JPS61118198A - Biological treatment of waste water - Google Patents
Biological treatment of waste waterInfo
- Publication number
- JPS61118198A JPS61118198A JP23754384A JP23754384A JPS61118198A JP S61118198 A JPS61118198 A JP S61118198A JP 23754384 A JP23754384 A JP 23754384A JP 23754384 A JP23754384 A JP 23754384A JP S61118198 A JPS61118198 A JP S61118198A
- Authority
- JP
- Japan
- Prior art keywords
- wastewater
- phosphorus
- nitrogen
- activated sludge
- waste water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、嫌気工程および好気工程を含む回分式の活性
汚泥法による排水の生物学的処理方法に関し、特に排水
中の窒素と燐とを同時に生物学的に処理して排水中から
除去する方法に関する。Detailed Description of the Invention (Industrial Application Field) The present invention relates to a biological treatment method for wastewater using a batch activated sludge method including an anaerobic process and an aerobic process, and in particular to The present invention relates to a method for simultaneously biologically treating and removing wastewater from wastewater.
(従来の技術)
近年、内湾、内海、湖沼等の水域における窒素および燐
による富栄養化現象の進行は、水質汚濁の主原因として
大きな社会問題化し、これらの水質汚染の原因となる一
般家庭および工場排水に対して、特に排水中に含まれる
窒素および燐に対して厳しい規制が実施され、そのため
の排水処理方法も種々提案されている。(Prior art) In recent years, the progression of eutrophication due to nitrogen and phosphorus in water bodies such as inner bays, inland seas, and lakes has become a major social problem as a main cause of water pollution. Strict regulations have been put in place for factory wastewater, particularly regarding nitrogen and phosphorus contained in the wastewater, and various wastewater treatment methods have been proposed.
排水処理方法として最も一般的な方法は活性汚泥法によ
る生物学的処理方法であり、該方法による窒素の除去は
、好気条件下でBOD酸化1と硝化菌を利用して、排水
中の各種窒素化合物を亜硝酸または硝酸まで酸化する工
程と、嫌気条件下で脱窒菌を利用して、硝化工程で生成
した硝酸または亜硝酸を窒素ガスに還元する脱窒工程の
2工程からなっている。The most common method for wastewater treatment is the biological treatment method using activated sludge.This method uses BOD oxidation 1 and nitrifying bacteria under aerobic conditions to remove various types of nitrogen from wastewater. It consists of two steps: a step in which nitrogen compounds are oxidized to nitrous acid or nitric acid, and a denitrification step in which nitric acid or nitrous acid produced in the nitrification step is reduced to nitrogen gas using denitrifying bacteria under anaerobic conditions.
また、活性汚泥法により微生物反応を利用する燐の除去
方法は、生物学的燐除去法と呼ばれ、生物学的処理の嫌
気工程で放出された燐を好気工程で微生物の細胞に過剰
に取り込ませて、この燐を取り込んだ微生物を余剰汚泥
の形で処理系外に取出す方法と、微生物により過剰に摂
取された燐を嫌気条件下で再び放出させて、燐の濃縮液
とし、これを化学的に凝集させて分離除去する方法に大
別されている。In addition, a method for removing phosphorus that utilizes microbial reactions using the activated sludge method is called a biological phosphorus removal method, in which excess phosphorus released in the anaerobic process of biological treatment is transferred to microbial cells in the aerobic process. The microorganisms that have taken in this phosphorus are removed from the treatment system in the form of surplus sludge, and the excess phosphorus taken in by the microorganisms is released again under anaerobic conditions to become a concentrated phosphorus solution. It is broadly divided into methods that involve chemically coagulating and separating and removing.
(発明が解決しようとしている問題点)しかしながら、
上記の如き従来の活性汚泥法により、窒素と燐を同時に
除去しようとすることは、嫌気処理と好気処理という互
いに相反する微生物代謝メカニズムを利用するものであ
るため。(The problem that the invention is trying to solve) However,
Attempting to simultaneously remove nitrogen and phosphorus using the conventional activated sludge method as described above utilizes mutually contradictory microbial metabolic mechanisms of anaerobic treatment and aerobic treatment.
従来の嫌気工程と好気工程とを組合せた活性汚泥法では
排水中の窒素と燐とを同時に効率的に除去することは極
めて困難であり1通常は、排水中の窒素は全体の40〜
60%しか除去できず、また燐では30〜50%程度が
除去されるにすぎなかった。It is extremely difficult to efficiently remove nitrogen and phosphorus from wastewater at the same time using the conventional activated sludge method, which combines an anaerobic process and an aerobic process.
Only 60% could be removed, and only about 30-50% of phosphorus was removed.
従って、可能な限り簡単な方法で且つ効率のよい排水の
生物学的処理方法が強く要望されているのが実情である
。Therefore, there is a strong demand for a biological treatment method for wastewater that is as simple and efficient as possible.
7 本発明者は上述の如き従来技術の欠点を解決
し、上記の要望に応えるべく、排水の生物学的処理方法
について鋭意研究の結果、各工程の処理条件を簡単に制
御するのみで、従来の回分式の排水の生物学的処理装置
をそのまま利用して、従来方法では達成し得なかった高
い効率で排水中の窒素と燐を容易に且つ低コストで同時
に処理し、除去できることを知見して本発明を完成した
。7 In order to solve the above-mentioned drawbacks of the conventional technology and meet the above-mentioned needs, the present inventor has conducted extensive research into biological treatment methods for wastewater, and has found that by simply controlling the treatment conditions of each step, the conventional technology can be improved. It was discovered that nitrogen and phosphorus in wastewater can be easily and inexpensively treated and removed at the same time with a high efficiency that could not be achieved using conventional methods, by using the same batch-type wastewater biological treatment equipment as is. The present invention was completed.
(問題点を解決するための手段)
すなわち、本発明は、嫌気工程および好気工程を含む回
分式の活性汚泥法による排水の生物学的処理方法におい
て、排水を曝気槽へ流入中は曝気槽において嫌気撹拌を
行い、好気工程の処理液のpHを6.5〜7.8に調整
し、且つ曝気槽中における活性汚泥の滞留時間を少なく
とも16日に制御することを特徴とする排水の生物学的
処理方法である。(Means for Solving the Problems) That is, the present invention provides a biological treatment method for wastewater using a batch activated sludge method including an anaerobic process and an aerobic process. anaerobic stirring is carried out in the wastewater treatment process, the pH of the treated liquid in the aerobic process is adjusted to 6.5 to 7.8, and the residence time of activated sludge in the aeration tank is controlled at least 16 days. It is a biological treatment method.
本発明を更に詳細に説明すると、本発明が主たる第1の
特徴とする点は、処理すべき排水を曝気槽へ流入中は曝
気槽において嫌気撹拌を行うこと守
であり、第2の特徴は、引続いて行う好気工程での処理
液のPHを6.5〜7.8に調整することであり、且つ
第3の特徴は曝気槽中における活性汚泥の滞留時間を少
なくとも16日に制御することであり、これらの特徴点
により、本発明の目的が主として達成されたものである
。To explain the present invention in more detail, the first main feature of the present invention is that anaerobic stirring is performed in the aeration tank while the wastewater to be treated is flowing into the aeration tank, and the second feature is that , the pH of the treated liquid in the subsequent aerobic step is adjusted to 6.5 to 7.8, and the third feature is to control the residence time of activated sludge in the aeration tank for at least 16 days. These features have primarily achieved the object of the present invention.
すなわち、本発明者の詳細ζ研究によれば、処理すべき
原排水を、曝気槽への流入中は曝気槽中で嫌気撹拌を行
うことにより、ATPの加水分解が速やかに進行して燐
が放出され、続いて行う好気工程である曝気工程におい
ては1.原排水と活性汚泥との混合液のpHを上記の如
き所定の範囲に調整することによって、非常に効率よ<
ATPが生産され、活性汚泥によって摂取されるが、こ
の活性汚泥は常に曝気処理中に16日以上滞留されてお
り、従って生物活性が高く維′持されているので燐を過
剰に摂取でき、一方、次いで行う脱窒工程の嫌気条件下
では亜硝酸または硝酸態の窒素が存在するために、ポリ
リン酸蓄積微生物は通常の呼吸代謝を維持することがで
き、摂取した燐は放出され′ず、従って一連の生物学的
処理工程を通して汚泥の燐含有率が高濃度に維持され、
結果として燐の除去効果が著しく高く維持されることを
知見したものである。That is, according to the detailed ζ research conducted by the present inventor, by anaerobically stirring the raw wastewater to be treated in the aeration tank while it is flowing into the aeration tank, the hydrolysis of ATP proceeds rapidly and phosphorus is released. In the aeration process, which is the aerobic process that follows the release, 1. By adjusting the pH of the mixed liquid of raw wastewater and activated sludge to the specified range as described above, it is possible to achieve very efficient results.
ATP is produced and taken up by the activated sludge, which is always retained for more than 16 days during the aeration process, and therefore remains highly biologically active, allowing for excessive uptake of phosphorus; Under anaerobic conditions during the subsequent denitrification process, polyphosphate-accumulating microorganisms are able to maintain normal respiratory metabolism due to the presence of nitrogen in the form of nitrite or nitrate, and the ingested phosphorus is not released. Through a series of biological treatment steps, the phosphorus content of the sludge is maintained at a high concentration,
As a result, it was discovered that the phosphorus removal effect remained extremely high.
本発明において、窒素と燐とを同時に処理することがで
きる排水としては1食品工場排水をはじめとする工場排
水、し尿および下水などの有機性排水で、窒素と燐とを
過剰に含有する排水であれば、いずれの排水をも処理す
ることができる。特にBOD濃度100 mg/ 1以
上5,000履g/l以下で、BOD/窒素比が3以上
の排水であれば1本発明の処理効果が最も顕著となる。In the present invention, wastewater that can be treated with nitrogen and phosphorus at the same time includes: 1. Industrial wastewater including food factory wastewater, organic wastewater such as human waste and sewage, and wastewater that contains excessive amounts of nitrogen and phosphorus. If so, any wastewater can be treated. In particular, the treatment effect of the present invention is most remarkable when the BOD concentration is 100 mg/l or more and 5,000 g/l or less and the BOD/nitrogen ratio is 3 or more.
本発明方法は以上の点を主たる特徴とし、それ以外の生
物学的処理工程は従来公知の工程でよい、上記の特徴を
含有する本発明方法を1本発明の1実施態様を示す添付
図面を参照して更に具体的に説明すると、第1図に図解
的に示す通り、処理すべき原排水は、流入路lより貯留
槽2に導かれ、ここで一旦貯留される。この貯留槽の容
量は曝気槽への排水流入が1回分式処理のタイムスケジ
ュールを満足させる様に、排水の流入パターンより、そ
の容量は任意に選定することができ、特に排水の滞留時
間を考慮する必要はない、貯留槽の排水は、曝気もしく
は機械撹拌により撹拌混合を行い、排水を均質化するの
が好ましい。The method of the present invention has the above points as main features, and the other biological treatment steps may be conventionally known steps. To explain more specifically with reference to FIG. 1, raw wastewater to be treated is led from an inflow path 1 to a storage tank 2, where it is temporarily stored. The capacity of this storage tank can be arbitrarily selected based on the inflow pattern of the wastewater so that the inflow of wastewater into the aeration tank satisfies the time schedule of single-batch treatment.The capacity of this storage tank can be arbitrarily selected based on the inflow pattern of the wastewater, especially considering the residence time of the wastewater. It is not necessary to do this, but it is preferable that the waste water from the storage tank is agitated and mixed by aeration or mechanical stirring to homogenize the waste water.
次いで、貯留槽中の縦排水は、縦排水ポンプ3により、
流入路4を経て曝気槽5に流入される。Next, the vertical drainage in the storage tank is carried out by the vertical drainage pump 3.
It flows into the aeration tank 5 via the inflow path 4.
前述の通り1本発明の第1の特徴は、この縦排水の曝気
槽中への流入中は、曝気槽中で曝気を行わず、そのまま
撹拌混合、すなわち嫌気撹拌を行うことであり、この嫌
気撹拌によって縦排水と活性汚泥とを十分に混合する。As mentioned above, the first feature of the present invention is that while this vertical wastewater is flowing into the aeration tank, aeration is not performed in the aeration tank, and stirring and mixing, that is, anaerobic stirring, is performed as it is, and this anaerobic Thoroughly mix the vertical wastewater and activated sludge by stirring.
この嫌気撹拌によって原排水中のATPが加水分解され
、十分な燐の放出が生じる。このような嫌気撹拌は、撹
拌ポンプ等による機械的撹拌でもよいし、縦排水の流入
速度を利用する撹拌方法のいずれでもよい。This anaerobic stirring hydrolyzes ATP in the raw wastewater and releases sufficient phosphorus. Such anaerobic stirring may be performed by mechanical stirring using a stirring pump or the like, or by any stirring method that utilizes the inflow velocity of vertical drainage water.
縦排水の流入が終了した後、曝気槽中で曝気を開始する
。曝気は、従来公知のいずれの方法でもよく、例えば送
風機7により管路8を経て送られ一
る空気によって行うことができる。この曝気工程により
、流入した原排水中の窒素成分の硝化反応が進行し、窒
素成分の大部分は亜硝酸態あるいは硝酸態の窒素に酸化
される。このような窒素成分の酸化が終了した時点で、
曝気を終了させるのが好ましく、従って所定の曝気時間
内に酸化が丁度完了するように、負苛量、曝気量等を設
定するのが好ましい、また硝化反応は酸生成反応である
ので、曝気中にpHが低下しすぎる場合にはアルカリ剤
を薬注路9から曝気槽中に添加するのが好ましい、処理
終了時の陽気液のpHは、6.5〜7.8に保持するこ
とが必要である。After the vertical drainage has finished flowing in, aeration begins in the aeration tank. Aeration may be carried out by any conventionally known method, for example by air blown through conduit 8 by blower 7. Through this aeration process, the nitrification reaction of the nitrogen components in the inflowing raw wastewater progresses, and most of the nitrogen components are oxidized to nitrite or nitrate nitrogen. Once the oxidation of nitrogen components is completed,
It is preferable to terminate the aeration, and therefore, it is preferable to set the loading amount, aeration amount, etc. so that the oxidation is exactly completed within a predetermined aeration time.Also, since the nitrification reaction is an acid production reaction, If the pH drops too much, it is preferable to add an alkaline agent into the aeration tank from the chemical injection path 9.The pH of the positive air liquid at the end of the treatment must be maintained at 6.5 to 7.8. It is.
硝化反応が終了し、曝気工程を終了した後は。After the nitrification reaction is finished and the aeration process is finished.
嫌気撹拌を行う、この嫌気撹拌は、薬注路10から水素
供与体を曝気槽中に添加するとともに曝気槽内の撹拌ポ
ンプ6により、曝気を行わずに嫌気撹拌を行い、脱窒反
応を進行させ、窒素を窒素ガスとして分離させる。この
嫌気工程で使用する水素供与体としては、メタノール、
エタノール、酢酸、イソプロピルアルコール等の工業薬
品、あるいは流入排水組成に類似した窒素と燐を過剰に
含有しない廃液等が使用できる。この嫌気撹拌工程にお
ける水素供与体の添加量は、硝化反応によって生成した
亜硝酸、硝酸態の窒素が脱窒反応により、窒素ガスとし
て系外に除去されるに足る量で十分である。また嫌気撹
拌時間も脱窒反応が終了するに必要な時間にする。Anaerobic stirring is performed by adding a hydrogen donor into the aeration tank from the chemical injection path 10 and using the stirring pump 6 in the aeration tank to perform anaerobic stirring without aeration to advance the denitrification reaction. to separate nitrogen as nitrogen gas. The hydrogen donors used in this anaerobic process include methanol,
Industrial chemicals such as ethanol, acetic acid, isopropyl alcohol, or waste fluids similar to the influent wastewater composition but not containing excessive amounts of nitrogen and phosphorus can be used. The amount of hydrogen donor added in this anaerobic stirring step is sufficient to remove nitrogen in the form of nitrous acid and nitrate produced by the nitrification reaction from the system as nitrogen gas by the denitrification reaction. Also, the anaerobic stirring time is set to be the time required to complete the denitrification reaction.
以上の脱窒反応が終了すると、添加した水素供与体が消
費されず、1部残存することがあるので、この水素供与
体を除去するために短時間の再曝気処理を行い、再曝気
処理が終了後は撹拌を停止して活性汚泥を沈降分離させ
る沈澱工程に移る。所定時間の沈澱工程が終了したら、
放流路11によって上澄水を処理済水として放流する。When the above denitrification reaction is completed, the added hydrogen donor is not consumed and some portion may remain, so a short reaeration process is performed to remove this hydrogen donor. After completion of the stirring, the stirring is stopped and the activated sludge is separated by sedimentation. Once the precipitation process is completed for the specified time,
The supernatant water is discharged through the discharge channel 11 as treated water.
この処理済水は1通常塩素または次亜塩素酸塩類等の殺
菌剤により滅菌消毒処理するのが好ましい。This treated water is preferably sterilized and disinfected using a disinfectant such as chlorine or hypochlorites.
以上の処理で燐を過剰に摂取した余剰汚泥は、曝気槽5
からの処理済水の放流と同時に、あるいはその前後に排
泥管12から汚泥貯槽13に所定量を排泥し、管路14
から、脱水等の処理を行うかまたはそのまま搬出して処
分されるが、残りの大部分の活性汚泥は、常に曝気処理
内に16日間以上滞留するように制御するのが好ましく
、このようにすることにより、活性汚泥の燐に対する活
性を高く維持することができ1次サイクルでの燐の活性
汚泥による摂取が高い効率で行われるようになる。この
ような制御は、活性汚泥の排泥量と排泥時間によって行
うかあるいは活性汚泥界面を界面計により検知して行う
か、いずれの方法でも容易に行うことができる。余剰汚
泥の脱水方法は1通常行われている脱水助剤としての鉄
塩を用いる方法で燐を汚泥中に有効に固定することが可
能であるため、特別な脱水方法は不要である。Excess sludge that has taken in too much phosphorus through the above treatment is transferred to the aeration tank 5.
A predetermined amount of sludge is removed from the sludge pipe 12 to the sludge storage tank 13 at the same time as, or before or after, the treated water is discharged from the pipe 14.
From this activated sludge, it is either subjected to dewatering or other treatment or taken out and disposed of as is. However, it is preferable to control the remaining activated sludge so that it stays in the aeration process for at least 16 days at all times. As a result, the activity of the activated sludge toward phosphorus can be maintained at a high level, and phosphorus can be taken up by the activated sludge with high efficiency in the primary cycle. Such control can be easily carried out by any method, such as by controlling the amount of activated sludge discharged and the draining time, or by detecting the activated sludge interface with an interface meter. Excess sludge can be dewatered using a commonly used method using iron salt as a dewatering aid, and phosphorus can be effectively fixed in the sludge, so no special dewatering method is required.
(作用・効果)
以上の如き本発明方法では、従来公知の比較的低コスト
の回分式の排水処理設備をそのまま使用して、排水の処
理に際して、縦排水の曝気槽への流入中は、曝気を行わ
ずに嫌気撹拌を行うことによって、ATPの加水分解に
よる燐の放出が有効に行われ、次いで特定のPH範囲に
おける曝気による好気状態でAT−Pが生産され、活性
が十分に高められている汚泥が燐を効率的に過剰に摂取
できる状態に保持されている。また脱窒反応の嫌気状態
でも亜硝酸または硝酸態の窒素が存在するため、燐を過
剰に摂取した微生物は通常の呼吸代謝が行うことができ
、このような媛気状態であっても、燐が放出されない、
従って本発明では従来の方法に比較して汚泥の燐含有率
を最後まで高く維持できるため、最後に余剰汚泥を処分
するのみで、燐を安定的且つ高度に除去することができ
る。(Function/Effect) In the method of the present invention as described above, conventionally known comparatively low-cost batch-type wastewater treatment equipment is used as is, and during the treatment of wastewater, aeration is performed while vertical wastewater is flowing into the aeration tank. By performing anaerobic stirring without performing anaerobic stirring, the release of phosphorus by hydrolysis of ATP is effectively carried out, and then AT-P is produced under aerobic conditions by aeration in a specific pH range, and the activity is sufficiently increased. The sludge is maintained in a state where it can efficiently absorb excess phosphorus. In addition, even in the anaerobic state of the denitrification reaction, nitrite or nitrate nitrogen is present, so microorganisms that have ingested an excessive amount of phosphorus can carry out normal respiratory metabolism. is not released,
Therefore, in the present invention, the phosphorus content of the sludge can be maintained higher until the end compared to the conventional method, so that phosphorus can be removed stably and to a high degree simply by disposing of the excess sludge at the end.
また、本発明方法においては上記の燐の除去だけでなく
、前記の如き特定の条件下でも、生物学的な窒素の硝化
処理および脱窒反応には何ら悪影響を及ぼさない。Furthermore, the method of the present invention not only removes phosphorus as described above, but also does not have any adverse effect on biological nitrogen nitrification and denitrification reactions even under the above-mentioned specific conditions.
従って、本発明方法では、複雑で高価の設備を要せずに
、従来の回分式の設備をそのまま用いて、排水中の窒素
と燐を同時に効率的に処理して分離することができる。Therefore, in the method of the present invention, nitrogen and phosphorus in wastewater can be efficiently treated and separated simultaneously using conventional batch-type equipment without requiring complicated and expensive equipment.
次に実施例を挙げて、本発明を更に具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.
実施例1
曝気槽容量8041の回分式活性汚泥油実験装置により
、グルコース700mg / l、スターチ400鳳g
/交、ペプトン320 mgl立、燐酸2水素カリウム
60rag/文、尿素200腸g/見、BODI、00
0 tag1文、全窒素120 sg/ fL、全燐
25 tag / nを含む合成排水を用いて、実験を
行った。Example 1 Glucose 700 mg/l, starch 400 g using a batch type activated sludge oil experimental device with an aeration tank capacity of 8041
/AC, peptone 320 mgl, potassium dihydrogen phosphate 60rag/text, urea 200g/test, BODI, 00
Experiments were performed using synthetic wastewater containing 0 tag/n, 120 sg/fL of total nitrogen, and 25 tag/n of total phosphorus.
実験の処理のタイムスケジュールは、排水の流入(嫌気
撹拌)2時間峠曝気!5時間→脱窒3時間→再曝気1時
間峠沈澱2時間→放流1時間であり、24時間で1回の
処理を完了させるスケジュールである。The time schedule for the experimental treatment is: inflow of wastewater (anaerobic agitation) and 2 hours of aeration at the mountain pass! The schedule is as follows: 5 hours → denitrification 3 hours → reaeration 1 hour, mountain pass sedimentation 2 hours → discharge 1 hour, and one treatment is completed in 24 hours.
実験は同じ曝気槽を有する実験装置を8基使用し、下記
の処理条件にて並列運転を行った。In the experiment, eight experimental apparatuses having the same aeration tank were used, and parallel operation was performed under the following processing conditions.
実験l 実験2
プラントNo、 pH5TR(日) P)I
5TR(日)1’ 7.0 2
B、0 182 7.0 4 8.5
1B3 7.0 8 7.0 184
7.0 12 7.4 1B5 7
.0 1B 7.8 186 7.0
24 8.0 1B7 7.0
32 8.3 1B8
7.0 B4 8.7
18曝気槽は、恒温水槽に浸漬することによって活性汚
泥混合液の温度を20℃一定に保って実験を行った。排
水の入換は、2時間の静置沈澱の後、排泥検量と合わせ
て曝気槽容量の半分に相当する40fLの上澄水を排出
し、次に401の人工下水を毎分400mjLで定量的
に注入しながら100分間にわたって曝気を行わない状
態でゆるやかに機械撹拌を行った。また脱窒工程では水
素供与体としてイソプロピルアルコールを使用し、脱窒
工程の最初に1%溶液を400m1添加し、排水流入時
と同様ゆるやかな撹拌をした。@気工程および再曝気工
程は気泡曝気による曝気を行い、空気量は301/分と
一定とした。曝気槽混合液のpH調整は硫酸溶液あるい
は水酸化ナトリウム溶液にて行ないON−OFF型のP
I(調整機を使用した。また汚泥滞留時間(SRT)の
調整は、実験操作を容易にするため、再曝気工程にて活
性汚泥混合液が曝気されている状態にて、所定量の活性
汚泥混合液を引抜くことによって行った。Experiment 1 Experiment 2 Plant No., pH5TR (Japan) P) I
5TR (Sun) 1' 7.0 2
B, 0 182 7.0 4 8.5
1B3 7.0 8 7.0 184
7.0 12 7.4 1B5 7
.. 0 1B 7.8 186 7.0
24 8.0 1B7 7.0
32 8.3 1B8
7.0 B4 8.7
The experiment was conducted by keeping the temperature of the activated sludge mixture constant at 20° C. by immersing the aeration tank No. 18 in a constant temperature water tank. For replacing the wastewater, after 2 hours of static sedimentation, 40fL of supernatant water, which is equivalent to half of the aeration tank capacity in addition to the sludge measurement, is discharged, and then 401 artificial sewage is quantitatively added at a rate of 400mjL per minute. While injecting into the solution, gentle mechanical stirring was performed for 100 minutes without aeration. In the denitrification step, isopropyl alcohol was used as a hydrogen donor, and 400 ml of a 1% solution was added at the beginning of the denitrification step, followed by gentle stirring in the same manner as when the wastewater was introduced. In the @ air process and the re-aeration process, aeration was performed using bubble aeration, and the air flow rate was kept constant at 301/min. The pH of the aeration tank mixture is adjusted using a sulfuric acid solution or a sodium hydroxide solution.
In addition, the sludge retention time (SRT) was adjusted using a predetermined amount of activated sludge while the activated sludge mixture was being aerated in the re-aeration process. This was done by drawing out the mixture.
前記表に示す実験lの条件では、実験装置を90日間運
転し、前半の70日間を活性汚泥の馴致期間とみなし、
71日から90日までの20日間の処理水質の平均値を
求め、この結果から燐除去率ならびに窒素除去率と汚泥
滞留時間(SRT)の関係を求め第2図に示したが、燐
除去率はSRTが16日以上の条件において95%以上
の値を示し、SRTが12日では同除去率が急激に低下
し35%を示した。窒素の除去率ではSRTが8日以上
の条件にて95%以上の値を示し、SRTが4日以下で
は急激な窒素除去率の低下が認められた。Under the conditions of Experiment I shown in the table above, the experimental equipment was operated for 90 days, and the first 70 days were regarded as the acclimatization period of activated sludge.
The average value of the treated water quality for 20 days from the 71st to the 90th day was determined, and from this result, the relationship between the phosphorus removal rate, nitrogen removal rate, and sludge retention time (SRT) was determined and shown in Figure 2. showed a value of 95% or more when the SRT was 16 days or more, and when the SRT was 12 days, the removal rate rapidly decreased to 35%. The nitrogen removal rate showed a value of 95% or more when the SRT was 8 days or more, and a sharp decrease in the nitrogen removal rate was observed when the SRT was 4 days or less.
以上の如く、曝気槽混合液のpHを7に保つ条件では、
SRTを16日以上にすることで燐および窒素とも95
%以上の極めて良好な除去率を得ることができた。As mentioned above, under the conditions of keeping the pH of the aeration tank mixture at 7,
Both phosphorus and nitrogen are reduced by 95% by SRT for 16 days or more.
We were able to obtain an extremely good removal rate of over %.
次に、実験2の処理条件では、50日間の連続処理実験
を実施し、31日自家ら50日自家での20日間の処理
水質の平均値を求め、この結果から燐除去率ならびに窒
素除去率と活性汚泥混合液pHの関係を整理し、第3図
に示す、燐の除去率では、pH7、8以下において95
%以上の高い値を示し、pH8以上では急激に低下し、
30%前後の値を示した。窒素の除去率については、
p)1115 、5以上において90%以上の良好な結
果を示し、pH6,0では、20%にまで低下し、十分
な窒素除去ができないことが判明した0以上の如く、汚
泥滞留時間(SRT)が16日の条件では、活性汚泥混
合液pHを6,5〜7.8の間に調整することによって
、極めて良好な燐、窒素の同時除去ができた。Next, under the treatment conditions of Experiment 2, a continuous treatment experiment was carried out for 50 days, and the average value of the treated water quality for 20 days was determined from the 31st in-house treatment and the 50th in-house treatment, and based on the results, the phosphorus removal rate and nitrogen removal rate Figure 3 shows the relationship between the pH of the activated sludge mixture and the phosphorus removal rate of 95% at pH 7 and 8 or below.
It shows a high value of more than %, and decreases rapidly at pH 8 or more,
The value was around 30%. Regarding the nitrogen removal rate,
p) At pH 1115, 5 or higher, it showed a good result of 90% or higher, and at pH 6,0, it decreased to 20%, and it was found that sufficient nitrogen removal could not be achieved.Sludge retention time (SRT) However, under the conditions of 16 days, extremely good simultaneous removal of phosphorus and nitrogen was achieved by adjusting the pH of the activated sludge mixture between 6.5 and 7.8.
比較例
実施例1と同じ実験装置ならびに実験方法にて、活性汚
泥混合液pHを7とし、汚泥滞留時間(SRT)を24
日調整し、ただ排水の流入時に撹拌を行わず、50日間
にわたって処理実験を八 行・た、41日間から
50日間までの10日間の処理水質の平均値は、BOD
(mg/見)、9(99%)、全窒素(−87文);5
.5(95%)、全燐(187文);3.8.(85%
)であった、この結果、燐の除去率は、排水流入時に機
械的な撹拌を行った実施例1よりは明らかに低下するこ
とが確認できた。Comparative Example Using the same experimental equipment and method as in Example 1, the pH of the activated sludge mixture was set to 7, and the sludge retention time (SRT) was set to 24.
The treatment experiment was carried out for 50 days in 8 rows without stirring the wastewater at the time of inflow.The average value of the treated water quality for 10 days from day 41 to day 50 was BOD
(mg/view), 9 (99%), total nitrogen (-87 sentences); 5
.. 5 (95%), total phosphorus (187 sentences); 3.8. (85%
), and as a result, it was confirmed that the phosphorus removal rate was clearly lower than in Example 1, in which mechanical stirring was performed during the inflow of wastewater.
実施例2
実施例1の実験方法においてpHwRM機を使用せずに
、曝気工程の始めに重炭酸ソーダを10g添加し、汚泥
滞留時間(SRT)を16日に調整し、他の処理条件は
実施例1と同様に行った。Example 2 Instead of using the pHwRM machine in the experimental method of Example 1, 10 g of sodium bicarbonate was added at the beginning of the aeration process, and the sludge retention time (SRT) was adjusted to 16 days, and the other treatment conditions were as in Example 1. I did the same thing.
この結果、曝気工程における活性汚泥混合液pHは重炭
酸ソーダを添加した当初8.4を示し、その後pH8、
7まで上昇してから徐々に低下して曝気工程の終了時に
はpif7 、0を示した。脱窒工程では、徐々にpH
が上昇しpH8、0に達したが、再曝気工程の終了時に
はPH7,7を示した。処理水中の全窒素は4mg/l
、全燐は0.8mg/交を示し、良好な窒素および燐の
同時処理を達成するこ ・聾
とができた。As a result, the pH of the activated sludge mixture in the aeration process was 8.4 at the beginning of the addition of sodium bicarbonate, and then pH 8.
pif rose to 7, then gradually decreased to pif7,0 at the end of the aeration process. In the denitrification process, the pH gradually decreases.
rose to reach pH 8.0, but at the end of the reaeration process it showed pH 7.7. Total nitrogen in treated water is 4mg/l
, total phosphorus was 0.8 mg/cross, achieving good simultaneous treatment of nitrogen and phosphorus.・Deafness was achieved.
第1図は、本発明の処理工程を図解的に示すものであり
、第2図は、本発明の実施例による排水中の燐除去率な
らびに窒素除去率と汚泥滞留時間との関係を示し、且つ
第3図は、本発明の実施例による排水中の燐除去率なら
びに窒素除去率と汚泥混合液のpHとの関係を示してい
る。
1・・・・・・流入路 2・・・・・・貯留槽
3・・・・・・ポンプ 4・・・・・・流路5
・・・・・・曝気槽 6・・・・・・撹拌ポン
プ7・・・・・・送風機 8・・・・・・管路
9・・・・・・薬注路 10・・・・・・薬注路
11・・・・・・放流路 12・・・・・・排泥
管13・・・・・・汚泥貯槽 14・・・・・・管
路特許出願人 環境エンジニアリング株式会社第1図FIG. 1 schematically shows the treatment process of the present invention, and FIG. 2 shows the relationship between the phosphorus removal rate and nitrogen removal rate in wastewater and the sludge retention time according to an embodiment of the present invention. Moreover, FIG. 3 shows the relationship between the phosphorus removal rate and nitrogen removal rate in wastewater and the pH of the sludge mixture according to an embodiment of the present invention. 1...Inflow channel 2...Storage tank 3...Pump 4...Flow channel 5
...Aeration tank 6 ...Stirring pump 7 ...Blower 8 ...Pipe line 9 ...Medicine injection path 10 ... - Chemical injection channel 11...Discharge channel 12...Sludge drainage pipe 13...Sludge storage tank 14...Pipe patent applicant Kankyo Engineering Co., Ltd. No. 1 figure
Claims (1)
法による排水の生物学的処理方法において、排水を曝気
槽へ流入中は曝気槽において嫌気撹拌を行い、好気工程
の処理液のpHを6.5〜7.8に調整し、且つ曝気槽
中における活性汚泥の滞留時間を少なくとも16日に制
御することを特徴とする排水の生物学的処理方法。(1) In a biological treatment method for wastewater using a batch activated sludge method that includes an anaerobic process and an aerobic process, anaerobic stirring is performed in the aeration tank while the wastewater is flowing into the aeration tank, and the treated liquid in the aerobic process is A biological treatment method for wastewater, which comprises adjusting the pH to 6.5 to 7.8 and controlling the residence time of activated sludge in an aeration tank for at least 16 days.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23754384A JPS61118198A (en) | 1984-11-13 | 1984-11-13 | Biological treatment of waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23754384A JPS61118198A (en) | 1984-11-13 | 1984-11-13 | Biological treatment of waste water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61118198A true JPS61118198A (en) | 1986-06-05 |
JPH0476758B2 JPH0476758B2 (en) | 1992-12-04 |
Family
ID=17016885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23754384A Granted JPS61118198A (en) | 1984-11-13 | 1984-11-13 | Biological treatment of waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61118198A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005077842A1 (en) * | 2004-02-18 | 2005-08-25 | Aqua Clarus Holdings Pty Ltd | Improved waste treatment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5387571A (en) * | 1977-01-12 | 1978-08-02 | Sumitomo Jukikai Envirotech Kk | Device for treating organic waste water |
JPS5678691A (en) * | 1979-11-30 | 1981-06-27 | Sumitomo Jukikai Envirotec Kk | Processing method for organic waste water |
JPS5995997A (en) * | 1982-11-22 | 1984-06-02 | Hitachi Plant Eng & Constr Co Ltd | Biologically dephosphorizing method of waste water |
-
1984
- 1984-11-13 JP JP23754384A patent/JPS61118198A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5387571A (en) * | 1977-01-12 | 1978-08-02 | Sumitomo Jukikai Envirotech Kk | Device for treating organic waste water |
JPS5678691A (en) * | 1979-11-30 | 1981-06-27 | Sumitomo Jukikai Envirotec Kk | Processing method for organic waste water |
JPS5995997A (en) * | 1982-11-22 | 1984-06-02 | Hitachi Plant Eng & Constr Co Ltd | Biologically dephosphorizing method of waste water |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005077842A1 (en) * | 2004-02-18 | 2005-08-25 | Aqua Clarus Holdings Pty Ltd | Improved waste treatment |
Also Published As
Publication number | Publication date |
---|---|
JPH0476758B2 (en) | 1992-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4917805A (en) | Cyclical complete mix activated sludge process | |
US5811009A (en) | Method and system for improved biological nitrification of wastewater at low temperature | |
KR102311712B1 (en) | Shortcut Nitrogen Removal Process and System by using Partial Nitritation in SBBR(Sequencing Batch Biofilm Reactor) with Media | |
JP4302341B2 (en) | Biological nitrogen removal method and apparatus | |
CN104445612B (en) | A kind of method of quick startup denitrification-nitrification biochemical treatment system | |
KR100527172B1 (en) | A method and apparatus for nitrogenous waste water of nitrogen and sewage | |
JP3150506B2 (en) | Wastewater treatment method | |
JPS5881491A (en) | Purification of filthy water with activated sludge | |
CN113443714A (en) | Sewage deep denitrification treatment device and method | |
CN112551828A (en) | Low-carbon-nitrogen-ratio rural domestic sewage treatment device and treatment process thereof | |
CN215516829U (en) | High ammonia nitrogen sewage deep denitrification treatment device | |
JPH0722757B2 (en) | Biological removal method of nitrogen and phosphorus and its treatment device | |
JPH1034185A (en) | Drainage treatment method | |
IL155193A (en) | Apparatus and method for wastewater treatment with enhanced solids reduction (esr) | |
Núnez et al. | Evaluation of an anaerobic/aerobic system for carbon and nitrogen removal in slaughterhouse wastewater | |
KR100465524B1 (en) | System and Method for wastewater treatment using membrane and Bacillus sp. | |
JPS6117559B2 (en) | ||
JP2000024687A (en) | Treatment of waste nitric acid | |
JPS61118198A (en) | Biological treatment of waste water | |
JPS6222678B2 (en) | ||
JPS602917B2 (en) | Biological treatment method for wastewater | |
JPS58146495A (en) | Treatment of organic waste liquid | |
JPH0679715B2 (en) | Biological treatment method of organic wastewater | |
JP2673488B2 (en) | Method and apparatus for treating organic wastewater | |
KR100202066B1 (en) | Wastewater treatment method using biological 3 step digestion process in one reactor |