JPS6365399B2 - - Google Patents

Info

Publication number
JPS6365399B2
JPS6365399B2 JP15804586A JP15804586A JPS6365399B2 JP S6365399 B2 JPS6365399 B2 JP S6365399B2 JP 15804586 A JP15804586 A JP 15804586A JP 15804586 A JP15804586 A JP 15804586A JP S6365399 B2 JPS6365399 B2 JP S6365399B2
Authority
JP
Japan
Prior art keywords
nitrification
ammonia
denitrification
tank
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15804586A
Other languages
Japanese (ja)
Other versions
JPS6316100A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15804586A priority Critical patent/JPS6316100A/en
Publication of JPS6316100A publication Critical patent/JPS6316100A/en
Publication of JPS6365399B2 publication Critical patent/JPS6365399B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、水系の汚濁の原因となる排水中の窒
素分を生物学的にNO2 -に硝化したのち脱窒する
省エネルギー、省資源的な生物学的硝化脱窒法に
関するものである。 〔発明の技術的背景並びに従来の技術〕 生物学的脱窒素法は、硝化菌(亜硝酸菌、硝酸
菌)の作用を利用して窒素化合物を好気的条件下
でNOx(NO2、NO3)に硝化(酸化)したのち、
脱窒素菌の作用を利用してNOxを嫌気的条件下
でN2ガスにまで還元除去するものである。脱窒
素が終了するまでの反応過程を化学量論的に表わ
すと次式のようになる。 硝化反応(好気的条件) NH4 ++1.5O2→NO2 -+2H++H2O
亜硝酸菌…(1) NO2 -+0.5O2→NO3 - 硝酸菌…(2) 脱窒素反応(嫌気的条件) NO3 -+H2→NO2 -+H2O 脱窒素菌…(3) NO2 -+1.5H2→0.5N2↑+OH-+H2O
脱窒素菌…(4) 上記硝化反応の条件は、他の好気的微生物反応
と同様に、溶存酸素、水温、PHが適当に維持され
ていることであるが、硝化反応は炭素性化合物を
酸化する場合と異なり、(1)式に示されているよう
に、アンモニア1当量に対して2当量のH+を発
生する生酸反応なので、硝化が進行すれば、PHは
低下する。ところが、硝化菌の至適PH範囲は7.8
〜8.8にあり、PHが5程度まで低下すると硝化は
ほとんど停止する。このため、順調な硝化反応が
行なわれるには、廃水のPHが中性付近に維持され
なければならない。 上記(1)〜(4)式に示されるように、硝化には酸
素、脱窒素には水素供与体の供給が必要がある
が、廃水に含有される大量の窒素分を処理する場
合には、酸素供給動力費、水素供与体として使用
されているメタノール、PH制御用のアルカリ剤な
ど有価の工業薬品が大量に消費され、脱窒素処理
装置の運転経費のうえから大きな問題となつてい
る。 脱窒素処理装置の硝化工程では、通常アンモニ
アをNO3にまで硝化しているが、上記(1)〜(4)式
からわかるように、硝化をNO2でとどめて脱窒
素処理する方が、硝化の酸素供給、脱窒素の水素
供与体供給量が少なくて済み、運転経費の点で有
利である。すなわち、NO2型硝化の酸素量は
NO3型硝化の3/4(1.5O2/2O2)で済み、NOxの
還元に消費される水素供与体量もNO2はNO3
3/5(1.5H2/2.5H2)で足りる。このように、
NO2型硝化の脱窒素処理には自明の利点がある
にもかかわらず、実際の脱窒素処理のほとんどが
NO3型硝化で行なわれている。これは、NO2
硝化を脱窒素処理装置内で維持することが極めて
困難であるからに外ならない。しかしながら、PH
およびアンモニア濃度が高いほどNO2型硝化に
なりやすいという報告(下水道協会誌vo1.7、No.
74、1970/7、遠矢泰典「生物学的脱窒素法に関
する研究(1)」)がなされている。これは次の化学
平衡式から、遊離のNH3がNO2をNO3に硝化す
る硝酸菌の活性を阻害するためであるということ
が容易に推定できる。 NH4 ++OH-→NH3+H2O ……(5) NH3:遊離アンモニア この(5)式から、アンモニア濃度、PHの高いほど
遊離NH3濃度が増加し、NO2型硝化の条件範囲
となるが、硝化をこのような条件で行なうことは
窒素除去率、アルカリ剤の供給経費のうえから困
難であり、実施されるに至つていない。 〔発明の目的〕 本発明は、排水中に含有されているアンモニア
の硝化型式を、省エネルギー、省資源の点で有利
なNO2型硝化型式に制御する方法を提供するこ
とを目的とするものである。 〔発明の構成〕 本発明は、アンモニアを生物学的に硝化脱窒素
する方法において、硝化工程を栓流が生ずるよう
に区画形成し、原水と返送汚泥をPHが8.5〜10.5
に保持されている硝化工程の流入端に流入せしめ
てアンモニアの一部を硝化したのちに、残部のア
ンモニアを該流入端に後続する硝化工程で硝化す
ることによつて硝化工程で亜硝酸イオンを蓄積
し、次に該亜硝酸イオンを嫌気条件下で脱窒した
のち、該脱窒液を原水流入端に後続する硝化槽に
循環することを特徴とするアンモニア含有排水の
生物学的硝化脱窒法である。 次に本発明の一実施態様を図面を参照しつつ説
明する。 第1図において、アンモニア含有原水1は返送
汚泥2とともに硝化工程3の流入端4(第1硝化
槽)に流入する。硝化工程3は各硝化槽4〜8の
液の混合を防止するため、区画形成されており、
該流入端4のみPHが8.5以上に維持されている。
原水1中のアンモニアの一部が該流入端4で硝化
されたのち、残部のアンモニアは後続硝化槽5〜
8において循環脱窒液9と混合され、順次硝化さ
れていく。 後続硝化槽5〜8のPHは特にアルカリ側に維持
する必要はないが、過度のPH低下によつて硝化活
性が低下する場合には、PHを7.0±0.5程度に制御
すればよい。脱窒液9を循環しているのは、脱窒
に際して生じたアルカリ分を後続硝化槽5〜8の
中和に利用するためである。このような条件の下
に硝化を行うことにより、硝化工程3で生成する
NOx-(NO2 -+NO3 -)の大部分はNO2 -となる。
流入端4のPHを後続硝化槽5〜8と同レベルのPH
7.0±0.5に設定しても、硝化は完全に遂行される
が、NO2 -はほとんど蓄積しない。NO2 -を大量
に蓄積するには流入端4のPHを高レベルに維持す
ることが必要である。 一方、硝化工程3全体のPHを8.5〜10.5に制御
してもNO2 -を蓄積できるが、この場合PH調整用
のアルカリ剤10の消費量が本発明に比べて過大
となり、経済効果が損われる。 硝化工程3は第1図に示す如く多段の槽を用い
てもよいが、第2図に示す如く栓流が形成される
ような細長い槽を用いてもよい。また、NO2
硝化を誘起するには、特に硝化工程3の中で流入
端4のみPHを8.5〜10.5に制御することが肝要な
ので、後続槽5〜8は1槽の完全混合型でも可能
である。しかしながら、多段槽あるいは栓流の形
成される槽を用いて、流入端4から流れ方向に順
次アンモニアを硝化する方が確実に安定して
NO2型硝化を行うことができる。 硝化工程で生成したNO2 -は脱窒工程11に流
入し、水素供与体としてアルコール13などが添
加されて脱窒される。脱窒液の大部分は後続硝化
槽5〜6に循環され、残部は再曝気槽14、沈殿
槽15を経由して放流される。流入端のPHを8.5
にしても硝化工程のNOx-中のNO2 -が増加しな
い場合には、PHを1時的に9.0〜10.5程度に上昇
し、NO2 -が蓄積したのちにPHを8.5に設定すれば
よい。ただし、長時間PHを11.0以上にすると、硝
化菌の活性が著しく損われるので、この点注意が
必要である。 次に本発明の1実施例について説明する。 実施にあたり、第1図に示すフローの装置を用
い硝化、脱窒処理を行つた。実施の条件は次の通
りである。 硝化槽 50(流入端10、後続硝化槽は第2
〜第5槽の4槽に均等分割、それぞれ
10) 脱窒槽 50 原 水 NH4Cl19%、ポリペプトン5%濃厚
溶液を適宜希釈したものを原水とし
た。 PH調整用アルカリ剤 NaOH溶液 返送汚泥量 原水流入量と等量に設定 循環脱窒液量 原水流入量の3倍に設定 設定PH 流入端 8.5 後続硝化槽第3槽 7.0 実施結果を表1に示す。
[Industrial Application Field] The present invention is an energy-saving and resource-saving biological nitrification-denitrification method that biologically nitrifies nitrogen in wastewater, which causes water pollution, to NO 2 - and then denitrifies it. It is related to. [Technical background and prior art of the invention] Biological denitrification methods utilize the action of nitrifying bacteria (nitrite bacteria, nitrate bacteria) to convert nitrogen compounds into NOx (NO 2 , NO 3 ) After nitrification (oxidation),
It uses the action of denitrifying bacteria to reduce and remove NOx to N2 gas under anaerobic conditions. The reaction process until the completion of denitrification is expressed stoichiometrically as shown in the following equation. Nitrification reaction (aerobic conditions) NH 4 + +1.5O 2 →NO 2 - +2H + +H 2 O
Nitrite bacteria...(1) NO 2 - +0.5O 2 →NO 3 -Nitrate bacteria...(2) Denitrification reaction (anaerobic conditions) NO 3 - +H 2 →NO 2 - +H 2 O Denitrification bacteria...(3 ) NO 2 - +1.5H 2 →0.5N 2 ↑+OH - +H 2 O
Denitrification bacteria...(4) The conditions for the nitrification reaction described above, like other aerobic microbial reactions, are that dissolved oxygen, water temperature, and pH are maintained appropriately, but the nitrification reaction requires the removal of carbonaceous compounds. Unlike the case of oxidation, as shown in equation (1), it is a live acid reaction that generates 2 equivalents of H + per 1 equivalent of ammonia, so as nitrification progresses, the pH decreases. However, the optimal pH range for nitrifying bacteria is 7.8.
~8.8, and nitrification almost stops when the pH drops to about 5. Therefore, in order for the nitrification reaction to proceed smoothly, the pH of the wastewater must be maintained near neutrality. As shown in equations (1) to (4) above, it is necessary to supply oxygen for nitrification and a hydrogen donor for denitrification, but when treating a large amount of nitrogen contained in wastewater, This has become a major problem in terms of the cost of oxygen supply power, the consumption of valuable industrial chemicals such as methanol used as a hydrogen donor, and alkaline agents for pH control, and the operating costs of denitrification treatment equipment. In the nitrification process of denitrification equipment, ammonia is usually nitrified to NO 3 , but as can be seen from equations (1) to (4) above, it is better to stop nitrification with NO 2 and perform denitrification treatment. The amount of oxygen supply for nitrification and the supply of hydrogen donor for denitrification are small, which is advantageous in terms of operating costs. In other words, the amount of oxygen for NO2 type nitrification is
NO 3 type nitrification requires 3/4 (1.5O 2 /2O 2 ), and the amount of hydrogen donor consumed for NOx reduction is 3/5 (1.5H 2 /2.5H 2 ) of NO 3 . Enough. in this way,
Despite the obvious advantages of NO2 -type nitrification denitrification treatment, most of the actual denitrification treatments are
It is carried out using NO 3 type nitrification. This is because it is extremely difficult to maintain NO 2 type nitrification in a denitrification treatment equipment. However, PH
and a report that the higher the ammonia concentration, the more likely NO2 type nitrification occurs (Journal of the Japan Sewage Works Association vo1.7, No.
74, 1970/7, Yasunori Toya, "Research on biological denitrification methods (1)"). It can be easily inferred from the following chemical equilibrium equation that this is because free NH 3 inhibits the activity of nitrate bacteria that nitrifies NO 2 to NO 3 . NH 4 + +OH - →NH 3 +H 2 O ...(5) NH 3 : Free ammonia From this equation (5), the higher the ammonia concentration and pH, the higher the free NH 3 concentration, and the condition range for NO 2 type nitrification. However, it is difficult to carry out nitrification under these conditions due to the nitrogen removal rate and the cost of supplying an alkaline agent, and it has not been carried out yet. [Object of the Invention] The object of the present invention is to provide a method for controlling the nitrification type of ammonia contained in wastewater to the NO 2 type nitrification type, which is advantageous in terms of energy saving and resource saving. be. [Structure of the Invention] The present invention is a method for biologically nitrifying and denitrifying ammonia, in which the nitrification process is divided into sections so that a plug flow occurs, and the raw water and returned sludge are kept at a pH of 8.5 to 10.5.
After a part of the ammonia is nitrified by flowing into the inflow end of the nitrification process, the remaining ammonia is nitrified in the nitrification process that follows the inflow end, thereby converting nitrite ions into nitrite ions in the nitrification process. Biological nitrification-denitrification method for ammonia-containing wastewater, characterized in that the nitrite ions are accumulated and then denitrified under anaerobic conditions, and then the denitrification solution is circulated to a nitrification tank following the raw water inlet end. It is. Next, one embodiment of the present invention will be described with reference to the drawings. In FIG. 1, ammonia-containing raw water 1 flows into an inflow end 4 (first nitrification tank) of a nitrification process 3 together with return sludge 2. The nitrification process 3 is divided into sections to prevent mixing of the liquids in the nitrification tanks 4 to 8.
The pH of only the inlet end 4 is maintained at 8.5 or higher.
After a part of the ammonia in the raw water 1 is nitrified at the inflow end 4, the remaining ammonia is transferred to the subsequent nitrification tank 5~
At step 8, it is mixed with the circulating denitrification liquid 9 and nitrified sequentially. It is not necessary to maintain the pH of the subsequent nitrification tanks 5 to 8 on the alkaline side, but if the nitrification activity decreases due to an excessive decrease in pH, the pH may be controlled to about 7.0±0.5. The reason why the denitrification liquid 9 is circulated is to use the alkali content generated during denitrification for neutralizing the subsequent nitrification tanks 5 to 8. By performing nitrification under these conditions, nitrification is produced in nitrification step 3.
Most of NOx - (NO 2 - + NO 3 - ) becomes NO 2 - .
Set the pH of inlet end 4 to the same level as that of subsequent nitrification tanks 5 to 8.
Even when set to 7.0±0.5, nitrification is completed, but NO 2 - is hardly accumulated. In order to accumulate a large amount of NO 2 - , it is necessary to maintain the pH at the inflow end 4 at a high level. On the other hand, NO 2 - can be accumulated even if the overall pH of the nitrification process 3 is controlled to 8.5 to 10.5, but in this case, the consumption amount of the alkaline agent 10 for pH adjustment becomes excessive compared to the present invention, and the economic effect is lost. be exposed. In the nitrification step 3, a multistage tank may be used as shown in FIG. 1, but a long and narrow tank in which a plug flow is formed as shown in FIG. 2 may also be used. In addition, in order to induce NO 2 type nitrification, it is especially important to control the pH at the inflow end 4 to 8.5 to 10.5 in the nitrification process 3, so the subsequent tanks 5 to 8 can be of a single tank complete mixing type. It is. However, it is more reliable and stable to nitrify ammonia sequentially from the inlet end 4 in the flow direction using a multistage tank or a tank in which a plug flow is formed.
NO2 type nitrification can be performed. NO 2 - generated in the nitrification process flows into a denitrification process 11, where alcohol 13 and the like are added as a hydrogen donor and denitrified. Most of the denitrification liquid is circulated to the subsequent nitrification tanks 5 to 6, and the remainder is discharged via the reaeration tank 14 and the settling tank 15. PH at inflow end is 8.5
However, if NO 2 - in NOx - during the nitrification process does not increase, the PH can be temporarily raised to about 9.0 to 10.5, and then set to 8.5 after NO 2 - has accumulated. . However, if the pH is kept above 11.0 for a long period of time, the activity of nitrifying bacteria will be significantly impaired, so care must be taken in this regard. Next, one embodiment of the present invention will be described. In carrying out the process, nitrification and denitrification treatments were carried out using an apparatus having the flow shown in FIG. The conditions for implementation are as follows. Nitrification tank 50 (inflow end 10, subsequent nitrification tank 2nd
~Equally divided into 4 tanks of the 5th tank, each
10) Denitrification tank 50 Raw water The raw water was prepared by appropriately diluting a concentrated solution of 19% NH 4 Cl and 5% polypeptone. Alkaline agent for pH adjustment NaOH solution Amount of returned sludge Set to the same amount as the raw water inflow Amount of circulating denitrification liquid Set to 3 times the raw water inflow Set PH Inlet end 8.5 Subsequent nitrification tank 3rd tank 7.0 The implementation results are shown in Table 1 .

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によつて硝化脱窒法を次
のように経済的な方法を改良することができる。 硝化の酸素消費量が少ないので、酸素供給動
力費を節減することができる。 脱窒のためのアルコールが少なくて済む。
As described above, according to the present invention, the nitrification and denitrification method can be improved economically as follows. Since the amount of oxygen consumed in nitrification is small, the cost of oxygen supply power can be reduced. Less alcohol is needed for denitrification.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例を説明するため
のフロー概略図、第2図は他の実施例を説明する
ためのフロー概略図である。 1…原水、2…返送汚泥、3…硝化工程、4…
流入端(第1)硝化槽、9…循環脱窒液、10…
アルカリ剤。
FIG. 1 is a schematic flow diagram for explaining one embodiment of the method of the present invention, and FIG. 2 is a schematic flow diagram for explaining another embodiment. 1... Raw water, 2... Returned sludge, 3... Nitrification process, 4...
Inflow end (first) nitrification tank, 9... circulating denitrification liquid, 10...
alkaline agent.

Claims (1)

【特許請求の範囲】[Claims] 1 アンモニアを生物学的に硝化脱窒素する方法
において、硝化工程を栓流が生ずるように区画形
成し、原水と返送汚泥をPHが8.5〜10.5に保持さ
れている硝化工程の流入端に流入せしめてアンモ
ニアの一部を硝化したのちに、残部のアンモニア
を該流入端に後続する硝化工程で硝化することに
よつて硝化工程で亜硝酸イオンを蓄積し、次に該
亜硝酸イオンを嫌気条件下で脱窒したのち、該脱
窒液を原水流入端に後続する硝化槽に循環するこ
とを特徴とするアンモニア含有排水の生物学的硝
化脱窒法。
1 In a method of biologically nitrifying and denitrifying ammonia, the nitrification process is divided into sections so that plug flow occurs, and raw water and returned sludge are allowed to flow into the inflow end of the nitrification process where the pH is maintained at 8.5 to 10.5. After nitrifying a portion of the ammonia, the remaining ammonia is nitrified in the subsequent nitrification process at the inlet end, thereby accumulating nitrite ions in the nitrification process, and then the nitrite ions are oxidized under anaerobic conditions. A biological nitrification and denitrification method for ammonia-containing wastewater, which comprises denitrifying the ammonia-containing wastewater and then circulating the denitrification solution to a nitrification tank following the raw water inflow end.
JP15804586A 1986-07-07 1986-07-07 Biological nitraification and denitrification for drainage containing ammonia Granted JPS6316100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15804586A JPS6316100A (en) 1986-07-07 1986-07-07 Biological nitraification and denitrification for drainage containing ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15804586A JPS6316100A (en) 1986-07-07 1986-07-07 Biological nitraification and denitrification for drainage containing ammonia

Publications (2)

Publication Number Publication Date
JPS6316100A JPS6316100A (en) 1988-01-23
JPS6365399B2 true JPS6365399B2 (en) 1988-12-15

Family

ID=15663084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15804586A Granted JPS6316100A (en) 1986-07-07 1986-07-07 Biological nitraification and denitrification for drainage containing ammonia

Country Status (1)

Country Link
JP (1) JPS6316100A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198695A (en) * 1989-01-25 1990-08-07 Kurita Water Ind Ltd Nitrite type nitrification method
KR100315874B1 (en) * 1999-07-30 2001-12-13 채문식 Method and Apparatus of Biological Nitrogen Removal from the High Concentration Industrial Wastewater
JP2003053382A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Nitrification-denitrification treatment method
JP2005131452A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP2005131451A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP4910266B2 (en) * 2004-03-01 2012-04-04 栗田工業株式会社 Nitrification method and treatment method of ammonia-containing nitrogen water
JP4691938B2 (en) * 2004-09-27 2011-06-01 栗田工業株式会社 Nitrogen-containing liquid processing method and apparatus

Also Published As

Publication number Publication date
JPS6316100A (en) 1988-01-23

Similar Documents

Publication Publication Date Title
Isaacs et al. External carbon source addition as a means to control an activated sludge nutrient removal process
AU2010321102B2 (en) Method for treating water within a sequential biological reactor including an in-line measurement of the nitrite concentration inside said reactor
JP5115908B2 (en) Waste water treatment apparatus and treatment method
KR850001929B1 (en) Method for treatment of sewage
JP4882175B2 (en) Nitrification method
JPH10230292A (en) Removing method of nitrogen and device therefor, and comprehensively fixing carrier
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JPS6365399B2 (en)
JPH06178995A (en) Anaerobic digestion treatment of organic waste water
JPH05115897A (en) Waste water treatment using sulfur bacteria and device therefor
JPS62286598A (en) Biological nitration and denitrification of high temperature ammonia-containing waste water
JPH05228493A (en) Method for treating waste water using sulfur bacterium and apparatus therefor
JPH0149555B2 (en)
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JPS6015399B2 (en) Biological denitrification method for ammonia-containing wastewater
JP2003094096A (en) Method for treating organic waste, apparatus therefor, and sludge
JP3396959B2 (en) Nitrification method and apparatus
JPH11216493A (en) Intermittent-aeration activated sludge treatment
JPS5936600A (en) Treatment of waste water
JPH09290290A (en) Treatment of coke-oven gas liquor
JPH0116560B2 (en)
JPS6015400B2 (en) Biological denitrification method for ammonia-containing wastewater
JP2594733B2 (en) Sewage nitrification denitrification method
JPS643558B2 (en)
JPS6014997A (en) Treatment of organic filthy water