1, the supernatant water is discharged as treated water. This treated water is usually preferably sterilized and disinfected using a disinfectant such as chlorine or hypochlorites. Surplus sludge that has taken in excessive phosphorus through the above treatment is
At the same time as the treated water is discharged from the aeration tank 5, or before or after, a predetermined amount of sludge is removed from the sludge pipe 12 into the sludge storage tank 13, and then subjected to treatment such as dewatering from the pipe 14, or carried out as is. Although most of the remaining activated sludge is disposed of, it is preferable to control the activated sludge so that it remains in the aeration process for at least 16 days at all times.By doing this, the activated sludge's activity toward phosphorus can be maintained at a high level. This allows for highly efficient phosphorus uptake by activated sludge in the next cycle. Such control can be easily performed by any method, such as by controlling the amount of activated sludge drained and the draining time, or by detecting the activated sludge interface with an interface meter. The method for dewatering excess sludge is
Since phosphorus can be effectively fixed in sludge by the commonly used method of using iron salts as a dewatering aid, no special dewatering method is required. (Function/Effect) In the method of the present invention as described above, conventionally known comparatively low-cost batch-type wastewater treatment equipment is used as is, and when raw wastewater is flowing into the aeration tank, aeration is performed during wastewater treatment. By performing anaerobic stirring without performing anaerobic stirring, the release of phosphorus by hydrolysis of ATP is effectively carried out, and then ATP is produced under aerobic conditions by aeration in a specific PH range, and the activity is sufficiently increased. The sludge is maintained in a state where it can efficiently absorb excess phosphorus. Furthermore, even in the anaerobic state of the denitrification reaction, nitrite or nitrate nitrogen is present, so microorganisms that have ingested an excessive amount of phosphorus can carry out normal respiratory metabolism. Not released. Therefore, in the present invention, the phosphorus content of the sludge can be maintained higher until the end compared to the conventional method, so that phosphorus can be removed stably and to a high degree by simply disposing of the excess sludge at the end. Furthermore, the method of the present invention not only removes phosphorus as described above, but also does not have any adverse effect on biological nitrogen nitrification and denitrification reactions even under the above-mentioned specific conditions. Therefore, in the method of the present invention, nitrogen and phosphorus in wastewater can be efficiently treated and separated simultaneously using conventional batch-type equipment without requiring complicated and expensive equipment. Next, the present invention will be explained in more detail with reference to Examples. Example 1 Glucose 700mg/, starch 400mg/
, peptone 320mg/, potassium dihydrogen phosphate 60
Experiments were conducted using synthetic wastewater containing urea 200mg/, BOD 1000mg/, total nitrogen 120mg/, and total phosphorus 25mg/. The treatment time schedule for the experiment was: 2 hours of inflow of wastewater (anaerobic stirring) → 15 hours of aeration → 3 hours of denitrification → 1 hour of re-aeration → 2 hours of precipitation → 1 hour of discharge, and one treatment was completed in 24 hours. This is the schedule to be completed. In the experiment, eight experimental apparatuses having the same aeration tank were used, and parallel operation was performed under the following processing conditions.

【表】 曝気槽は、恒温水槽に浸漬することによつて活
性汚泥混合液の温度を20℃一定に保つて実験を行
つた。排水の入換は、2時間の静置沈澱の後、排
泥槽量と合わせて曝気槽容量の半分に相当する40
の上澄水を排出し、次に40の人工下水を毎分
400mlで定量的に注入しながら100分間にわたつて
曝気を行わない状態でゆるやかに機械攪拌を行つ
た。また脱窒工程では水素供与体としてイソプロ
ピルアルコールを使用し、脱窒工程の最初に1%
溶液を400ml添加し、排水流入時と同様ゆるやか
な攪拌をした。曝気工程および再曝気工程は気泡
曝気による曝気を行い、空気量は30/分と一定
とした。曝気槽混合液のPH調整は硫酸溶液あるい
は水酸化ナトリウム溶液にて行ないON−OFF型
のPH調整機を使用した。また汚泥滞留時間
(SRT)の調整は、実験操作を容易にするため、
再曝気工程にて活性汚泥混合液が曝気されている
状態にて、所定量の活性汚泥混合液を引抜くこと
によつて行つた。 前記表に示す実験1の条件では、実験装置を90
日間運転し、前半の70日間を活性汚泥の馴致期間
とみなし、71日から90日までの20日間の処理水質
の平均値を求め、この結果から燐除去率ならびに
窒素除去率と汚泥滞留時間(SRT)の関係を求
め第2図に示したが、燐除去率はSRTが16日以
上の条件において95%以上の値を示し、SRTが
12日では同除去率が急激に低下し35%を示した。
窒素の除去率ではSRTが8日以上の条件にて95
%以上の値を示し、SRTが4日以下では急激な
窒素除去率の低下が認められた。 以上の如く、曝気槽混合液のPHを7に保つ条件
では、SRTを16日以上にすることで燐および窒
素とも95%以上の極めて良好な除去率を得ること
ができた。 次に、実験2の処理条件では、50日間の連続処
理実験を実施し、31日目から50日目までの20日間
の処理水質の平均値を求め、この結果から燐除去
率ならびに窒素除去率と活性汚泥混合液PHの関係
を整理し、第3図に示す。燐の除去率では、PH
7.8以下において95%以上の高い値を示し、PH8
以上では急激に低下し、30%前後の値を示した。
窒素の除去率については、PH6.5以上において90
%以上の良好な結果を示し、PH6.0では、20%に
まで低下し、十分な窒素除去ができないことが判
明した。以上の如く、汚泥滞留時間(SRT)が
16日の条件では、活性汚泥混合液PHを6.5〜7.8の
間に調整することによつて、極めて良好な燐、窒
素の同時除去ができた。 比較例 実施例1と同じ実験装置ならびに実験方法に
て、活性汚泥混合液PHを7とし、汚泥滞留時間
(SRT)を24日調整し、ただ排水の流入時に攪拌
を行わず、50日間にわたつて処理実験を行つた。
41日目から50日目までの10日間の処理水質の平均
値は、BOD(mg/);9(99%)、全窒素(mg/
);5.5(95%)、全燐(mg/);3.8(85%)で
あつた。この結果、燐の除去率は、排水流入時に
機械的な攪拌を行つた実施例1よりは明らかに低
下することが確認できた。 実施例 2 実施例1の実験方法においてPH調整機を使用せ
ずに、曝気工程の始めに重炭酸ソーダを10g添加
し、汚泥滞留時間(SRT)を16日に調整し、他
の処理条件は実施例1と同様に行つた。 この結果、曝気工程における活性汚泥混合液PH
は重炭酸ソーダを添加した当初8.4を示し、その
後PH8.7まで上昇してから徐々に低下して曝気工
程の終了時にはPH7.0を示した。脱窒工程では、
徐々にPHが上昇しPH8.0に達したが、再曝気工程
の終了時にはPH7.7を示した。処理水中の全窒素
は4mg/、全燐は0.8mg/を示し、良好な窒
素および燐の同時処理を達成することができた。
[Table] The experiment was conducted by keeping the temperature of the activated sludge mixture constant at 20°C by immersing the aeration tank in a constant temperature water tank. After 2 hours of static sedimentation, the wastewater is exchanged at 40°C, which is equivalent to half the capacity of the aeration tank, including the volume of the sludge tank.
Drain the supernatant water, then 40 artificial sewage per minute
While quantitatively injecting 400 ml, gentle mechanical stirring was performed for 100 minutes without aeration. In addition, isopropyl alcohol is used as a hydrogen donor in the denitrification process, and 1%
400 ml of the solution was added and gently stirred in the same way as when the waste water was flowing in. In the aeration process and reaeration process, aeration was performed using bubble aeration, and the air flow rate was kept constant at 30/min. The PH of the aeration tank mixture was adjusted using a sulfuric acid solution or a sodium hydroxide solution using an ON-OFF type PH regulator. In addition, adjustment of sludge retention time (SRT) is necessary to facilitate experimental operations.
This was carried out by withdrawing a predetermined amount of the activated sludge mixture while the activated sludge mixture was being aerated in the reaeration step. Under the conditions of Experiment 1 shown in the table above, the experimental equipment was
The first 70 days are regarded as the acclimatization period for activated sludge, and the average value of the treated water quality for 20 days from the 71st to the 90th is calculated. From this result, the phosphorus removal rate, nitrogen removal rate, and sludge retention time ( Figure 2 shows the relationship between
On the 12th, the removal rate dropped sharply to 35%.
Nitrogen removal rate is 95 when SRT is 8 days or more.
% or more, and a rapid decrease in nitrogen removal rate was observed when the SRT was 4 days or less. As described above, under conditions where the pH of the aeration tank mixture was maintained at 7, an extremely good removal rate of 95% or more for both phosphorus and nitrogen could be obtained by increasing the SRT to 16 days or more. Next, under the treatment conditions of Experiment 2, a continuous treatment experiment was carried out for 50 days, the average value of the treated water quality for 20 days from the 31st day to the 50th day was determined, and the phosphorus removal rate and nitrogen removal rate were determined from the results. The relationship between PH and activated sludge mixed liquid PH is summarized and shown in Figure 3. Phosphorus removal rate, PH
Shows a high value of 95% or more at 7.8 or below, PH8
In the above cases, it decreased rapidly and reached a value of around 30%.
The nitrogen removal rate is 90 at pH 6.5 or above.
% or more, but at pH 6.0, it decreased to 20%, indicating that sufficient nitrogen removal could not be achieved. As mentioned above, the sludge retention time (SRT)
Under the conditions on the 16th, extremely good simultaneous removal of phosphorus and nitrogen was achieved by adjusting the pH of the activated sludge mixture between 6.5 and 7.8. Comparative Example Using the same experimental equipment and method as in Example 1, the activated sludge mixture pH was set to 7, the sludge retention time (SRT) was adjusted to 24 days, but the wastewater was not stirred when it entered, and the experiment was carried out for 50 days. A treatment experiment was conducted.
The average values of treated water quality for 10 days from day 41 to day 50 were BOD (mg/); 9 (99%), total nitrogen (mg/
); 5.5 (95%), and total phosphorus (mg/); 3.8 (85%). As a result, it was confirmed that the phosphorus removal rate was clearly lower than in Example 1, in which mechanical stirring was performed during the inflow of wastewater. Example 2 In the experimental method of Example 1, 10 g of sodium bicarbonate was added at the beginning of the aeration process without using the PH regulator, and the sludge retention time (SRT) was adjusted to 16 days, and the other treatment conditions were as in Example I did the same as 1. As a result, the pH of the activated sludge mixture during the aeration process
The pH was 8.4 at the beginning of the addition of bicarbonate of soda, and then increased to 8.7 and then gradually decreased to 7.0 at the end of the aeration process. In the denitrification process,
The pH gradually increased and reached PH8.0, but at the end of the reaeration process it was PH7.7. The total nitrogen in the treated water was 4 mg/, and the total phosphorus was 0.8 mg/, indicating that good nitrogen and phosphorus simultaneous treatment could be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の処理工程を図解的に示すも
のであり、第2図は、本発明の実施例による排水
中の燐除去率ならびに窒素除去率と汚泥滞留時間
との関係を示し、且つ第3図は、本発明の実施例
による排水中の燐除去率ならびに窒素除去率と汚
泥混合液のPHとの関係を示している。 1……流入路、2……貯留槽、3……ポンプ、
4……流路、5……曝気槽、6……攪拌ポンプ、
7……送風機、8……管路、9……薬注路、10
……薬注路、11……放流路、12……排泥管、
13……汚泥貯槽、14……管路。
FIG. 1 schematically shows the treatment process of the present invention, and FIG. 2 shows the relationship between the phosphorus removal rate and nitrogen removal rate in wastewater and the sludge retention time according to an embodiment of the present invention. Moreover, FIG. 3 shows the relationship between the phosphorus removal rate and nitrogen removal rate in wastewater and the PH of the sludge mixture according to an example of the present invention. 1...Inflow path, 2...Storage tank, 3...Pump,
4... Channel, 5... Aeration tank, 6... Stirring pump,
7...Blower, 8...Pipeline, 9...Medicine injection channel, 10
...Medical injection channel, 11...Discharge channel, 12...Sludge drainage pipe,
13...sludge storage tank, 14...pipe line.

Claims (1)

【特許請求の範囲】[Claims] 1 嫌気工程および好気工程を含む回分式の活性
汚泥法による排水の生物学的処理方法において、
排水を曝気槽中へ流入中は曝気槽において嫌気攪
拌を行い、好気工程の処理液のPHを6.5〜7.8に調
整し、且つ曝気槽中における活性汚泥の滞留時間
を少なくとも16日に制御して、排水から窒素およ
び燐を同時に除去することを特徴とする排水の生
物学的処理方法。
1. In a biological treatment method for wastewater using a batch activated sludge method including an anaerobic process and an aerobic process,
While the wastewater is flowing into the aeration tank, perform anaerobic stirring in the aeration tank, adjust the pH of the treated liquid in the aerobic process to 6.5 to 7.8, and control the residence time of activated sludge in the aeration tank for at least 16 days. A biological treatment method for wastewater, characterized by simultaneously removing nitrogen and phosphorus from the wastewater.
JP23754384A 1984-11-13 1984-11-13 Biological treatment of waste water Granted JPS61118198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23754384A JPS61118198A (en) 1984-11-13 1984-11-13 Biological treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23754384A JPS61118198A (en) 1984-11-13 1984-11-13 Biological treatment of waste water

Publications (2)

Publication Number Publication Date
JPS61118198A JPS61118198A (en) 1986-06-05
JPH0476758B2 true JPH0476758B2 (en) 1992-12-04

Family

ID=17016885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23754384A Granted JPS61118198A (en) 1984-11-13 1984-11-13 Biological treatment of waste water

Country Status (1)

Country Link
JP (1) JPS61118198A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005077842A1 (en) * 2004-02-18 2005-08-25 Aqua Clarus Holdings Pty Ltd Improved waste treatment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387571A (en) * 1977-01-12 1978-08-02 Sumitomo Jukikai Envirotech Kk Device for treating organic waste water
JPS5678691A (en) * 1979-11-30 1981-06-27 Sumitomo Jukikai Envirotec Kk Processing method for organic waste water
JPS5995997A (en) * 1982-11-22 1984-06-02 Hitachi Plant Eng & Constr Co Ltd Biologically dephosphorizing method of waste water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387571A (en) * 1977-01-12 1978-08-02 Sumitomo Jukikai Envirotech Kk Device for treating organic waste water
JPS5678691A (en) * 1979-11-30 1981-06-27 Sumitomo Jukikai Envirotec Kk Processing method for organic waste water
JPS5995997A (en) * 1982-11-22 1984-06-02 Hitachi Plant Eng & Constr Co Ltd Biologically dephosphorizing method of waste water

Also Published As

Publication number Publication date
JPS61118198A (en) 1986-06-05

Similar Documents

Publication Publication Date Title
US5811009A (en) Method and system for improved biological nitrification of wastewater at low temperature
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP3150506B2 (en) Wastewater treatment method
JPS5881491A (en) Purification of filthy water with activated sludge
JPS6254075B2 (en)
JPH0722757B2 (en) Biological removal method of nitrogen and phosphorus and its treatment device
JP2003039092A (en) Biological denitrification treatment method
JPH0476758B2 (en)
JP2003266096A (en) Wastewater treatment apparatus
KR100470350B1 (en) Method for disposing of livestock waste water
JPH0679715B2 (en) Biological treatment method of organic wastewater
JPS6222678B2 (en)
JPS58146495A (en) Treatment of organic waste liquid
JPS6154296A (en) Treatment of sewage
JPH0476756B2 (en)
JPH0691292A (en) Operation control method of aerobic-anaerobic active sludge treatment apparatus
JP3944981B2 (en) Method for treating selenium and nitrogen-containing water
JPS61118196A (en) Biological treatment of waste water
JPH03275196A (en) Nitrous acid type nitrifying and denitrifying treatment device
JPH0476757B2 (en)
JP2007275747A (en) Wastewater treatment method and wastewater treatment device
JP2007275748A (en) Wastewater treatment method and wastewater treatment equipment
JPH11216493A (en) Intermittent-aeration activated sludge treatment
JPS61118197A (en) Biological treatment of waste water
CN105502831A (en) Waste water biochemical treatment device and technology